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Abstract Atheoryof fuzzyobjects is derived in the category
SpaceFP of spaces with fuzzy partitions, which generalize
classical fuzzy sets and extensional maps in sets with simi-
larity relations. It is proved that fuzzy objects in SpaceFP
can be characterized by some morphisms in the category
of sets with similarity relations. A powerset object functor
F in the category SpaceFP is introduced and it is proved
that F defines a CSL AT -powerset theory in the sense of
Rodabaugh.

Keywords Space with a fuzzy partition ·Category of spaces
with fuzzy partitions · Fuzzy objects in sets with fuzzy
partitions · Powerset theory

1 Introduction

In almost all branches of mathematics the notion of a pow-
erset and powerset operator in classical set theory is one of
the most useful and exploited tools. Recall that given a set X ,
there exists the setP(X) = {S : S ⊆ X}, called the powerset
of X and such that every map f : X → Y can be extended
to the forward powerset operator f → : P(X) → P(Y ) and
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backward powerset operator f ← : P(Y ) → P(X), such that

f →(S) = f (S), f ←(T )= f −1(T )={x ∈ X : f (x) ∈ T }.

The powerset structures are widely used in algebra, logic,
topology and also in computer science, for illustrative exam-
ples of possible applications in see, e.g., the introductory part
of the paper of Solovyov (2011). A classical set theory can
be considered to be a special part of fuzzy set theory, intro-
duced by Zadeh (1965). A fuzzy set in a set A with values
in the interval I = [0, 1] is defined as a map A → I and it
is then natural that an investigation of powerset objects I X

of fuzzy sets was of interest. The first approach was done
again by Zadeh (1965), who defined I X as a new powerset
object instead of P(X) and introduced new powerset oper-
ators f →

Z : I X → I Y and f ←
Z : I Y → I X , such that for

s ∈ I X , t ∈ I Y , y ∈ Y ,

f →
Z (s)(y) =

∨

x, f (x)=y

s(x), f ←
Z (t) = t ◦ f.

A lot of papers were published about Zadeh’s extension and
its generalizations, see, e.g., Gerla andScarpati (1998),Yager
(1996) and Nguyen (1978). Zadeh’s extension (which could
be considered as an extension of a forward powerset operator
f →) was intensively studied by Rodabaugh (1997), espe-
cially the relation between f → and f →

Z .
Rodabaugh (2007) introduced powerset theory as a special

structure describing powerset objects. A slight modification
of that structure defined in a category K, is represented by a
system P = (P,→,←, V, η), where P : |K| → CSL AT
is a powerset generator (where CSL AT is the category of
complete∨-semilattices),→ is a forward powerset operator,
such that for each f : X → Y in K, f →

P : P(X) → P(Y )

in CSL AT , ← is a backward powerset operator, such that
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f ←
P : P(Y ) → P(X) in CSL AT , V : K → Set is a

concrete functor and ηX : V (X) → P(X) is a map for each
object X , such that for each morphism f : A → B in a
categoryK, f →

P ◦ηA = ηB ◦V ( f ). Moreover backward and
forward powerset operator should define aGalois connection.
He proved that both classical and Zadeh’s powerset operators
define a powerset theory.

Since the original Zadeh’s paper was published, the notion
of “fuzzy set” has been changed significantly and it is now
more general. The first important modification concerns the
value set: instead of real number interval I = [0, 1], more
general lattice structures Q are considered. Among these lat-
tice structures, complete residuated lattices play important
role, (see e.g., Perfilijeva and Močkoř 1999), in some ter-
minology unital and commutative quantale, (see Rosenthal
1990), i.e., a structure Q = (L ,∧,∨,⊗,→, 0, 1) such that
(L ,∧,∨) is a complete lattice, (L ,⊗, 1) is a commutative
monoid with operation ⊗ isotone in both arguments and →
is a binary operation which is adjoint with respect to ⊗, i.e.,

α ⊗ β ≤ γ iff α ≤ β → γ.

A well-known example is the Łukasiewicz algebra Ł =
([0, 1],∨,∧,⊗,→Ł, 0, 1), where

a ⊗ b = 0 ∨ (a + b − 1)

a →Ł b = 1 ∧ (1 − a + b).

Further classical fuzzy sets (or even fuzzy sets with values
in residuated lattice Q) were originally defined on sets. But
any set A can be considered as a couple (A,=), where = is
a standard equality relation defined on A. It is then natural
instead of the crisp equality relation =, to consider some
more “fuzzy” equality relation defined on A, which is called
a similarity relation. Hence instead of a classical set A as
a basic set and a fuzzy set s : A → Q, we can use a set
with similarity relation (A, δ) (called a Q-set) and a map s :
(A, δ) → Q. Such a map then represents some new “fuzzy
object” in (A, δ). Instead of maps A → Q, or (A, δ) →
Q, morphisms in some categories can be used. An example
of such category is the category of Q-sets as objects and
naturally defined morphisms. A morphism f : (A, δ) →
(B, γ ) in the category Set(Q) is a map f : A → B such that
γ ( f (x), f (y)) ≥ δ(x, y) for all x, y ∈ A. It is then natural to
speak about a fuzzy object (A, δ) → (Q,↔) in the category
Set(Q), instead of a “fuzzy set,” where↔ is the biresiduation
operation in Q defined by α ↔ β = (α → β) ∧ (β → α).
These fuzzy objects generalize classical fuzzy sets A → Q
and in facts, a fuzzy objects (A, δ) → (Q,↔) is nothing else
than extensional map in a Q-set (see, e.g., Močkoř 2012).

Using these new fuzzy objects, powerset structures of
fuzzy objects were also investigated. In Močkoř (2016), it
was proved the following theorem.

Theorem 1.1 There exists a CSL AT -powerset theory (in
the sense of Rodabaugh) F = (F,→,←, V, η), such that

(1) F(A, δ) is the set of all fuzzy objects in (A, δ),
(2) for any morphism f : (A, δ) → (B, γ ),

(i) s ∈ F(A, δ), b ∈ B, f →
F (s)(b) = ∨

x∈A s(x) ⊗
γ ( f (x), b),

(ii) t ∈ F(B, γ ), a ∈ A, f ←
F (t)(a) = t ◦ f (a),

(3) V : Set(Q) → Set is a forgetfull functor,
(4) η(A,δ) : V (A, δ) → F(A, δ) is defined byη(A,δ)(a)(x) =

δ(a, x), a, x ∈ A.

Theorem 1.1 then represents a generalization of classical
and Zadeh’s powerset theories.

Since the introduction of fuzzy sets in the paper of Zadeh
(1965), very rapid and extensive development of methods,
tools and techniques using this concept appeared. In most
of these methods and tools, a very significant role is played
by the concept of fuzzy relations defined on a set X, i.e.,
R : X × X → [0, 1], or, more generally, R : X × X → Q,
where Q is an appropriate ordered structure. Fuzzy relations
not only allow us to extend the most structures known from
classical sets to the environment of fuzzy sets, but also as a
transcription of fuzzy IF-THEN rules allows us to express the
behavior of dynamic systems, which are influenced by some
elements of uncertainty. In addition to this, explicit use of
fuzzy relations, fuzzy relation contributed to a very intensive
development of new areas of fuzzy mathematics, recently,
fuzzy transform (F-transform) as a method successfully used
in signal and image processing (Martino 2008), compression
(Perfilieva 2006a), numerical solutions of ordinary and par-
tial differential equations (Khastan to appear; Štěpnička and
Valašek 2005), data analysis (Perfilieva et al. 2008) andmany
other applications. Basic structure for F-transform is a space
with a fuzzy partition, which was introduced by Perfilieva
et al. (2015). Roughly speaking, a space with a fuzzy parti-
tion is a couple (X,A), where X is a set andA is a system of
Q-valued fuzzy sets in X , such that cores of these fuzzy sets
are a partition of X . If (X,A) is a space with a fuzzy partition
A = {Aλ : λ ∈ �}, then fuzzy transforms (upper and lower)
are special maps F↑, F↓ : QX → Q�, which fuzzify the
precise values of independent variable by a closeness rela-
tion, and precise values of dependent variables as averages
to an approximate values (see, e.g., Perfilieva et al. 2015). In
the paper, Močkoř (to appear), we introduced the category
SpaceFP of spaces with fuzzy partitions and we proved
that there are some functorial relationships between some
subcategory of the category SpaceFP and the category of
Kuratowski closure (interior, respectively) operators and the
category of approximation spaces.

Hence it seems that spaces with fuzzy partitions can
be used as a basic category for investigation not only of
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F-transform, but also ofKuratowski closure and interior oper-
ators and approximation spaces.

In the paper, we deal with fuzzy objects in our basic cate-
gory of spaceswith fuzzy partition. In all previous definitions
of fuzzy objects in the category Set , or in the category Set(Q)

of Q-sets, fuzzy objects are defined as morphisms A → Q in
a corresponding categoryK, where A is an object ofK andQ
is a special object derived from Q. In that way, fuzzy sets in
Set are only maps (=morphisms) A → Q, fuzzy objects in
Set(Q) are morphisms (A, δ) → (Q,↔). It is then natural
to define fuzzy objects in the category SpaceFP in a similar
way, i.e., as morphisms (X,A) → (Q,Q), where Q is an
appropriate partition in Q. The definition of fuzzy objects in
SpaceFP is introduced in Sect. 3, where we also show that
such fuzzy objects are natural generalizations of classical
fuzzy sets and fuzzy objects in the category Set(Q). In the
category Set(Q), any map f : A → Q can be extended
to a fuzzy object f̂ : (A, δ) → (Q,↔). In Sect. 3 we
prove an analogical property for fuzzy objects in the cat-
egory SpaceFP . In fact, we prove that fuzzy objects in
the category SpaceFP correspond, in some sense, fuzzy
objects in the category Set(Q). We also prove that fuzzy
objects in SpaceFP have properties of local fix points f in
F-transforms, i.e., F↑( f )(λ) = F↓( f )(λ) = f (z), where
z ∈ core(Aλ).

In Sect. 4, we introduce powerset objects F(A,A) =
((Q,Q)(A,A),≤) in the category SpaceFP and as the main
result of the paper,we show that these powerset objects define
CSL AT -powerset theory in the sense of Rodabaugh (2007).
This CSL AT -powerset theory then comprises CSL AT -
powerset theories of classical fuzzy sets and fuzzy objects
in the category Set(Q).

2 Preliminaries

In the paper, by Q we denote a complete residuated lattice
(see e.g., Perfilijeva and Močkoř 1999), in some terminol-
ogy unital and commutative quantale, (see Rosenthal 1990),
i.e., a structure Q = (L ,∧,∨,⊗,→, 0Q, 1Q) such that
(L ,∧,∨) is a complete lattice, (L ,⊗, 1Q) is a commuta-
tive monoid with operation ⊗ isotone in both arguments and
→ is a binary operation which is adjoint with respect to ⊗,
i.e.,

α ⊗ β ≤ γ iff α ≤ β → γ.

We begin with the definition of Q-valued fuzzy partition,
as it was introduced in Perfilieva et al. (2015). Recall that a
core of a (Q-valued) fuzzy set f : X → Q is defined by
core( f ) = {x ∈ X : f (x) = 1Q}. A normal (Q-)valued
fuzzy set f in a set X is such that there exists x ∈ X , such

that f (x) = 1Q . A fuzzy relation R in X is then a fuzzy set
R : X × X → Q.

An F-transform in a form introduced by Perfilieva et al.
(2015) is based on the so called fuzzy partitions on the crisp
set.

Definition 2.1 (Perfilieva et al. 2015) Let X be a set. A sys-
tem A = {Aλ : λ ∈ �} of normal Q-valued fuzzy sets in X
is a fuzzy partition of X , if {core(Aλ) : λ ∈ �} is a partition
of X . A pair (X,A) is called a space with a fuzzy partition.

In the paper Močkoř (to appear), we introduced the fol-
lowing definition of the category SpaceFP of spaces with
fuzzy partitions.

Definition 2.2 (Močkoř, to appear) The category SpaceFP
is defined by

1. Fuzzy partitions (X,A), as objects,
2. Morphisms (g, σ ) : (X, {Aλ : λ ∈ �}) → (Y, {Bω :

ω ∈ �}), such that

(a) g : X → Y is a map,
(b) σ : � → � is a map,
(c) ∀λ ∈ �, g→

Z (Aλ) ⊆ Bσ(λ).

3. The composition of morphisms in SpaceFP is defined
by (h, τ ) ◦ (g, σ ) = (h ◦ g, τ ◦ σ).

Instead of g→
Z we will use only g→.

Recall that a set with similarity relation (or Q-set) is a
couple (A, δ), where δ : A × A → Q is a map such that

(a) (∀x ∈ A) δ(x, x) = 1Q ,
(b) (∀x, y ∈ A) δ(x, y) = δ(y, x),
(c) (∀x, y, z ∈ A) δ(x, y)⊗δ(y, z) ≤ δ(x, z) (generalized

transitivity).

We will use the category Set(Q) with Q-sets as objects
and with morphisms f : (A, δ) → (B, γ ) defined as a
map f : A → B, such that γ ( f (x), f (y)) ≥ δ(x, y),
for all x, y ∈ A. The category Set(Q) has its origin in
Wyler’s category introduced in Wyler (1995), and in a more
general way it was developed by Höhle (2007). Within mor-
phisms in the category Set(Q), wewill be specially interested
in morphisms (A, δ) → (Q,↔), which are called fuzzy
objects in a corresponding category, or extensional sets. Let
F(A, δ) = ((Q,↔)(A,δ),≤) be the ordered set of all such
fuzzy objects in Set(Q), ordered point-wise. Then F(A, δ) is
a complete

∨
-semilattice and if CSL AT is the category of

all complete
∨
-semilatticeswith

∨
-preservingmaps asmor-

phisms, then F : Set(Q) → CSL AT is a covariant functor,
such that for any morphism f : (A, δ) → (B, γ ),

123
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s ∈ F(A, δ), b ∈ B, f →
F (s)(b)

= F( f )(s)(b) =
∨

x∈A

s(x) ⊗ γ ( f (x), b).

In many papers (see, e.g., Höhle 2007) for any Q-set
(A, δ), the following extensional map̂ : {s : s : A →
Q is a map} → F(A, δ) was introduced, such that for any
map s : A → Q, ŝ(a) = ∨

x∈A δ(a, x) ⊗ s(x), for every
a ∈ A, α ∈ Q. Then ŝ ∈ F(A, δ).

3 Fuzzy objects in spaces with fuzzy partitions

We show firstly that Q-sets can be considered to be spaces
with specially defined fuzzy partitions.

Proposition 3.1 There exists a full and faithfull functor I :
Set(Q) → SpaceFP, which is also injective on objects.

Proof Let (X, δ) ∈ |Set(Q)|. Let us define a binary relation
≡δ by

(∀x, y ∈ X) x ≡δ y ↔ δ(x, y) = 1.

It is clear that ≡δ is an equivalence relation. Let X/δ be the
partition of a set X by the relation ≡δ . We set

CX,δ = {CX,a : a ∈ X/δ},
(∀x ∈ X) CX,a(x) = δ(x, y), for any y ∈ a.

The definition is correct. In fact, if y′ ∈ a, then δ(y, y′) =
1Q and it follows that δ(x, y) = δ(x, y′). The fuzzy partition
CX,δ in a set X will be called to be defined by a similarity
relation δ. Let the object function of the functor I be defined
by I (X, δ) = (X, CX,δ), and let f : (X, δ) → (Y, γ ) be a
morphism in Set(Q). We set

I ( f ) = ( f, σ ), σ : X/δ → Y/γ,

such that for any a ∈ X/δ,

σ(a) = b ∈ Y/γ ⇔ (x ∈ a ⇒ f (x) ∈ b).

The definition is correct. In fact, let x ′ ∈ a, then we have
1Q = δ(x, x ′) ≤ γ ( f (x), f (x ′)) and f (x ′) ∈ b. Then
( f, σ ) is a morphism in SpaceFP. In fact, let a ∈ X/δ, then

f →(CX,a)(y) =
∨

f (x)=y

CX,a(x)

=
∨

f (x)=y

δ(x, z) ≤ γ (y, f (z)) = CY,σ (a)(y),

where z ∈ a is an arbitrary element. It is clear that I :
Set(Q) → SpaceFP is a faithfull functor. Moreover we

show that I is injective on objects of Set(Q). In fact, let
I (X, δ) = I (Y, γ ), i.e., (X, CX,δ) = (Y, CY,γ ). Thenwehave
X = Y and CX,δ = CX,γ . Let elements of CX,γ be denoted
byCX,a, and elements of CY,γ by DY,b, where a,b ∈ X/γ =
X/δ. Then there exists a bijection σ : X/γ → X/δ such that
CX,a = DX,σ (a), for any a ∈ X/γ . Let x ∈ X , then for any
y ∈ a and any z ∈ σ(a), we have

CX,a(x) = δ(x, y) = γ (x, z) = DX,σ (a)(x).

Then for any x ∈ a we have 1Q = δ(x, y) = γ (x, z) and
it follows that x ∈ σ(a). Since a, σ (a) are elements in a
partition, it follows that σ(a) = a and CX,a = DX,a. Let
x, y ∈ X , then there exists a ∈ X/δ such that y ∈ a. Hence
we have

δ(x, y) = CX,a(x) = DX,a(x) = γ (x, y),

and (X, δ) = (Y, γ ). We show finally that I (Set(Q)) is a
full subcategory in SpaceFP . Let (X, δ), (Y, γ ) ∈ |Set(Q)|
and let ( f, σ ) : (X, CX,δ) → (Y, CY,γ ) be a morphism in
SpaceFP . Let x, x ′ ∈ X . Then for a ∈ X/δ, such that
x ′ ∈ a, we have f (x ′) ∈ f (a) ⊆ σ(a) and for y = f (x) we
obtain

δ(x, x ′) ≤ f →(CX,a(y)

=
∨

z, f (z)=y

δ(z, x ′) ≤ CY,γ ( f (x))=γ ( f (x), f (x ′)).

Hence f : (X, δ) → (Y, γ ) is a morphism in Set(Q) and
I ( f ) = ( f, σ ). ��

In the following proposition, we prove conditions, under
which a fuzzy partition is defined by a similarity relation.

Proposition 3.2 Let (X,A) be a spacewith a fuzzy partition,
A = {Aλ : λ ∈ �}. Then the following statements are
equivalent.

1. There exists a similarity relation δ on X, such that A =
CX,δ .

2. The following condition holds:

(∀λ, ω ∈ �, x ∈ core(Aω), z ∈ X)

Aλ(x) ⊗ Aλ(z) ≤ Aω(z),

Proof (1) ⇒ (2) This part is only a simple verification of
properties of CX,δ .

(2) ⇒ (1) Let x ∈ core(Aλ), y ∈ core(Aω). From the
condition 2., it follows that Aλ(y) = Aω(x). We set

δ(x, y) = Aλ(y) = Aω(x) = δ(y, x).
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Then δ is a similarity relation on X and (X,A) = (X, CX,δ).
In fact, let σ : � → X/δ be defined by

λ ∈ �, x ∈ core(Aλ) ⇒ σ(λ) = x ∈ X/δ,

where x ∈ X/δ is such that x ∈ x. The definition of σ

is correct and σ is a bijection, as it can be proved simply.
Then for any λ ∈ �, y ∈ core(Aλ) and x ∈ X , we have
Aλ(x) = δ(x, y) = Cy(x) = Cσ(λ)(x). Hence A = CX,δ . ��

As we mentioned in Introduction, Q-valued fuzzy objects
in the category Set of classical sets or in the category Set(Q)

of Q-sets, can be considered to be morphisms A → Q in
these categories, where A is an underlying object in that cat-
egory andQ is a special object representing valued structure
in that category. In the category Set , Q is the underlying set
of a lattice Q and in the category Set(Q), Q is the Q-set
(Q,↔). From that point of view, in the category SpaceFP ,
we can also consider special morphisms (A,A) → (Q,Q),
where (Q,Q) would be the space Q with some fuzzy par-
tition Q. And these special morphisms then could represent
Q-valued fuzzy objects in the category SpaceFP . Since ↔
is a similarity relation in the set Q, for a construction of a
fuzzy partitionQwe can use the Q-set (Q,↔) and the result
of Proposition 3.1.

Let us mention that for the equivalence relation ≡↔
defined on Q, we have Q/↔ = {{α} : α ∈ Q} ∼= Q.
Let Qα be a fuzzy set in Q defined by

Qα(β) = α ↔ β.

Then core(Qα) = {α} and by Q we denote the fuzzy parti-
tionCQ,↔ definedbyQ-set (Q,↔), according toProposition
3.1, i.e.,Q = {Qα : α ∈ Q}. Hence we can consider the pair
(Q,Q) to be the set Q with the fuzzy partition Q.

Definition 3.1 A (Q-valued) fuzzy object in a space with
a fuzzy partition (X,A) is a morphism ( f, σ ) : (X,A) →
(Q,Q) in the category SpaceFP . By (Q,Q)(X,A) wedenote
the set of all fuzzy objects in (X,A).

To be more explicit, ( f, σ ) : (X,A) → (Q,Q) is a fuzzy
object, where A = {Aλ : λ ∈ �} if

1. f : X → Q and σ : � → Q are maps,
2. (∀λ ∈ �,α ∈ Q)

∨
x, f (x)=α Aλ(x) ≤ Qσ(λ)(α) =

α ↔ σ(λ).

In the following proposition, we show that any fuzzy
object ( f, σ ) in a space with a fuzzy partition (X,A) can
be uniquely determined by either of the maps f : X → Q
or σ : � → Q.

Proposition 3.3 Let (X,A) ∈ |SpaceFP|, A = {Aλ : λ ∈
�}.

1. Let σ : � → Q be a map. Then the following statements
are equivalent:

(a) There exists the unique map f : X → Q such that
( f, σ ) ∈ (Q,Q)(X,A),

(b) For all λ, λ′ ∈ � and any x ∈ core(Aλ), Aλ′(x) ≤
σ(λ) ↔ σ(λ′) holds.

2. Let f : X → Q be a map. Then the following statements
are equivalent.

(a) There exists the unique map σ : � → Q, such that
( f, σ ) ∈ (Q,Q)(X,A),

(b) For any λ ∈ � and x ∈ core(Aλ), x ′ ∈ X, Aλ(x ′) ≤
f (x) ↔ f (x ′) holds.

Proof (1) (a) ⇒ (b). Let σ : � → Q be a map and
let f : X → Q be such that ( f, σ ) be a fuzzy object in
(X,A). From the definition of fuzzy objects it follows that
f (core(Aλ)) ⊆ core(Qσ(λ)) = {σ(λ)} and f (x) = σ(λ),
for all x ∈ core(Aλ). Let λ ∈ �,α ∈ Q and let x ∈ X be
such that f (x) = α. If x ∈ core(Aλ′), thenwe have Aλ(x) ≤
Qσ(λ)(α) = σ(λ) ↔ α = σ(λ) ↔ f (x) = σ(λ) ↔ σ(λ′),
and the condition (b) holds.

1) (b) ⇒ (a). Let x ∈ X , x ∈ core(Aλ). We set f (x) =
σ(λ) and we show that ( f, σ ) is a fuzzy object. Let λ ∈
�,α ∈ Q. Then for any x ∈ core(Aλ′), f (x) = α, we have
Aλ(x) ≤ σ(λ) ↔ α = σ(λ) ↔ f (x) = σ(λ) ↔ σ(λ′) and
the condition (a) holds. The uniqueness of f is clear.

2) (a) ⇒ (b). Let ( f, σ ) be a fuzzy object for some
σ : � → Q. Let λ ∈ �, x ∈ core(Aλ), x ′ ∈ X . Since
f (core(Aλ)) ⊆ {σ(λ)}, we have f (x) = σ(λ). We put
α = f (x ′). Then we have Aλ(x ′) ≤ Qσ(λ)(α) = α ↔
σ(λ) = f (x ′) ↔ f (x), and (b) holds.

2) (b) ⇒ (a). Let λ ∈ �, x ∈ core(Aλ). We set
σ(λ) = f (x) ∈ Q. The definition is correct. In fact, let
x, x ′ ∈ core(Aλ), then from (b) it follows that 1Q =
Aλ(x ′) ≤ f (x) ↔ f (x ′) and we obtain f (x) = f (x ′).
Let λ ∈ �,α ∈ Q, x ∈ X be such that f (x) = α. Let
x ′ ∈ core(Aλ). Then from (b) it follows that Aλ(x) ≤
f (x ′) ↔ f (x) = σ(λ) ↔ α = Qσ(λ)(α). Therefore ( f, σ )

is a fuzzy object. The uniqueness of σ is clear. ��

Wewill use the following notation. If f : X → Q is amap
which satisfies the condition 2)(b) fromprevious proposition,
by [ f ] we denote the unique map � → Q such that ( f, [ f ])
is a fuzzy object in (X,A). Similarly, if σ : � → Q is a
map satisfying the condition 1)(b), then by |σ |we denote the
unique map X → Q such that (|σ |, σ ) is a fuzzy object in
(X,A). In that case we say that f (σ , respectively) defines a
fuzzy object ( f, [ f ]) ((|σ |, σ ), respectively).
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Let (X,A) be a space with a fuzzy partition, A = {Aλ :
λ ∈ �}. We set

F(X,A) = {(t, ρ) : (t, ρ) is a fuzzy object in (X,A)},
(1)

F1(X,A) = {t |t : X → Q defines a fuzzy object in (X,A)},
(2)

F2(X,A) = {τ |τ : � → Q defines a fuzzy object in (X,A).

(3)

Then according to previous Proposition 3.3, we have

F(X,A) = {(t, [t]) : t ∈ F1(X,A)}
= {(|σ |, σ ) : σ ∈ F2(X,A)}, (4)

and the following corollary holds.

Corollary 3.1 For any space with a fuzzy partition (X,A =
{Aλ : λ ∈ �}) there exist maps

[.] : F1(X,A) → F2(X,A), |.| : F2(X,A) → F1(X,A),

s ∈ F1(X,A), τ ∈ F2(X,A), [s](λ) = s(x), |τ |(x)
= τ(λ) ⇔ x ∈ core(Aλ).

On a set F(X,A) an ordering can defined such that
(t, ρ) ≤ (s, τ ) ⇔ t ≤ s, ρ ≤ τ . From the previous Propo-
sition 3.3 it follows that (t, ρ) ≤ (s, τ ) iff t ≤ s or ρ ≤ τ .
Analogical ordering can be also defined on sets F1(A,A)

and F2(A,A).
Moreover we have

Lemma 3.1 (F(X,A),≤) is a complete lattice.

Proof Let {(ti , ρi ) : i ∈ I } ⊆ F(X,A). We set T =∨
i∈I ti , t = ∧

i∈I ti in a lattice QX . Then according to
Proposition 3.3, T and t uniquely define fuzzy object in
(X,A). In fact, let λ ∈ �, x ∈ core(Aλ) and x ′ ∈ X . Then
we have

T (x) ↔ T (x ′) =
(

∨

i

ti (x)

)
↔

(
∨

i

ti (x
′)
)

≥
∧

i

(ti (x) ↔ ti (x
′)) ≥ Aλ(x

′),

t (x) ↔ t (x ′) =
(

∧

i

ti (x)

)
↔

(
∧

i

ti (x
′)
)

≥
∧

i

(ti (x) ↔ ti (x
′)) ≥ Aλ(x

′).

Hence (T, [T ]) = ∨
i (ti , ρi ), (t, [t]) = ∧

i (ti , ρi ) in
(F(X,A),≤). ��

In the following examples, we show that the notion of a
fuzzy object in a space with fuzzy partition extends classical
notions of a fuzzy set in a set and also of an extensional map
in a set with similarity relation.

Example 3.1 Let A = {{x} : x ∈ X} and let ( f, σ ) :
(X,A) → (Q,Q) be amorphism in SpaceFP . Hence f, σ :
X → Q are maps and we have { f (x)} = f (core({x})) ⊆
core(Qσ(x)) = {σ(x)}. Therefore f = σ and it is clear that
the property from the definition of morphisms in SpaceFP
holds automatically. Therefore ( f, σ ) : (X,A) → (Q,Q) is
a morphism iff f : X → Q is a map. Hence (Q,Q)(X,A) =
{( f, f ) : f ∈ QX } and F1(X,A) = QX is the set of all
fuzzy sets in a set X . ��
Example 3.2 Let (X, δ) ∈ |Set(Q)| and let ( f, σ ) :
(X, CX,δ) → (Q,Q) be a morphism in SpaceFP . Since
Q is the fuzzy partition defined by the similarity relation ↔
and, according to Proposition 3.1, I (Set(Q)) is a full subcat-
egory in SpaceFP , it follows that f : (X, δ) → (Q,↔) is
a morphism in Set(Q). Hence (Q,Q)(X,CX,δ) = {( f, [ f ]) :
f is an extensional map in (X, δ)} and F1(X,A) = (Q,↔
)(X,δ). ��
Example 3.3 Let X be a set and let A = {Aλ : λ ∈ �},
where Aλ ⊆ X be crisp sets. Let ( f, σ ) : (X,A) → (Q,Q)

be amorphism in SpaceFP . Then f (Aλ) = f (core(Aλ)) ⊆
core(Qσ(λ)) = {σ(λ)} and it follows that f (Aλ) = {σ(λ)}.
The condition from the definition ofmorphisms in SpaceFP
is satisfied automatically and we obtain that (Q,Q)(X,A) ∼=
Q�, which represents special fuzzy sets, constant on ele-
ments of a partition A. ��

If a function f : X → Q defines a fuzzy object in a
space with a fuzzy partition (X,A), then for any λ ∈ �, f
is a constant function on a core(Aλ), i.e., f (core(Aλ)) =
{[ f ](λ)}. In the next example we show that this property is
a necessary but not a sufficient condition to define a fuzzy
object.

Example 3.4 Let X = [0, 1], Q be a Łukasiewicz algebra
and let fuzzy sets A1, A2, A3 in X be such that

1. core(A1) = [0, 1/3), core(A2) = [1/3, 2/3), core(A3)

= [2/3, 1],
2. there exists x0 ∈ [1/3, 2/3), such that A3(x0) > 0.5.

Let A = {Ai : i ∈ {1, 2, 3}} and let a function f : X → Q
be defined such that

f ([0, 1/3)) = 0.5, f ([1/3, 2/3)) = 0.7, f ([2/3, 1]) = 0.2.

If f should define a fuzzy object in (X,A), then for indexes
2, 3 and any x ∈ core(A3), we should have A3(x0) ≤
f (x) ↔ f (x0) = 0.2 ↔ 0.7 = 0.5, a contradiction with
A3(x0) > 0.5. Hence f does not define a fuzzy object. ��
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As we have mentioned in Sect. 2, if (A, δ) is a Q-set
and s : A → Q is a map, then s can be extended to an
extensional set ŝ : (A, δ) → (Q,↔), such that ŝ is the
smallest extensional set in (A, δ), such that ŝ ≥ s. In the
next theorem we prove that analogical result holds also for
spaces with fuzzy partitions. Let (X,A) be a space with a
fuzzy partition. We prove that any map t : X → Q (or
σ : � → Q, respectively) can be extended in the smallest
way to the map t̃ : X → Q (or σ̃ : � → Q, respectively),
which defines a fuzzy object.

Theorem 3.1 Let (X,A) be a space with a fuzzy partition.
Then there exist maps

QX → F1(X,A), t �→ t̃,

Q� → F2(X,A), ξ �→ ξ̃ ,

with the following properties.

(1) There exist a similarity relation ρX,A in � and a simi-
larity relation δX,A in X, such that

x ∈ X, t̃(x) =
∨

z∈A

t (z) ⊗ δX,A(z, x),

λ ∈ �, ξ̃(λ) =
∨

ω∈�

ξ(ω) ⊗ ρX,A(ω, λ),

(2) t̃ (̃ξ , respectively) defines a fuzzy object in (X,A) and
t̃ ≥ t (̃ξ ≥ ξ , respectively),

(3) if t (ξ , respectively) defines a fuzzy object in (X,A), then
t̃ = t (̃ξ = ξ , respectively),

(4) t̃ = ∧{g : g defines a fuzzy object in (X,A), g ≥ t},
(5) ξ̃ = ∧{ψ : ψ defines a fuzzy object in (X,A), ψ ≥

ξ}.

Proof Let A = {Aλ : λ ∈ �} and let t : X → Q, ξ : � →
Q bemaps.Wedefine a fuzzybinary relationπ : �×� → Q
by

π(λ, ω) =
∨

x∈core(Aω)

Aλ(x) ∨
∨

x∈core(Aλ)

Aω(x).

Then π is a symmetric and reflective fuzzy relation, and we
can consider the smallest fuzzy transitive closure ρ = ρX,A
of π , i.e., ρX,A is the smallest fuzzy relation, such that for
any λ, ω, α ∈ �, we have

ρ(X,A)(λ, ω) ⊗ ρX,A(ω, α) ≤ ρX,A(λ, α),

π(λ, ω) ≤ ρX,A(λ, ω).

In that case, ρX,A is a similarity relation in a set �. For
details of the construction of the smallest fuzzy transitive
closure see, e.g., Garmendia (2009).

Ad (1), (2). Let ξ̂ be an extension of ξ to an extensional
map in a Q-set (�, ρX,A), i.e.,

ξ̂ (λ) =
∨

ω∈�

ξ(ω) ⊗ ρX,A(ω, λ) ≥ ξ(λ).

In that case we have ξ̂ (λ) ⊗ ρX,A(λ, ω) ≤ ξ̂ (ω), and we
show that ξ̂ defines a fuzzy object in (X,A). In fact, let
λ ∈ �, x ∈ core(Aω). Then we have

ξ̂ (λ) ⊗ π(λ, ω) ≤ ξ̂ (λ) ⊗ ρX,A(λ, ω) ≤ ξ̂ (ω),

ξ̂ (ω) ⊗ π(λ, ω) ≤ ξ̂ (ω) ⊗ ρX,A(λ, ω) ≤ ξ̂ (λ),

and it follows that

ξ̂ (λ) ↔ ξ̂ (ω) ≥ π(λ, ω) ≥ Aλ(x).

Hence ξ̂ defines a fuzzy object in (X,A) and we put ξ̃ := ξ̂ .
Now let a binary fuzzy relation δX,A in X be defined by

a, b ∈ X, δX,A(a, b) := ρX,A(α, β)

⇔ a ∈ core(Aα), b ∈ core(Aβ).

Since ρX,A is a similarity relation in �, from Corollary 3.1
it follows that δX,A is a similarity relation in a set X . Then
we can construct an extension t̂ of t to an extensional map in
a Q-set (X, δX,A), i.e.,

t̂(x) =
∨

z∈A

t (z) ⊗ δX,A(x, z).

We show that t̂ defines a fuzzy object in (X,A). In fact, let
λ ∈ �, x ∈ core(Aλ) and x ′ ∈ X, x ′ ∈ core(Aω). Then we
have

t̂(x) ⊗ π(λ, ω) ≤ t̂(x) ⊗ ρX,A(λ, ω)

= t̂(x) ⊗ δX,A(x, x ′) ≤ t̂(x ′),
t̂(x ′) ⊗ π(λ, ω) ≤ t̂(x ′) ⊗ ρX,A(λ, ω)

= t̂(x ′) ⊗ δX,A(x, x ′) ≤ t̂(x),

and it follows that

t̂(x) ↔ t̂(x ′) ≥ π(λ, ω) ≥ Aλ(x).

Hence t̂ defines a fuzzy object in (X,A) and we put t̃ := t̂ .
It follows that properties (1) and (2) hold for t̃ and ξ̃ .

Properties (3),(4),(5) follow directly from analogical
properties of extensional maps in Q-sets (X, δX,A) and
(�, ρX,A) (see, e.g., Höhle 2007), and these proofs will be
omitted. ��

From Example 3.2 and previous Theorem 3.1, part 4., it
follows the corollary.
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Corollary 3.2 Let (X, δ) be a Q-set and let t : X → Q be
a map. Then for a space with a fuzzy partition (X, CX,δ), we
have t̃ = t̂ , where t̂ is an extension of t to an extensional map
in a Q-set (X, δ).

In the proof of Theorem 3.1, we defined similarity rela-
tions ρX,A and δX,A. Corresponding Q-sets (�, ρX,A) and
(X, δX,A) are closely connected with the space with fuzzy
partition (X,A). In fact, we have

Proposition 3.4 There exist functors

SpaceFP
H

>
G

> Set(Q),

such that for any space with a fuzzy partition (X,A = {Aλ :
λ ∈ �}),

(1) G(X,A) = (�, ρX,A), H(X,A) = (X, δX,A),
(2) For any Q-set (X, δ), G.I (X, δ) = (X/δ, δ), where

δ(a,b) = δ(a, b), for any a ∈ a, b ∈ b.

Proof (1) Let ( f, σ ) : (X,A = {Aλ : λ ∈ �}) → (Y,B =
{Bω : ω ∈ �}) be a morphism in the category SpaceFP .
Then σ : (�, ρX,A) → (�, ρY,B) is a morphism in the
category Set(Q) and we set G( f, σ ) = σ . In fact, let for any
space (X,A)with a fuzzy partition, a fuzzy relation πX,A be
defined by

πX,A(λ, ω) =
∨

x∈core(Aω)

Aλ(x) ∨
∨

x∈core(Aλ)

Aω(x).

Since ( f, σ ) is a morphism, we have f (core(Aλ)) ⊆
core(Bσ(λ)) and Aλ(x) ≤ Bσ(λ)( f (x)), for any x ∈ X . Then
for any α, β ∈ �, we have

πY,B(σ (α), σ (λ)) ≥
∨

y∈ f (core(Aα))

Bσ(α)(y) ∨
∨

y∈ f (core(Aβ))

×Bσ(β)(y) ≥ πX,A(α, β).

If θ is a similarity relation in�, such that θ ≥ πY,B, then it is
clear that ζ = θ ◦ (σ × σ) is a similarity relation in �, such
that ζ ≥ πX,A. Hence from the definition of ρX,A presented
in the proof of Theorem 3.1, it follows that

ρX,A(α, β)

=
∧

{ζ(α, β) : ζ is a similarity in �, ζ ≥ πX,A}
≤

∧
{θ ◦ (σ × σ)(α, β)) : θ is a similarity in �, θ ≥ πY,B}

= ρY,B(σ (α), σ (β)),

and σ is a morphism in Set(Q). HenceG is a functor. Further
we show that f : (X, δX,A) → (Y, δY,B) is a morphism
in the category Set(Q). In fact, let x, y ∈ X and let x ∈

core(Aλ), y ∈ core(Aω). Since σ is a morphism in Set(Q)

and f (x) ∈ f (core(Aλ)) ⊆ core(Bσ(λ)) and analogously
f (y) ∈ core(Bσ(ω)), we obtain

δX,A(x, y) = ρX,A(λ, ω) ≤ ρY,B(σ (λ), σ (ω)) = δY,B( f (x), f (y)).

Hence f is a morphism and we can put H( f, σ ) = f . It is
clear that H is a functor.

(2) Let (X, δ) be a Q-set. We need to prove that
G.I (X, δ) = G(X, CX,δ) = (X, δ). We have G(X, CX,δ) =
(X/δ, ρX,CX,δ

), where ρX,CX,δ
is the smallest similarity rela-

tion in X/δ, which is greater or equal to πX,CX,δ
. We have

a,b ∈ X/δ, πX,CX,δ
(a,b)

=
∨

x∈core(CX,b)

CX,a(x) ∨
∨

z∈core(CX,a)

CX,b(z)

=
∨

x,δ(x,b)=1Q

δ(x, a) ∨
∨

z,δ(z,a)=1Q

δ(z, b)

= δ(a, b) ∨ δ(b, a) = δ(a, b),

for any a ∈ a, b ∈ b. Hence πX,CX,δ
is a similarity relation

and it follows that δ(a,b) = ρX,CX,δ
(a,b) = δ(a, b), where

a ∈ a, b ∈ b. ��
In the following we use the functor F , which was intro-

duced in the Sect. 2.

Corollary 3.3 Let (X,A) be a space with a fuzzy partition
A = {Aλ : λ ∈ �}. Then

F1(X,A) = F(X, δX,A), F2(X,A) = F(�, ρX,A).

Proof Let σ defines a fuzzy object, σ ∈ F2(X,A). Then
for any λ, ω ∈ �, we have θ(λ, ω) := σ(λ) ↔ σ(ω) ≥
πX,A(λ, ω), where we use a notation from the proof of
Proposition 3.4. Since θ is a similarity relation in �, we
have σ(λ) ↔ σ(ω) ≥ ρX,A, and it follows that σ is
an extensional map in (�, ρX,A). The converse implica-
tion can be done similarly. The proof for F1 can be done
analogously. ��

It should be observed that if (X, δ) is a Q-set, then
(X, CX,δ) is a space with a fuzzy partition (see Proposition
3.1) and we obtain G(X, CX,δ) = (Q,↔). In fact, for any
α, β ∈ Q, we have πX,A(α, β) = ∨

γ∈core(Qβ) Qα(γ ) ∨∨
γ∈core(Qα) Qβ(γ ) = α ↔ β, and it is a similarity relation.

Hence we have ρX,CX,δ
(α, β) = α ↔ β.

Let X be a set with a fuzzy preorder relation R. Then
according to Tiwari and Singh (2013), a fuzzy set f : X →
Q is called an upper set of (X, R), if f (x)⊗R(x, y) ≤ f (y),
for all x, y ∈ X . In the next example we show that for any
set with a fuzzy preorder relation (X, R), where core(R)

is an equivalence relation, there exists a space with a fuzzy
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partition (X,A), such that any map f : X → Q which
defines a fuzzy object in (X,A), is an upper set in (X, R).

Example 3.5 Let X be a set with a fuzzy preorder relation R,
such that core(R) is an equivalence relation. A pair (X, R)

is then called a space with a fuzzy preorder relation.
Let � = X/core(R) and let A = {Aλ : λ ∈ �},

where for any λ ∈ �, Aλ be a fuzzy set in X defined by
Aλ(x) = R(x, y), for any y ∈ λ. It can be proved simply that
this definition is correct. It is clear that (X,A) is a space with
a fuzzy partition and core(Aλ) = λ. Now let f : X → Q
defines a fuzzy object in (X,A), i.e., f ∈ F1(X,A). Accord-
ing to Corollary 3.3, f (x) ⊗ δX,A(x, y) ≤ f (y) holds for
any x, y ∈ X . Using the notation from the proof of Theorem
3.1, for x, y ∈ X , x ∈ λ, y ∈ ω, we obtain

δX,A(x, y) = ρX,A(λ, ω) ≥
∨

z∈ω

Aλ(z) ∨
∨

t∈λ

Aω(t)

=
∨

z∈ω

R(z, x) ∨
∨

t∈λ

R(t, y) ≥ R(x, y).

Hence we obtain f (y) ≥ f (x) ⊗ δX,A(x, y) ≥ f (x) ⊗
R(x, y), and f is an upper set in (X, R). ��

As we have mentioned in the introduction, spaces with
fuzzy partitions are basic structures for fuzzy transforms
(F-transforms). If (X,A) is a space with a fuzzy partition
A = {Aλ : λ ∈ �}, then fuzzy transforms (upper and lower)
are special maps F↑, F↓ : QX → Q�, which fuzzify the
precise values of independent variable by a closeness rela-
tion, and precise values of dependent variables as averages
to an approximate values (see, e.g., Perfilieva 2006b). More
precisely, if f ∈ QX , then

F↑( f )(λ) =
∨

x∈X
f (x) ⊗ Aλ(x),

F↓( f )(λ) =
∧

x∈X
(Aλ(x) → f (x)).

In the next proposition, we show that fuzzy objects in (X,A)

are, in some sense, locally fix points of these F-transforms.

Proposition 3.5 Let (X,A) be a spacewith a fuzzy partition.
Then for any f ∈ F1(X,A), we have

(∀λ ∈ �) F↑( f )(λ) = F↓( f )(λ) = f (z), z ∈ core(Aλ).

Proof Let λ ∈ � and z ∈ core(Aλ). For any x ∈ X , by λx

we denote an element of �, such that x ∈ core(Aλx ). From
the proof of Theorem 3.1, it follows that

ρX,A(λ, λx ) ≥
∨

u∈core(Aλx )

Aλ(u)

∨
∨

v∈core(Aλ)

Aλx (v) ≥ Aλ(x), x ∈ core(Aλx ).

Using the notation from Corollary 3.1 and a fact, that [ f ] is
an extensional map in a Q-set (�, ρX,A) (see Corollary 3.3),
we obtain

F↑( f )(λ) =
∨

x∈X
f (x) ⊗ Aλ(x) =

∨

x∈X
[ f ](λx ) ⊗ Aλ(x)

≤
∨

x∈X
[ f ](λx ) ⊗ ρX,A(λ, λx ) ≤ [ f ](λ) = f (z).

On the other hand, we have

F↑( f )(λ) =
∨

x∈X
[ f ](λx ) ⊗ Aλ(x)

≥
∨

x∈core(Aλ)

[ f ](λx ) = [ f ](λ) = f (z).

Now using above mentioned properties of [ f ] and ρX,A, we
obtain

F↓( f )(λ) =
∧

x∈X
Aλ(x) → f (x) =

∧

x∈X
Aλ(x) → [ f ](λx )

≥
∧

x∈X
ρX,A(λ, λx ) → [ f ](λx )≥

∧

x∈X
[ f ](λ) = f (z).

On the other hand, we have F↓( f )(λ) ≤ Aλ(z) →
[ f ](λz) = 1Q → f (z) = f (z), and the proposition is
proved. ��

In the paper Močkoř (to appear), we introduced functors
F↑ : SpaceFP → KClo and F↓ : SpaceFP → KInt
from the category SpaceFP to the category of Kuratowski
closure operators KClo and Kuratowski interior operators
KInt, respectively. In the following example we show that
fuzzy objects in (X,A) are fix points in both closure and
interior spaces F↑(X,A) and F↓(X,A).

Example 3.6 According toMočkoř (to appear); Theorem 4.1
and Theorem 4.2, closure and interior spaces F↑(X,A) and
F↓(X,A) are defined by

F↑(X,A) = ((QX )�, c), F↓(X,A) = ((QX )�, i),

where A = {Aλ : λ ∈ �} and for f = ( fλ)λ ∈ (QX )�,
c(f) = (cλ( fλ)), i(f) = (iλ( fλ)),

cλ( fλ)(x) =
{
F↑( fλ)

f (x)
iλ( fλ)(x) =

{
F↓( fλ) iff x ∈ core(Aλ),

fλ(x) otherwise.

Let f ∈ F1(X,A) and let f = ( fλ)λ ∈ (QX )�, where
fλ = f for any λ ∈ �. Then according to Proposition 3.5,
we have c(f) = i(f) = f . ��
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4 Powerset objects in spaces with fuzzy partitions

In the next part, we will deal with the powerset object

F(X,A) = ((Q,Q)(X,A),≤)

of a space with a fuzzy partition with ordering defined in
Lemma 3.1. Our goal is to prove that, analogically as pow-
erset objects of classical fuzzy sets or powerset objects of
fuzzy objects in sets with similarity relations, F(X,A) sat-
isfies conditions of a general definition of powerset objects,
presented by Rodabaugh (2007), i.e.,

Definition 4.1 (Rodabaugh 2007) Let K be a category and
let CSL AT be the category of complete ∨-semilattices with
∨-preserving maps as morphisms. Then P = (P,→,←
, V, η) is called CSL AT -powerset theory in K, if

1. P : |K| → |CSL AT | is an object-mapping,
2. for each f : A → B in K, there exists f →

P : P(A) →
P(B) in CSL AT ,

3. for each f : A → B in K, there exists f ←
P : P(B) →

P(A) in CSL AT ,
4. ( f →

P , f ←
P ) is a Galois connection,

5. There exists a concrete functor V : K → Set , such that η
determines in § for each A ∈ K a mapping ηA : V (A) →
P(A),

6. For each f : A → B in K, f →
P ◦ ηA = ηB ◦ V ( f ).

We want to show firstly that the object functions F ,F1 and
F2 defined by (1), (2) and (3), define functors SpaceFP →
CSL AT . To do it, we repeat the definition of the powerset
object functor F : Set(Q) → CSL AT , such that for any
Q-set (X, δ),

F(X, δ) = ((Q,↔)(X,δ),≤)

is the ordered set of all extensional maps X → Q, i.e.,
morphisms (X, δ) → (Q,↔) in the category Set(Q). If
f : (X, δ) → (Y, γ ) is a morphism in the category Set(Q),
then f →

F = F( f ) : F(X, δ) → F(Y, γ ) is defined by
f →
F (s)(y) = ∨

x∈X s(x)⊗γ ( f (x), y), for s ∈ F(X, δ), y ∈
Y . For more information about the functor F see, e.g.,
Močkoř (2016).

Recall that if f : L → M, g : M → L are isotone maps
between pre-ordered sets, then f � g, provided that for any
a ∈ L , b ∈ M , a ≤ g(b) ⇔ f (a) ≤ b. It is clear that f � g
iff ( f, g) is a Galois connection, i.e., f ◦g ≤ 1M , g◦ f ≥ 1L .
From a general lattice theory the following Adjoint Functor
Theorem is well known (see, e.g., Rodabaugh 1997).

Theorem 4.1 Let L , M be partially ordered sets such that
L has arbitrary

∨
and let f → : L → M be a map which

preserves arbitrary
∨
. Then the map f ← : M → L defined

by

(∀y ∈ M) f ←(y) =
∨

{x∈L , f →(x)≤y}
x,

is the unique map M → L such that

1. ( f →, f ←) is a Galois connection,
2. f ← preserves all meets in M.

We will frequently deal with the following situation. Let
K be a category and let P : K → CSL AT be a covariant
functor. It follows that for any morphism f : A → B, P( f )
is a map preserving all sup. Instead of P( f ), we use f →

P .
By using Theorem 4.1, for any morphism f : A → B in

K, there exists the map f ←
P : P(B) → P(A) defined by

(∀Y ∈ P(B)) f ←
P (Y ) =

∨

{X∈P(A): f →
P (X)≤Y }

X. (5)

It is then clear that f ←
P : P(B) → P(A) preserves all exist-

ing meets and ( f →
P , f ←

P ) is a Galois connection. If a functor
P will be given, then by f ←

P we will understand the map
defined by (5) from P( f ) = f →

P .

Theorem 4.2 (Extension principle for fuzzy objects) For
any (X,A) ∈ |SpaceFP|, F1(X,A), F2(X,A) and
F(X,A) define object functions of functors SpaceFP →
CSL AT .

Proof Let ( f, σ ) : (X,A) → (Y,B) be a morphism in
SpaceFP . Then according to Proposition 3.4,

σ = G( f, σ ) : G(X,A) = (�, ρX,A) → (�, ρY,B) = G(Y,B)

is amorphism in the category Set(Q) and by using the functor
F : Set(Q) → CSL AT , we obtain a morphism

σ→
F := F(σ ) = FG( f, σ ) : F(�, ρX,A) → F(�, ρY,B).

According toCorollary3.3,wehaveF2(X,A) = F(�, ρX,A)

and we can define

( f, σ )→F2
= F2( f, σ ) := FG( f, σ ) = σ→

F .

It means that if A = {Aλ : λ ∈ �}, B = {Bω : ω ∈ �},
then for any τ ∈ F2(X,A),ω ∈ �, ( f, σ )→F2

(τ ) is a function
� → Q defined by

( f, σ )→F2
(τ )(ω) =

∨

λ∈�

τ(λ) ⊗ ρY,B(σ (λ), ω).

Since F,G are functors, F2 = FG is also a functor
SpaceFP → CSL AT .

123



Fuzzy objects in spaces with fuzzy partitions 7279

Now we define a functor F1, i.e., we define a function

( f, σ )→F1
= F1( f, σ ) : F1(X,A) → F1(Y,B).

According to Proposition 3.4, f = H( f, σ ) : H(X,A) =
(X, δX,A) → (Y, δY,B) = H(Y,B) is a morphism in the
category Set(Q) and, again by using the functor F , we can
define

( f, σ )→F1
= F1( f, σ ) = FH( f, σ ) = f →

F .

It means that if t ∈ F1(X,A), then we have

y ∈ Y, ( f, σ )→F1
(t)(y) =

∨

x∈X
t (x) ⊗ δY,B( f (x), y).

Hence F1 = FH is a functor.
Now we define the functor F . Let (t, τ ) ∈ F(X,A) be a

fuzzy object. Then we set

( f, σ )→F (t, τ ) = F( f, σ )(t, τ ) := (F1( f, σ )(t),F2( f, σ )(τ )).

Using the definition of morphisms composition in the cate-
gory SpaceFP , it is cleat that F is a functor. ��

Proposition 4.1 There exist mutually inverse natural trans-
formations

F1
[.]
>

<|.|
F2.

Proof Let (X,A) be a space with a fuzzy partition. We
have F1 = FH,F2 = FG. Then for t ∈ FH(X,A), g ∈
G(X,A), we put [.](X,A)(t) = [t], |.|(X,A)(g) = |g|, where
we use a notation from Corollary 3.1. Then for any λ ∈ �,
x ∈ X , x ∈ core(Aλ), we have

|.|(X,A) ◦ [.](X,A)(t)(x) = |[t]|(x) = [t](λ) = t (x),

[.](X,A) ◦ |.|(X,A)(g)(λ) = [|g|](λ) = |g|(x) = g(λ),

and it follows that these maps are mutually inverse. We show
that [.] is a natural transformation. Let ( f, σ ) : (X,A) →
(Y,B) be a morphism in SpaceFP . Then the following dia-
gram commutes:

FH(X,A) = F(X, δX,A)
[.](X,A)−−−−→ F(�, ρX,A) = FG(X,A)

f →
F =FH( f,σ )

⏐⏐�
⏐⏐�FG( f,σ )=σ→

F

FH(Y,B) = F(Y, δY,B)
[.](Y,B)−−−−→ F(�, ρY,B) = FG(Y,B).

In fact, let t ∈ FH(X,A), ω ∈ � and y ∈ core(Bω). Then
we have

σ→
F [.](X,A)(t)(ω) = σ→

F ([t])(ω)

=
∨

λ∈�

[t](λ) ⊗ ρY,B(σ (λ), ω)

=
∨

x∈X
t (x) ⊗ ρY,B(σ (λ), ω)

=
∨

x∈X
t (x) ⊗ δY,B( f (x), y) = f →

F (t)(y)

= [ f →
F (t)](ω) = [.]Y,B f →

F (t)(ω).

Similarly it can be proved that |.| is a natural transformation.
��

It should be observed that from Proposition 4.1 and Corol-
lary 3.1, it follows for any morphism ( f, σ ) : (X,A) →
(Y,B) in SpaceFP ,

t ∈ F1(X,A), F1( f, σ )(t) = |F2( f, σ )([t])|. (6)

Let f : (X, δ) → (Y, γ ) be a morphism in the category
Set(Q). According to Proposition 3.1, any (X, δ) defines a
space with a fuzzy partition (X, CX,δ). Then according to
Example 3.2, we have F(X, δ) = F1(X, CX,δ) and any fuzzy
set t in (X, δ), i.e., morphisms (X, δ) → (Q,↔) in the cat-
egory Set(Q), can be extended to the fuzzy set in a Q-set
(Y, γ ) in two ways: either by extended Zadeh’s principle in
the category Set(Q), or by extension principle in the cate-
gory SpaceFP , i.e., either by f →

F : F(X, δ) → F(Y, δ), or
f →
F1

: F1(X, CX,δ) → F1(Y, CY,γ ). Hence we can consider
the diagram

F(X, δ)
f →
F−−−−→ F(Y, γ )

∥∥∥
∥∥∥

F1(X, CX,δ)
f →
F1−−−−→ F1(Y, CY,γ ).

In the next theorem, we prove these extensions are identical,
i.e., the extension principle in the category SpaceFP equals
to the extension principle in the category Set(Q).

Proposition 4.2 The following diagram of functors com-
mutes.

Set(Q) ⊂ I
> SpaceFP

CSL AT
F1<

F >

Proof For object functions of these functors we have
F1 I (X, δ) = F(X, δ). Let f : (X, δ) → (Y, γ ) be a
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morphism in Set(Q). Then according to Proposition 3.1,
I ( f ) = ( f, σ ) : (X, CX,δ) → (Y, CY,γ ) is such that

CX,δ = {CX,a : a ∈ X/δ}, CY,γ = {CY,b : b ∈ Y/γ },
σ : X/δ → Y/γ, σ (a) = b ⇔ (x ∈ a ⇒ f (x) ∈ b),

CX,a(x) = δ(x, z), z ∈ a.

We need to prove ( f, σ )→F1
= F1 I ( f ) = F( f ) = f →

F . Let
t ∈ F(X, δ). Then we have

y ∈ Y, f →
F (t)(y) =

∨

x∈X
t (x) ⊗ γ ( f (x), y).

We need to calculate ( f, σ )→F1
(t)(y) = F1( f, σ )(t)(y).

According to relation (6) and Proposition 3.4, for b ∈ Y/γ

such that y ∈ b, we have

F1( f, σ )(t)(y) = |F2( f, σ )([t])|(y) = F2( f, σ )([t])(b)

= FG( f, σ )([t])(b) = F(σ )([t])(b)

= σ→
F ([t])(b) =

∨

a∈X/δ

[t](a) ⊗ γ (σ (a),b)

=
∨

x∈a∈X/δ

t (x) ⊗ γ (f(x),b)

=
∨

x∈X
t (x) ⊗ γ ( f (x), y) = f →

F (t)(y).

Hence we received F1 I ( f ) = F( f ) and the diagram of
functors commutes. ��

The principal goal of the paper is to solve the question, if
the powerset objects and powerset operatorsF ,F1 andF2 of
new fuzzy objects in the category SpaceFP presented above
have similar properties to those of classical fuzzy objects s :
X → Q or to fuzzy objects in the category Set(Q). We want
to show that all these fuzzy objects have powerset structures
which are powerset theories in the category SpaceFP , in the
sense of Rodabaugh (2007). For classical Zadeh’s powerset
theory Z and classical powerset theory P in sets, there exists
a strong relation between these two theories, which can be
represented as some homomorphism P → Z. We show that
analogously for these new powerset theories F there exist
“new classical” powerset theories R and a homomorphism
R → F.

We introduce firstly concrete functors T1, T2 and T in the
category SpaceFP , which are an analogy of the classical
functor X �→ (2X ,⊆) in the category Set . The functors
Ti : SpaceFP → CSL AT are defined for objects (X,A)

and morphisms ( f, σ ) by

T1(X,A) = (2X ,⊆), (∀A ⊆ X)( f, σ )→T1 (A) = f (A) (7)

T2(X,A) = (2�,⊆), (∀� ⊆ �)( f, σ )→T2 (�) = σ(�).

(8)

The functor T will be defined lately.

Proposition 4.3 There exist the following natural transfor-
mations:

(2) η1 : T1 → F1,
(3) η2 : T2 → F2.

Proof Let ( f, σ ) : (X,A) → (Y,B) be a morphism in the
category SpaceFP and let A = {Aλ : λ ∈ �}, B = {Bω :
ω ∈ �}.

We defined firstly a natural transformation η2. Let for any
� ⊆ �, χ�(�) : � → Q be a characteristic map of a subset
� in a set �. Then according to the proof of Theorem 3.1
and Corollary 3.3, we can define

η2,(X,A) : T2(X,A) → F2(X,A) = F(�, ρX,A),

� ⊆ �, η2,(X,A)(�) = ̂χ�(�) ∈ F2(X,A).

Then η2 is a natural transformation. In fact, we prove that the
following diagram commutes.

T2(X,A)
η2,(X,A)−−−−→ F2(X,A)

( f,σ )→T2
⏐⏐�

⏐⏐�( f,σ )→F2

T2(Y,B)
η2,(Y,B)−−−−→ F2(Y,B).

Let � ∈ T2(X,A). Then according to the proof of Theorem
3.1, for any ω ∈ �, we have

( f, σ )→F2
.η2,(X,A)(�)(ω) = ( f, σ )→F2

. ̂χ�(�)(ω)

= σ→
F ( ̂χ�(�))(ω)

=
∨

λ∈�

̂χ�(�)(λ) ⊗ ρY,B(σ (λ), ω)

=
∨

λ∈�

∨

λ′∈�

χ�(�)(λ′) ⊗ ρX,A(λ, λ′) ⊗ ρY,B(σ (λ), ω)

=
∨

λ∈�

∨

λ′∈�

ρX,A(λ, λ′) ⊗ ρY,B(σ (λ), ω) = (∗).

On the other hand, we have

η2,(Y,B).( f, σ )→T2 (�)(ω)

= η2,(Y,B)(σ (�))(ω) = ̂χ�(σ(�))(ω)

=
∨

ω′∈�

χ�(σ(�))(ω′) ⊗ ρY,B(ω, ω′)

=
∨

ω′∈σ(�)

ρY,B(ω, ω′) = (∗∗).
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Then we obtain

(∗) ≤
∨

λ∈�

∨

λ′∈�

ρY,B(σ (λ), σ (λ′)) ⊗ ρY,B(σ (λ), ω)

≤
∨

λ′∈�

ρY,B(σ (λ′), ω) = (∗∗),

(∗) ≥
∨

λ′∈�

ρX,A(λ′, λ′) ⊗ ρY,B(σ (λ′), ω) = (∗∗).

Hence the diagram commutes and η2 is a natural transforma-
tion.

We define a natural transformation η1. Let A ⊆ X . Then
χX (A) : X → Q is a characteristic map of a subset A and
we can define a map τX,A : � → Q by

τX,A(λ) =
∨

x∈core(Aλ)

χX (A)(x) =
{
1Q A ∩ core(Aλ) �= ∅
0Q otherwise.

Then we set

η1,(X,A) : T1(X,A) → F1(X,A),

A ⊆ X, x ∈ core(Aλ), η1,(X,A)(A)(x) = τ̂X,A(λ).

We show that η1 is a natural transformation, i.e., for a mor-
phism ( f, σ ), the following diagram commutes.

T1(X,A)
η1,(X,A)−−−−→ F1(X,A)

( f,σ )→T1
⏐⏐�

⏐⏐�( f,σ )→F1

T1(Y,B)
η1,(Y,B)−−−−→ F1(Y,B).

In fact, let y ∈ core(Bω), then we have

η1,(Y,B).( f, σ )→T1 (A)(y)

= η1,(Y,B)( f (A))(y) = τ̂Y, f (A)(ω) = (∗ ∗ ∗),

where

τY, f (A)(ω) =
∨

y∈core(Bω)∩ f (A)

(χY ( f (A))(y)

=
{
1Q f (A) ∩ core(Bω) �= ∅
0Q otherwise

.

On the other hand, by using the relation (6), we have

( f, σ )→F1
.η1,(X,A)(A)(y) = |F2( f, σ )([η1,(X,A)(A)])|(y)

= |σ→
F ([η1,(X,A)(A)])|(y)

= σ→
F ([η1,(X,A)(A)])(ω)

=
∨

λ∈�

[η1,(X,A)(A)](λ) ⊗ ρY,B(σ (λ), ω)

=
∨

λ∈�

∨

x∈core(Aλ)

η1,(X,A)(A)(x) ⊗ ρY,B(σ (λ), ω)

=
∨

λ∈λ

τ̂X,A(λ) ⊗ ρY,B(σ (λ), ω)

=
∨

λ∈�

∨

λ′∈�

τX,A(λ′) ⊗ ρX,A(λ, λ′) ⊗ ρY,B(σ (λ), ω)

= (∗ ∗ ∗∗).

Since {σ(λ′) : A ∩ core(Aλ′) �= ∅} ⊆ {ω′ : f (A) ∩
core(Bω′) �= ∅}, by using properties of a similarity relation
ρ and a morphism σ in the category Set(Q), we obtain

(∗ ∗ ∗∗) ≤
∨

λ∈�

∨

λ′,A∩core(Aλ′ ) �=∅
ρY,B(σ (λ), σ (λ′))

⊗ρY,B(σ (λ), ω) ≤
∨

λ′,A∩core(Aλ′ ) �=∅
ρY,B(σ (λ′), ω)

≤
∨

ω′, f (A)∩core(Bω′ ) �=∅
ρY,B(ω′, ω) = (∗ ∗ ∗).

On the other hand, if we set λ := λ′, we have

(∗ ∗ ∗∗) ≥
∨

λ′,A∩core(Aλ′ ) �=∅
ρY,B(σ (λ′), ω) = (∗ ∗ ∗).

Therefore the diagram commutes and η1 is a natural trans-
formation.

It should be observed that η1 could be equivalently defined
also by using the similarity relation δX,A. In fact,η1,(X,A) can
be defined as an extension of χA to an extensional map in the
Q-set (X, δX,A), i.e., by η1,(X,A)(A)(x) = ∨

z∈X χA(z) ⊗
δX,A(x, z) = ∨

z∈A δX,A(x, z). ��
We define the functor T : SpaceFP → CSL AT . Let

(X,A) be a space with a fuzzy partition, then we set

T (X,A) = {(A,�) : A ⊆ X,� ⊆ �, [η1,(X,A)(A)]
= η2,(X,A)(�)} = {(A,�) : A ⊆ X,� ⊆ �, η1,(X,A)(A)

= |η2,(X,A)(�)|} ⊆ T1(X,A) × T2(X,A),

where we use a notation from (4) and the set T (X,A) is
ordered point-wise by inclusion. Let ( f, σ ) : (X,A) →
(Y,B) be a morphism in SpaceFP . Then a

∨
-preserving

map T ( f, σ ) = ( f, σ )→T is defined by

(A,�) ∈ T (X,A), T ( f, σ )(A,�) = ( f (A), σ (�)).

Proposition 4.4 T : SpaceFP → CSL AT is a functor.

Proof We need to prove that T ( f, σ )(A,�) ∈ T (Y,B).
According to Proposition 4.1, [.] : F1 → F2 is a natural
transformation. Using properties of (A,�) ∈ T (X,A), nat-
ural transformation [.], and natural transformation η1 : T1 →
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F1, we obtain

[η1,(Y,B)( f (A))] = [( f, σ )→F1
.η1,(X,A)(A)]

= ( f, σ )→F2
([η1,(X,A)(A)])

= ( f, σ )→F2
(�) = η2,(Y,B)(σ (�)).

Therefore ( f (A), σ (�)) ∈ T (Y,B) and T is a functor such
that T ( f, σ ) preserves

∨
. ��

Theorem 4.3 There exists a natural transformation

η : T → F .

Proof For any (X,A) ∈ |SpaceFP|, we define a map

η(X,A) : T (X,A) → F(X,A),

(A,�) ∈ T (X,A), η(X,A)(A,�)

= (η1,(X,A)(A), η2,(X,A)(�)).

This definition is correct, as follows directly from (4), using
the relation

(η1,(X,A)(A), η2,(X,A)(�)) = (η1,(X,A)(A), [η1,(X,A)(A)]).

Using properties of natural transformations η1, η2, it can be
proved simply that η : T → F is also a natural transforma-
tion. ��
Theorem 4.4 (Powerset theories in SpaceFP) Let V :
CSL AT → Set be the forgetful functor. The following state-
ments then hold.

(1) F1 = (F1,→, V .T1, η1) is a CSL AT -powerset theory
in the category SpaceFP.

(2) F2 = (F2,→, V .T2, η2) is a CSL AT -powerset theory
in the category SpaceFP.

(3) F = (F ,→, V .T, η) is a CSL AT -powerset theory in
the category SpaceFP.

Proof Let ( f, σ ) : (X,A) → (Y,B) be a morphism in
SpaceFP , A = {Aλ : λ ∈ �}, B = {Bω : ω ∈ �}. From
Definition 4.1 and Proposition 4.3 it follows, that we need
only to define the maps ( f, σ )← for functors F1,F2 and F ,
and to prove that (( f, σ )→, ( f, σ )←) is a Galois connection
for these functors.

(1) Let t ∈ F1(Y,B). We define ( f, σ )←F1
: F1(Y,B) →

F1(X,A) by

x ∈ X, ( f, σ )←F1
(t)(x) = (t ◦ f )(x).

The definition is correct. In fact, we need only to verify
the condition 2(b) from Proposition 3.3. Let λ ∈ �, x ∈

core(Aλ) and x ′ ∈ X . Then since ( f, σ ) is a morphism,
we obtain f (x) ∈ f (core(Aλ)) ⊆ core(Bσ(λ)), and it
follows that

(t ◦ f )(x) ↔ (t ◦ f )(x ′) ≥ Bσ(λ)( f (x
′)) ≥ Aλ(x

′).

Hence t ◦ f defines a fuzzy object in the category
SpaceFP . To prove that (( f, σ )→F1

, ( f, σ )←F1
) is the

Galois connection, we prove that the relation (1) holds,
i.e., we prove that

t ∈ F1(Y,B), ( f, σ )←F1
(t) =

∨

s∈F1(X,A),( f,σ )→F1
(s)≤t

s.

(9)

In fact, let s := t ◦ f and y ∈ core(Bω). Then according
to Corollary 3.3, [t] is an extensional map in a Q-set
(�, ρY,B), and according to Corollary 3.1, we have

( f, σ )→F1
(t ◦ f )(y) = |( f, σ )→F2

([t ◦ f ])|(y)
= ( f, σ )→F2

([t ◦ f ])(ω)

=
∨

λ∈�

[t ◦ f ](λ) ⊗ ρY,B(σ (λ), ω)

=
∨

λ∈�

t ( f (xλ)) ⊗ ρY,B(σ (λ), ω)

=
∨

λ

[t](σ (λ)) ⊗ ρY,B(σ (λ), ω) ≤ [t](ω) = t (y),

where xλ ∈ core(Aλ). Hence we have

∨

s∈F1(X,A),( f,σ )→F1
(s)≤t

s ≥ t ◦ f.

On the other hand, let s ∈ F1(X,A) be such that
( f, σ )→F1

(s) ≤ t , i.e., for any x ∈ core(Aλ), we have
f (x) ∈ core(Bσ(λ)), and according to Corollary 3.1,
we obtain

t ( f (x)) ≥ ( f, σ )→F1
(s)( f (x)) = |( f, σ )→F2

([s])|( f (x))
= ( f, σ )→F2

([s])(σ (λ))

=
∨

α∈�

[s](α) ⊗ ρY,B(σ (λ), σ (α)) ≥ [s](λ) = s(x).

Hence we have s(x) ≤ t ( f (x)) and it follows that the
relation (9) holds. Therefore (( f, σ )→F1

, ( f, σ )←F1
) is a

Galois connection and from Proposition 4.3, it follows
that F1 is a CSL AT -powerset theory in the category
SpaceFP .

(2) Let τ ∈ F2(Y,B). We define ( f, σ )←F2
: F2(Y,B) →

F2(X,A) by

λ ∈ �, ( f, σ )←F2
(τ )(λ) = (τ ◦ σ)(λ).
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To prove that the definition is correct is similar to the
proof for ( f, σ )←F1

, and it will be omitted. Now similarly
as in the previous case (1), we show that

τ ∈ F2(Y,B), ( f, σ )←F2
(τ ) =

∨

ξ∈F2(X,A),( f,σ )→F2
(ξ)≤τ

ξ.

(10)

In fact, we put ξ = τ ◦ σ . According to Corollary 3.3,
τ is an extensional map in the Q-set (�, ρY,B) and for
any ω ∈ �, we obtain

( f, σ )→F2
(τ ◦ σ)(ω) =

∨

λ∈�

τ(σ (λ)) ⊗ ρY,B(σ (λ), ω)

≤ τ(ω).

It follows that the inequality≤ holds in (10).On the other
hand, let ξ ∈ F2(X,A) be such that ( f, σ )→F2

(ξ) ≤ τ .
Then for any λ we have

τ(σ (λ)) ≥
∨

λ′∈�

ξ(λ′) ⊗ ρY,B(σ (λ′), σ (λ)) ≥ ξ(λ),

and it follows the opposite inequality in (10) also holds.
Therefore (( f, σ )→F2

, ( f, σ )←F2
) is a Galois connection

and fromProposition 4.3, it follows thatF2 is aCSL AT -
powerset theory in the category SpaceFP .

(3) Let (t, τ ) ∈ F(Y,B). Then we set

( f, σ )←F (t, τ ) = (( f, σ )←F1
(t), ( f, σ )←F2

(τ )).

We show firstly that ( f, σ )←F (t, τ ) ∈ F(X,A). To do it,
we need to prove that

([t. f ] =) [( f, σ )←F1
(t)] = ( f, σ )←F2

(τ ) (= τ.σ ).

Since ( f, σ ) is a morphism in SpaceFP and [t](ω) =
τ(ω) = t (y), for any ω ∈ �, y ∈ core(Bω), for any
λ ∈ �, x ∈ core(Aλ) we obtain [t](σ (λ)) = τ.σ (λ) =
t ( f (x)). It follows that (τ.σ )(λ) = [t. f ](λ) and τ.σ =
[t. f ]. Since the ordering of F(X,A) is defined point-
wise, (( f, σ )→F , ( f, σ )←F ) is a Galois connection. The
result then follows directly from Theorem 4.2, Theorem
4.3 and Propositions 4.4, 4.3. ��

Example 4.1 Let (X,A) be a spacewith fuzzy partition from
Example 3.1, i.e., A = {{x} : x ∈ X}. In that case we have
F(X,A) = F1(X,A) = F2(X,A) = QX . It is then clear
that

T (X,A) = {(A, A) : A ⊆ X} ∼= T1(X,A) ∼= T2(X,A) ∼= 2X .

and the powerset theory F is the classical Zadeh’s powerset
theory. ��

Example 4.2 In the paper Močkoř (2016), we introduced
CSL AT -powerset theory FSet(Q) = (FSet(Q),→, V, μ) in
the category Set(Q), which is based on the powerset functor
FSet(Q) of extensional maps in a Q-set (X, δ) and forget-
ful functor V : Set(Q) → CSL AT , such that V (X, δ) =
(2X ,⊆). According toProposition 3.1, the categorySet(Q) is
a full subcategory of the category SpaceFP , andwe can con-
sider the restriction F/Set(Q) of the powerset theory F to the
subcategory Set(Q). Then we obtain FSet(Q)

∼= F/Set(Q),
i.e.,the CSLAT-powerset theory in the category SpaceFP is a
generalization of the CSLAT-powerset theory in the category
Set(Q). In fact, according to the relation (4) andExample 3.2,
for any Q-set (X, δ), we have FSet(Q)(X, δ) ∼= F(X, CX,δ).
Moreover using Proposition 3.4, it can be proved that for any
A ⊆ X the exists the unique subset � ⊆ X/δ, such that
(A,�) ∈ T (X, CX,δ). It follows that T (X, CX,δ) ∼= V (X, δ)

and it can be proved simply that FSet(Q) is isomorphic to the
restriction of F to the category Set(Q). ��

5 Conclusions

We investigated fuzzy objects in the category SpaceFP of
spaces with fuzzy partition, which could be a basic cat-
egory for F-transforms and some other construction, as
closure spaces or fuzzy approximation spaces. (Q-valued)
Fuzzy objects in the category SpaceFP are morphisms
(X,A) → (Q,Q), where Q is an appropriate partition in a
complete residuated lattice Q, derived from the biresiduation
operation ↔ in Q. We show that fuzzy objects in SpaceFP
are natural generalizations of classical fuzzy sets in the cat-
egory of sets and fuzzy objects in the category Set(Q) of
sets with similarity relations. In the category Set(Q), any
map f : A → Q can be extended to a fuzzy object
f̂ : (A, δ) → (Q,↔). Using theorem describing relation-
ships between fuzzy objects in Set(Q) and fuzzy objects in
SpaceFP , we prove an analogical property for fuzzy objects
in the category SpaceFP , namely, fuzzy objects in a space
with a fuzzy partition (X,A) in the category SpaceFP are in
1-1 correspondence with fuzzy objects in a Q-set (�, ρX,A)

in the category Set(Q), where � is the index set of a fuzzy
partition A and ρX,A is a similarity relation in � derived
fromA. We also prove that fuzzy objects in SpaceFP are fix
points in F-transforms, i.e., F↑( f )(λ) = F↓( f )(λ) = f (z),
where z ∈ core(Aλ).

We introduce powerset objects functor F(X,A) =
((Q,Q)(X,A),≤) in the category SpaceFP and, as the main
result of the paper,we show that these powerset objects define
CSL AT -powerset theory in the sense of Rodabaugh (2007).
This CSL AT -powerset theory then comprises CSL AT -
powerset theories of classical fuzzy sets and fuzzy objects
in the category Set(Q).
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