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Abstract This paper proposes an efficient approach for
constraint handling in multi-objective particle swarm opti-
mization. The particles population is divided into two non-
overlapping populations, named infeasible population and
feasible population. The evolution process in each population
is done independent of the other one. The infeasible particles
are evolved in the constraint space toward feasibility. During
evolution process, if an infeasible particle becomes a feasible
one, it migrates to feasible population. In a parallel process,
the particles in feasible population are evolved in the objec-
tive space toward Pareto optimality. At each generation of
multi-objective particle swarm optimization, a leader should
be assigned to each particle tomove toward it. In the proposed
method, a different leader selection algorithm is proposed
for each population. For feasible population, the leader is
selected using a priority-based method in three levels and
for infeasible population, a leader replacement method inte-
grated by an elitism-basedmethod is proposed. The proposed
approach is tested on several constrained multi-objective
optimization benchmark problems, and its results are com-
pared with two popular state-of-the-art constraint handling
multi-objective algorithms. The experimental results indicate
that the proposed algorithm is highly competitive in solving
the benchmark problems.
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1 Introduction

One of the most important applications of evolutionary
algorithms (EAs) in engineering is solving optimization
problems. In single objective optimization, the goal is to
find optimal solution(s) for one objective function. In an
advanced form, the optimizer should find optimal solu-
tions for multiple objective functions simultaneously (Liu
et al. 2014). The objectives can be conflicting together in
some complicated cases. This type of optimization problems
is called multi-objective optimization problems (MOOPs).
The optimization problems could be difficult to solve if
there exist some constraint functions and boundary limita-
tions for variables. These types of optimization problems
are called constrainedmulti-objective optimization problems
(CMOPs) (Tessema and Yen 2006; Coello et al. 2010). A
CMOP can be formulated as:

fi (x) = fi (x1, x2, . . . , xn) i = 1, . . . , k

g j (x) = g j (x1, x2, . . . , xn) < 0 j = 1, . . . , q

h j (x) = h j (x1, x2, . . . , xn) = 0 j = q + 1, . . . ,m

xmin
j ≤ x j ≤ xmax

j j = 1, . . . , n (1)

where x is the decision vector of n variables. xmax
j is its upper

bound, and its lower bound is xmin
j .

The search space is an n-dimensional hyperbox in �n ,
and the optimizer’s task is to find the optimal solutions for
k objective functions fi (x), simultaneously that have been
defined on the search space S ⊆ �n . Generally, to solve the
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CMOPs, the optimizer faces with two types of constraints,
called inequality and equality constraints. There are a total
of m constraints, q inequality and m − q equality, which are
required to be satisfied by the optimal solutions. In the above
formulation, g j (x) is the j th-inequality constraint, and h j (x)
is the j th-equality constraint. The search space is bounded in
its each dimension with lower (xmin

j ) and upper (xmax
j ) limi-

tations. Due to these constraints, the search space is divided
into two regions, named feasible region F ⊆ S and infea-
sible region I ⊆ S(I ∪ F = S). The solutions located in
feasible region satisfy all constraints, whereas the solutions
in infeasible region violate some constraints. In the recent
decades, evolutionary algorithms have been used to solve
MOOPs (Lu and Yen 2003; Yen and Haiming 2003). A com-
plete literature review of evolutionary MOO could be found
in Coello (2006), Coello et al. (2010), Mukhopadhyay et al.
(2014a), Mukhopadhyay et al. (2014b). The multi-objective
evolutionary algorithms’ (MOEAs) goal is to find optimal
solutions for objective functions simultaneously. There are
more researches in the field of constrained multi-objective
optimization described in Deb (2001).

This paper extends the multi-objective particle swarm
optimization (MOPSO) algorithm proposed by Coello et al.
(2004) in order to focus on handling constraints. The
proposed algorithm basically modifies and enhances the
mentioned MOPSO algorithm with the purpose of handling
constraints by proposing a novel method. This method fol-
lows the general approach of dividing the total search space
into two non-overlapping, constraint and objective spaces,
and avoidsmanipulating the objective vector of the infeasible
solutions. The population is also divided into two non-
overlapping subpopulations, called infeasible population and
feasible population. The infeasible particles are placed in the
infeasible population, and the feasible particles are placed in
the feasible population. The infeasible population is evolved
in the constraint space, and the feasible population is evolved
in the objective space. In the constraint space, the infeasi-
ble particles move toward feasibility, while in the objective
space the feasible particles move toward the Pareto optimal-
ity. During evolution in the constraint space, each infeasible
particle that becomes a feasible one migrates to the feasible
population. Furthermore, two new approaches based on the
combination of the gravity distance and the crowding dis-
tance are proposed to select the leaders for the feasible and
infeasible particles.

The rest of this paper is organized as follows. Sec-
tion 2 provides a brief overview of the various evolutionary
approaches developed for CMOPs. Section 3 discusses about
the main motivation of the proposed algorithm. In Sect. 4,
PSO is briefly introduced. In Sect. 5, the general concepts of
the proposed algorithm for constraint handling in MOPSO
(CHMOPSO) is presented. Section 4 discusses some use-
ful related preliminaries about PSO basics. Sections 6 and 7

describe evolution process in feasible population and infea-
sible population in details. In Sect. 8 the proposed method is
applied to some CMOP benchmark problems, and the results
and analysis are shown. Finally, some conclusions are drawn
in Sect. 9.

2 Related works

In this section, a review of developed EAs to solve CMOPs
is presented. In some approaches, individuals (or particles)
that violate any constraints (infeasible members) are ignored
(Back et al. 1991). Regardless the fact that thismethod is easy
to implement, it might be difficult to find feasible individu-
als. Rejecting infeasible solutions in the vicinity of feasible
individuals impairs the search capability which affects the
algorithm’s ability to find feasible individuals. In fact, the
major drawback of these methods is that no information
is extracted from the ignored members. The most popular
way to handle constraints in evolutionary methods is using
penalty functions. In the constraint handling literature, there
are dozens of evolutionary methods that uses penalty func-
tions to handle constraints. There are three types of penalty
functions entitled as static penalty functions (Yeniay 2005),
dynamic penalty functions (Joines and Houck 1994) and
adaptive penalty functions (Bean and Hadj-Alouane 1992;
Farmani and Wright 2003; Hu and Yen 2015). The static
penalty functions are the weighted sum of the constraint
violations. In dynamic penalty functions, the current gener-
ation number is considered in calculating the penalty value.
Finally, the adaptive penalty functions gather information
from search process to use in calculating the penalty value
for infeasible solutions.

In another categorization, the proposed constraint han-
dling methods in the literature may be categorized as:
non-elitism-based methods and elitism-based methods. Fon-
seca and Fleming proposed a rank-based fitness assignment
method for multi-objective genetic algorithms (Fonseca and
Fleming 1993). A non-dominated Sorting Genetic Algo-
rithm (NSGA) was proposed by Srinivas and Deb in Srinivas
and Deb (1994) as another non-elitism-based approach. This
method presents various techniques to distribute solutions
in non-dominated fronts. Elitism-based algorithms are pro-
posed to reach better convergence properties. An improved
version of NSGA, called NSGA-II, was later proposed by
Deb et al. (2000). The Pareto Archived Evolution Strat-
egy (PAES) (Knowles and Corne 1999) by Knowles et al.
archives a history of all non-dominated solutions found in
all entire generation to elite solutions. It also uses a recur-
sive algorithm to distribute Pareto front diversity. Zitzler
et al. propose the Strength Pareto Evolutionary Algorithm
(SPEA) (Zitzler and Thiele 1999) that uses a repository set to
archive non-dominated solutions. Also, they use a clustering
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approach to maintain diversity. Yen and He (2014) propose
an ensemble method to compare MOEAs by combining a
number of performance metrics using double elimination
tournament selection. The double elimination design allows
characteristically poor performance of a quality algorithm
to still be able to win it all. This method can provide a
more comprehensive comparison among various MOEAs
than what could be obtained from a single performance met-
ric alone.

Some approaches such as Joines and Houck (1994), Deb
(2000) prefer feasible solutions to infeasible solutions. In
these methods, feasible individuals always receive more
attention than infeasible individuals. So, in population fit-
ness ranking, feasible individuals come first followed by
infeasible individuals with lower constraint violation and
individuals with higher constraint violation come at the end
of the ranked list. Takahama and Sakai (2005), Takaham and
Sakai (2006), proposed algorithms in which constraint vio-
lation and objective function are separately optimized. The
proposed method in Carreno Jara (2014) allows to value the
relative importance of those solutions with outstanding per-
formance in very few objectives and poor performance in all
others, regarding those solutions with an equilibrium (bal-
ance) among all the objectives. In this method, the optimality
criteria avoid to interrelate the relative values of the different
objectives, respecting the integrity of each one in a rational
way.

Balancing constraints and objective function is a funda-
mental issue in constrained evolutionary optimization. But
this issue had not been well studied in the methods based on
preference of feasible solutions over infeasible ones. To cover
this gap, Wang et al. (2015) proposed a differential evolution
(DE)-based method to incorporate objective function infor-
mation into the feasibility rule for constrained evolutionary
optimization. In this method, after generating an offspring
for each parent in the population using DE, the well-known
feasibility rule is used to compare the offspring and its parent.
The feasibility rule prefers constraints to objective function.
Also the information of objective function is utilized to gen-
erate offspring in DE. This process allows this method to
achieve balance between constraints and objective function.

Some methods also try to solve constrained optimization
problems using multi-swarm approaches. These methods
evolve multiple populations in a parallel manner to converge
to the optimal solutions which handle constraints. Wang and
Cai (2009) proposed a hybrid multi-swarm PSO (HMPSO)
to solve constrained optimization problems. At each gener-
ation, the swarm is first split into several sub-swarms and
the personal best of each particle is updated by DE. HMPSO
uses the feasibility-based rule to compare particles in the
swarm. Liu et al. proposed a hybrid algorithm named PSO-
DE in Liu et al. (2010). This algorithm integrates particle
swarm optimization (PSO) with differential evolution (DE)

to solve constrained and engineering optimization problems.
To handle constraints, the proposed method minimizes the
original objective function as well as degree of constraint
violation. In the evolution process of this method, two kinds
of populations with the same size are used. In the initial step
of the algorithm, a population is created randomly. At each
generation, the population is sorted according to the degree
of constraint violation in a descending order. Only the first
half of pop are evolved by using Krohling and dos Santos
Coelho’s PSO (Krohling and Santos 2006). After evolving
each particle, if its value violates the boundary constraint,
violating variable value is reflected back from the violated
boundary. After the PSO evolution, this method employs DE
to update personal best of particles.

Recently, multi-objective optimization methods are used
to solve constrained optimization problems. Themain idea of
the multi-objective optimization-based methods is convert-
ing constrained optimization problems into unconstrained
multi-objective optimization problems and solving the con-
verted problems using multi-objective optimization tech-
niques (Wang and Cai 2009). Venkatraman and Yen (2005)
proposed a two-phase constraint handling algorithmbased on
multi-objective optimization. In the first phase, the constraint
optimization problem is done as a constraint satisfaction
problem. The objective function is completely ignored in this
phase. In the second phase, constraint satisfaction and objec-
tive optimization are both treated as an optimization problem
with two objectives. The proposed method in Angantyr et al.
(2003) introduces a combination of multi-objective opti-
mization technique and penalty function as an approach for
constraint handling. This method is very similar to penalty-
based approaches. However, it borrows the ranking scheme
from multi-objective optimization methods.

A constrained multi-objective method based on con-
strained dominance of solutions is proposed in Deb et al.
(2000) by Deb. According to this method, an individual i is
said to constrained-dominate an individual j if (1) i is fea-
sible, while j is infeasible; (2) both i and j are infeasible
and i has less constraint violation; or (3) both i and j are
feasible and i dominates j . Feasible individuals constrained-
dominate all infeasible individuals. The constraint violation
level is used to compare two infeasible solutions. The draw-
back of this method is that it reduces the search ability of the
algorithm because of the less flexibility of the constrained
dominance operator. Jimenez et al. suggest an Evolution-
ary Algorithm of non-dominated Sorting with Radial Slots
in Min et al. (2006), which uses the min–max formulation
for constraint handling. In this method, feasible and infeasi-
ble individuals are evolved separately. Feasible individuals
evolve toward Pareto optimality, while infeasible individuals
evolve toward feasibility.

Ray et al. suggest using three different non-dominated
rankings of the population based on the objective function
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values, different constraints and combination of all objective
functions, respectively, in Zitzler (1999). Using these rank-
ings, the algorithm acts according to the predefined rules.
Chafekar et al. (2003), propose two new approaches to solve
constrained MOOPs. Their first method runs several GAs
parallel with each GA optimizes one objective. Each GA
exchanges information about its objective with other GAs.
The second method uses a common population for all objec-
tives and runs each objective sequentially on the population.

Cai and Wang (2006) proposed a MOO-based EA for
constrained optimization, abbreviated as CW method. The
optimization process in CW method includes two major
components, (1) the population evolution model inspired by
the proposal in Deb (2005), and (2) is the infeasible solu-
tion archiving and replacement mechanism which steers the
population toward the feasible region. This approach only
exploits Pareto dominance to compare the individuals. The
main shortcoming of CW approach is that a trial-end-error
process has to be used to choose suitable parameters. To
overcome the above shortcoming,Wang andCai (2012a) pro-
posed an improved version of CW, called CMODE, which
combines MOO with DE to deal with constrained optimiza-
tion problems. The comparison of individuals in CMODE
is based on MOO and DE serves as search engine. Com-
pared with CW, CMODE has two main differences: (1)
instead of using the simplex crossover, it uses DE as the
search engine, and (2) CMODE has proposed a novel infeasi-
ble solution replacement mechanism based on MOO, which
guides the population toward promising solutions and the
feasible region.

Wang and Cai (2012b) proposed a dynamic hybrid frame-
work, called DyHF, to solve constrained optimization prob-
lems. This framework composed of two main steps: global
search model and local search model. In both search mod-
els, differential evolution utilized as the search engine and
the Pareto dominance used in multi-objective optimization
is used to compare the individuals. The above two steps are
executed dynamically according to the feasibility proportion
of the current population. Compared with other HCOEAs,
DyHF has the following features: (1) the global and local
search models are dynamically applied; (2) DE serves as
the search engine; and (3) the parameter settings are kept
the same for different problems. In an other research, Wang
and Cai (2011) proposed a (μ + λ)-DE and an improved
adaptive trade-off model to solve constrained optimization
problems. In the (μ + λ)-DE, μ parents are used to gen-
erate λ offsprings. Then these μ parents and λ offsprings
are combined to select μ candidate individuals for the next
generation. Each parent produces three offsprings using three
different mutation strategies and a binomial crossover of DE.
Moreover, the paper improves the current-to-best/1 strategy
to further enhance the global exploration ability by exploit-
ing the feasibility proportion of the last population. Also,

the paper proposed the improved adaptive trade-off model
which includes three main situations: the infeasible situa-
tion, the semi-feasible situation, and the feasible situation.
In each situation, a constraint handling method is designed
based on the characteristics of the current population.

Woldesenbet et al. (2009), proposed a constraint han-
dling technique for multi-objective EAs based on an adaptive
penalty function and a distance measure. This algorithm will
be referred to as Woldesenbet’s algorithm in Sect. 8. The
two functions vary dependent upon the objective function
value and the sum of constraint violations of an individual.
In this method, the modified objective functions are used in
the non-dominance sorting to facilitate the search of optimal
solutions not only in the feasible space but also in the infea-
sible regions. The search in the infeasible space is designed
to exploit those individuals with better objective values and
lower constraint violations.

3 Motivation

In this section, themainmotivation of the proposed algorithm
is described. The main novelty of this work is dividing pop-
ulation into feasible and infeasible populations and duality
evolution in a parallel manner in populations. As mentioned
earlier in Sect. 2, the major difference between constraint
handling methods is how to deal with infeasible particles
in the evolution process. Most of the proposed methods to
handle constraints focus on using penalty functions dealing
infeasible solutions. The main drawback of using penalty
functions is that the near feasibility infeasible particles that
will be converted to feasible ones after a minor movement
will have very lower chance to survive and move toward fea-
sibility by applying penalty values.

To overcome this drawback, the proposed method divides
the search space into two non-overlapping spaces as con-
straint space and objective space. The infeasible particles
are evolved in the constraint space toward feasibility and
the feasible particles are evolved in objective space toward
Pareto optimality. By infeasible particles evolution in con-
straint space, we do not need to manipulate the fitness vector
of the infeasible particles using a penalty function. So, the
methodwill be capable to use infeasible particles information
properly in the evolution process.

4 PSO basics

Particle swarm optimization (PSO) is a stochastic global
optimization method which has been initially proposed by
Kennedy and Eberhart (1995). It is a population-based
method and the evolution process in it is similar to social
behavior of bird flocking. PSO utilizes a swarm (as a num-
ber of solutions), named particles, to move through a hyper
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dimensional search space toward the most promising area
for optimal solution(s). Given an N-dimensional problem,
PSO associates each particle with a position vector x =
(x1, x2, . . . , xN ) and a velocity vector v = (v1, v2, . . . , vN ),
which are iteratively adjusted in every dimension j ∈
{1, . . . , N }. Each particle moves toward a new position that
is being calculated using its previous position, the positions
of its own previous best performance pbest and the best pre-
vious performance of the whole swarm gbest.

v
(t+1)
j = ωv

(t)
j +c1r1(pbest

(t)
j −x (t)

j )+c2r2(gbest
(t)
j −x (t)

j )

(2)

x (t+1)
j = x (t)

j + v
(t+1)
j (3)

where c1 and c2 are two acceleration constants reflecting
the weighting of cognitive and social learning, respectively,
r1 and r2 are two distinct random numbers in [0, 1], and
ω ∈ [0, 1] is the inertia factor.

When a particle discovers a position that is better than
any it has seen previously, it stores the new position in the
corresponding pbest as its personal best found history, and
when a particle discovers a position that is better than any
position found by all of the particles in the swarm in all
previous generations, it stores the new position in the gbest
as global best found history.

5 The proposed method

The proposed method is depicted in Fig. 1. The first popu-
lation is initialized randomly at the start phase of algorithm.
The initial population is divided into two non-overlapping
populations, called feasible population and infeasible popu-
lation, according to satisfying the constraints or not. At the
next step, using the objective vector, the non-dominated par-
ticles in feasible population are selected as feasible repository
set, which is denoted as RF . Also, the elite particles in infea-
sible population are selected into infeasible repository set.
This selection is done using the constraint vector for each
infeasible particle. This set is denoted as RI at remaining of
the paper, too.

The particles in feasible population evolve in objective
space toward Pareto optimality, and particles in infeasi-
ble population evolve in constraint space toward feasibility.
Details of feasible population evolution and infeasible pop-
ulation evolution are described in detail in Sects. 6 and 7,
respectively.

6 Feasible particles evolution in objective space

Figure 2 shows the evolution process for feasible population.
At each generation and for each feasible particle SF in feasi-

Fig. 1 Overview of the proposed method

ble population, first a copy of SF is made (the copy particle
is denoted as S′

F ). Then, to move S′
F , a leader is assigned to

it from RF and S′
F moves toward the leader. Leader selection

is an important issue in the proposed algorithm, and it will
be described in detail in Sect. 6.1.

After movement, if the copy particle (S′
F ) becomes infea-

sible, it is ignored. In fact, in this case the initial particle
do not move. But if S′

F already remains a feasible particle,
then two possible cases may occur. If SF (the particle before
movement) is a non-dominated solution, it is replaced by S′

F
(the moved particle) if SF does not dominates S′

F . This strat-
egy is used in proposed algorithm to supply elitism. But if SF
is not a non-dominated solution, it is replaced by S′

F . Then
best personal experience of the particle is updated.

After movement of all particles in feasible population, the
non-dominated members of the new population are selected
and are added to the feasible repository set (RF ).After adding
new members to RF , its members should be checked again
for domination and the dominated members should be elim-
inated.

Usually by increasing the generations numbers, the num-
ber of RF members also increases. Then if this number
exceeds the maximum capacity of RF , some of its members
must be eliminated. The RF members that are in dense areas
of the optimal Pareto front are suitable candidates for elim-
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Copy SF (we name the copy version S'F)

Select a leader for S'F

Move S'F from the current posi�on (P1) to new posi�on (P2)

Apply boundary limiters on par�cles’ posi�on and velocity 

Evaluate S'F at P2

S'F is feasible at P2?

SF ?

SF S'F?

Ignore S'F Update personal best Replace SF with S'F

Yes

No

No

No

Check domina�on for feasible popula�on par�cles
Add new elite feasible par�cles to RF

Check domina�on for RF members 
Remove dominated par�cles from RF

capacity overflows? Remove extra 
members from RF

Start

End

Yes

No

This process is done for each par�cle SF in feasible popula�on

Yes

Yes

Fig. 2 Feasible particles evolution in objective space

ination. The process of elimination of overflowed members
from RF is described in details in Sect. 6.2.

6.1 Leader selection for feasible particles

The proposed MOPSO in Coello et al. (2004) uses the adap-
tive grid method to leader selection. The motivation behind
using gridmethod inMOPSO is position-based selection ver-
sus particle-based selection. In the grid method, the leader
is selected randomly from the elite members in the grid cell
with lowest crowding density. But this method is affected by
a major drawback. Suppose a multi-objective optimization
problem with M objective functions which each dimension

58 59 60 61 62 63 6457

50 51 52 53 54 55 5649

42 43 44 45 46 47 4841

34 35 36 37 38 39 4033

26 27 28 29 30 31 3225

18 19 20 21 22 23 2417

10 11 12 13 14 15 169

2 3 4 5 6 7 81

2f

1f

Fig. 3 Grid method drawback. For d = 3 and M = 2, the objective
space is divided into 64 hyper-cubes

in the objective space is divided into N = 2d sections. In this
case, the objective space is divided into 2d×MM-dimensional
hyper-cubes. In other words, the complexity of grid method
is of exponential order and the linear modifications of d or
M cause exponential modifications on the number of the
grid hyper-cubes. For example, in a problem with 6 objec-
tive functions, that each objective space dimension is divided
into 8 sections (d = 3), the grid will have 23×6 = 262144
cells.

Figure 3 shows a simple example of using the grid method
for leader selection. As it can be seen in Fig. 3, for d = 3
and M = 2, the objective space is divided into 64 (=22×3)
2-dimensional cells.

The exponential growth of hyper-cubes number results
small grid cells. Therefore, many of the cells will be empty
of elite particles and most of the non-empty cells will
contain one or two elite particles. It means that, in the
high-dimensional problems, the selection of cells with lower
density will usually have a similar result as the random selec-
tion from elite members and the desired effect of the grid
method will be aborted. On the other hand, regarding that the
size of hyper-cubes is controlled by parameter d, if we select
a small value for d (i.e., d = 2), the hyper-cubes size will
grow and this effect increases the probability of achieving a
Pareto front with lower density and coverage. In summary,
the grid method is suitable for the problems with small num-
ber of objectives and d (Schutze et al. 2011).

By tacking into account the drawback of grid method,
this paper proposes different methods for leader selection.
To move a feasible particle SF , a leader should be assigned
to it from the repository set RF . For this purpose, the pro-
posed method offers a priority-based selection algorithm in
three levels. First, the crowding distance criterion that has
been used in NSGA-II algorithm is used here (Deb et al.
2000). Crowding distance is introduced in NSGA-II to select
repository members in the areas with lower crowds. Also
this method proposes gravity distance. The gravity distance
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Fig. 4 Crowding distance for particles A, B, C and D

is a criterion to find the closest RF member for the feasible
particle SF .

6.1.1 Crowding distance

In a non-dominated set of particles, to achieve an appropri-
ate estimation of crowed density in the neighborhood of a
specified particle x , the total distance between x and its two
neighbor particles (one neighbor at each side) is calculated
for all M objective functions. Figure 4 depicts crowding dis-
tance for particles A, B,C and D as rectangles. For a particle
x , the crowding distance dm (for m = 1, . . . , M) measures
hyper-cubic environment around x that has been created by
its nearest neighbors on each side based on the mth objec-
tive. The crowding distance for extreme particles (i.e., A and
D in Fig. 4) is defined as infinite. The crowding distance is
completely formulated in Deb et al. (2000).

6.1.2 Gravity distance

The aim of introducing gravity distance is to offer a real value
as a threshold, so if distance between particle x and an elite
particle x∗ (one of RF members) is lower than the threshold
value, x∗ is assumed as a suitable candidate to be selected
as the leader for x . In fact if x is inside a hypothetical orbit
centered by x∗, it is gravitated by x∗. The gravity distance is
the radius of this hypothetical orbit (see Fig. 5). The solution
x is inside of a orbit centered by the optimal Pareto solution
x∗ and radius of gravity distance.

The first step to calculate the gravity distance is to obtain
minimum andmaximum values of each objective function as
the known search space boundaries. It is done using Eqs. 4
and 5.

max
1f

min
1f

max
2f

min
2f

Fig. 5 Gravity distance of particle x from the elite particle x∗

f min
i = min

x fi (x) (4)

f max
i = max

x fi (x) (5)

Having the lower and upper bounds of each objective func-
tion, the range of the known search space is computed using
Eq. 6.

bi = f max
i − f min

i (6)

To calculate the gravity distance, the vector u is defined
based on parameter a as follows:

Now, we define u to calculate gravity distance as Eq. 7.

u = a.(b1, . . . , bM ) 0.1 ≤ a ≤ 0.2 (7)

The gravity distance is defined as follows in Eq. 8.

r =
√
√
√
√

M
∑

j=1

u2j (8)

If f (x) = ( f1(x), . . . , fM (x)) is assumed as the objec-
tive vector of particle x and f (x∗) = ( f1(x∗), . . . , fM (x∗))
be the objective vector of non-dominated solution x∗, using
Eqs. 7 and 8, the normalized distance between x and x∗ is
calculated by Eq. 9.

d =
√
√
√
√

M
∑

j=1

(( fi (x∗) − fi (x))/ui )2 (9)

If d ≤ √
M , the proposed algorithm selects x∗ as another

candidate to be selected as leader for x because x is inside
the orbit centered by an elite particle.
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e is selected as 
leader

e' is selected as 
leader

Yes

No

No

Start

Yes
Par�cle SF is inside 

the gravity radius of a extreme 

par�cle e (e  RF)

Let e’ as the RF member that 
has the most wide crowding 

distance

End

Leader is selected randomly 
between e’ and e’’

Par�cle SF is inside 

the gravity radius of another 

RF member e’’   

Fig. 6 Leader selection for feasible particles

6.1.3 Select leader for feasible particles

In MOPSO algorithm, a particle for moving in search space
has to select a leader (Coello et al. 2004). For this purpose,
the proposed algorithm, presents a priority-based algorithm
in three levels. Considering the importance of well distri-
bution and full coverage of optimal Pareto front, extreme
non-dominated particles (first and last particles in the non-
dominated repository set) are placed at the first level of
importance. Locating extreme optimal solutions in first prior-
ity level of the leader selection algorithm leads the population
tofind the optimal solutions onoptimal Pareto front extremes.
Also having uniform distribution on repository set is very
important. So among other particles in RF , the optimal solu-
tions with maximum crowding distance are placed at the
second priority level. At the next step, the proposed method
prefers to select the closest RF member as leader for each
particle to avoid inefficient movements for a particle at its life
time and emphasize to the local search. This selection results
better local search for each particle around its position. So,
the closest RF member to the particle is placed at the third
priority level in the proposed leader selection algorithm.

Figure 6 shows the proposed algorithm for leader selection
for feasible particles. As Fig. 6 depicts, to select a leader for
a feasible particle SF , the proposed method first looks the
RF extreme particles. If SF is inside the gravity distance of
an elite extreme particle e, the e is selected as SF ’s leader.
If not, at the second try, the algorithm finds the RF member

e′ that has the most wide crowding distance. In this case,
if SF is inside the gravity distance of any RF non-extreme
member e′′, then the leader is selected randomly between e′
and e′′. But if SF is not inside the gravity distance of any RF

non-extreme member, e′ is selected as leader.
In Fig. 7, the proposedmethod for leader selection for fea-

sible particles is explained. In Fig. 7a, the feasible particle x is
located inside the gravity radius of the extreme optimal solu-
tion x∗

1 . The gravity radius for x
∗
1 is illustrated as dotted circle

centered by x∗
1 in Fig. 7a. By tacking into account the leader

selection algorithm (see Fig. 6), the extreme optimal particle
x∗
1 is selected as the leader for x in Fig. 7a. In Fig. 7b, the
particle x is not inside the gravity radius of any extreme RF

member (x∗
1 and x

∗
5 ). Among non-extreme RF members (x∗

2 ,
x∗
3 and x

∗
4 ), the particle x

∗
4 which has the most wide crowding

distance is selected as default leader. Because particle x is
out of the gravity distance of its closest non-dominated par-
ticle (x∗

3 ), the default non-dominated particle x∗
4 is selected

as leader for x . Locating areas with lower density of optimal
Pareto front is for density preservation and results in more
diversity population. In Fig. 7c there are two candidate par-
ticles (x∗

3 and x∗
4 ) to be selected as leader for particle x . The

first candidate particle is x∗
4 , which has the greatest crowding

distance among all non-dominated particles (except x∗
1 and

x∗
5 ).
Taking into account the fact that x is inside the gravity

distance of x∗
3 , as the closest non-dominated particle, then x∗

3
is selected as the second candidate to be selected as leader
for x . The leader of x is selected randomly between x∗

3 and
x∗
4 . The suitable threshold value to randomly selecting one
of the two candidate solutions is one of the input parameters
of the proposed method.

6.2 Eliminating extra particles from repository set

By increasing the number of generations, the number of RF

members also increases. On the other hand, RF capacity is
limited. So if the number of RF members exceed from its
maximum capacity, some of its members should be elimi-
nated. The particles in crowed areas are suitable candidates
to be eliminated. Therefore the particles with lowest crowd-
ing distance are eliminated from RF .

7 Infeasible particles evolution in constraint space

At each generation, parallel to feasible population particles
movement, infeasible population particles move toward the
new positions. Figure 8 shows the evolution process for parti-
cles in infeasible population. Similar to the feasible particles
movement, a leader must be assigned to each infeasible parti-
cle before it moves. The leader selection algorithm for infea-
sible particles is explained inSect. 7.1.Aftermovement, if the
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(a)

(b)

(c)

Fig. 7 Leader selection for feasible particle x in objective space. a x
is inside of the gravity distance of non-dominated particle x∗

1 (x∗
1 is

selected as the leader for x) b x is outside of the gravity distance of the
nearest non-dominated particle (x∗

4 is selected as leader for x) c x is
inside of the gravity distance of the nearest non-dominated particle (the
leader for x is selected randomly between x∗

3 and x∗
4 )

particle still remains infeasible, its best personal experience
is updated. But if it becomes a feasible particle, it migrates to
the feasible population.Aftermigration, domination between
the migrated particle and all particles in feasible population

Fig. 8 Infeasible particles evolution in constraint space

should be evaluated. If the migrated particle is located on
the optimal Pareto front at its migration time, RF members
should be checked again for dominance and its dominated
members should be eliminated. Finally, the new position
of the migrated particle is registered as its best personal
experience.

When all infeasible particles moved, the non-dominated
members of new infeasible population are added to the infea-
sible repository set RI and then RI members are checked for
dominance and dominated members are eliminated. Also, if
RI members number exceeds its maximum capacity, its extra
members are eliminated. Eliminating extra particles from the

123



7260 A. Ebrahim Sorkhabi et al.

infeasible repository set (RI ) is done in a same manner as
described for feasible repository set (RF ) in Sect. 6.2.

7.1 Leader selection for infeasible particles

Similar to feasible particles movement in objective space,
to move an infeasible particle in constraint space, a leader
should be assigned to the infeasible particle to move toward
it. Asmentioned earlier in Sect. 6.1, the non-dominated parti-
cles in feasible population are determined using the objective
vector. In a similar manner, the non-dominated particles in
infeasible population are determined using the constraint vio-
lation vector. For this purpose, a constraint violation vector
C(x) is calculated for each particle x in infeasible population
at each generation using Eq. 10.

Ci (x) = Violation(x, i), i = 1, . . . q, q + 1, . . . ,m

(10)

For each particle x , the constraint violation vector C(x)
has m elements related to m constraints and Violation(x, i)
shows the violation from i th constraint by x . Therefore,Ci (x)
is the violation value form i th constraint by particle x . If
Ci (x) > 0, it implies that the particle x does not satisfy the
i th constraint (x violates i th constraint). However, the 0 value
forCi (x) shows that x satisfies the i th constraint. As a result,
for a feasible particle, all of the elements in C’ should be 0
and for an infeasible particle, at least one element in C must
have value grater than 0.

After calculating the constraint violation vector for each
infeasible particle, as same as dominance comparison for fea-
sible particles using objective vector, the dominance between
particles in infeasible population is evaluated and the non-
dominated particles are selected as infeasible population
repository set RI . The RI members are candidates to be
selected as leader for infeasible particles to move.

The goal of evolution in infeasible population is convert-
ing the infeasible particles to feasible ones. Now, there is 2
questions. Does the movement of infeasible particles toward
elite infeasible particles lead these particles toward feasible
space? And is there a way for leading the infeasible particles
to feasible areas that are close to optimal Pareto front?

To answer these questions, the proposed method suggests
leader replacement solution. Each infeasible particle has one
constraint violation vector and one objective vector. Because
of using the constraint violation vector to evaluate the par-
ticles in infeasible population, objective vector of infeasible
particles has not been paid attention yet.

Figure 9 shows the proposed method to select leader for
infeasible particles. Imagine an infeasible particle that has
objective values close to optimal values for all objectives, but
violates one of the constraints. This particlemay be converted
to a feasible optimal particle after a small movement. This

Fig. 9 Leader selection for infeasible particles

infeasible particle may be located inside the gravity radius
of a particle in feasible population repository set (RF ). So
if the distance between the infeasible particle and a particle
in RF be less than the gravity radius of the RF member,
that RF member is selected as the leader for the infeasible
particle instead of selecting an elite infeasible particle. But
if the infeasible particle is not located at the gravity radius
of any of the RF members, its leader is selected among RI

members. In this process, the algorithm is interested to select
extreme particles or particles with higher crowding distance,
respectively, in infeasible repository set.

Figure 10 shows an example of the proposed algorithm
to select leader for an infeasible particle. The shaded areas
show feasible space, and rest of figures belong to infeasible
space. The points over lines AB and BC show optimal Pareto
fronts. In Fig. 10a, x is an infeasible particle, x1 is the closest
RI member to x , and x∗

1 belongs to RF . As Fig. 10a shows,
x is inside of the gravity distance of x∗

1 . Therefore, instead of
selecting x1, x∗

1 is being selected as leader. This strategy is
called leader replacement in this paper. In Fig. 10b, x is an
infeasible particle, xi s (for i = 1, . . . , 5) are RI members,
and x∗

1 is the closest RF member to x . In this figure, the par-
ticle x is outside from the gravity distance of the closest RF

member. So, x1 and x5 (as extreme particles) and x3 (which
has the most wide crowding distance in RI members) are
candidates to be selected as leader for x . Selection between
these 3 candidates is done randomly.

Leader replacement acts as a bridge here. It creates a rela-
tion between infeasible particles in constraints space and
feasible particles in objective space.

8 Simulation and experimental results

In this section, the proposed method is applied to several
constrained multi-objective benchmark problems, and the
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Fig. 10 Leader selection for infeasible particle x in constraint space.
a x is inside of the gravity distance of a optimal Pareto solution (non-
dominated feasible solution x∗

1 ) b x is outside of the gravity distance of
all of the Pareto optimal solutions

validity of the proposed method is demonstrated through
computer simulation. The performance of the proposed
algorithmwas compared to two popular state-of-the-art algo-
rithms, named Woldesenbet’s algorithm (Woldesenbet et al.
2009) and NSGA-II (Deb et al. 2000). Both quantitative and
qualitative comparisons were made to validate the proposed
algorithm. This section presents the results for running three
algorithms on test benchmark and comparing the results.

8.1 Experimental setup

Fourteen benchmark problems have been selected to evaluate
the performance of the algorithms. These problems are all
minimization problems and are denoted as BNH (Binh and
Korn 1997), SRN (Srinivas and Deb 1994; Chankong and
Haimes 1983), TNK (Tanaka et al. 1995), CTP1 (Deb 2001),
CTP2 (Deb 2001), CTP3 (Deb 2001), CTP4 (Deb 2001),
CTP5 (Deb 2001), CTP6 (Deb 2001), CTP7 (Deb 2001),
CTP8 (Deb 2001), OSY (Deb 2001), CONSTR (Deb 2001)
and Welded Beam Problem (Zitzler 1999).

Some of the test problems have continuous Pareto fronts
(BNH, SRN, CTP1, CTP6, OSY, CONSTR and Welded
Beam), while the remaining problems have disjoint Pareto
fronts (TNK, CTP2-CTP5, CTP7 and CTP8). The problem
characteristics for these test problems are summarized in
Table 1.

For each CMOEA (the proposed algorithm, Woldesen-
bet’s algorithm andNSGA-II), each benchmark problemwas
ran 50 times and the results were analyzed using statistical
performance metric measures. At all of the experiments, the
population size was limited to 200 (for the proposed algo-
rithm, the total capacity of feasible and infeasible populations
was limited to 200 particles) and maximum number of gen-

Table 1 Summary for the basic
characteristics of the benchmark
test problems used in this paper

Function name Objective
functions

Decision
dimensions

Feasibility
ratio (ρ)

Constraints

Inequality Equality Linear Nonlinear

BNH 2 2 93.61 2 0 0 2

SRN 2 2 16.18 2 0 1 1

TNK 2 2 5.09 2 0 0 2

CTP1 2 2 99.58 2 0 0 2

CTP2 2 2 78.65 1 0 0 1

CTP3 2 2 76.85 1 0 0 1

CTP4 2 2 58.17 1 0 0 1

CTP5 2 2 77.54 1 0 0 1

CTP6 2 2 0.40 1 0 0 1

CTP7 2 2 36.68 1 0 0 1

CTP8 2 2 17.83 2 0 0 2

OSY 2 6 3.25 6 0 4 2

CONSTR 2 2 52.52 2 0 2 0

Welded beam 2 4 18.67 5 0 1 4
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erations was set to 100. As it can be seen in Table 1, the
feasibility ratio is different in various problems. The feasi-
bility ratio is determined experimentally by calculating the
percentage of feasible solutions among 1000000 randomly
generated solutions (Venkatraman and Yen 2005).

For qualitative comparison, the plots of final
non-dominated fronts that were obtained from the same
initial population are presented (Fig. 11). The quantitative
comparison was performed using hyper-volume indicator
(IH) and additive epsilon indicator (Iε+). These two Pareto
compliant performance metrics are able to measure the
performance of algorithms with respect to their diversity
preservation and dominance relations. A detailed discussion
about these measures can be found in Zitzler et al. (2003)
and Knowles et al. (2006). The quantitative comparisons are
illustrated by statistical box plots, and the Mann–Whitney
rank-sum test was implemented to evaluate whether the dif-
ference in performance between two independent samples is
significant or not (Knowles et al. 2006).

8.2 Comparative study

The performance metric for hyper-volume indicator (IH
value) was computed for each CMOEA over 50 independent
runs. Fig. 12 presents the box plots of IH indicator found in all
CMOEAs, inwhich 1 is denoted by the proposed algorithm, 2
as theWoldesenbet’s algorithmand 3 as theNSGA-II. Higher
IH value indicates the ability of the algorithm to dominate
a larger region in the objective space. Figure 12 shows that
the proposed algorithm has better IH values for the test func-
tions BNH, SRN, TNK, CTP1, CTP2, CTP4, CTP5, CTP6,
CTP7, CTP8 and CONSTR. The proposed algorithm and
Woldesenbet’s algorithm showed comparable IH values for
test functions OSY and Welded Beam. Also, all three algo-
rithms showed comparable IH values for test function CTP3.

Woldesenbet’s algorithm showed better IH value than
NSGA-II for test functions CTP4, CTP5, CTP7, OSY and
Welded Beam.On the other hand, NSGA-II showed better IH
value than Woldesenbet’s algorithm for test functions BNH,
SRN, CTP1, CTP6 and CONSTR. And finally, the IH values
for Woldesenbet’s algorithm and NSGA-II are very close for
test functions TNK, CTP2, CTP3 and CTP8.

In some of the problems shown in Fig. 12, it is hard to
determine whether the proposed algorithm is significantly
better than the other CMOEAs since they attain close val-
ues. Hence, the Mann–Whitney rank-sum test was used to
examine the distribution of the values. The tested results are
presented in Table 2, and they indicate that the proposed algo-
rithm’s performance has a significant advantage compared to
the distribution inWoldesenbet’s algorithm inmost test func-
tions except CTP3, OSY and Welded Beam. Also the results
indicate that the proposed algorithm’s performance is better

compared to the distribution in NSGA-II in most test func-
tions except CTP3.

Figure 13 illustrates the results of additive epsilon indica-
tor using statistical box plots. This indicator, recommended
in Zitzler et al. (2003), is capable of detecting whether a non-
dominated set is better than another. There are two box plots
for each test problem, i.e., Iε+(A, X1,2) and Iε+(X1,2, A),
in which algorithmA refers to the proposed algorithm, while
algorithms 1 and 2 represent Woldesenbet’s algorithm and
NSGA-II, respectively. The results in Fig. 13 show that the
proposed algorithm and two other CMOEAs are incompara-
ble for BNH and SRN test functions because Iε+(A, X1,2) >

0 and Iε+(X1,2, A) > 0. For the other test functions,
the results are comparable because both Iε+(A, X1,2) and
Iε+(X1,2, A) has values close to 0 which implies that the per-
formance of all 3 algorithms attain close values and it is hard
to determine which algorithm has better performance than
the other CMOEAs. Hence, the Mann–Whitney rank-sum
test was used to examine the distribution of the values again.
Table 3 shows the Mann–Whitney rank-sum test results for
Iε+. The results in Table 3 implies that Iε+ the proposed
algorithm is able to find the well-extended, well-spread, and
near-optimal solutions for test functions TNK, CTP2, CTP3,
CTP4, CTP5, CTP6, CTP7, CTP8, OSY and Welded Beam
compared to both Woldesenbet’s algorithm and NSGA-II.
Also Table 3 shows that the optimal Pareto fronts for pro-
posed algorithms has better distribution than Pareto fronts
for Woldesenbet’s algorithm for test function CTP1. In other
test functions, it cannot be claimed that the proposed algo-
rithm has better Iε+ distribution than the other CMOEAs;
but it does not confirm that the results for other CMOEAs is
better than the proposed algorithm’s results.

9 Conclusion

In this paper, a new constraint handling algorithm for multi-
objective problems was introduced. The proposed method
extends a previously proposed MOPSO algorithm to handle
constraints. The particles population was divided into two
non-overlapping populations, infeasible population and fea-
sible population. At each generation, in a parallel process,
each population was evolved independent from the other
one. The infeasible population particles were evolved in the
constraint space toward feasibility and then migrate to the
feasible population. The particles in feasible populationwere
also evolved in the objective space toward Pareto optimal-
ity. To select leader for feasible particles, a priority-based
method in three levels was proposed and for infeasible par-
ticle, an elitism-based method was integrated with a leader
replacement approach. The proposed algorithm was tested
on 14 constrained multi-objective optimization benchmark
problems, and its results were compared with two state-
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NRSrofstnorfdetanimod-nonlaniFHNBrofstnorfdetanimod-nonlaniF

1PTCrofstnorfdetanimod-nonlaniFKNTrofstnorfdetanimod-nonlaniF

3PTCrofstnorfdetanimod-nonlaniF2PTCrofstnorfdetanimod-nonlaniF

5PTCrofstnorfdetanimod-nonlaniF4PTCrofstnorfdetanimod-nonlaniF

7PTCrofstnorfdetanimod-nonlaniF6PTCrofstnorfdetanimod-nonlaniF

YSOrofstnorfdetanimod-nonlaniF8PTCrofstnorfdetanimod-nonlaniF

DEDLEWrofstnorfdetanimod-nonlaniFRTSNOCrofstnorfdetanimod-nonlaniF

Fig. 11 Final non-dominated fronts plots for all test functions by the proposed algorithm (on the left), Woldesenbet’s (in the middle), and NSGA-II
(on the right)
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IH values for BNH IH values for SRN IH values for TNK IH values for CTP1

IH values for CTP2 IH values for CTP3 IH values for CTP4 IH values for CTP5

IH values for CTP6 IH values for CTP7 IH values for CTP8 IH values for OSY

IH values for CONSTR IH values for WELDED

Fig. 12 Box plot of hyper-volume indicator (IH values) for all test functions by algorithms 1-3 represented (in order): the Proposed algorithm,
Woldesenbet’s, and NSGA-II

Table 2 The distribution of IH values tested using Mann–Whitney rank-sum test (Knowles et al. 2006)

Test functions BNH SRN TNK CONSTR CTP1 CTP2 CTP3
IH(Proposed,Woldesenbet) 1.82E-4 1.70E-4 1.83E-4 1.83E-4 1.82E-4 5.83E-4 0.8155
IH(Proposed,NSGA− II) 1.35E-4 2.32E-3 1.83E-4 1.83E-4 4.39E-4 1.83E-4 0.9397

Test functions CTP4 CTP5 CTP6 CTP7 CTP8 OSY Welded Beam
IH(Proposed,Woldesenbet) 0.0164 0.0469 1.83E-4 2.57E-4 2.84E-3 0.0642 0.3267
IH(Proposed,NSGA− II) 5.49E-3 1.83E-4 2.57E-4 1.96E-4 0.0435 7.69E-4 0.0325

The table presents the ρ-values with respect to the alternative hypothesis (i.e., ρ-value < α = 0.05) for each pair of the proposed algorithm and a
selected CMOEA. The distribution of the proposed algorithm has significant differences than those selected CMOEA unless stated

of-the-art constraint handling multi-objective algorithms.
Both qualitative and quantitative results were presented. For
qualitative compression, the plots of final non-dominated
fronts were presented and the quantitative comparison was

performed using hyper-volume indicator (IH) and additive
epsilon indicator (Iε+). The experimental results showed
that the proposed algorithm is highly competitive to solve
the benchmark problems compared to the other algorithms.
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Iε+(A, X1,2) and Iε+(X1,2, A) for BNH Iε+(A, X1,2) and Iε+(X1,2, A) for SRN

Iε+(A, X1,2) and Iε+(X1,2, A) for TNK Iε+(A, X1,2) and Iε+(X1,2, A) for CTP1

Iε+(A, X1,2) and Iε+(X1,2, A) for CTP2 Iε+(A, X1,2) and Iε+(X1,2, A) for CTP3

Iε+(A, X1,2) and Iε+(X1,2, A) for CTP4 Iε+(A, X1,2) and Iε+(X1,2, A) for CTP5

Iε+(A, X1,2) and Iε+(X1,2, A) for CTP6 Iε+(A, X1,2) and Iε+(X1,2, A) for CTP7

Iε+(A, X1,2) and Iε+(X1,2, A) for CTP8 Iε+(A, X1,2) and Iε+(X1,2, A) for OSY

Iε+(A, X1,2) and Iε+(X1,2, A) for CONSTR Iε+(A, X1,2) and Iε+(X1,2, A) for WELDED

Fig. 13 Box plot of additive epsilon indicator (Iε+ values) (‘A’ corresponds to the proposed algorithm, while ’X1,2’ refers to Woldesenbet’s and
NSGA-II, respectively)
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Table 3 The distribution of Iε+ values tested using Mann–Whitney rank-sum test (Knowles et al. 2006)

Test functions BNH SRN TNK CONSTR CTP1 CTP2 CTP3
Iε+(Proposed,Woldesenbet) 0.3721 0.4219 0.0162 0.1819 4.10E-4 1.83E-4 0.0395
Iε+(Proposed,NSGA− II) 0.7311 0.6105 0.0271 0.0755 0.1233 1.83E-4 0.0287

Test functions CTP4 CTP5 CTP6 CTP7 CTP8 OSY Welded Beam
Iε+(Proposed,Woldesenbet) 1.83E-4 3.30E-4 0.0311 2.51E-4 1.97E-4 2.11E-4 1.83E-3
Iε+(Proposed,NSGA− II) 3.61E-4 0.0732 0.0109 2.76E-3 1.89E-4 3.67E-4 4.19E-4

The table presents the ρ-values with respect to the alternative hypothesis (i.e., ρ-value < α = 0.05) for each pair of the proposed algorithm and a
selected CMOEA. The distribution of the proposed algorithm has significant differences than those selected CMOEA unless stated

Indeed, it is able to obtain quality Pareto fronts for all of the
test problems.
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