
Soft Comput (2018) 22:1313–1333
https://doi.org/10.1007/s00500-016-2418-1

METHODOLOGIES AND APPLICATION

APDDE: self-adaptive parameter dynamics differential evolution
algorithm

Hong-bo Wang1,2 · Xue-na Ren1,2 · Guo-qing Li1,2 · Xu-yan Tu1,2

Published online: 11 November 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract In real-time high-dimensional optimization prob-
lem, how to quickly find the optimal solution and give a
timely response or decisive adjustment is very important.
This paper suggests a self-adaptive differential evolution
algorithm (abbreviation for APDDE), which introduces the
corresponding detecting values (the values near the current
parameter) for individual iteration during the differential
evolution. Then, integrating the detecting values into two
mutation strategies to produce offspring population and the
corresponding parameter values of champion are retained.
In addition, the whole populations are divided into a pre-
defined number of groups. The individuals of each group
are attracted by the best vector of their own group and
implemented a new mutation strategy DE/Current-to-lbest/1
to keep balance of exploitation and exploration capabili-
ties during the differential evolution. The proposed variant,
APDDE, is examined on several widely used benchmark
functions in the CEC 2015 Competition on Learning-based
Real-Parameter Single Objective Optimization (13 global
numerical optimization problems) and 7 well-known basic
benchmark functions, and the experimental results show
that the proposed APDDE algorithm improves the existing
performance of other algorithms when dealing with the high-
dimensional and multimodal problems.

Communicated by V. Loia.

B Hong-bo Wang
foreverwhb@ustb.edu.cn

1 Department of Computer Science and Technology, School of
Computer and Communication Engineering, University of
Science and Technology Beijing, Beijing 100083,
People’s Republic of China

2 Beijing Key Laboratory of Knowledge Engineering for
Materials Science, No. 30 Xueyuan Road, Haidian Zone,
Beijing 100083, People’s Republic of China

Keywords Differential evolution · Self-adapting strategy ·
Real-time optimization

1 Introduction

DE (differential evolution) was presented at the Second Inter-
national Contest on Evolutionary Optimization in 1997, and
it turned out as one of the best among the competing algo-
rithms (Storn and Price 1997; Price 1997). Since late 1990s,
DE started to find several significant applications to the
optimization problems. There are many reasons why the
researchers have been looking at DE as an attractive opti-
mization tool. For instance, it is simple and straight forward
to implement, and the number of control parameters in DE
is very few, and the space complexity of DE is low (Das
and Suganthan 2011). Its performance, however, is still quite
having some limitations; if DE cannot produce offspring bet-
ter than the parent, the algorithm will be to a standstill. The
reason is that: In every stage of the optimization process,
the mobile is limited. Obviously, the differential evolution
algorithm to successfully solve a specific optimization prob-
lem depends on the results of the mutation strategy and the
three control parameters: the population size (NP), crossover
rate (CR) and the scale factor (F). The best settings for
the control parameters can be different according to those
practical optimization problems and the same functions with
different requirements for consumption time and accuracy.
Otherwise, the mobile restrictions will be to a standstill.
Therefore, researchers have developed some DE variants
with adaptive control parameters and trial vector generation
strategies to suit various requirements during the evolution
process. In the DE family of Storn and Price, DE/rand/1/bin
is the most frequently used mutation strategies and many
algorithms are developed based on it for its robustness and

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-016-2418-1&domain=pdf

1314 H. Wang et al.

efficiency in terms of convergence rate. And DE/rand/2/dir
(Feoktistov and Janaqi 2004) implements greedy DE strate-
gies to generate offspring. However, a greedy DE variant such
as DE/current-to-best/1/bin which employs the information
of the best solution in the current population is less useful or
difficultly to be developed. The reason seems to be very intu-
itive: less reliable and may lead to premature convergence.
But Das and Suganthan (2011) noted that for non-separable
and unimodal functions, DE/current-to-best/1/bin consis-
tently showed the best phenomenon and it was also successful
in optimizing some multimodal and separable benchmarks.
Hence, these greedy DE variant strategies have great devel-
opment of space; Zhang and Sanderson (2009) proposed
a new algorithm which implements a new mutation strat-
egy DE/current-to-pbest with optional external archive and
achieved considerably good results.

The remaining part of this paper is organized in the fol-
lowing manner. In Sect. 2, we introduce the standard DE
algorithm. Sect. 3 gives a detailed description about some
recent variants that are commonly considered as the state of
the art, such as JADE (Zhang and Sanderson 2009), MDE
(Ali et al. 2013), CODE (Wang et al. 2011), MDESELF (Li
and Yin 2014) and EPSDE (Mallipeddi et al. 2011). Sec-
tion 4 presents the proposed APDDE algorithm. Section 5
makes comparative experiments on the CEC 2015 test suite
and analyzes the related experimental results. Conclusions
are drawn in Sect. 6.

2 Basic operations of DE

DE is a simple real-coded evolutionary algorithm. It works
through a simple cycle of stages. The basic idea of the algo-
rithm is: DE perturbs current generation vectors with the
scaled difference in two randomly selected population vec-
tors. The result is to generate a donor vector; it corresponds to
each population vector (also known as target vector). Then,
the donor vector exchanges its components with the target
vector under crossover operation to produce a trial vector.
In selection stage, the trial (or offspring) vector competes
against the population vector; the better one will be used as
the parent vector in the next generation. Hence, the popu-
lation either gets better or remains current status, but never
deteriorates, guiding the population to tend to the optimal
solution.

Stages of DE presented in Fig. 1 includes: (1) initial
parameter population, (2) mutation with difference vec-

tors to produce the donor vector, (3) setting the violating
components within the predefined boundary constraints, (4)
crossover operation between the target vector and its corre-
sponding donor vector, (5) selecting operation through the
objective function value of each trial vector compared with
that of its corresponding target vector, and so on.

2.1 Initialization of the parameter vectors

DE searches for a global optimum parallelly in D-dimensional
real-parameter space. It begins with an initiated population
of NP with D-dimensional real-valued parameter vectors,
which should cover the entire search space as much as pos-
sible by uniformly randomizing the initial individuals within
the prescribed search space. For example, according to a uni-
form distribution:

xLow
j,i ≤ x j,i (0) ≤ xup

j,i , i = 1, 2, . . . , NP; j = 1, 2, . . . , D,

The initial value of the j th parameter of the i th individual
at generation g = 0 is generated by:

x j,i (0) = xLow
j,i + rand (0, 1) ·

(
xU p

j,i − xLow
j,i

)
, (1)

where x Low
j,i , xU p

j,i is the prescribed minimum and maximum
bounds, D is the dimension of the problem, NP is the popu-
lation size, and rand(0, 1) is a uniformly distributed random
number between 0 and 1 and is instantiated independently
for each component of the i th vector.

2.2 Mutation with difference vectors

During DE-mutation of DE/rand/1, in order to produce
the donor vector for each i th target vector from the cur-
rent population, three other distinct parameter vectors,
xr1(g), xr2(g), xr3(g) are sampled randomly from the cur-
rent population. The indices r1, r2 and r3 are distinct inte-
gers uniformly chosen from the set {1, 2 . . . NP}\{i}. These
indices are randomly generated once for each mutant vector.
The difference in any two of these three vectors is scaled by
a scalar number F and added to the third one. So, the donor
vector vi (g) can be expressed as formula (2).

vi (g) = xr1(g) + F · (xr2 (g) − xr3(g)) . (2)

Initialization Mutation Correction Crossover Selection

Fig. 1 Main stages of the DE algorithm

123

APDDE: self-adaptive parameter dynamics differential evolution algorithm 1315

Fig. 2 Crossover operation
process

The following are other different mutation strategies fre-
quently used in the literature:

1. DE/rand/2

vi (g) = xr1 (g) + F (xr2 (g) − xr3 (g))

+F (xr4 (g) − xr5 (g)) (3)

2. DE/current-to-best/1

vi (g) = xi (g) + F (xbest (g) − xi (g))

+F (xr1 (g) − xr2 (g)) (4)

3. DE/best/1

vi (g) = xbest (g) + F (xr2 (g) − xr3 (g)) (5)

2.3 Correction operation

After mutation, some components of the trial vector may
go to the predefined boundary constraints. There are many
solutions to tackle this problem, such as penalty schemes,
resetting schemes. Here, a simple but the most frequent cor-
rection strategy (Wang et al. 2011) is used.

vi (g)=

⎧⎪⎨
⎪⎩

min
{

xU p
j,i , 2x Low

j,i − vi (g)
}

, if vi (g) < x Low
j,i

max
{

x Low
j,i , 2xU p

j,i − vi (g)
}

, if vi (g) > xU p
j,i

.

(6)

2.4 Crossover

In order to enhance the potential diversity of the popula-
tion, the crossover operation happens after generating the
donor vector through mutation. Crossover operators from
DE exchange donor vector v j,i (g)’s components with the
target vector x j,i (g), which is different from the other EA
that exchanges several target vectors each other from parent
generation. The scheme may be described as formula (7).

u j,i (g) =
{

v j,i (g) , if rand (0, 1) ≤ CR or j = jrand

x j,i (g) , otherwise
,

(7)

where CR is the crossover rate, CR ∈[0, 1]. A large CR
speeds up convergence. jrand is a randomly chosen integrand
jrand ∈ [1, D], which ensures u j,i (g) gets at least one com-
ponent from v j,i (g).

The binomial crossover operator copies the j th parameter
of the donor vector v j,i (g) to the corresponding element in
the trial vector u j,i (g) if rand (0, 1) ≤ CR or j = jrand.
Otherwise, it is copied from the corresponding target vector
x j,i (g). The possible trial vectors due to binomial crossover
are illustrated in Fig. 2. It is clear that there are 6 genes on
the chromosome and jrand = 3.

2.5 Selection operation

After above operation, a selection operation is performed to
determine whether the objective function value of each target
vector f (xi (g)) or the corresponding trial vector f (ui (g))

survives to the next generation, i.e., at g = g + 1. The selec-
tion operation is described as formula (8).

xi (g + 1) =
{

ui (g) , if f (ui (g)) ≤ f (xi (g))

xi (g), otherwise
. (8)

2.6 Pseudocode for the standard DE algorithm

The detailed pseudocode of this variant is presented as fol-
lows in Table 1.

3 The related research

DE, nevertheless, also has the shortcomings of all other intel-
ligent techniques. The performance of DE deteriorates with
the growth of the dimensionality of the search space. DE suf-
fers from the problem of premature convergence, where the
search process may be trapped in local optima in multimodal
objective function and lose its diversity. It also suffers from
the stagnation problem, where the search process may occa-
sionally stop proceeding toward the global optimum even
though the population has not converged to a local optimum
or any other point. Sporadically, even new individuals may
enter the population, but the algorithm does not progress by

123

1316 H. Wang et al.

Table 1 Pseudocode for the standard DE algorithm

01 Begin
02 Set the generation number g=0
03 Create a random initial population xj,i(g) ∀i, i = 1, . NP ∀j, j=1, , D , each individual
04 uniformly distributed in the range [, , ,]
05 Evaluate (, (g))
06 WHILE the stopping criterion is not satisfied
07 For i=1 to NP
08 /* Mutation step; generate a donor vector for each target vector
*/
09 Select randomly r1 r2 r3
10 (g) = (g) + ((g) (g))
11 /* Correction operation */
12 Correction()
13 /* Crossover step; generate a trial vector for each target vector */
14 /* Binomial crossover */
15 jrand = randint(1,D)
16 For j=1 to D
17 If rand(0,1) < CR or j = jrand

18 , (g) = , (g)
19 Else
20 , (g) = , (g)
21 End If
22 End For
23 /* Selection step */
24 If f((g)) ≤ f((g))
25 (g + 1) = (g)
26 Else
27 (g + 1) = (g)
28 End If
29 End For
30 g = g+1
31 End WHILE
32 End

finding any better solutions. While the global exploration
ability of DE is considered adequate, its local exploitation
ability is regarded weak and its convergence velocity is too
low. DE is sensitive to the choice of the control parameters,
and it is difficult to adjust them for different problems.

For the above drawbacks, many researchers have done
many attempts to significantly enhance the overall perfor-
mance of the standard DE algorithm. Yang et al. (2013)
proposed a method of population adaptation which is incor-
porated into the jDE algorithm (Brest et al. 2009). The
proposed method measured the Euclidean distances between
individuals of a population which can identify the moment
when the population diversity is poor or the population stag-
nates. Once the moment is identified, the population will be
regenerated to increase diversity or to remove the stagnation
issue. An improved DE named HEDE was applied to solve
waveform inversion problem in Gao et al. (2014). In HEDE,
a new population evolution strategy (PES) to decrease the
population size based on the differences among individuals
during an evolution process is embedded into the coopera-
tive coevolutionary DE (CCDE) and obtained a new highly
efficient DE. A new control parameter called cognitive learn-
ing factor (CLF) is introduced in Sharma et al. (2015). In
this algorithm, a weight factor (CLF) is associated with the
individual’s experience in the mutation operation. In addi-
tion, the range of scale factor F is also dynamically varied

in the prescribed range. By varying CLF and F, exploration
and exploitation capabilities of DE may be balanced, thus
improving the performance of DE. Qinqin Fan and Xue-
feng Yana proposed self-adaptive DE algorithm with discrete
mutation control parameters (DMPSADE) in Fan and Yan
(2015). In DMPSADE, each variable of each individual has
its own mutation control parameter, and each individual has
its own crossover control parameter and mutation strategy.
Poikolainen et al. (2015) proposed a procedure to perform
an intelligent initialization for population-based algorithms.
Iipo Poikolainen and Ferrante Neri introduced a component
for preprocessing the initial solutions to generate an initial
population for DE algorithms. The proposed component is
not dependent on any assumption on the optimization prob-
lem (except it being continuous). YuChen and WeichengXie
(Ali et al. 2013) proposed a binary learning differential
evolution (BLDE) algorithm which can perform well on con-
tinuous optimization problems (COOPS). The algorithm can
efficiently locate the global optimal solutions by learning the
information of individuals, the best explored solution and the
difference between individuals in the last population. Yi et al.
(2015) proposed a new DE algorithm with a hybrid mutation
operator to categorize the population into two parts to process
different types of mutation operators and self-adapting con-
trol parameters which are used in jDE (Brest et al. 2009) and
applied in the proposed HSDE (Liu et al. 2015b) to initialize

123

APDDE: self-adaptive parameter dynamics differential evolution algorithm 1317

the new population when a change is detected, and proposed a
modified prediction model which uses the historical optimal
sets obtained in the last two times. Guo et al. (2015) adopted
a distributed topology to construct a trial vector generation
pool and proposed the membership cloud model in the selec-
tion process. Multiobjective optimization algorithms have
a wide range of applications, and the experts and scholars
of various countries have given a wide range of attention
(Giagkiozis et al. 2015; Yuan et al. 2014). At present, dif-
ferential evolution algorithm has also been applied to many
fields. The CPDE (differential evolutionary algorithm based
on cloud population) proposed concepts of cloud group, and
distribution chain concept increased the population diver-
sity. In the algorithm, the intrusion operator will implant
winners’ distribution to other individuals in the process of
evolution, which improves individual diversity. The cooper-
ation mechanism and differential operation are introduced
by the cooperative operator. The results prove that CPDE is
an effective high-dimensional evolutionary algorithm, which
has a certain advantage in optimizing the network security
situation prediction model (Hu and Qiao 2016). In addition
to coefficient of variation scale and cross probability strategy
to improve algorithm convergence speed and solution preci-
sion, various mutation strategies are employed to increase
multiplicity of the population and avoid falling to local opti-
mal. And the results in the three-tank system show that it is
effective and available, with a good feature for application in
industry (Liu et al. 2015c).

A new differential evolution algorithm, APDDE, has been
presented to improve optimization performance by imple-
menting a new mutation strategy and automatically updating
control parameters, which demonstrates a significant perfor-
mance improvement over the JADE (Zhang and Sanderson
2009), MDE (Ali et al. 2013), CODE (Wang et al. 2011),
MDESELF (Li and Yin 2014) and EPSDE (Mallipeddi et al.
2011). In order to better understand these advancements, the
main contribution of JADE (Zhang and Sanderson 2009),
MDE (Ali et al. 2013), CODE (Wang et al. 2011), MDE-
SELF (Li and Yin 2014) and EPSDE (Mallipeddi et al. 2011)
should be briefly summarized.

3.1 Adaptive DE with optional external archive (JADE)

There are three different improvements in JADE variant of
adaptive differential evolution (Zhang and Sanderson 2009)
extending the standardized DE concept: current-to-pbest
mutation, archive and a new adaptive control of parameters
F and CR.

1. Current-to-pbest mutation

In JADE, the following manner will generate the mutant
vector ui

ui = xi + F(xpbest − xi) + F(xr1 − xr2) (9)

where xpbest is randomly chosen as one of the top 100 p%
individuals in the current population with p ∈ (0, 1], here
the input parameter p is initialized to be 0.5 recommended
in Zhang and Sanderson (2009). The vector xr1 is randomly
selected from P(r1 �= i), andxr2 is randomly selected from
the union P ∪ A(r2 �= i �= r1) of the current population P
and the archive A.

2. Archive

The archive provides information about the progress direc-
tion and is also capable of increasing the diversity of the
population. In every generation, parent individuals replaced
by better offspring individuals are put into the archive; the
archive is initiated to be empty, and size is controlled within
NP individuals by randomly dropping surplus individuals.

3. A new adaptive control of parameters F and CR

F and CR are the mutation factor and the crossover prob-
ability that are associated with xi and are independently
regenerated at each generation by the adaptation process;
CR is generated from the normal distribution of mean uCR

and standard deviation 0.1, truncated to [0, 1]. F is generated
from a Cauchy distribution with location parameter uF and
scale parameter 0.1 and then truncated to be 1 if F ≥ 1 or
regenerated if F ≤ 0.

3.2 Improving DE algorithm by synergizing different
improvement mechanisms (MDE)

Ali et al. (2013) proposed a simple and modified DE frame-
work, called MDE, which is a fusion of three modifications
in DE: opposition-based learning (OBL), tournament method
for mutation and single population structure.

1. Opposition-based learning (OBL) for generating initial
population

OBL helps in giving a good initial start to DE; if
X = (x1, x2, . . ., xn) is a point in n-dimensional space and
xi ∈ [li , ui] ∀ i ∈{1, 2, . . ., n}, then the opposite point
X ′ = (x ′

1, x ′
2, . . ., x ′

n) is completely defined by its compo-
nents

x ′
i = li + ui − xi (10)

Here li and ui indicate the lower and upper bounds of the
variables. Then, evaluate the fitness of both points f (X) and

123

1318 H. Wang et al.

f (X ′). If f (X ′) ≤ f (X), then replace X with X ′; otherwise,
continue with X .

2. Tournament method for mutation
A modified mutation equation is reformulated and ex-

pressed as:

vi (g) = xtb (g) + F · (xr2 (g) − xr3 (g)) . (11)

where xtb(g) is the point with the best fitness function value
among the three distinct points xr1, xr2, and xr3 which are
selected randomly from the population corresponding to tar-
get point xi . Here assume that xtb(g) = xr1.

3. Single population structure
In the single structure of DE, only one population is main-

tained and the individuals are updated as the newly found
better solutions can take part in the mutation and crossover
operation in the current generation itself as opposed to basic
DE (where two populations are maintained and the better
solutions take part in mutation and crossover operations in
the next generation).

3.3 DE with composite trial vector generation strategies
and control parameters (CODE)

CODE is a simple but efficient algorithm (Wang et al. 2011).
Yong Wang only used two candidate pools: the strategy can-
didate pool and the parameter candidate pool. The strategy
candidate pool contains three trial vector generation strate-
gies (rand/1/bin, rand/2/bin, current-to-rand/1), and three
control parameters ([F = 1.0, CR = 0.1], [F = 1.0, CR =
0.9], [F = 0.8, CR = 0.2]) constitute the parameter candi-
date pool. Then, at each generation, each target vector uses
the three trial vector generation strategies; each combines
with a control parameter setting randomly chosen from the
parameter candidate pool, to generate three trial vectors, and
the chosen best one enters the next generation if it is better
than its target vector.

3.4 Modified DE with self-adaptive parameters method
(MDESELF)

The modified algorithm in Li and Yin (2014) named MDE is
the same as in Ali et al. (2013); so in order to be distinguished,
we shall refer to it as MDESELF in the present study. Overall,
there are also three modifications are proposed in Li and Yin
(2014): modified mutation strategy, randomized scale factor
and self-adaptive crossover rate.

1. Modified mutation strategy
The new mutation strategy is similar to the formula (9);

the difference is that it does not use the external archive, and
the random vectors are used instead of the current individual;
in other words, the vectors xr2 in (9) are no longer randomly
selected from the union P ∪ A, but only from P , the current

individual xi becomes the random vectors. In addition, the
new mutation strategy is combined with the basic mutation
strategy ‘rand/2/bin’(3) through some probability rules. It
can be expressed as follows:

If rand ≤ ω then vi (g) = xr1 (g) + F
(

x P
best (g) − xr1 (g)

)

+ F (xr2 (g) − xr3 (g))

Else vi (g) = xr1 (g) + rand (xr2 (g) − xr3 (g))

+ F (xr4 (g) − xr5 (g))

End if (12)

Here the input parameter ω = g/gmax is the probability
value and recommended in Li and Yin (2014), and gmax is
the maximum generation number.

2. Randomized scale factor
The value of F is generated as two Gaussian distribu-

tions: F1 = Gaussian(0.3, 0.3), F2 = Gaussian(0.7, 0.3).
If rand() ≤ rand(), then F = F1; otherwise, F = F2.

3. Self-adaptive crossover rate
The author proposed a relative success ratio selecting one

of two new parameters in the previous periods; according
to it, the algorithm selects the evolution method for each
individual. (Details of CR adaptation are shown in Li and
Yin (2014)).

3.5 DE algorithm with ensemble of parameters and
mutation strategies (EPSDE)

EPSDE (Mallipeddi et al. 2011) also have two candidate
pools (a pool of mutation strategies and a pool of control para-
meters), which is similar to CODE, but the strategy candidate
pool includes DE/best/2/bin, DE/rand/1/bin, DE/current-to-
rand/1/bin and parameter candidate pool in which CR values
range from 0.1–0.9 in steps of 0.1; the F values range from
0.4 to 0.9 in steps of 0.1, which are different from CODE.
Each member (target vector) is randomly assigned a mutation
strategy and united parameter values taken from the respec-
tive pools to generate offspring (trial vector). If f (xi (g))

(function values of target vectors) ≤ f (ui (g)) (function val-
ues of target vectors), then the combination of the mutation
strategy and the parameter values is stored in the success-
ful combinations pool; otherwise, reinitialize the mutation
formula from the respective pools or from the successful
combinations pool with equal probability. In Fig. 3, we will
see the process which generates the successful combination
pool.

123

APDDE: self-adaptive parameter dynamics differential evolution algorithm 1319

Fig. 3 Process of generating the successful combination pool

4 The APDDE

This section proposes APDDE (a self-adaptive differential
evolution algorithm).

The APDDE imitates the sniffing behavior of canine ani-
mals like, especially, dogs in the biological world. We know
dogs have a unique way of sniffing around when they walk
or hunt for food; inspired by this, we apply this behavior
to differential evolution algorithm, so the whole algorithm
optimization process has certain direction. In addition, we
propose a new mutation strategy DE/local-to-best/1 and con-
trol F and CR in an adaptive manner for each individual to
balance between the exploration and the exploitation. In gen-
eral, three modifications are proposed in this paper and they
are elucidated as follows.

4.1 DE/Current-to-lbest/1

The DE/Current-to-lbest/1 strategy is a variant of the
DE/Current-to-pbest strategy. In the DE/Current-to-pbest
strategy, in order to enrich the individuals of the popula-
tion, the individuals are mutated under the guidance of one
individual which is randomly chosen from the top 100p%
individuals in the current population with p ∈ (0, 1]. How-
ever, in DE/Current-to-lbest/1, the population is attracted by
the multiple locally best individuals instead of one of the top
100p% best individuals.

In the proposed strategy, combining the idea of SFLA,
we make improvements on aspects of the population recon-

struction. The whole population is divided into a predefined
number of groups simply based on the vector indices. Each
group contains the same number of vectors, and the mem-
bers of each group are kept unchanged during the algorithm’s
iteration. The members of each equal-size groups, in fact,
are assigned randomly from the population, since the vector
indices are sorted randomly during initialization. The popu-
lation is divided into several subgroups; in iterative process,
each subgroup can obtain a local optimal value, and then, the
local information obtained by subgroups is shared among the
population in order to increase diversity as much as possible
to make the population to avoid falling into local optimum
and also, at the same time, to obtain the global optimal.

All individuals within the population are marked with
random numbers, each group with 10 individuals, and each
individual is assigned to different groups according to their
random numbers. For example, the individuals with 1–10
numbers are assigned to the first group, 10–20 are assigned
to the second group, and so on. The characteristics of each
group are random, and no better or worse, because the groups
are not divided by the sorting fitness value. The reason for
this randomization is that it increases not only the diversity
of the entire population, but also diversity of each packet.
And the DE/Current-to-lbest/1 strategy can be expressed as
follows:

ui = xi + Fi (xlbest − xi) + Fi (xr1 − xr2), (13)

where the subscript lbest denotes the best vector in the group
with respect to target vector i, xr1 is selected from the current

123

1320 H. Wang et al.

(a) (b)

(c)

Fig. 4 Grouping and procedures of each subgroup. a Random initial. b Dividing the population into several subgroup. c Exploration in each
subgroup

population, while xr2 is randomly chosen from the union,
the current population and archive (initialed to be empty,
the parent solutions that fail in the selection process are
added to the archive, and the archive size are kept at NP).
The vivid description of grouping and procedures of each
subgroup is shown in Fig. 4. Among the serial numbers,
1, 2, 3 and 4 is the order of exploration of each group.
In this paper, this new mutation strategy is integrated into
the basic mutation strategy DE/rand/1/bin to form a strategy
pool.

4.2 Parameter adaptation

Storn and Price suggested that F should be 0.6 or 0.5 as a
good initial choice and the value of F smaller than 0.4 or
larger than 1.0 will lead to decrease in convergence speed
(Storn and Price 1997), In contrast, Ronkkonen et al. (2005)
said that F = 0.9 would be a good initial choice and F
should be chosen from the range [0.4, 0.95]. Storn and Price
argued that the value of CR should be set to 0.1 or 0.9 and
thought 1.0 can be tried to increase the convergence speed,

123

APDDE: self-adaptive parameter dynamics differential evolution algorithm 1321

0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

0.9 0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

0.9 0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

0.9

Fig. 5 Generating the CR_de and CR_ad when p = 0.1

Fig. 6 Process of detecting in
algorithm

while in Ronkkonen et al. (2005), the value of CR choice
from the range (0.3, 0.9) will be best. CR should be between
0.0 and 0.2 for separable functions, while for multimodal and
non-separable, the best choice is from the range (0.9, 1.0).

In general, in our APDDE algorithm, the parameter F
will be chosen in the range [0.5, 1] in the steps of p (in
this paper, the value of p is 0.1), and the pool of CR
values taken in the range [0.4, 0.9] in steps of p is sim-
ilar to EPSDE (Mallipeddi et al. 2011). In the algorithm,
each vector in the population is extended with parameter
F , CR(i.g. x1,i (g), x2,i (g),xD,i (g), Fi,g, CRi,g) and the
value is randomly selected from the respective pool in the
initialization. During evolution, the self-adaptive process of
F and CR is as follows:

1. F_de = Fi,g − p,
F_ad = Fi,g + p;
If Fi,g = 0.5
then F_de = 0.5.

If Fi = 1
then F_ad = 1.

2. CR_de = CRi,g − p,
CR_ad = CRi,g + p;
If CRi,g = 0.1
then CR_de = 0.1.

If CRi,g = 0.9
then CR_de = 0.9.

In Fig 5, the process of generating the CR_de and CR_ad
is shown. The red indicator hand is the current parameter
CRi,g .

In each iteration, the current parameters Fi,g and CRi,g

will generate, respectively, the corresponding detection val-
ues: F_de and F_ad, CR_de and CR_ad. The vivid descrip-
tion of the process is show in Figs. 6 and 7, respectively.

The dashed curves display the contours of the optimization
problem. Vi,1 and Vi,2 are the mutation vector generated for
individual Xi by the associated mutation factor F_de and
F_ad.

4.3 Procedure of APDDE

According to 4.2, each individual in the initial population will
generate four groups of control parameters: [F_de, CR_de],
[F_de, CR_ad], [F_ad, CR_de] and [F_ad, CR_ad]. Each
group is integrated into the mutation strategy in the strategy
pool and generates eight groups:

• [DE/Current − to − lbest/1, F_de, C R_de], [DE/

Current − to − lbest/1, F_de, C R_ad].
• [DE/Current − to − lbest/1, F_ad, C R_de], [DE/

Current − to − lbest/1, F_ad, C R_ad].
• [DE/rand/1, F_de, C R_de], [DE/rand/1, F_de,

C R_ad].
• [DE/rand/1, F_ad, C R_de], [DE/rand/1, F_ad,

C R_ad].

The population individuals (target vectors) produce off-
spring (trial vectors) using these eight assigned combi-
nations. If the best of these eight generated trial vectors
produced is better than the target vector, the correspond-
ing parameter values are retained with trial vector which

123

1322 H. Wang et al.

Fig. 7 Illustration of the
DE/current-to-lbest/1 mutation
strategy adopted in APDDE

becomes the parent (target vector) in the next generation.
In APDDE, new mutation strategies DE/Current-to-lbest/1
and basic mutation strategy DE/rand/1/bin are applied, and
mutation operator F , crossover CR, produce their different
detection values F_de, F_ad, CR_de and CR_ad; 8 kinds
of strategies pool are produced through Cartesian operation.
According to above chart of the APDDE, the pseudocode
of the APDDE is shown in Table 2. In the iterative process,
each variation vector carries out crossover operation to form
eight intermediate vector individuals, and the fitness value
of each new produced intermediate vector individuals is
obtained with a variable detection. Choose the best fitness
of intermediate individual from eight variables. The more
different mutation strategies with different intermediate vec-
tors (within certain limits), the greater possibility of reaching
the optimal direction. At the same time, different variations
can also maintain the diversity of population.

5 Experimentation

In this section, the proposed APDDE is compared with the
EPSDE, JADE, MDE, CODE, MDESELF.

5.1 Description of benchmark functions

Those 13 test instances were proposed in the CEC 2015 Com-
petition on Learning-based Real-Parameter Single Objective
Optimization, and 7 well-known basic benchmarks have been
selected to verify the performance of the APDDE.

1. f1(x) = ∑N
i=1x2

i is continuous, convex and symmetric
function.

2. f2(x) = ∑N
i=1

(
x2

i − 10 cos (2πxi) + 10
)
, Rastrigin

function has several local minima. It is highly multi-

modal, but locations of the minima are regularly distrib-
uted.

3. f3(x) = −∑N
i=1 sin(xi)

[
sin

(
i x2

i /π
)]2m

, Michalewicz
function has dimensional (here is 50) local minima. The
parameter m defines the steepness of the valleys and
ridges; a larger m leads to a more difficult search. The
m is set to 10 in this paper.

4. f4(x) = ∑N
i=1 |xi |+∏n

i=1 |xi |, Schwefel’s problem 2.22
function is a unimodal problem whose global minimum
is 0.

5. f5(x) =
(∑5

i=1i cos ((i + 1) x1 + i)
) (∑5

i=1i cos

((i + 1) x2 + i)), it is a low-dimensional multimodal
function with a few local optima.

6. f6(x) = −20exp

(
−0.2

√
1
n

∑N
i=0x2

i

)
− exp

(1
n

cos (2πxi)) + 20 + e, Ackley function has one narrow
global optimum basin and many minor local optima.

7. f7(x) = ∑N
i=1

∑i
j=1x2

j is continuous, convex and
unimodal. It is an extension of the axis parallel hyper-
ellipsoid function, also referred as the sum squares
function.

8. f8(x) = ∑N
i=1

(
106

)i−1/n−1
z2

i +100, z = M1 (x − o1) ,

o1 = [o11, o12, . . . o1n]: the shifted global optimum. Its
property is non-separable, quadratic ill-conditioned.

9. f9(x) = z2
1+106∑N

i=2z2
i +200, z = M2 (x − o2) , o2 =

[o21, o22, . . . o2n]: the shifted global optimum. Its prop-
erty is non-separable, smooth but narrow ridge.

10. f10(x) = −20 exp

(
−0.2

√
1
n

∑N
i=0z2

i

)
− exp

(1
n cos (2π zi)

) + 20 + e + 300, z = M3 (x − o3) , o3 =
[o31, o32, . . . o3n]: Its property is shifted global optimum
and non-separable.

11. f11(x) = ∑N
i=1

(
z2

i − 10 cos (2π zi) + 10
) + 400, z =

M4 (5.12 (x − o4) /100), o4 = [o41, o42, . . . o4n]: the

123

APDDE: self-adaptive parameter dynamics differential evolution algorithm 1323

Table 2 Pseudocode for the APDDE algorithm

01 Begin
02 Set the generation number g=0
03 Create a random initial population xj,i(g) ∀i, i = 1, . NP ∀j, j=1, , D , each individual

uniformly distributed in the range [, , ,]

04 F_Pool=[0.5,0.6,0.7,0.8,0.9,1]

05 CR_Pool=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
06 A=∅

07 Each population individuals is assigned with the associated parameter values are chosen
randomly from the corresponding pool F_Pool, CR_Pool

08 Divide the population into T num subpopulation
09 WHILE the stopping criterion is not satisfied
10 find the Xlbest,t in each subpopulation
11 For i=1 to NP

/* Mutation operation; */
12 Select randomly r1 r3 r4 r5 i from current population P
13 Select randomly r2(r2 r3 r4 r5 i) from P A
14 According to the current parameter F

i
and CR

i
, generate the values of sniffer F_de and

F_ad, CR_de and CR_ad. integrating into the mutation strategy in the strategy pool and
produce four mutated vectors

15 ,1(g) = (g) + _ (, (g)) + _ ((g) (g))

16 ,2(g) = (g) + _ ((g) (g))

17 ,3(g) = (g) + _ (, (g)) + _ ((g) (g))

18 ,4(g) = (g) + _ ((g) (g))

19 Generate the current mutated vectors
20 , 1(g) = (g) + (, (g)) + ((g) (g))

21 , 2(g) = (g) + ((g) (g))

22 Correction() /* Correction operation */
23 Crossover() /* Crossover operation */

Generate eight trial vector ,1(g), ,2(g), ,3(g), ,4(g), ,5(g), ,6(g), ,7(g), ,8(g)

and two current trial vector , 1(g), , 2(g)

/* Selection operation */
24 Find the best trial vector: (g) = sort(f(,1(g)), f(,2(g)), f(,3(g)), f(,4(g))

, f(,5(g)), f(,6(g)), f(,7(g)), f(,8(g)), f(, 1(g)), f(, 2(g)))

25 If f((g)) ≤ f((g))

26 (g + 1) = (g)

27 Else
28 (g + 1) = (g); x

i,g
→A; the corresponding parameter value → F

i
, CR

i

29 End If
30 End For
31 g = g+1
32 End WHILE
33 End

T the number of subpopulation
A the archive
X lbest,t the best individual in t subpopulation, 0 < t < T
sort() find the best trial vector basis on benchmark function

shifted global optimum. Its property is non-separable,
and local optima’s number is huge.

12. f12(x) = 418.9829 × n − ∑N
i=1g (yi) + 500, yi = zi +

4.209687462275036e + 002,

g (yi) =

⎧⎪⎨
⎪⎩

yi sin
(|yi |1/2) if |yi | ≤ 500(

(500 − mod (yi , 500)) sin
(√|500 − mod (yi , 500)|)) − (yi −500)2

10000n if yi > 500(
(mod (|yi | , 500) − 500) sin

(√|mod (|yi | , 500) − 500|)) − (yi +500)2

10000n if yi < −500

,

123

1324 H. Wang et al.

Table 3 Dimensions, search ranges, and brief descriptions of test functions

Func.# Brief descriptions of test
benchmark function

Uni./multi Dimension Range Optimums.

f1(x) Sphere function Unimodal 50 [−100, 100]n 0

f2(x) Rastrigin function Multimodal 50 [−10, 10] 0

f3(x) Michalewicz function Multimodal 50 [0,π] −9.66

f4(x) Schwefel’s problem 2.22 function Unimodal 50 [−10, 10] 0

f5(x) Shub ert function Multimodal 2 [−10, 10] −186.73

f6(x) Ackle function Multimodal 50 [−600, 600] 0

f7(x) Rotated hyper-ellipsoid function Unimodal 50 [−65.536, 65.536] 0

f8(x) F1 (Rotated high conditioned
elliptic function)

Unimodal 50 [−100, 100] 100

f9(x) F2 (Rotated cigar function) Unimodal 50 [−100, 100] 200

f10(x) F3 (Shifted and rotated Ackley’s
function)

Multimodal 50 [−100, 100] 300

f11(x) F4 (Shifted and rotated Rastrigin’s
function)

Multimodal 50 [−100, 100] 400

f12(x) F5 (Shifted and rotated Schwefel’s
function)

Multimodal 50 [−100, 100] 500

f13(x) F6 (Hybrid function 1 (N = 3)) Multimodal 50 [−100, 100] 600

f14(x) F7 (Hybrid function 2 (N = 4)) Multimodal 50 [−100, 100] 700

f15(x) F8 (Hybrid function 3 (N = 5)) Multimodal 50 [−100, 100] 800

f16(x) F9 (Composition function 1
(N = 3))

Multimodal 50 [−100, 100] 900

f17(x) F10 (Composition function 2
(N = 3))

Multimodal 50 [−100, 100] 1000

f18(x) F13 (Composition function 5
(N = 5))

Multimodal 50 [−100, 100] 1300

f19(x) F14 (Composition function 6
(N = 7))

Multimodal 50 [−100, 100] 1400

f20(x) F15 (Composition function 7
(N = 10))

Multimodal 50 [−100, 100] 1500

z = M5 (1000 (x − o5) /100) , o3 = [o31, o32, . . . o3n] :
the shifted global optimum. Its property is non-separable,
local optima’s number is huge, and second better local
optimum is far from the global optimum.

13. f13(x) is hybrid function; three basic functions used to
construct it are modified Schwefel’s function, Rastrigin’s
function and high conditioned elliptic function.

14. f14(x) is hybrid function; 4 basic functions used to con-
struct it are Griewank’s function, Weierstrass function,
Rosenbrock’s function and Scaffer’s F6 function.

15. f15(x) is hybrid function; 5 basic functions used to con-
struct it are Scaffer’s F6 function, HGBat function, Rosen
rock’s function, modified Schwefel’s function and high
conditioned elliptic function.

16. f16(x), f17(x), f18(x), f19(x), f20(x) is composition func-
tion and has different properties for different variables
subcomponents; the details of constructing such func-
tions are presented in Liang et al. (2015).

All the definitions of the benchmark functions are given
according to the number in Table 3.

5.2 Experimental setting and parameterization

In order to ensure fairness, the initial conditions of each
algorithm are consistent, such as initial velocity. The pop-
ulation size is set to 100. The size of the subgroup in
APDDE is set to 10, and the size of archive in APDDE
and JADE is set to 100. The 50-dimensional test function
of 25 independent experiments demonstrate their general
performances.

Experimental environment configuration: operation sys-
tem is Windows 7; minimum memory is 4G; processor type
is Intel-Core-i5; development tool and version is MATLAB-
R2012a.

If it is not easy to distinguish the effect of different func-
tions in figure, the value of ordinate should be set into the

123

APDDE: self-adaptive parameter dynamics differential evolution algorithm 1325

log(f (x) − Y), in which Y is a constant. We also can set
Y = f (x∗); then, Y or f (x∗) represents the theoretical opti-
mal value. Of course, if the result in the figure is easy to
distinguish, the value of ordinate is function value or fitness.

5.3 Computational results and discussion

For each test function, Table 4 shows the comparison results
of APDDE, EPSDE, JADE, MDE, CODE and MDESELF,
in which mean indicates the average optimum function value

Table 4 Mean and std difference in test functions about seven algorithms

Function Indicator Comparison of each DE

APDDE EPSDE JADE MDE CODE MDESELF

f1(x) Mean 9.65E−244 1.10E−39 1.31E−164 6.18E−84 7.24E−20 1.86E−51

Std 0.00E+00 1.85E−39 0.00E+00 7.85E−84 4.90E−20 9.25E−51

f2(x) Mean 0.00E+00 1.11E+02 2.85E+02 2.54E+02 8.74E+01 1.42E+02

Std 0.00E+00 4.51E+01 3.02E+01 6.48E+01 3.92E+00 4.67E+00

f3(x) Mean −4.96E+01 −3.22E+01 −2.02E+01 −1.90E+01 −3.62E+01 −3.24E+01

Std 2.31E−03 7.43E−01 1.11E+00 1.84E+00 7.31E−01 1.03E+00

f4(x) Mean 3.20E−32 2.02E−03 5.34E−25 6.77E−11 3.81E+00 6.17E+00

Std 2.88E−32 3.93E−03 4.34E−25 6.81E−11 8.91E−01 5.76E+00

f5(x) Mean −2.09E+02 −1.87E+02 −1.87E+02 −1.87E+02 −1.87E+02 −1.87E+02

Std 3.15E+00 2.20E−14 2.20E−14 2.01E−14 0.00E+00 2.98E−14

f6(x) Mean 2.00E+01 2.01E+01 2.10E+01 2.11E+01 2.01E+01 2.03E+01

Std 2.13E−12 1.29E−01 6.30E−02 3.36E−02 6.48E−03 2.59E−02

f7(x) Mean 5.29E−77 6.48E−10 1.51E−51 2.64E−24 5.11E−03 1.45E−14

Std 8.65E−77 6.99E−10 1.71E−51 3.36E−24 1.66E−03 2.80E−14

f8(x) Mean 2.73E+06 3.82E+07 2.36E+07 8.35E+05 8.35E+05 3.04E+05

Std 1.40E+06 5.90E+06 1.07E+07 4.26E+05 1.18E+07 1.42E+05

f9(x) Mean 2.00E+02 1.10E+03 2.97E+03 2.01E+02 6.03E+05 2.00E+02

Std 9.19E−10 8.93E+02 2.65E+03 3.36E−01 1.30E+05 5.03E−06

f10(x) Mean 3.20E+02 3.21E+02 3.21E+02 3.21E+02 3.21E+02 3.21E+02

Std 1.69E−02 3.55E−02 4.17E−02 4.50E−02 3.46E−02 4.02E−02

f11(x) Mean 4.88E+02 6.50E+02 7.93E+02 7.19E+02 6.46E+02 5.88E+02

Std 1.13E+01 1.10E+01 2.55E+01 6.04E+01 1.31E+01 1.60E+01

f12(x) Mean 5.87E+03 9.76E+03 1.47E+04 1.35E+04 8.95E+03 8.76E+03

Std 2.22E+02 3.45E+02 5.61E+02 2.77E+02 2.28E+02 4.09E+02

f13(x) Mean 2.18E+05 1.82E+06 7.02E+06 5.00E+04 3.98E+06 4.27E+03

Std 1.46E+05 6.37E+05 2.72E+06 4.36E+04 1.11E+06 2.05E+03

f14(x) Mean 7.25E+02 7.43E+02 7.57E+02 7.42E+02 7.40E+02 7.31E+02

Std 1.36E+00 7.59E+00 1.07E+01 1.07E+01 1.43E+01 1.57E+01

f15(x) Mean 6.47E+04 1.37E+04 4.12E+06 3.97E+03 8.00E+04 1.74E+03

Std 5.80E+04 6.03E+03 2.04E+06 1.36E+03 2.21E+04 2.73E+02

f16(x) Mean 9.05E+02 1.01E+03 1.01E+03 1.01E+03 1.01E+03 1.01E+03

Std 2.29E−01 2.98E−01 4.07E−01 2.70E−01 3.98E−01 2.77E−01

f17(x) Mean 6.68E+03 1.03E+04 9.54E+05 3.12E+03 1.25E+04 2.32E+03

Std 3.67E+02 1.54E+03 6.70E+05 6.53E+02 1.41E+03 3.69E+02

f18(x) Mean 1.51E+03 1.51E+03 1.53E+03 1.52E+03 1.51E+03 1.51E+03

Std 1.56E+00 3.86E+00 2.59E+00 3.21E+00 2.37E+00 3.89E+00

f19(x) Mean 9.58E+03 6.36E+04 6.50E+04 6.68E+04 6.15E+04 5.93E+04

Std 1.95E+03 9.07E+03 1.18E+04 6.84E+03 3.10E+03 2.86E+03

f20(x) Mean 1.60E+03 1.60E+03 1.60E+03 1.60E+03 1.60E+03 1.60E+03

Std 2.41E−13 4.51E−08 3.41E−13 1.39E−13 2.19E−03 7.71E−12

123

1326 H. Wang et al.

of the 25 runs and std means the standard deviation of the
optimum function value.

Figure 8 illustrates the detailed convergence curves of
APDDE, EPSDE, JADE, MDE, CODE and MDESELF for
the 20 benchmark functions, which were drawn by using the
average value of the 25 runs.

From Fig. 8 and Table 4, we can observe that the conver-
gence speed and accuracy of APDDE are much better than
other differential evolution algorithms with the same dimen-
sion in solving great majority benchmark functions.

It has d! local optima for the dth-dimensional Michalewicz
function. The parameter d actually measures the ‘steepness’
of the valleys or edges. For large d, the function behaves like a
needle in the haystack; the function values for points outside
the narrow peaks give very little information on the location
of the global optimum. Table 4 shows that EPSDE, JADE,
MDE, CODE and MDESELF have trouble with finding the
needle. On the contrary, the hybrid scheme MFSLA-EO is
very attractive in that it is able to reach the global optimum
quickly with a higher success ratio. For Schwefel’s problem
2.22, APDDE’s accuracy and stability are the highest, but
the convergence rate in early stage is lower than EPSDE’s.
When iteration reaches to 400 times, APDDE, JADE and
MDE began to converge fast. APDDE is the best, and JADE
is the second best. At last, APDDE reached the best accu-
racy, and on the whole, APDDE outperforms others. Another
multimodal function, Shubert function, in the initial stage
of algorithm, APDDE ‘s convergence speed is the fastest,
but in 100–600 times, six algorithms also fall into the local
optimum, and from 600 times, APDDE algorithm is able to
find the hidden optimal value, jump out of local optimum
and continue to optimize. Of course, stability is far from
CODE; this is because the CODE falls into the same local
optimal value each time, but not jump out of it. For Schwe-
fel’s problem, APDDE and MDESELF have the same best
value in f9. In f10, APDDE is the best from the accuracy to
the convergence rate; CODE is better in handling the mul-
tipeak function. While in f13, APDDE’s performance is not
good, EPSDE has the best performance, followed by MDE;
before the iteration reaches 700 times, MDE is better than
EPSDE, but in the later stage of the algorithm, EPSDE has
outstanding performance. The experimental results of f15

are similar to f6, in which their mixed function is almost
the same; MDESELF shows a good advantage, followed
by MDE. And APDDE performance is poor, that is to say,
APDDE is weak to deal with the relatively strong mixture test
functions. For f17, we can see that the exact value of MDE-
SELF is relatively good, but before reaching 800 times, the
convergence rate is weaker than MDE. But the stability of
APDDE outperforms others. APDDE, EPSDE, CODE and
MDESELF get the same best value on f18. F20 contains
10 functions, which has a very high comprehensive perfor-
mance. On the one hand, the algorithm on the test functions

generally showed poor performance; this results can also
reflect that various algorithms are trapped in the local opti-
mum; on the other hand, it can also test the algorithm’s limit
ability.

In multi -modal functions, APDDE provides equal or bet-
ter results except f8, f13, f15, f17. In unimodal functions,
the results indicate that APDDE is better than the other algo-
rithms for 50 dimensions. These results indicate that in 50
dimensions, the overall performance of APDDE is better than
other algorithms.

APDDE exhibits similar performance on f18(x) and
f20(x) test functions. In other words, APDDE has stronger
global search ability and faster convergence speed compared
with EPSDE, JADE, MDE, CODE and MDESELF. But its
performance is not perfect at f8(x), f13(x), f15(x), f17(x).
Clearly, MDESELF is the best among others algorithms on
these functions; MDE is the second best. This may be because
MDESELF uses complex self-adaptive crossover rate, while
the adaptive method of APDDE mainly pursues saving time.
MDE use OBL for generating initial population at each iter-
ation, but APDDE generates initial population only once and
does not change during evolution.

In order to show advantages of the APDDE, we do some
T test and F test by using the data from the experiment
and compare mean optimum values by T test matched-
pairs mean analysis, F test matched-pairs standard differ-
ence analysis and Wilcoxon signed ranks test. Wilcoxon
matched-pairs signed ranks test is a nonparametric test
employed in hypothetical testing situation involving two
samples (Kiranyaz et al. 2011), and it is a pair-wise test
that can be used to detect significant differences between
the behavior of APDDE and EPSDE, JADE, MDE, CODE
and MDESELF with fixed study parameters. The data col-
umn of mean optimization value obtained by APDDE was
noted as the first sample, while the results column obtained
by EPSDE, JADE, MDE, CODE, MDESELF with fixed
study parameter was noted as the second sample, respec-
tively.

Let θD be the median of the difference in the underlying
population represented by the two samples. Let H0 be the
null hypothesis, H0 : θD = 0; which means that there is no
difference between the means of two samples. The alternative
hypothesis is H1 : θD < 0, which is a directional hypothesis.

We use the SPSS11.0 (Statistic Package for Social Sci-
ence) software, which calculates the T test and F test, as
shown in Tables 5 and 6.

We reject the null hypothesis with a level of signifi-
cance α = 0.05 and conclude that APDDE does obtain
better optimum values than EPSDE, JADE, MDE, CODE and
MDESELF. The smallest level of significance that results in
the rejection of the null hypothesis, p value P(Tt) singular
tail, is 0.023789017364247. So is the same with SD of the
optimum values.

123

APDDE: self-adaptive parameter dynamics differential evolution algorithm 1327

f1(x) f2(x)

f3(x) f4(x)

f5(x) f6(x)

0 1000 2000 3000 4000 5000 6000
10

-250

10
-200

10
-150

10
-100

10
-50

10
0

10
50

Iteration times

F
un

ct
io

n
V

al
ue

APDDE

EPSDE

JADE
MDE

CODE

MDESELF

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

-20

10
-15

10
-10

10
-5

10
0

10
5

Iteration times

F
un

ct
io

n
V

al
ue

APDDE

EPSDE

JADE
MDE

CODE

MDESELF

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-10
1.1

-10
1.2

-10
1.3

-10
1.4

-10
1.5

-10
1.6

Iteration times

F
un

ct
io

n
V

al
ue

APDDE

EPSDE

JADE
MDE

CODE

MDESELF

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

-40

10
-20

10
0

10
20

10
40

10
60

10
80

Iteration times

F
un

ct
io

n
V

al
ue

APDDE

EPSDE

JADE
MDE

CODE

MDESELF

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
0.7

10
0.71

10
0.72

10
0.73

10
0.74

Iteration times

 lo
g(

f(
x)

-Y
)

APDDE

EPSDE

JADE
MDE

CODE

MDESELF

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
0.64

10
0.641

Iteration times

F
un

ct
io

n
V

al
ue

APDDE

EPSDE

JADE
MDE

CODE

MDESELF

f7(x) f8(x)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

-80

10
-60

10
-40

10
-20

10
0

10
20

Iteration times

F
un

ct
io

n
V

al
ue

APDDE

EPSDE

JADE
MDE

CODE

MDESELF

0 500 1000 1500 2000 2500 3000
10

5

10
6

10
7

10
8

10
9

10
10

Iteration times

F
un

ct
io

n
V

al
ue

APDDE

EPSDE

JADE
MDE

CODE

MDESELF

Fig. 8 Convergence curve of the 20 test functions in different algorithms

123

1328 H. Wang et al.

f9(x) f10(x)

f11(x) f12(x)

f13(x) f14(x)

0 500 1000 1500 2000 2500 3000
10

2

10
4

10
6

10
8

10
10

10
12

Iteration times

F
un

ct
io

n
V

al
ue

APDDE

EPSDE

JADE
MDE

CODE

MDESELF

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
0.7321

10
0.7322

10
0.7323

10
0.7324

Iteration times

F
un

ct
io

n
V

al
ue

APDDE

EPSDE

JADE
MDE

CODE

MDESELF

0 1000 2000 3000 4000 5000 6000
10

2

10
3

10
4

Iteration times

F
un

ct
io

n
V

al
ue

APDDE

EPSDE

JADE
MDE

CODE

MDESELF

0 500 1000 1500 2000 2500 3000 3500 4000

10
0.94

10
0.95

10
0.96

10
0.97

10
0.98

Iteration times

lo
g(

f(
x)

-Y
)

APDDE

EPSDE

JADE
MDE

CODE

MDESELF

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

3

10
4

10
5

10
6

10
7

10
8

10
9

Iteration times

F
un

ct
io

n
V

al
ue

APDDE

EPSDE

JADE
MDE

CODE

MDESELF

0 500 1000 1500 2000 2500 3000 3500 4000

10
0.6

10
0.7

10
0.8

10
0.9

Iteration times

 lo
g(

f(
x)

-Y
)

APDDE

EPSDE

JADE
MDE

CODE

MDESELF

f15(x) f16(x)

0 500 1000 1500 2000 2500 3000 3500 4000
10

3

10
4

10
5

10
6

10
7

10
8

10
9

Iteration times

F
un

ct
io

n
V

al
ue

APDDE

EPSDE

JADE
MDE

CODE

MDESELF

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

2

10
3

10
4

Iteration times

F
un

ct
io

n
V

al
ue

APDDE

EPSDE

JADE
MDE

CODE

MDESELF

Fig. 8 continued

123

APDDE: self-adaptive parameter dynamics differential evolution algorithm 1329

f17(x) f18(x)

f19(x) f20(x)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

3

10
4

10
5

10
6

10
7

10
8

10
9

Iteration times

F
un

ct
io

n
V

al
ue

APDDE

EPSDE

JADE
MDE

CODE

MDESELF

0 200 400 600 800 1000 1200 1400 1600 1800 2000

100

Iteration times

Lo
g(

f(
x)

-Y
)

APDDE
EPSDE

JADE

MDE

CODE
MDESELF

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

3

10
4

10
5

10
6

Iteration times

F
un

ct
io

n
V

al
ue

APDDE

EPSDE

JADE
MDE

CODE

MDESELF

0 500 1000 1500 2000 2500 3000
10

3

10
4

10
5

10
6

10
7

Iteration times

F
un

ct
io

n
V

al
ue

APDDE

EPSDE

JADE
MDE

CODE

MDESELF

Fig. 8 continued

Table 5 T test: matched-pairs
mean test of f1(x) function for
APDDE and EPSDE

APDDE EPSDE

Mean 9.651322E−244 1.101512E−39

Variance 8.251834E−231 3.440783E−78

Observed value 25 25

Poisson correlation coefficient 0.956892310702165

Assume that mean difference 0

d f 24

t Stat −1.09516734902491

P(T ≤ t) singular tail 0.023789017364247

t (single-tailed critical) 1.6893726748929

P(T ≤ t) two-tailed 0.034444862345631

t (two-tailed critical) 2.02083490575662

Under Wilcoxon matched-pairs signed ranks test, the SD
of optimum values of APDDE is significantly smaller than
that of EPSDE with p value 0.023789017364247, too. If p
value is less than 0.05, then the APDDE method has remark-
able difference which is indicated by plus ‘+’ in column,
otherwise minus ‘−’is used, as shown in Table 7.

As far as others (2–20 functions), T test matched-pairs
standard deviation analysis (as shown in Table 8) and

Wilcoxon matched-pairs signed ranks test (as shown in
Table 9) is summarized, respectively.

In Table 9, the percentage of the ‘+’ during all the results
is the effectiveness of the APDDE in handling the test prob-
lems; for example, as to the test function nos. 2, 3, 6, 7, 8,
9, 13, 14, 17, 19, there are no values (numbers of minus
‘−’) greater than 0.05, and ten (numbers of plus ‘+’) are less
than 0.05, which shows that the effectiveness of the APDDE

123

1330 H. Wang et al.

Table 6 F test: matched-pairs
standard variance test of f1(x)

function for APDDE and
EPSDE

APDDE EPSDE

Mean 9.651322E−244 1.101512E−39

Std 7.569811E−243 1.854935E−39

Observed value 25 25

d f 24

F 8.414174930129825E−10

P(T ≤ t) singular tail 0

F (single-tailed critical) 0.927534650575722

Table 7 Wilcoxon matched-pairs signed ranks test of f1(x) function
for variants

Algorithms EPSDE JADE MDE CODE MDESELF

APDDE +/+ +/+ +/+ +/+ −/+

method in handling those relative problems is equivalent
to about 100 %. The result of T test, F test and Wilcoxon
matched-pairs signed ranks test on APDDE is shown in
Table 9. All the percentages are over (176+/190) 92.63 %,
which means that the experimental data are reliable and uni-
versal; the APDDE really has good performance in reducing
the computational complexity and calculating cost. It is clear
from Fig. 8 that, for most test problems, convergence speed
of APDDE is faster among the considered algorithm.

The results of APDDE have also been compared with the
results of the standard PSO, SFLA and MSFLA presented in
Li et al. (2012), the basic ABC, ABCMR, dABC algorithms
in Kıran and Fındık (2015), ETLBO (elite teaching–learning-
based optimization), CoBiDE (differential evolution based
on covariance matrix learning and bimodal distribution para-
meter setting), GABC (Gbest-guided artificial bee colony
algorithm), EDS (elite differential search algorithm) in Liu
et al. (2015a).

Table 10 shows that the effect of APDDE is better than that
of other algorithms; especially for F2 function, APDDE can
achieve the best value by 100 % probability, and convergence
of F1 function is far higher than that of other intelligent
algorithms.

5.4 Convergence analysis of the APDDE

APDDE contains not only inner iterative operation, but also
information exchange among subpopulations; in order to
analyze the convergence, we first analyze one subgroup.

Definition 1 Assume X (t) is the t th iteration state of the
population and F∗ is the global optimal fitness; if the formula
(14) is established, then the APDDE is global convergence.

lim
t→∞ P

{
f (P X (t)) = F∗} = 1 (14)

Definition 2 For ∀xi ∈ X,∀x j ∈ X , in APDDE’s iteration
process, individual state changes from xi to x j by one step
which is denoted as Tx (xi) = x j◦

Theorem 1 For population state sequence {X (t) : t ≥
0}, M is a closed set in population state space of X, which
is optimal individual vector state set.

Assume ∀x j /∈ M,∀xi ∈ M , for any iteration times l, l ≥
1, according to Chapman–Kolmogorov:

Pl
xi ,x j

=
∑

xr1∈X
. . .

∑
xr2 ∈X

P(Tx (xi) = xr1)

P
(
Tx

(
xr1

) = xr2

)
. . . P

(
Tx

(
xrl−1

) = x j
)

(15)

Pl
xi ,x j

is the probability of population state from xi to x j by
l iteration. Since each expansion probability is 0 in formula
(15), Pl

xi ,x j
= 0. We can conclude that M is a closed set of

X .

Theorem 2 Population state space X of the differential evo-
lution does not have non-empty closed set G, so M ∩G �= ∅◦

Theorem 3 Assume Markov chain has a non-empty closed
set C and another non-empty closed set D, which makes
C ∩ D �= ∅, does not exist. Then, when j ∈ C :
limn→∞ P (Yn = j) = π j , and j /∈ C, limn→∞ P (Yn = j) =
0.

Theorem 4 when the iteration in subgroup tends to infinity,
the population state sequence will enter the optimal state
sequence set M.

The conclusion is proved by the above Theorems 1, 2
and 3.

6 Conclusion

In nature, there are many things worthy of human beings
to learn from the social life of ants to the foraging behav-
ior of bees. Many natural phenomena inspire people to

123

APDDE: self-adaptive parameter dynamics differential evolution algorithm 1331

Table 8 T test and F test of Func.# 2–20 test functions

Func.# Algorithms Test EPSDE JADE MDE CODE MDESELF

f2(x) APDDE T test 3.74317E−05 1.32024E−09 1.25894E−06 1.37503E−12 1.16616E−13

F test 0 0 0 0 0

f3(x) APDDE T test 6.14242E−35 3.39677E−36 2.45557E−31 1.96756E−32 1.91993E−31

F test 1.81819E−54 2.54357E−20 3.77426E−15 2.72313E−54 7.3367E−58

f4(x) APDDE T test 0.059680976 0.00110574 0.004028324 2.99861E−08 0.002621721

F test 1.1288E−289 4.19738E−70 4.632E−212 0 0

f5(x) APDDE T test 2.47134E−10 2.47134E−10 2.47134E−10 2.47134E−10 2.47134E−10

F test 0.092069658 0.001040762 2.00124E−09 2.27333E−11 7.74943E−08

f6(x) APDDE T test 0.007050249 1.54859E−11 5.61742E−14 3.64418E−10 2.88344E−10

F test 0 0 0 0 0

f7(x) APDDE T test 5.30837E−05 9.17083E−05 0.000319104 2.99942E−14 0.008042646

F test 0 0 0 0 0

f8(x) APDDE T test 3.8195E−08 0.000103842 0.005663932 9.10608E−08 0.000453872

F test 0.000495329 5.50769E−06 0.002935199 2.48346E−06 7.42254E−07

f9(x) APDDE T test 0.008394024 0.006937064 0.031129351 3.48392E−07 0

F test 5.13993E−06 1.99554E−10 0.022965978 1.96147E−30 0.85144E−22

f10(x) APDDE T test 4.89724E−10 9.08862E−12 1.34147E−11 9.61428E−09 6.50418E−10

F test 0.050972121 0.019728135 0.012162442 0.059732206 0.02476969

f11(x) APDDE T test 4.66784E−25 9.26074E−27 2.08115E−16 5.10709E−25 5.14051E−19

F test 0.875070593 0.000182211 4.70295E−12 0.486931021 0.101822692

f12(x) APDDE T test 4.09805E−26 9.84342E−31 7.46552E−34 3.15963E−25 1.23689E−20

F test 0.132235418 1.15555E−25 5.463E−33 0.624425263 0.021570809

f13(x) APDDE T test 1.43799E−12 2.15784E−12 4.1272E−07 4.02529E−15 6.89777E−08

F test 3.6844E−10 1.14439E−70 1.0078E−113 1.33073E−15 9.4001E−39

f14(x) APDDE T test 1.3151E−11 5.39199E−14 1.82584E−19 7.62916E−06 0.03520615

F test 1.60569E−12 1.40235E−24 1.73592E−37 6.43674E−19 6.81464E−20

f15(x) APDDE T test 0.00011659 2.49543E−10 1.17937E−05 0.100891921 6.82971E−06

F test 5.38708E−18 9.64984E−55 5.3529E−131 1.13586E−05 3.59258E−50

f16(x) APDDE T test 1.75387E−59 6.92291E−58 2.86892E−59 5.43448E−59 1.04226E−58

F test 0.340393904 5.88957E−61 3.00404E−65 0.020101165 0.543605787

f17(x) APDDE T test 0.000284027 1.30735E−07 7.12828E−05 3.82864E−07 6.24221E−06

F test 1.65417E−05 9.4566E−13 9.97484E−85 3.15158E−06 3.77856E−19

f18(x) APDDE T test 0.476546547 9.87149E−10 2.91372E−06 0.000530717 0.101561488

F test 0.019028261 0.171519489 0.056496135 0.255414082 0.018072766

f19(x) APDDE T test 1.38964E−11 2.5627E−12 1.16689E−13 1.36568E−12 1.3155E−12

F test 0.000372511 1.71853E−85 3.73001E−91 1.01821E−13 1.58926E−14

f20(x) APDDE T test 2.75727E−06 8.14332E−08 2.44442E−06 2.93688E−07 6.10492E−08

F test 0.761304184 0.202069719 0.00074731 2.35386E−06 0.010361514

think. This paper generates the corresponding detection val-
ues for individual per iteration; the whole APDDE algorithm
optimization process can have certain direction. In addi-
tion, in order to enrich the diversity of the population, the
whole population can be divided into a predefined num-
ber of groups. The individuals of each group are attracted

by the best vector of their own group. After integrating the
values of sniffer into two mutation strategy to produce off-
spring population, the experimental studies in this paper show
that the proposed APDDE algorithm improves the existing
performance of other algorithms compared to some same
benchmark.

123

1332 H. Wang et al.

Table 9 Wilcoxon
matched-pairs signed ranks test
of 19 test functions

Func.# Algorithms EPSDE JADE MDE CODE MDESELF

f2(x) APDDE +/+ +/+ +/+ +/+ +/+
f3(x) APDDE +/+ +/+ +/+ +/+ +/+
f4(x) APDDE −/+ +/+ +/+ +/+ +/+
f5(x) APDDE +/− +/+ +/+ +/+ +/+
f6(x) APDDE +/+ +/+ +/+ +/+ +/+
f7(x) APDDE +/+ +/+ +/+ +/+ +/+
f8(x) APDDE +/+ +/+ −/+ +/+ +/+
f9(x) APDDE +/+ +/+ +/+ +/+ +/+
f10(x) APDDE +/− +/+ +/+ +/− +/+
f11(x) APDDE +/− +/+ +/+ +/+ +/−
f12(x) APDDE +/− +/+ +/+ +/− +/+
f13(x) APDDE +/+ +/+ +/+ +/+ +/+
f14(x) APDDE +/+ +/+ +/+ +/+ +/+
f15(x) APDDE +/+ +/+ +/+ −/+ +/+
f16(x) APDDE +/− +/+ +/+ +/+ +/−
f17(x) APDDE +/+ +/+ +/+ +/+ +/+
f18(x) APDDE −/+ +/− +/+ +/+ −/−
f19(x) APDDE +/+ +/+ +/+ +/+ +/+
f20(x) APDDE +/− +/− +/+ +/+ +/+

Table 10 Comparison results of function optimization

Function Dim Algorithm Avg Std

f6 (x) = − 20 exp

(
−0.2

√
1

N

∑N

i=1
x2

i

)

− exp
1

N

∑N

i=1
cos (2πxi) + 20

+ e

50 EDS 2.1310e−03 2.0044e−03

CoBiDE 5.2226e−07 1.1320e−06

ETLBO 4.4409e−15 1.5979e−15

ABC 2.24E−04 1.06E−04

dABC 1.60E−06 7.61E−07

GABC 1.3416e−06 1.6696e−06

ABC (MR = 0.3) 2.46E−05 6.48E−06

f2 (x) = ∑N
i=1

(
x2

i − 10 cos (2πxi) + 10
)

50 PSO 31.41 − (FFEs)

SFLA 1.96 − (FFEs)

MSFLA 0.0002 9.9E+06 (FFEs)

EDS 2.0988e+01 4.6707e+00

COBiDE 9.0290e+01 2.4236e+01

ETLBO 1.9280e+01 1.5957e+01

ABC 1.86E+00 1.30E+00

dABC 1.62E+00 1.36E+00

GABC 7.0737e−01 7.3535e−01

ABCMR (MR = 0.3) 2.09E+02 1.26E+01

f1(x) = ∑N
i=1x2

i 50 ABC 4.75E−08 6.48E−08

dABC 5.32E−13 6.20E−13

ABCMR (MR = 0.3) 7.76E−09 3.67E−09

ABCMR (MR = 0.7) 1.33E−02 4.60E−03

123

APDDE: self-adaptive parameter dynamics differential evolution algorithm 1333

Acknowledgements Financial supports from the National Natural Sci-
ence Foundation of China (No. 61572074) and the 2012 Ladder Plan
Project of Beijing Key Laboratory of Knowledge Engineering for Mate-
rials Science (No. Z121101002812005) are highly appreciated.

Compliance with ethical standards

Conflicts of interest All authors of the paper declare that there is no
conflict of interest each other.

Human and animal rights This article does not contain any studies
with human participants or animals performed by any of the authors.

References

Ali M, Pant M, Abraham A (2013) Improving differential evolu-
tion algorithm by synergizing different improvement mechanisms.
ACM Trans Auton Adapt Syst 7(2):20–52

Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2009) Self-
adapting control parameters in differential evolution: a compar-
ative study on numerical benchmark problems. IEEE Trans Evol
Comput 10:646–657

Das S, Suganthan P (2011) Differential evolution: a survey of the state-
of-the-art. IEEE Trans Evol Comput 15(1):4–31

Fan Q, Yan X (2015) Self-adaptive differential evolution algorithm
with discrete mutation control parameters. Expert Syst Appl
42(3):1551–1572

Feoktistov V, Janaqi S (2004) Generalization of the strategies in differ-
ential evolution. In: Proceedings of the 18th IPDPS, p 165a

Gao ZQ, Pan ZB, Gao JH (2014) A new highly efficient differential
evolution scheme and its application to waveform inversion. IEEE
Geosci remote Sens Lett 11(10):1702–1706

Giagkiozis I, Purshouse RC, Fleming PJ (2015) An overview of
population-based algorithms for multi-objective optimisation. Int
J Syst Sci 46:1572–1599

Guo JGW-P, Hou F, Wang C, Cai Y-Q (2015) Adaptive differential
evolution with directional strategy and cloud model. Appl Intell
42(2):369–388

Hu G, Qiao P (2016) High dimensional differential evolution algorithm
based on cloud cluster and its application in network security sit-
uation prediction. J Jilin Univ Eng Technol Ed 46(2):568–577

Kıran MS, Fındık O (2015) A directed Artificial Bee Colony algorithm.
Appl Soft Comput 26:454–462

Kiranyaz S, Pulkkinen J, Gabbouj M (2011) Multi-dimensional particle
swarm optimization in dynamic environments. Expert Syst Appl
38(3):2212–2223

Li X, Yin M (2014) Modified differential evolution with self-adaptive
parameters method. J Comb Optim 29(111):22

Li X, Luo J, Chen M-R, Wang N (2012) An improved shuffled
frog-leaping algorithm with extremal optimisation for continuous
optimization. Inf Sci 192:143–151

Liang JJ, Qu BY, Suganthan PN, Chen Q (2015) Problem definitions
and evaluation criteria for the CEC 2015 competition on learning-
based real-parameter single objective optimization. Zhengzhou
University, Zhengzhou China And Technical Report, Nanyang
Technological University, Singapore

Liu J, Zhu H, Ma Q, Zhang L, Honglei X (2015a) An Artificial Bee
Colony algorithm with guide of global & local optima and asyn-
chronous scaling factors for numerical optimization. Appl Soft
Comput 37:608–618

Liu R, Fan J, Jiao L (2015b) Integration of improved predictive model
and adaptive differential evolution based dynamic multi-objective
evolutionary optimization algorithm. Appl Intell 0924-669x

Liu Z, Xu Y, Wang FM (2015c) Application of Modified differential
evolution algorithm to non-linear MPC. J Beijing Univ Technol
41(5):680–685

Mallipeddi R, Suganthan P, Pan Q, Tasgetiren M (2011) Differential
evolution algorithm with ensemble of parameters and mutation
strategies. Appl Soft Comput 11:1679–1696

Poikolainen I, Neri F, Caraffini F (2015) Cluster-based population ini-
tialization for differential evolution frameworks. Inf Sci 297:216–
235

Price KV (1997) Differential evolution vs. the functions of the 2nd
ICEO. In: Proceedings of the IEEE International Conference on
Evolutionary Computing, pp 153–157

Ronkkonen J, Kukkonen S, Price KV (2005) Real-parameter optimiza-
tion with differential evolution. In: IEEE congress on evolutionary
computation, pp 506–513

Sharma H, Bansal JC, Arya KV (2015) Self balanced differential evo-
lution. J Comput Sci 5(2):312–323

Storn R, Price KV (1997) Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces. J Glob
Opt 11(4):341–359

Wang Y, Cai ZX, Zhang QF (2011) Differential evolution with compos-
ite trail vector generation strategies and control parameters. IEEE
Trans Evol Comput 15(1):55–66

Yang M, Cai Z, Li C (2013) An improved adaptive differential evolution
algorithm with population adaptation. In: GECCO’13 Proceedings
of the 15th annual conference on Genetic and evolutionary com-
putation, pp 145–152

Yi W, Gao L, Li X, Zhou Y (2015) A new differential evolution
algorithm with a hybrid mutation operator and self-adapting con-
trol parameters for global optimization problems. Appl Intell
42(2):642–660

Yuan Y, Ling Z, Gao C, Cao J (2014) Formulation and applica-
tion of weight-function-based physical programming. Eng Optim
46(12):1628–1650

Zhang JQ, Sanderson AC (2009) JADE: adaptive differential evolution
with optional external archive. IEEE Trans Evol Comput 13:945–
958

123

	APDDE: self-adaptive parameter dynamics differential evolution algorithm
	Abstract
	1 Introduction
	2 Basic operations of DE
	2.1 Initialization of the parameter vectors
	2.2 Mutation with difference vectors
	2.3 Correction operation
	2.4 Crossover
	2.5 Selection operation
	2.6 Pseudocode for the standard DE algorithm

	3 The related research
	3.1 Adaptive DE with optional external archive (JADE)
	3.2 Improving DE algorithm by synergizing different improvement mechanisms (MDE)
	3.3 DE with composite trial vector generation strategies and control parameters (CODE)
	3.4 Modified DE with self-adaptive parameters method (MDESELF)
	3.5 DE algorithm with ensemble of parameters and mutation strategies (EPSDE)

	4 The APDDE
	4.1 DE/Current-to-lbest/1
	4.2 Parameter adaptation
	4.3 Procedure of APDDE

	5 Experimentation
	5.1 Description of benchmark functions
	5.2 Experimental setting and parameterization
	5.3 Computational results and discussion
	5.4 Convergence analysis of the APDDE

	6 Conclusion
	Acknowledgements
	References

