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Abstract Minimal logic, i.e., intuitionistic logicwithout the
ex falso principle, is investigated in its original form with a
negation symbol instead of a symbol denoting the contradic-
tion. A Kripke semantics is developed for minimal logic and
its sublogics with a still weaker negation by introducing a
function on the upward closed sets of the models. The basic
logic is a logic in which the negation has no properties but
the one of being a unary operator. A number of extensions
is studied of which the most important ones are contraposi-
tion logic and negative ex falso, a weak form of the ex falso
principle. Completeness is proved, and the created semantics
is further studied. The negative translation of classical logic
into intuitionistic logic is made part of a chain of translations
by introducing translations from minimal logic into contra-
position logic and intuitionistic logic into minimal logic, the
latter having been discovered in the correspondence between
Johansson and Heyting. Finally, as a bridge to the work of
Franco Montagna a start is made of a study of linear models
of these logics.

Dedicated to the memory of Franco Montagna.

Communicated by A. Di Nola, D. Mundici, C. Toffalori, A. Ursini.

B Dick de Jongh
d.h.j.dejongh@uva.nl

Almudena Colacito
almudena.colacito@gmail.com

Ana Lucia Vargas
ana.varsa@gmail.com

1 Institute for Logic Language and Computation, University of
Amsterdam, P.O. Box 94242, 1090 GE Amsterdam,
The Netherlands

1 Introduction

In this paper, we study minimal logic in its two equivalent
formulations: one with a basic symbol for the contradiction
the other with a basic symbol for negation. Given a countable
set of propositional variables, the formulation used nowadays
is based on the propositional language of the positive frag-
ment of intuitionistic logic, i.e., L+ = {∧,∨,→}, with an
additional propositional constant f , representing falsum. In
this setting, negation of ϕ is defined as ϕ → f and denoted
by¬ϕ. The significant difference between minimal and intu-
itionistic logic is that the former does not consider the ex
falso quodlibet axiom as a valid axiom. If IPC+ denotes the
positive fragment of intuitionistic logic, minimal logic has
the same axioms as IPC+, and hence, f does not have the
same properties as the intuitionistic ⊥. We write MPC f for
this formalization of minimal logic.

The other formulation of minimal logic makes use of
the language L+ ∪ {¬}, where the unary symbol ¬ rep-
resents negation. Thus, we denote with MPC¬ the system
axiomatized by the IPC+ axioms and the additional axiom
(p → q) ∧ (p → ¬q) → ¬p. This version of minimal
logic is the one originally proposed by Johansson (1937),
and even before, in a language with only → and ¬, by Kol-
mogorov (1925). Completeness with respect to our Kripke-
style semantics is proved for both versions of minimal logic.

The main purpose of the paper is to study a weak form
of negation, considering subsystems of minimal logic while
keeping the IPC+ axioms fixed. We call such forms of
negation subminimal negation. So, we use the term sub-
minimal negation in a non-technical sense. This term has
been used before by Vakarelov (2005, 2006) with a more
restricted meaning. We will return to this point later. We
define a semantics of negation by means of an auxiliary per-
sistent function N , a different approach than previous authors
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such as Došen (1999) and Vakarelov. This alternative Kripke
semantics leads to a basic system N, in which negation has
no properties but the one of being a ‘function.’ A canoni-
cal model is defined in order to prove completeness. Among
the extensions of N studied here, the one axiomatized by
(p → q) → (¬q → ¬p) and denoted as CoPC is the most
striking. We succeed in interpreting minimal logic inCoPC.
To some extent, we connect with Franco Montagna’s work,
by considering the extensions of these logics by way of LC:
(p → q) ∨ (q → p). Such extensions represent weaken-
ing of the Gödel–Dummett logic. We conclude stating some
remarks and ideas for further research.

The ex falso quodlibet or, as it is called in paraconsis-
tent settings, the law of explosion (Carnielli et al. 2007), is
the logical law expressing that any statement can be proved
from a contradiction (or a falsehood). Classical logic, CPC,
intuitionistic logic and many other systems consider ex falso
to be valid. However, there has not always been widespread
agreement about this. Some supporters of an intuitionistic
standpoint, such as the early (Kolmogorov 1925), rejected
ex falso. According to him, ex falso asserts something about
a consequence of something ‘impossible,’ and hence, it is
unacceptable.But, sinceHeyting’s formalization of intuition-
istic logic (Heyting 1934), it has been assumed as an axiom
for such a system. In paraconsistent logic, it is necessary to
reject ex falso, in order to allow for inconsistent theories and
‘accept’ contradictions1. We present in this paper minimal
logic, CoPC and its subsystems as paraconsistent variations
of intuitionistic logic.

2 Intuitionistic logic

The propositional language of IPC consists of a set P of
propositional variables {p0, p1, p2, . . . }, the propositional
constants⊥,� and the set of binary connectivesL+(P). For
any formula ϕ, its negation ¬ϕ is defined as ϕ → ⊥ (see
Troelstra and van Dalen 2014). In practice, it is often more
convenient to conceive formulas as containing both ¬ and
⊥, and to add �. We take the axioms of IPC as in Troelstra
and van Dalen (2014).

2.1 Kripke semantics for Intuitionistic logic

Definition 1 A propositional Kripke frame of IPC is a pair
F = (W, R), where W is a non-empty set of possible worlds
and R is a partial order.
For w ∈ W , R(w) denotes the upward closed set generated
by w. Note that for every v ∈ W , wRv iff v ∈ R(w).

1 Kolmogorov and Johansson’s minimal intuitionistic logic is intro-
duced as MIL in the ‘big manifesto’ paper on paraconsistency, in
Carnielli et al. (2007).

A propositional Kripke model is a triple M = (W, R, V ),
where F = (W, R) is a Kripke frame and V is a valuation
V : P → P(W ) such that, for any p ∈ P , V (p) is persistent,
i.e., for all w, v ∈ W , if w ∈ V (q) and v ∈ R(w) then
v ∈ V (q). We say that M is on F.

– w � p ⇔ w ∈ V (p)

– w � ⊥
– w � ϕ ∧ ψ ⇔ w � ϕ and w � ψ

– w � ϕ ∨ ψ ⇔ w � ϕ or w � ψ

– w � ϕ → ψ ⇔ ∀v((wRv and v � ϕ) ⇒ v � ψ)

Defining ¬ϕ as ϕ → ⊥, we get w � ¬ϕ ⇔ ∀v(wRv ⇒
v � ϕ). We write V (ϕ) for {w|w � ϕ}. We may emphasize
a valuation V by writing �V for �, and sometimes we may
stress the particular model and write �M. We say that ϕ is
valid on M = (W, R, V ) if w � ϕ for every w ∈ W , and
that ϕ is valid in F if ϕ is valid on everyM on F. We say that
the set of formulas Γ is valid on M if each ϕ ∈ Γ is valid
onM.

Lemma 1

1. (Persistency) If wRv and w |� ϕ, then v |� ϕ

2. (Locality) If V �R(w) = V ′�R(w), then w �V ϕ iff
w �V ′ ϕ

Proof Straightforward by induction on the structure
of ϕ. ��
Theorem 1 (Soundness and Completeness of IPC)
Given a set of IPC formulas Γ , then Γ �IPC ϕ if and only if
ϕ is valid in all Kripke models of Γ for IPC.

The proof goes via a canonical model, defined as follows.

Definition 2 The canonical model for IPC is the tripleM =
〈W,R,V〉, where

– W := {Δ|Δ is a consistent theory with the disjunction
property: ∀ϕ,ψ (ϕ ∨ ψ ∈ Δ ⇒ ϕ ∈ Δ or ψ ∈ Δ)},

– R :=⊆,

– Valuation V: Δ ∈ V(p) ⇔ p ∈ Δ.

3 Minimal logic

3.1 Minimal logic as MPC f

The propositional language L f (P) consists of the language
of IPC+ to which a propositional constant f representing
‘falsum’ is added. Negation ¬ϕ is defined as ϕ → f . The
axioms forminimal logic with f are just the axioms of IPC+.

Definition 3 A propositional Kripke frame of MPC f is a
tripleF = (W, R, F),whereW is a non-empty set of possible
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worlds, R is a partial order and F ⊆ W is an upward closed
set, intended to be {w ∈ W | w � f }.
Kripke models are defined in the obvious way, adding the
new clause:

w � f ⇔ w ∈ F.

For negation, we get w � ¬ϕ ⇔ ∀v((wRv and v � ϕ) ⇒
v � f ). Observe that the semantics of f is essentially
the same as for the propositional variables. Soundness of
these models for MPC f is straightforward. Completeness
was proved for such models already by Segerberg (1968),
and more recently for a smaller class of models in Odintsov
and Rybakov (2013). The canonical model is the quadruple
M f = (W,R,F ,V) defined as for intuitionistic logic, with
the additional definition of F , as the set of theories with the
disjunction property containing f :

Δ ∈ F ⇔ f ∈ Δ.

We drop the condition that the considered theories have to
be consistent sets (i.e., we allow theories containing f ). The
proof is a trivial modification of the one for intuitionistic
logic.

The following proposition, known to Johansson, is easy
to prove.

Proposition 1 Given an arbitrary formula ϕ,

MPC f � f ↔ (¬ϕ ∧ ¬¬ϕ),

where ¬ϕ is expressed as ϕ → f .

It follows that the notion of contradiction expressed by f in
MPC f will be available in MPC¬ as ¬p ∧ ¬¬p.

3.2 Minimal logic as MPC¬

In this second framework, the propositional languageL¬(P)

is just the language of intuitionistic logic, i.e., L¬ =
{∧,∨,→,¬}. This formulation is axiomatized by the axioms
of IPC+, with the additional axiom

(p → q) ∧ (p → ¬q) → ¬p.

This axiom expresses that the negation of ϕ holds, whenever
ϕ leads to a contradiction. It does not give any further indica-
tion of what a contradiction is. If a formula ϕ proves¬ψ and
ψ , then ¬ϕ holds. And, the other way around, if ¬ϕ holds,
then ϕ proves a contradiction (namely, ϕ and ¬ϕ).

The considered axiom was explicitly used by Johansson
(1937) in his original article. However, it was previously
introduced by Kolmogorov in the article that has been

included in the book ‘From Frege to Gödel: a source book
in mathematical logic,’ a collection by Heijenoort (1967).
Kolmogorov says: ‘The usual principle of contradiction: A
judgment cannot be true and false, cannot be formulated
in terms of an arbitrary judgment, implication, and nega-
tion. Our principle contains something else: namely, from it,
together with the first axiom of implication, there follows the
principle of reductio ad absurdum.’

From the axiom the principles of negative ex falso and
absorption of negation, as we will call them, readily follow.

Lemma 2

1. MPC¬ � p ∧ ¬p → ¬q,

2. MPC¬ � (p → ¬p) → ¬p.

Proof (1) is trivial. For the proof of (2), see Proposition 2,
Sect. 5. ��
Kripke frames andmodels are defined as in the case ofMPC f

by means of the upward closed set F , using the following
clause for negation:

w � ¬ϕ ⇔ ∀v((wRv and v � ϕ) ⇒ v ∈ F).

Soundness of these models is again a trivial matter. The
canonical model for MPC¬ is the quadruple M¬ =
(W,R,F ,V) as before, with the new clause for F

Δ ∈ F ⇔ for some formula ϕ, both ϕ and ¬ϕ are in Δ.

Again, we leave out the condition that the members of the
canonical model have to be consistent sets.

Lemma 3 For every Δ ∈ W , Δ ∈ F if and only if ¬ψ ∈ Δ

for all ψ .

Proof The right-to-left direction of the statement is trivial.
We focus on the other direction. Assume Δ to be in F , and
consider an arbitrary formulaψ . The definition ofF gives us
the existence of a contradiction inΔ, i.e., there is a formula ϕ

in Δ, whose negation is also an element of Δ. The formulas
ϕ and ¬ϕ both being logical consequences of Δ, imply Δ �
ϕ ∧ ¬ϕ. Lemma 2(1) leads us to Δ� ¬ψ , via an application
of modus ponens. The setΔ is a theory, and hence,¬ψ ∈ Δ.

��
Completeness is proved as for intuitionistic logic. It is suf-
ficient to prove that for any theory in the canonical model,
membership relation and truth relation coincide. We prove
the induction step concerning the negation ¬ϕ.

Proof The left to right goes by contraposition. Assume¬ϕ /∈
Δ, for Δ ∈ W . This gives us Δ � ¬ϕ. By Lemma 2(2), Δ �
(ϕ → ¬ϕ) → ¬ϕ. Thus,Δ � ϕ → ¬ϕ. This is equivalent to
saying that the formula¬ϕ is not a logical consequence of the
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set Δ∪{ϕ}. From the standard Lindenbaum type lemma, we
get the existence of a theory Γ ∈ W , extending Δ ∪ {ϕ} and
not containing ¬ϕ. Apply now Lemma 3, to get that Γ is not
an element of F . Moreover, Γ � ϕ by induction hypothesis.
The last two results are equivalent to Γ � ¬ϕ. The canonical
model M¬ being persistent, we conclude Δ � ¬ϕ.

For the right-to-left direction, we proceed directly. Sup-
pose¬ϕ ∈ Δ, and consider an arbitrary⊆-successorΓ ofΔ.
Assume Γ � ϕ. The induction hypothesis gives us ϕ ∈ Γ .
We assumed ¬ϕ to be an element of Δ, and hence, of Γ .
Both ϕ and ¬ϕ being in Γ , we conclude Γ ∈ F . Therefore,
Δ � ¬ϕ as desired. ��

4 Basic subminimal logic: N

The propositional language coincides with the one for min-
imal logic with negation ¬. The semantics of negation is
defined in terms of an auxiliary persistent function N . Dif-
ferent axioms attribute different properties to such a function.
The aim of the Kripke semantics is that a negated formula
¬ϕ is true in a world if and only if that world is in the image
of V (ϕ) under N .

The basic logic N is axiomatized by (p ↔ q) → (¬p ↔
¬q) (N).

Definition 4 A propositional Kripke frame is a triple F =
(W, R, N ), where W is a non-empty set of possible worlds,
R is a partial order on W and N is a function N : U(W ) →
U(W ), where U(W ) is the set of all upward closed subsets
of W .

Kripke models are defined in the usual way, by adding a
persistent valuation V to the frames. In order to have a cor-
rect semantics for N, we require the function N to have the
following properties:

P1: w ∈ N (U ) ⇔ w ∈ N (U ∩ R(w)), with R(w) the
upward closed set generated by w.
P2: If w ∈ N (U ), then, for all v such that wRv, v ∈
N (U ).

Property P1 expresses locality, i.e., the value of a formula
in a world w depends only on the value of such a formula
in all worlds accessible from w. The second property, P2,
expresses persistence of negation ‘¬.’ Observe that it is not
necessary to explicitly state P2 as a property, because it
already follows from the fact that N maps upward closed
sets to upward closed sets. We add it as an explicit require-
ment because it will be necessary to check it when building
particular models. Note also that P1 expresses the validity of
the axiom N, which can therefore be considered the axiom
for the basic logic of a unary operator. The truth relation is
defined as before, substituting the negation clause, for each
formula ϕ, by

w � ¬ϕ ⇔ w ∈ N (V (ϕ)).

An important unsurprising consequence of P1 is that gener-
ated submodels preserve valuations.

Definition 5 Given a frame F = (W, R, F) and a world
w ∈ W , the subframeFw generated by w is defined on the set
of worlds R(w), with the function Nw(U ) = N (U )∩ R(w),
for every upward closed set U .

Similarly,Mw is defined on the basis of the model M.

Lemma 4 Given v ∈ R(w), then: v �Mw
ϕ if and only if

v �M ϕ.

Proof We only unfold the induction step of the proof con-
cerning the negation. Indeed, v �Mw

ϕ is equivalent to
v ∈ Nw(Vw(ϕ)), which means v ∈ N (Vw(ϕ)) ∩ R(w), and
it is equivalent to v ∈ N (V (ϕ) ∩ R(w)) ∩ R(w) (by induc-
tion hypothesis). By P1, this is equivalent to v ∈ N (V (ϕ) ∩
R(v)) ∩ R(w) which, again by P2, is just v ∈ N (V (ϕ)), as
desired. ��
Soundness is a trivial matter. For proving completeness via
a canonical model, we need to give an appropriate defini-
tion of N in such a model. The canonical model for N is
MN = (W,R,N ,V) is defined as in the minimal logic
case, substituting the F clause with:

N (U ) := {Δ ∈ W | ∃ϕ[ U ∩ R(Δ)

= �ϕ� ∩ R(Δ) and ¬ϕ ∈ Δ]},

for every U ∈ U(W), and where �ϕ� := { Γ ∈W | ϕ ∈ Γ }.
Again, the condition that the theories in the canonical model
need to be consistent is left out. It still remains to be proved
that such a canonical model is indeed amodel on anNKripke
frame. Hence, we verify N to have properties P1 and P2.

Lemma 5 N satisfies P1 and P2.

Proof The proof goes as follows.

P1: To show: Δ ∈ N (U ) if and only if Δ ∈ N (U ∩
R(Δ)).
Note that Δ ∈ N (U ) means U ∩R(Δ)= �ϕ�∩R(Δ)

and ¬ϕ ∈ Δ, for some ϕ. This is equivalent to:
(U ∩R(Δ))∩R(Δ)= �ϕ�∩R(Δ) and ¬ϕ ∈ Δ for the
same ϕ, by associativity of ∩. The latter means exactly
Δ ∈ N (U ∩ R(Δ)), and hence, we proved the desired
equivalence.
P2: To show: if Δ ∈ N (U ) and Δ ⊆ Δ′ hold, then
Δ′ ∈ N (U ). Assume the antecedent and note that this
means U ∩R(Δ)= �ϕ�∩R(Δ) and ¬ϕ ∈ Δ, for some
ϕ. By the inclusion Δ ⊆ Δ′, we get ¬ϕ ∈ Δ′. Moreover,
Δ ⊆ Δ′ if and only ifR(Δ′) = R(Δ)∩R(Δ′). This, by
associativity of ∩, implies U ∩R(Δ′)= �ϕ�∩R(Δ′).
Therefore, Δ′ ∈ N (U ). ��
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Theorem 2 The basic logic of unary operator N is complete
with respect to the class of Kripke models defined above.

Proof By contraposition we prove: if Γ �N ϕ, then Δ � ϕ,
for some Δ containing Γ in the canonical model. First we
show by induction on ϕ that, for any Δ in the canonical
model, Δ � ϕ ⇔ ϕ ∈ Δ. We only treat the negation case.
We need to prove that Δ � ¬ϕ ⇔ ¬ϕ ∈ Δ.

(⇒) Assume Δ � ¬ϕ. So, Δ ∈ N (�ϕ�). By definition,
there is a formula ψ such that �ψ�∩R(Δ) = �ϕ�∩R(Δ)

and ¬ψ ∈ Δ. Then, for all extensions Γ of Δ, ϕ ∈ Γ if and
only if ψ ∈ Γ . As in IPC, ϕ ↔ ψ ∈ Δ. By the axiom N,
¬ϕ ↔ ¬ψ ∈ Δ as well. So, it follows that ¬ϕ ∈ Δ.

(⇐) Assume ¬ϕ ∈ Δ. Then ∃ψ ( �ϕ�∩R(Δ)= �ψ�
∩R(Δ) and¬ψ ∈ Δ), namelyψ := ϕ. Hence,Δ ∈ N (�ϕ�)

and, by induction hypothesis, Δ ∈ N (V(ϕ)), and hence,
Δ � ¬ϕ. ��

It is worth remarking here that the axiom N is exactly
what is needed to prove the substitution theorem, �N (ϕ1 ↔
ϕ2) → (ψ[ϕ1/p] ↔ ψ[ϕ2/p]).

A few words in connection with Vakarelov (2005, 2006)
are in order at this point. He considers a weak negation in
combination with a strong negation in the sense of Nelson
(1949), which makes it somewhat difficult to compare to our
work. One of the systems he studied restricted to the weak
negation can be seen as having the axiom ¬ϕ ↔ ((ϕ →
f ) ∧ t) with additionally f implying t . For negation only
this logic will be an extension of N, and in fact of CoPC,
and a subsystem of MPC. We did not study it carefully yet.

5 Extensions of N

We present some extensions of the basic logicN. Each of the
additional axioms will enrich the semantic function N with
a different property.

5.1 Axioms of negation

Consider the following axioms.

1. Absorption of negation: (p → ¬p) → ¬p
2. Contraposition: (p → q) → (¬q → ¬p)

3. Negative ex falso: (p ∧ ¬p) → ¬q
4. Double negation: p → ¬¬p
5. Distribution over conjunction: ¬(p ∧ q) → (¬p ∨ ¬q)

The contraposition axiom seems to express a very basic prop-
erty of negation. Earlier, contraposition has been studied as
a rule, instead of as an axiom (Došen 1999). Studying it as
an axiom is quite natural: The deduction theorem remains in
force, and the axiom N is a theorem in the contraposition
system.

In Sect. 7.3, we will give a semantic proof of the fact that
absorption of negation does not follow from contraposition.
We already saw in Lemma 2 (1) that negative ex falso follows
from contraposition.

Remark 1 Note that the contraposition instance that we are
considering, denoted as CoPC, is the one valid in intuition-
istic logic, while the instance (¬q → ¬p) → (p → q) is
not. Moreover, from the latter, the law of explosion follows.
Thus, a logic in which (¬q → ¬p) → (p → q) is accepted
is no longer paraconsistent.

In what follows, we denote axiom 1 as An, and axiom 3 as
NeF. We prove that minimal logic can also be axiomatized
by CoPC+An. We study the logic CoPC, axiomatized by
contraposition, and we will see later on that minimal logic
and CoPC are closely related systems.

Proposition 2 Minimal logic MPC¬ can be equivalently
axiomatized by CoPC + An. In other words, MPC = CoPC
+ An.

Proof We first show that (p → q) ∧ (p → ¬q) → ¬p is a
theorem of CoPC+An.

From CoPC, we have (p → ¬q) ∧ (p → q) → (¬q →
¬p)

By transitivity, we obtain (p → ¬q)∧(p → q) → (p →
¬p)

Because of An, we have (p → ¬q) ∧ (p → q) → ¬p

Next, we prove CoPC and An in MPC¬.

– InMPC, we prove CoPC.

�MPC (p → ¬q) ∧ (p → q) → ¬p
�MPC ¬q ∧ (p → q) → ¬p

By commutativity of ∧,
we obtain

�MPC (p → q) ∧ ¬q → ¬p

Thus follows �MPC (p → q) → (¬q → ¬p)

– InMPC, we prove An. ��

�MPC (p → ¬q) ∧ (p → q) → ¬p
Changing q into p, we obtain �MPC (p → ¬p) ∧ (p → p) → ¬p

�MPC (p → ¬p) → ¬p

In a similar way, it can be shown that minimal logic is equiv-
alent to N+NeF+An.

5.2 Contraposition logic: CoPC

The Kripke-style semantics for this system is exactly the
same as in N. An additional requirement for the function N
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needs to be specified. Indeed, the semantic function N needs
to satisfy P1, P2 and anti-monotonicity:
PCoPC: For all U , U ′ ∈ U(W ), if U ⊆ U ′, then N (U ′) ⊆
N (U ).

This property is basically the ‘functional’ equivalent of
what CoPC expresses. Contraposition logic is complete with
respect to the N Kripke frames satisfying PCoPC. The proof
requires a different definition of the function N applied to
U ∈ U(W) in the canonical model:

N (U ) := {Δ ∈ W | ∀ϕ : �ϕ� ∩ R(Δ)

⊆ U implies ¬ϕ ∈ Δ},

We will just sketch the crucial step in the proof. Namely, the
negation step in the proof of the truth lemma: for each formula
ϕ and any Δ in the canonical model, Δ � ϕ ⇔ ϕ ∈ Δ, and
then only from right to left.

So, assume the lemma holds for ϕ and all Γ , and let¬ϕ ∈
Δ. We have to show Δ � ¬ϕ, i.e., Δ ∈ N (�ϕ�). Take any ψ

such that �ψ�∩ R(Δ) ⊆ �ϕ�; we need to show that¬ψ ∈ Δ.
We can easily see that ψ → ϕ has to be a member of Δ

because otherwise by use of a Lindenbaum lemma Δ would
have an extension containing ψ but not ϕ. But the axiom
((ψ → ϕ) → (¬ϕ → ¬ψ)) is in Δ and by assumption ¬ϕ

also. Therefore, indeed ¬ψ ∈ Δ.

5.3 Negative ex falso: NeF

The Kripke semantics is just the same as for the basic logic
N, with the additional requirement for the function N

PNeF: For all U , U ′ ∈ U(W ), U ∩ N (U ) ⊆ N (U ′)

Negative ex falso characterizes exactly the N frames which
satisfy PNeF. The logical system NeF is complete with
respect to that class of frames. Similarly to the previous case,
we need to define the function N in the canonical model in
such a way that also PNeF is satisfied. The definition is the
following:

N (U ) := {Δ | ∃ϕ(U ∩ R(Δ)

= �ϕ� ∩ R(Δ) and ¬ϕ ∈ Δ) or ∀ϕ(¬ϕ ∈ Δ)},

for every U ∈ U(W).
For both contraposition logic and negative ex falso logic,

the finite model property holds. For the proof, theories within
an adequate set have been used.

6 Relation between CoPC and minimal logic

We begin this section by giving an example of a derivation
in CoPC.

Proposition 3

CoPC � ¬¬¬p → ¬p

Proof The following is a Hilbert-style derivation in CoPC.
��

By NeF � (p ∧ ¬p) → ¬¬p
by IPC+ � p → (¬p → ¬¬p)

by CoPC � p → (¬¬¬p → ¬¬p)

by IPC+ � ¬¬¬p → (p → ¬¬p)

by CoPC � ¬¬¬p → (¬¬¬p → ¬p)

by IPC+ � ¬¬¬p → ¬p

From this, we get that we do not need more than 3 negations
in CoPC.2

Corollary 1 CoPC � ¬¬¬¬p ↔ ¬¬p.

Proof The two directions of the proof go as follows.
(⇒) Substitute ¬p for p in Proposition 3.
(⇐) Apply CoPC to Proposition 3. ��

6.1 Translating MPC into CoPC

In the first part of this section, we present a translation of
minimal logic into contraposition logic. Presenting later a
translation of intuitionistic logic into minimal logic, we get
a ‘chain’ of interpretations between contraposition logic and
classical logic.

Recall that the ‘negative’ translation from classical logic
into intuitionistic logic ensures that IPC has at least the same
expressive power and consistency strength of classical logic
(Troelstra and vanDalen 2014). A similar thing happens with
Gödel’s translation of IPC into the modal logicS4. Here, we
establish a similar translation fromminimal logic intoCoPC.

Consider ∼ ϕ := ϕ → ¬ϕ. We define a translation such
that (¬ϕ)∼ :=∼ ϕ∼, while every other connective is left
unchanged (i.e., (ϕ ◦ ψ)∼ := ϕ∼ ◦ ψ∼, for ◦ ∈ {∧,∨,→},
and also every atom stays the same).

Theorem 3 The considered translation is sound and truth-
ful, i.e.,

MPC � ϕ ⇔ CoPC � ϕ∼.

Proof The proof goes by induction on the depth of a deriva-
tion. It suffices to check the axioms in which ‘¬’ occurs.
First, we need to show that

CoPC � (p → q) ∧ (p →∼ q) →∼ p,

i.e., CoPC � ((p → q) ∧ (p → (q → ¬q))) → (p →
¬p). Indeed, usingonly the positive fragment of intuitionistic

2 We thank Lex Hendriks for these observations.
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Fig. 1 Conditions for Minimal
Logic

n(w) = W

F w n(w) = FF

w

logic, we get (p → ¬q) from (p → q) and p → (q → ¬q).
Now, from (p → q) and (p → ¬q) we get (p → ¬p),
just by means of IPC+ and negative ex falso. Observe that
the right-to-left direction follows from the fact that MPC
� ϕ ↔ ϕ∼. ��
It is worth noticing that the considered translation works also
for the negative ex falso logic (instead of CoPC), and even
for the basic logic N.

6.2 A translation of Intuitionistic logic intoMPC

In the chain of interpretations

CPC − IPC − MPC − CoPC,

a translation of intuitionistic logic into minimal logic was
missing until recently (see Gaspar 2013). We have found
one, in a letter from Johansson to Heyting from 19353. In
the margin, Heyting scribbled: ‘My A → B is Johansson’s
A → B ∨ f ,’ the idea being that for a proof of an impli-
cation it is sufficient to prove a contradiction. Johansson,
on the same track, discovered on the way that the alterna-
tive (A → f ) ∨ (B → f ) does not work. Indeed, if one
defines hj for implication (ϕ → ψ)h j := ϕh j → (ψh j ∨ f ),
and leaves all the other connectives untouched, the result
is a translation of intuitionistic logic into minimal logic.
Nonetheless, the proof is not quite as straightforward as one
might expect. The translation of the axioms is dealt with quite
easily, but with modus ponens the following happens: sup-
poseMPC � ϕh j andMPC � (ϕ → ψ)h j . The latter means
MPC � ϕh j → (ψh j ∨ f ), which leads toMPC � ψh j ∨ f .
This is not good enough though, because we need to get an
MPC derivation ofψh j . However, here the so-called disjunc-
tion property of minimal logic comes to the rescue. Indeed,
whenever MPC � A ∨ B, we have MPC � A or MPC � B

3 This correspondence has been studied with van der Molen (2016).

(Johansson 1937). So, we have a derivation MPC � ψh j or
MPC � f . Clearly, the latter is not the case, and hence,
we can conclude MPC � ψh j as desired. This argument
can be found in one of the letters from Johansson to Heyt-
ing already. Moreover, Johansson argued that the considered
translation can be extended to first-order logic, by means of
(∀xϕ)h j = ∀x(ϕ(x)h j ∨ f ).

Gaspar (2013) uses a closely related Friedman–Dragalin
type translation, translating propositional variables p into
p∨⊥. It is better behaved andworks also for the consequence
relations, not only for theorems such as the Heyting–
Johansson translation. The idea behind this translation is the
same as in the Heyting–Johansson translation but extended
from proofs of implications to all proofs.

7 Linear frames

In this section, we want to analyze the frames of our systems
in which the LC-axiom, i.e., (p → q) ∨ (q → p), is valid.
For each logic, the class of frames satisfying the considered
formula corresponds to the class of upwards linear frames
(Fig. 1).

7.1 Linear frames in minimal logic

In this section, we use n(w) to denote N (R(w)). The fact
that we are dealing with linear frames make our lives easier.
The reason why such a class of frames is interesting, is that,
in a finite linear frame, every upward closed set is the set
of successors of some world w, and hence, it is completely
determined by its root. Here, we want to emphasize how the
shape of the set n(w) in a linear frame of MPC depends on
whether the world w makes f true, or not. Indeed:

– If w /∈ F , n(w) = F.

– If w ∈ F , n(w) is the whole set, i.e., n(w) = W.
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R(w) ⊆ n(w)

F w

F ⊆ n(w)

F w
n(w)

n(v)

F

w

v

Fig. 2 Condition two for N, NeF and CoPC

7.2 Linear frames in subminimal systems

In order to have a picture of the linear frames in the basic
logic N, we need to understand how the locality condition
gets implemented in this particular case. The condition

P1 : ∀w∈W, U ∈ U(W ) : w∈ N (U )⇔w∈ N (U ∩ R(w)),

turns out to be equivalent, in this setting, to:

∀w, v ∈ W : w ∈ N (R(v)) ⇔ w ∈ N (R(v) ∩ R(w)).

Hence, we get that if v is a successor ofw, i.e.,wRv, locality
imposes no restrictions, because we get w ∈ n(v) ⇔ w ∈
n(v)4. On the other hand, if v is a predecessor ofw,w ∈ n(v)

if and only if w ∈ n(w). The set {w ∈ W |w ∈ n(w)} plays
therefore an important role and represents a weakened form
of F . We shall denote this set in this section therefore as F .
Indeed it has some of the properties of the F ofMPC, since in
anyNmodel,w ∈ F ⇔ (w � p ⇒ w � ¬p) ⇔ (w � ¬�).

For the case of N, we can then state the conditions as:

– If w /∈ F , then n(w) = F,

– If w ∈ F , then n(w) ⊇ R(w).

The first condition is the same for all the systems between
N and MPC. The second condition varies with the strength
of the logic. In the case of NeF, the second condition is
influenced by the properties of F and the axiom p ∧ ¬p →
¬q, and becomes:

– If w ∈ F , then n(w) ⊇ F.

4 Similarly, there are no restrictions by locality on N (U ) for U = ∅.

In the case of CoPC, such a second condition remains in
force, together with the condition that: wRv ⇒ n(w) ⊆
n(v) ⊆ N (∅) (Fig. 2).

7.3 Counterexamples

In the last part of this section, we give two examples to show
how the different axioms we are considering are logically
related to each other.

Proposition 4 Absorption of negation An is not a theorem
in CoPC.

Proof (Fig. 3) The idea is that we consider a linear finite
CoPC frame in which the set F is a proper subset of W
and, for every upward closed set U , N (U ) = F . In this way,
by assigning a valuation V (p) ⊆ F for some propositional
variable p, we get that every world v /∈ F does not force¬p,
while it forces the implication p → ¬p. Observe that a frame
in which N (U ) = F for every U is indeed a CoPC frame.

V (p)
F = V (¬p)

v

Fig. 3 CoPC counterexample to absorption of negation
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V (q) = V (¬q)

F

w̄ : p,¬p

v

Fig. 4 N counterexample to contraposition

The only thing we need to check is the locality condition,
given that the other two properties trivially hold.Also locality
is quite trivial, given that w ∈ N (U ) if and only if w ∈ F ,
which again would be equivalent to w∈ N (U ∩ R(w)). ��
Proposition 5 Contraposition CoPC is not a theorem of N.

Proof (Fig. 4) For obtaining anNmodel inwhichCoPCdoes
not hold, it is enough to consider an arbitrary finite linear
frame such that n(w) = R(w) for every world. For the sake
of simplicity, let w̄ be the greatest world in the frame, and
assign a valuation such that V (p) = {w̄} and V (q) = R(v),
where v �= w̄, for some propositional variables p, q. Indeed,
the world v forces the implication p → q. On the other
hand though, ¬q is true in v, while ¬p is not. Therefore,
CoPC is not valid on the considered frame. Note again that
the function N defined as we did is persistent. Moreover,
wheneverw ∈ N (R(v)) for some v, this means that R(w) ⊆
R(v), and hence, w ∈ N (R(v) ∩ R(w)) amounts to w ∈
N (R(w)) = n(w), which is true by definition. For the other
direction, again, saying that w ∈ N (R(v) ∩ R(w)) for some
v implies that R(w) ⊆ R(v) ∩ R(w) which indeed means
R(w) ⊆ R(v). The definition on N implies w ∈ n(v) =
N (R(v)), as desired. ��

8 Conclusions and further research

The main purpose of this paper was to explore and analyze
minimal logic with negation as a primitive and its submin-
imal subsystems with a weaker negation. We concentrate
on a basic logic N where negation is just a unary operator
without additional properties, and on two of its extensions:
contraposition logic and negative ex falso. The semantics of
negation is defined in terms of a persistent function N on the

set of upward closed sets of a Kripke model. Completeness
can be proved by means of canonical models. We show that
CoPC interpretsMPC by means of a sound translation, and
complete the chain of translations from CoPC to CPC by a
translation of IPC intoMPC appearing in the correspondence
between Johansson and Heyting in 1935.

For future work, the first step is allowing the negation
function N to be partial (compare to neighborhood models
of modal logic Došen 1989; Kracht and Wolter 1999). This
produces more natural and general canonical models. The
corresponding algebras for a study of duality are Heyting
algebras (see, e.g., Bezhanishvili et al. 2016). There is a close
relationship between our locality condition and the algebraic
notion of compatible function of Caicedo and Cignoli (2001)
(see also Ertola et al. 2007) that needs to be clarified.

The above-mentioned translations are effective for first-
order logic as well, and in general there are many inter-
esting questions about first-order logic. It is also already
clear that the systems are very suitable for introduction
of cut-free sequent systems to prove properties such as
interpolation.

The study of the models of weak Gödel–Dummett logic,
which provides a bridge to the work of Franco Montagna,
can be extended by looking at the behavior of the logics
on the models (0,1] and [0,1]. Here also the algebras and
the proof theory (Metcalfe and Montagna (2007)) seem well
worth studying.

Finally, the structure of the lattice of all logics between
N and minimal logic is intriguing. Certainly it will contain
infinitely many logics.
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