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Abstract In this paper, we present a reliable multistep
numerical approach, so-calledMultistep Generalized Differ-
ential Transform (MsGDT), to obtain accurate approximate
form solution for Rabinovich–Fabrikant model involving
Caputo fractional derivative subjected to appropriate initial
conditions. The solution methodology provides efficiently
convergent approximate series solutions with easily com-
putable coefficients without employing linearization or per-
turbation. The behavior of approximate solution for different
values of fractional-order α is shown graphically. Further-
more, the stability analysis of the suggested model is dis-
cussed quantitatively. Simulation of the MsGDT technique
is also presented to show its efficiency and reliability. Numer-
ical results indicate that the method is simple, powerful
mathematical tool and fully compatible with the complex-
ity of such problems.
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1 Introduction

Nowadays, fractional calculus theory is widely used as a
superb tool for handlingnonlinear real issues in appliedmath-
ematics, engineering and physics including fluid mechan-
ics, electrical circuits, diffusion, damping laws, relaxation
processes and mathematical biology Klimek (2001), Laskin
(2000), Klafter et al. (2011), Ortigueira (2010), El-Ajou
et al. (2015), Liu and Burrage (2011), Magin (2006), Tarasov
(2011). The fractional calculus topic plays a critical and
serious role to describe a complex dynamical behavior in
tremendous scope of applications fields, helps to understand
the nature of the models deeper more than the integer-order
derivatives as well as simplifies the controlling design with-
out any loss of hereditary behaviors and explain even more
complex structures.

However, mathematical modeling of nonlinear systems
is a major challenge for contemporary scientists. The
Rabinovich–Fabrikant system is one of the nonlinear realism
chaotic models that consist of three coupled ordinary dif-
ferential equations due to Mikhail Rabinovich and Anatoly
Fabrikant in their work on waves of non-equilibrium sub-
stances Rabinovich and Fabrikant (1979), which is described
as follows:

x ′(t) = y(z + x2 − 1) + ax,

y′(t) = x(3z − x2 + 1) + ay, (1)

z′(t) = −2z(b + xy),

wherea andb are real finite constant that control the evolution
of this model. Anyhow, these types of problems are of great
importance in many branches of mathematics and physics.
Therefore, they received special attention of scientists and
researchersAgrawal et al. (2012), Liu et al. (2010), Srivastava
et al. (2014), Kolebaje et al. (2013).
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On the other hand, we know that there is no clas-
sical method to handle the nonlinear FDEs and provide
explicit solutions due to the complexities of fractional cal-
culus involving these equations. For this reason, we need
a reliable numerical approach to obtain the coefficients of
the fractional series form solution to such models. In this
paper, we intend the application of MsGDTM to provide
approximate form solution for a class of nonlinear FDEs
included some well-known fractional Rabinovich–Fabrikant
equations. This approach has several advantages for dealing
directly with suggested chaotic model: It needs a few iter-
ations to get high accuracy, it is very simple for obtaining
analytical approximate solution in rapidly convergent for-
mulas over a long time interval, it also gives significantly
information in providing continuous representation of these
approximations and it has the ability for solving other prob-
lems appearing in several scientific fields Al-Smadi et al.
(2015), Momani et al. (2014), Al-Smadi et al. (2017), Al-
Smadi et al. (2016).

The structure of this article is organized as follows: In
the next section, necessary details and preliminaries about
the fractional calculus theory are briefly provided. Descrip-
tion of the MsGDTM in order to construct and predict series
form solution for fractional Rabinovich–Fabrikant model is
presented in Sect. 4. In Sect. 5.1, the stability analysis is also
discussed. In Sect. 5.2, numerical simulations are given to
verify the validity and performance of the present method.
This paper ends with some concluding remarks.

2 Mathematical preliminaries

In this section, basic preliminaries, concepts and notations
of fractional integrals and derivatives are introduced. Also,
we adopt the Caputo fractional derivative sense which is a
modification of Riemann–Liouville sense because the initial
conditions that defined during the formulation of the system
are similar to those conventional conditions of integer order.
For more details about the mathematical properties of FDEs,
we refer to Caputo (1967), Podlubny (1999), Millar and Ross
(1993), Mainardi (2010).

Definition 1 A real-valued function ψ(x, t), x ∈R, t > 0
is said to be in the space Cμ, μ∈R, if there exists a
real number q > μ such that ψ(x, t)= tqψ1(x, t), where
ψ1(x, t)∈C(R × [0,∞)), and it is said to be in the space
Cm

μ if ∂m

∂tm ψ(x, t)∈Cμ, m ∈N .

Definition 2 For a function ψ(x, t)∈Cμ, μ≥ −1, the
Riemann–Liouville integral operator of orderα ≥ 0 is defined
as

Jα
t ψ(x, t)

=
{

1
Γ (α)

∫ t
0 (t − ζ )α−1ψ(x, ζ )dζ, α > 0, 0 < ζ < t,

ψ(x, t), α = 0.

(2)

Consequently, for ψ(x, t)∈Cμ, μ≥ −1, α, β ≥ 0, c∈R

and γ > −1, the operator Jα
t has the following properties:

1. Jα
t Jβ

t ψ(x, t) = Jα+β
t ψ(x, t) = Jβ

t Jα
t ψ(x, t),

2. Jα
t c = c

Γ (α + 1)
tα,

3. Jα
t t

γ = Γ (γ + 1)

Γ (α + γ + 1)
tα+γ .

Now, we introduce a modified fractional differential oper-
ator Dα

t proposed by Caputo (1967) as follows

Dα
t ψ(x, t) = Jm−α

t ψ(m)(x)
1

Γ (m − α)

=
∫ x

0
(x − η)m−α−1ψ(m)(η)dη, t ≥ 0, (3)

for m − 1< α ≤m, m ∈N, t ≤ x and ψ(x)∈Cm−1.

Definition 3 The Caputo time-fractional derivative operator
of order α > 0 is defined as

Dα
t ψ(x, t) = ∂αψ(x, t)

∂tα

=
{
Jm−α
t

(
∂mψ(x,t)

∂tm

)
, 0 ≤ m − 1 < α < m,

∂mψ(x,t)
∂tm , α = m ∈ N ,

(4)

where m is the smallest integer that exceeds α.

Lemma 1 Podlubny (1999) If m − 1< α ≤m, m ∈N ,

ψ(x, t)∈Cm
γ , and γ ≥ − 1, then Dα

t J
α
t ψ(x, t)= ψ(x, t),

and Jα
t Dα

t ψ(x, t)= ψ(x, t) − ∑m−1
k=0

∂kψ(x,0+)

∂tk
tk
k! , where

t > 0.

3 Description of the multistep GDT approach

To illustrate this purpose, consider the following system of
fractional differential equations

Dαi
t0 yi (t) = fi (t, y1(t), y2(t), . . . , yn(t)),

i = 1, 2, . . . , n, t0 ≤ t ≤ T, (5)

with the initial conditions

yi (t0) = di , i = 1, 2, . . . , n, (6)

where 0< αi � 1, di (i = 1, 2, . . . , n) are real finite constant,
fi : ([t0, T ] × R

n) →R
n, and Dαi∗ is the Caputo fractional

derivative of order αi .
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Prior to applying the multistep approach, we defined the
generalized differential transform of f (t) as follows

F(k) = 1

Γ (kα + 1)

[
dkα f (t)

dtkα

]
t=t0

. (7)

According to the GDTM that described in Momani et al.
(2007), Ertürk et al. (2008), Odibat et al. (2010), the mth
approximate series form solution of fractional initial value
problem (FIVP) (5) and (6) can be given by

yi (t) =
m∑

k=0

Ψi (k)(t − t0)
k αi , t ∈ [t0, T ], (8)

where Ψi (k) satisfies the following recurrence relation

Γ ((k + 1)αi + 1)

Γ (kαi + 1)
Ψi (k + 1)

= Fi (k, Ψ1, Ψ2, . . . , Ψn), i = 1, 2, . . . , n, (9)

in which Fi (k, Ψ1, Ψ2, . . . , Ψn) denotes the differential
transformed function of fi (t, y1, y2, . . . , yn)with initial data
Ψi (t0)= di , i = 1, 2, . . . , n.

By dividing the interval [t0, T ] into M subintervals
[t j−1, t j ], j = 1, 2, . . . , M, of equal step size, h = (T −
t0)/M and nodes ti = t0 + j h. Then, by applying the GDTM
over thefirst subinterval [t0, t1], we obtain approximate series
solution in the form

yi,1(t) =
l∑

k = 0

Ψ1(k)(t − t0)
kαi , t ∈ [t0, t1],

with initial data yi,1(t0)= di , i = 1, 2, . . . , n. However, using
the initial conditions yi, j (t j−1)= yi, j−1(t j−1), for j ≥ 2, at
each subinterval [t j−1, t j ] and then applying the GDTM to
system (5) in order to obtain approximate series solutions
yi, j (t) as follows

yi, j (t) =
l∑

k = 0

Ψ j (k)(t − t j−1)
kαi , t ∈ [t j−1, t j ].

This procedure can be repeated till generate a sequence
of approximate series solutions yi, j (t), j = 1, 2, . . . , M,

i = 1, 2, . . . , n. Therefore, the multistep approximate series
solution of FVIP (5) and (6) will be given by

yi (t) =
M∑

j = 1

χυ yi, j (t), i = 1, 2, . . . , n, (10)

where

χv =
{
1, t ∈ [t j−1, t j ],
0, t /∈ [t j−1, t j ].

The idea behind multistep approach is that approximate
series solutionwhich is obtainedmore valid and accurate dur-
ing a long time as well as converges for wide time regions
Ertürk and Momani (2010), Odibat and Shawagfeh (2007),
Odibat and Momani (2008). It is worth noting that if the
step size h = T , then the multistep approach reduces to the
classical sense. Nevertheless, themultistep algorithm is pow-
erful for investigating approximate series solution of various
kinds of such systems and very simple for computational
performance for all values of h. However, we apply the
following time step-size control algorithmaccording themul-
tistep approach:

1. One gives the admissible local error δ > 0 and chooses
the order N of the multistep scheme.

2. From calculations, the values Ψ j (k) ( j = 1, 2, . . . , N )

are known for every solution component j .
3. At the grid point tk , we calculate the value EN = max

{Ψ j (k)}Nj=1.

4. We select the step size hk for which hk = τ
(

δ
EN

)1/N
≤ hmax and tk+1 = tk + hk, where τ is a safety factor and
hmax is the maximum allowed step size.

4 Stability analysis of fractional system

Aswe know from stability analysis theory, the systemwill be
stable if the roots of its characteristic polynomial are negative
or have negative real parts if they are complex conjugate. But
in fractional sense the concept of stability differs from the
integer sense. In this section, necessary theorems with their
related results will be utilized dealing with commensurate
and incommensurate systems of fractional order.

For fractional-order system Dα
t x = f (x). Let f (p)= 0,

then x = p is said to be an equilibrium point of the system.
Furthermore, a saddle point is an equilibrium point at which
the equivalent linearized model has at least one eigenvalue
in the stable region and one in the unstable region. A saddle
point is called a saddle point of index 1 if one of the eigen-
values is unstable and the others are stable. Also is called a
saddle point of index 2 if it has one stable eigenvalue and two
unstable ones Tavazoei and Haeri (2007). In chaotic systems,
it is noted that scrolls are generated only around saddle points
of index 2, and the saddle points of index 1 are responsible
for connecting scrolls.

Lemma 2 Matignon (1996) The autonomous fractional-
order system Dα

t x = Ax, x(0)= x0, where0< αi ≤ 1, x ∈Rn

and A∈Rn×n, is called asymptotically stable if and only if
|arg (σA)| > απ

2 for all eigenvalues of A, and is called stable
if and only if |arg (σA)| ≥ απ

2 and those critical eigenvalues
that satisfy |arg (σA)| = απ

2 have geometric multiplicity one,
whereas σA represents the spectrum of A.
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Table 1 Equilibrium points of
system (1)

Equilibrium points Eigenvalues Nature

E1 = (0, 0, 0) −2.2, 0.87,±i Saddle of index 2

E2 = (1.4797,−0.743396, 0.542195) −0.554695, 0.0473474,±3.66626i Saddle of index 2

E3 = (−1.4797, 0.743396, 0.542195) −0.554695, 0.0473474,±3.66626i Saddle of index 2

E4 = (0.518267,−2.12246, 0.943838) 1.25201,−0.856003,±3.10412i Saddle of index 2

E5 = (−0.518267, 2.12246, 0.943838) 1.25201,−0.856003,±3.10412i Saddle of index 2

Lemma 3 Deng et al. (2007) Consider the following incom-
mensurate n-dimensional linear fractional-order system

cDα1
t x1 = a11x1 + a12x2 + · · · + a1nxn,

Dα2
t x2 = a21x1 + a22x2 + · · · + a2nxn,

... (11)

Dαn
t xn = an1x1 + a12xn + · · · + annxn,

where0< αi ≤ 1 such thatαi = vi
ui
, (vi , ui ) = 1, vi , ui ∈Z+,

i = 1, 2, . . . , n. Let M be the lowest common multiple of the
denominators ui ’s of αi ’s. Then, system (11) is asymptoti-
cally stable if |arg (λ)| > π

2M for all the roots λ’s of equation
det
(
diag

([
λMα1 , λMα2 , . . . , λMαN

])− (ai j )n×n
) = 0.

Consequently, the equilibrium point is asymptotically
stable if the condition π

2M − min
i

|arg (λi )| < 0 is satis-

fied. Indeed, the condition π
2M − min

i
|arg (λi )| is called

the instability measure for equilibrium points of fractional
order systems (I MFOS). Thus, if I MFOS < 0, then the
fractional system is asymptotically stable, whereas in fact
I MFOS ≥ 0 is a necessary condition for the system to be
have chaotically. It has been proved numerically that the last
condition is necessary but not sufficient to exhibit chaosTava-
zoei and Haeri (2008).

For the nonlinear fractional-order system Dαi
t x = f (x),

0< αi ≤ 1 (i = 1, 2, . . . , n), λ’s are considered to be the

eigenvalues of the Jacobian matrix J = ∂ f
∂x

∣∣∣
x=p

. Hence,

the equilibrium point is asymptotically stable for p if the
condition |arg (σJ )| = |arg (λi )| > π

2p is satisfied; for more
details, we refer to Petras (2010), Zhen et al. (2011), Gafiy-
chuk et al. (2008), Gafiychuk and Datsko (2010).

5 Application and simulation

5.1 Integer-order Rabinovich–Fabricant model

Consider the Rabinovich–Fabricant system (1) in which the
parameters a = 0.87 and b= 1.1. This system is chaotic at the
initial conditions (−1, 0, 0.5). Now, by solving the following
system

y(z + x2 − 1) + ax = 0,

x(3z − x2 + 1) + ay = 0, (12)

−2z(b + xy) = 0,

we obtain five equilibrium points as

E1 = (0, 0, 0),

E2 = (1.4797,−0.743396, 0.542195),

E3 = (−1.4797, 0.743396, 0.542195),

E4 = (0.518267,−2.12246, 0.943838),

E5 = (−0.518267, 2.12246, 0.943838).

The Jacobian matrix of system (1) that evaluated at the
equilibrium point E = (x, y, z) is given by

J (x, y, z) =
⎡
⎣ 2xy + a
3z − 3x2 + 1

−2yz

z + x2 − 1
a

−2xz

y
3x

−2xy − 2b

⎤
⎦

and its characteristic polynomial is given by

p(λ) = 3.86518 − 8.8x2 + 6.6x4 + 7.3418xy

− 8x3y + 6x5y + 3.48x2y2 + 4.4z

− 5.22x2z − 12x3yz − 1.74y2z

− 6.6z2 + 6xyz2 + (−2.0711 − 4x2

+ 3x4 − 6.14xy − 4x2y2

+ 2z + 6x2z + 2y2z − 3z2)λ + 0.46λ2 + λ3.

Table 1 shows the equilibrium points of system (1), cor-
responding eigenvalues and their nature. Anyhow, chaotic
attractors and phase plane diagram of Rabinovich–Fabricant
systemwith the initial data (x(0), y(0), z(0))= (−1, 0, 0.5),
parameters (a, b)= (0.87, 1.1) and the time step h = 0.005
are presented graphically by applying themultistep technique
to system (1) as shown in Fig. 1.

5.2 Fractional-order Rabinovich–Fabricant model

Consider themodel of fractional-orderRabinovich–Fabricant
system has the following form:

Dα1
t0 x(t) = y(z + x2 − 1) + ax,

Dα2
t0 y(t) = x(3z − x2 + 1) + ay, (13)

Dα3
t0 z(t) = −2z(b + xy),
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Fig. 1 Chaotic attractors and
phase diagram of
Rabinovich–Fabricant system. a
Phase plane diagram of x(t) and
y(t), b phase plane diagram of
y(t) and z(t), c phase plane
diagram of x(t) and z(t) and d
3dim chaotic attractor

where 0<αi < 1, i = 1, 2, 3, a and b are nonnegative con-
stants, and Dα1

t0 denotes the Caputo fractional derivative of
order αi . Indeed, if αi = 1,∀i , then system (13) reduce to
classical Rabinovich–Fabricant system (1).

By using theGDTM to system (13), we have the following
recurrence relations formula

X (k + 1) = Γ (kα1+1)
Γ ((k+1)α1+1)

⎛
⎜⎜⎜⎜⎜⎝

k∑
i=0

Y (i)Z(k − i) − Y (k)

+
k∑

i=0

i∑
j=0

Y ( j)X (i − j)X (k − i) + aX (k)

⎞
⎟⎟⎟⎟⎟⎠ ,

Y (k + 1) = Γ (kα2+1)
Γ ((k+1)α2+1)

⎛
⎜⎜⎜⎜⎜⎝

k∑
i=0

3X(i)Z(k − i) + X(k)

−
k∑

i=0

i∑
j=0

X( j)X (i − j)X (k − i) + aY (k)

⎞
⎟⎟⎟⎟⎟⎠ ,

Z(k + 1) = −Γ (kα3+1)
Γ ((k+1)α3+1)

⎛
⎝2bZ(k)+

k∑
i=0

i∑
j=0

X( j)Y (i − j)Z(k − i)

⎞
⎠ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(14)

where X (k), Y (k) and Z(k) are transformed functions of
x(t), y(t) and z(t), respectively. With GDTM of the initial
conditions in the form X (0)= c1, Y (0)= c2, Z(0)= c3. The
process generates a sequence of approximate solutions such
that

123



778 K. Moaddy et al.

xi (t) =
N∑

k =1

Xi (k)(t − ti−1)
kα1 ,

yi (t) =
N∑

k = 1

Yi (k)(t − ti−1)
kα2 , (15)

zi (t) =
N∑

k = 1

Zi (k)(t − ti−1)
kα3 ,

Therefore, the multistep approximate series solutions of sys-
tem (15) can be given by

x(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K∑
k=0

X1(k)t
kα1, t ∈ [0, t1],

K∑
k=0

X2(k)(t − t1)
kα1 , t ∈ [t1, t2],

...
K∑

k=0

XM (k)(t − tM−1)
kα1 , t ∈ [tM−1, tM ],

y(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K∑
k=0

Y1(k)t
kα2 , t ∈ [0, t1],

K∑
k=0

Y2(k)(t − t1)
kα2 , t ∈ [t1, t2],

...
K∑

k=0

YM (k)(t − tM−1)
kα2 , t ∈ [tM−1, tM ],

z(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K∑
k=0

Z1(k)t
kα3, t ∈ [0, t1],

K∑
k=0

Z2(k)(t − t1)
kα3 , t ∈ [t1, t2],

...
K∑

k=0

ZM (k)(t − tM−1)
kα3 , t ∈ [tM−1, tM ],

where t ∈ [ti−1, ti
]
, Xi (k), Yi (k) and Zi (k) for i = 1,

2, . . . , n satisfy the following recurrence relations

Xi (k + 1) = Γ (kα1 + 1)

Γ ((k + 1)α1 + 1)

×

⎛
⎜⎜⎜⎜⎜⎝

k∑
j=0

Yi ( j)Zi (k − j) − Y i (k)

+
k∑

l=0

l∑
m=0

Yi (m)Xi (l − m)Xi (k − l) + aXi (k)

⎞
⎟⎟⎟⎟⎟⎠ ,

Yi (k + 1) = Γ (kα2 + 1)

Γ ((k + 1)α2 + 1)

×

⎛
⎜⎜⎜⎜⎜⎝

k∑
j=0

3Xi ( j)Zi (k− j)+Xi (k)

−
k∑

l=0

l∑
m=0

Xi (m)Xi (l−m)Xi (k−l)+aY i (k)

⎞
⎟⎟⎟⎟⎟⎠ ,

Zi (k + 1) = −Γ (kα3 + 1)

Γ ((k + 1)α3 + 1)

×
(
2bZi (k)+

k∑
l=0

l∑
m=0

Xi (m)Y i (l − m)Zi (k − l)

)
,

with intial conditions Xi (0)= xi (ti−1)= xi−1(ti−1), Yi (0)=
yi (ti−1)= yi−1(ti−1) and Zi (0)= zi (ti−1)= zi−1(ti−1) start-
ing with X0(0)= c1, Y0(0)= c2, and Z0(0)= c3.

Our next goal is to illustrate some numerical results
of the MsGDTM solutions of the fractional Rabinovich–
Fabrikant system in numeric values. In fact, results from
numerical analysis are an approximation, in general, which
can be made as accurate as desired. Because a computer
has a finite word length, only a fixed number of digits
are stored and used during computations. The agreement
between the IRKM and the multistep numerical solutions
is investigated for fractional Rabinovich–Fabrikant model
at various T by computing absolute errors and relative
errors of numerically approximating as shown in Tables 2,
3, 4, respectively. Anyhow, it is clear from these tables
that the numerical solutions are in close agreement with
each others, while the accuracy is in advance by using
multistep technique. Indeed, we can conclude that higher
accuracy can be achieved by computing further MsGDT
iterations.

For numerical simulation, we start with initial data
(x(0), y(0), z(0))= (−1, 0, 0.5) and time step h = 0.005.
On the other hand and according to Lemma 4.1, the eqilib-
riumpoints of system (13)will be as follows: The equilibrium
point E1 = (0, 0, 0) is stable for αi < 0.544; the equilibrium
points

E2 = (1.4797,−0.743396, 0.542195) and

E3 = (−1.4797, 0.743396, 0.542195)

are stable for αi < 0.991; the equilibrium points

E4 = (0.518267,−2.12246, 0.943838) and

E5 = (−0.518267, 2.12246, 0.943838)

are unstable for 0< αi < 1, i = 1, 2, 3. Figure 2 shows the
time trajectories of system (13) with αi = 0.9, i = 1, 2, 3,
0 ≤ t ≤ 20.
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Table 2 The absolute errors for
x(t) of system (13) at α = 1

T MsGDTM IRK Absolute error Relative error

0 −1 −1 0 0

2 −0.50539265878072 −0.50539266866610 9.88537 × 10−9 1.95598 × 10−8

4 −1.10145212971672 −1.10145218804662 5.83299 × 10−8 5.29573 × 10−8

6 −1.18758746091217 −1.18758750852301 4.76108 × 10−8 4.00904 × 10−8

8 −1.22010632821284 −1.22010639690483 6.86920 × 10−8 5.63000 × 10−8

10 −1.26202958348818 −1.26202969789697 1.14409 × 10−7 9.06546 × 10−8

12 −1.34064473473693 −1.34064492373332 1.88996 × 10−7 1.40974 × 10−7

14 −1.43035805482653 −1.43035836575151 3.10925 × 10−7 2.17376 × 10−7

16 −1.47925103710448 −1.47925156243707 5.25333 × 10−7 3.55134 × 10−7

18 −1.41044083339250 −1.41044173123679 8.97844 × 10−7 6.36569 × 10−7

20 −1.13692926085896 −1.13693048966600 1.22881 × 10−5 1.08081 × 10−6

Table 3 The absolute errors for
y(t) of system (13) at α = 1

T MsGDTM IRK Absolute error Relative error

2 1.74624069640563 1.74624067383642 2.25692 × 10−8 1.29245 × 10−8

4 0.70196190096888 0.70196187271547 2.82534 × 10−8 4.02492 × 10−8

6 0.78742958165905 0.78742945256947 1.29089 × 10−7 1.63938 × 10−7

8 0.66225412781937 0.66225399024576 1.37574 × 10−7 2.07735 × 10−7

10 0.42941509212622 0.42941497089447 1.21232 × 10−7 2.82318 × 10−7

12 0.21402686257069 0.21402679436159 6.82091 × 10−8 3.18694 × 10−7

14 0.07439078455172 0.07439083335663 4.88049 × 10−8 6.56061 × 10−7

16 −0.01379175359161 −0.01379155674101 1.96851 × 10−7 1.42732 × 10−5

18 −0.10226325769845 −0.10226322534715 3.23513 × 10−8 3.16353 × 10−7

20 −0.01893075962539 −0.01893212479034 1.36516 × 10−6 7.21084 × 10−5

Table 4 The absolute errors for
z(t) of system (13) at α = 1

T MsGDTM IRK Absolute error Relative error

0 0.5 0.5 0 0

2 1.29953989828435 1.29953991027934 1.19950 × 10−8 9.23018 × 10−9

4 0.43078750999444 0.43078745441887 5.55756 × 10−8 1.29009 × 10−7

6 0.68305866924235 0.68305861262835 5.66140 × 10−8 8.28831 × 10−8

8 0.72214271262290 0.72214263457408 7.80488 × 10−8 1.08079 × 10−7

10 0.66805768821598 0.66805757577515 1.12441 × 10−7 1.68310 × 10−7

12 0.55906778403891 0.55906763671533 1.47324 × 10−7 2.63517 × 10−7

14 0.45194813357728 0.45194794633231 1.87245 × 10−7 4.14306 × 10−7

16 0.38336167028815 0.38336140643799 2.63850 × 10−7 6.88254 × 10−7

18 0.38096685974420 0.38096637468414 4.85060 × 10−7 1.27324 × 10−6

20 0.53049140063542 0.53049030436417 1.09627 × 10−6 2.06652 × 10−6

Figure 3 shows the chaotic behaviorwith phase diagramof
system (13) with αi = 0.9, i = 1, 2, 3. Also, Fig. 4 shows the
time trajectories of system (13) with αi = 0.54, i = 1, 2, 3,
0≤ t ≤ 20. While Figs. 5 and 6 show the stability behavior
of system (13) for αi < 0.544.

6 Conclusions

Constructing a mathematical model for nonlinear real-world
systems, as well as developing numeric-analytic solution
for such model, is very important issue in mathematics,
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Fig. 2 Time trajectories of fractional Rabinovich–Fabricant system with α1 = α2 = α3 = 0.9, t ∈ [0, 20]

Fig. 3 Chaotic attractors and
phase diagram of fractional
Rabinovich–Fabricant system at
αi = 0.9, i = 1, 2, 3. a Phase
plane diagram of x(t) and y(t),
b phase plane diagram of y(t)
and z(t), c phase plane diagram
of x(t) and z(t) and d 3dim
chaotic attractor

Fig. 4 Time trajectories of fractional Rabinovich–Fabricant system
with α1 = α2 =α3 = 0.54, t ∈ [0, 20]

physics and engineering. In the present study, we pro-
posed and applied analytical–numerical technique, so-called
MsGDTM, to handle nonlinear time-fractional Rabinovich–
Fabrikant model in Caputo sense. Also, the stability analysis
of this model is discussed quantitatively and guarantee that
the chaos control occurs if the necessary conditions are sat-
isfied. Our graphical representations explicitly reveal the
complete reliability and efficiency of the presented method
with a great potential in scientific applications. It may
be concluded that the suggested method is very powerful,
straightforward and promising algorithm in finding analytic
approximate form solution forwide classes of fractionalDEs.
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Fig. 5 Phase diagram of fractional Rabinovich–Fabricant system with α1 = α2 =α3 = 0.54

Fig. 6 Chaotic attractors of fractional Rabinovich–Fabricant system
with α1 = α2 =α3 = 0.54

Computations of this paper have been carried out by using
the computer package of MATHEMATICA.
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