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Abstract Due to recent booming of unmanned air vehi-
cles (UAVs) technologies, these are being used in many
fields involving complex tasks. Some of them involve a high
risk to the vehicle driver, such as fire monitoring and res-
cue tasks, which make UAVs excellent for avoiding human
risks. Mission planning for UAVs is the process of planning
the locations and actions (loading/dropping a load, taking
videos/pictures, acquiring information) for the vehicles, typ-
ically over a time period. These vehicles are controlled
from ground control stations (GCSs) where human oper-
ators use rudimentary systems. This paper presents a new
multi-objective genetic algorithm for solving complex mis-
sion planning problems involving a team of UAVs and a set
of GCSs. A hybrid fitness function has been designed using
a constraint satisfaction problem to check whether solutions
are valid and Pareto-basedmeasures to look for optimal solu-
tions. The algorithm has been tested on several datasets,
optimizing different variables of the mission, such as the
makespan, the fuel consumption, and distance. Experimen-
tal results show that the new algorithm is able to obtain good
solutions; however, as the problem becomes more complex,
the optimal solutions also become harder to find.
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1 Introduction

Nowadays, unmanned air vehicles (UAVs) or drones have
become very popular in many potential applications includ-
ing surveillance (Pereira et al. 2009), disaster and crisis
management (WuandZhou2006), and agriculture or forestry
(Merino et al. 2006) among others. For this reason, many
research works related to this field have been developed
over the past 20 years (Kendoul 2012; Lee and Kim 2008;
Rodríguez-Fernández et al. 2015a).

The rapid development of theUAV capabilities has caused
their incorporation intomany areas to perform complex tasks
which involve a high risk to the vehicle driver, such as detect-
ing forest fires or rescue tasks. So using UAVs avoids risking
human lives while their manageability permits to reach areas
of hard access.

The process of mission planning for a team of UAVs
involves generating tactical goals, commanding structure,
coordination, and timing. Currently, UAVs are controlled
remotely by human operators from ground control stations
(GCSs), using rudimentary planning systems, such as fol-
lowing preplanned or manually provided plans. In order to
performmore complex tasks and coordinatedmissions, these
systems require more advanced capabilities.

Mission planning problems (MPPs) are a big challenge in
actual NP-hard optimization problems. Classic planners are
based on graph search or use a logic engine. But this kind of
planners have several limitations, probably the most impor-
tant is the high computational cost that their algorithms need
to solve these missions. These missions have a lot of require-
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ments that have to be considered, and it is also necessary to
coordinate all the UAVs. These requirements generate search
graphs that require a huge process capabilities to find a solu-
tion. In addition, multi-UAVmissions usually require the use
of several GCSs for controlling all the UAVs involved. This
generates a new multi-GCS approach that makes this prob-
lem even harder to solve.

Another critical issue inMPP is that there are several para-
meters which can be used to define the quality of a solution,
such as the fuel consumption, the makespan, and the cost of
the mission. In these cases, a Pareto-optimal frontier (POF)
can be computed in order to get the best solutions optimizing
different objectives at the same time. Due to mission plan-
ning is based on search problems, an option to solve this
type of problems could be using multi-objective evolution-
ary algorithms (MOEAs). In this work, we extend a previous
work (Bello-Orgaz et al. 2015) in order to design and imple-
ment a multi-objective genetic algorithm (MOGA) to solve
this problem. For this purpose, a fitness function consisting
of two phases has been designed. Firstly, modeling the MPP
as a CSP, the fitness function checks that the solution plans
fulfill all the constraints given by the different capabilities of
the UAVs and the GCSs involved. Afterward, using the vali-
dated plans, a Pareto-based function is calculated to optimize
different quality parameters of the solutions.

The rest of the paper is structured as follows. Section 2
describes the related work concerning mission planning,
CSPs, and GAs. Section 3 presents the mission planning
problem, while Sect. 4 presents the CSP approach used to
model it. Section 5 presents the MOGA-CSP approach, the
encoding designed and the fitness function implemented to
solve multi-GCS MPP. Section 6 provides a description of
the dataset employed, the setup employed in the MOGA-
CSP, and a complete experimental evaluation of it. Finally,
in Sect. 7, the conclusions and some future research lines of
the work are presented.

2 Related work

This section starts with a general introduction to mis-
sion planning techniques. After this brief introduction, an
overview of constraint satisfaction problems is presented
showing the different methods used in the literature to solve
them. Finally, a description of genetic algorithms (GAs) and
their applications to optimization problems has been carried
out.

2.1 Mission planning

Planning has been an area of research in artificial intelli-
gence (AI) for over three decades.Avariety of tasks including
robotics (Diaz et al. 2013), Web-based information gather-

ing (Kuter et al. 2005), autonomous agents (Camacho et al.
2006), and mission control (Vachtsevanos et al. 2005) have
benefited fromplanning techniques.Moreover,mission plan-
ning is a common problem in AI. Amission can be described
as a set of goals that must be achieved by performing some
task with a group of resources over a period of time. The
whole problem can be summed up in finding the correct
schedule of resource–task assignments that satisfies the pro-
posed constraints.

In the literature, there are some attempts to implement
mission planning systems. Doherty et al. (2009) presents
an architectural framework for Mission Planning and execu-
tion monitoring, using temporal action logic (TAL). Fabiani
et al. (2007) modeled the problem for search and rescue sce-
narios using Markov decision process (MDP) and solve it
with dynamic programming algorithms. German Aerospace
Centre (DLR) also developed a mission management system
based on the behavior paradigm (Adolf and Andert 2010)
which has been integrated onboard the ARTIS helicopter and
validated in different scenarios, including waypoints follow-
ing and search and track missions.

An essential concept in mission planning is cooperation
or collaboration, which occurs at a higher level when vari-
ous UAVs work together in a common mission sharing data
and controlling actions together. There are few contributions
that deal with multi-UAV problems in a deliberative para-
digm (cooperative task assignment and mission planning).
Bethke et al. (2008) proposed an algorithm for coopera-
tive task assignment that extends the receding horizon task
assignment (RHTA) algorithm to select the optimal sequence
of tasks for each UAVs. Another approach by Kvarnström
and Doherty (2010) proposes a new mission planning algo-
rithm for collaborative UAVs based on combining ideas from
forward-chaining planning with partial-order planning. This
approach led to a new hybrid partial-order forward-chaining
(POFC) framework that meets the requirements on cen-
tralization, abstraction, and distribution found in realistic
emergency services settings.

Other works focus on distributed approaches for solving
mission planning. Pascarella et al. (2015) proposed a core
paths graph (CPG) algorithm for trajectory planning.

Finally, other approaches formulate the mission planning
problem as a constraint satisfaction problem (CSP), where
the tactic mission is modeled and solved using constraint
satisfaction techniques (Ramirez-Atencia et al. 2015b).

2.2 Constraint satisfaction problems

The MPP can be summed up in finding the correct schedule
of resource–task assignments which satisfies the proposed
constraints, similarly to CSPs. It can be defined as follows
(Barták 1999):
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– A set of variables V = v1, ..., vn .
– For each variable, a finite set of possible values Di (its

domain).
– A set of constraintsCi restricting the values that variables
can simultaneously take.

A CSP is usually represented as a graph where the pairs
<Variable,Value> are the nodes and the constraints are the
edges. Although there are other representations as those
presented in Gonzalez-Pardo et al. (2014) for ant colony
optimization and videogames. These methods usually have
a propagation phase where the different constraints of the
problem are checked. In the literature, there are many pro-
posed methods to search the space of solutions for CSPs,
such as backtracking (BT), backjumping (BJ) or look-ahead
techniques (i.e., forward checking (FC) Bessière et al. 1999)
among others. These algorithms are usually combined with
other techniques like consistency techniques (Bessière 2006)
(domain consistency, arc consistency, or path consistency) to
modify the CSP and ensure its local consistency conditions.

Inmany real-life applications, it is necessary to find a good
solution, and not the complete space of possible solutions.
For this purpose, combining a CSP with an optimization
function results in a constraint satisfaction optimization prob-
lem (CSOP). In these approaches, the optimization function
maps every solution (complete labeling of variables) to a
numerical value measuring the quality of the solution. The
most widely used algorithm for finding optimal solutions
is called branch and bound (B&B) (Rasmussen and Shima
2006). This algorithm searches for solutions in a depth
first manner pruning the sub-tree under the current partial
labeling when it exceeds the bound of the best value so
far. In the case of multi-objective optimization, an exten-
sion of this method, known as multi-objective branch and
bound (MOBB) (Rodríguez-Fernández et al. 2015a) is used
to find the Pareto-optimal frontier (POF) composed of all
non-dominated solutions of the problem. Other methods for
solving CSOP include Russian doll search (Rollon and Lar-
rosa 2007), bucket elimination (Rollon and Larrosa 2006),
genetic algorithms (Fonseca and Fleming 1998), and swarm
intelligence (Gonzalez-Pardo and Camacho 2013).

A TCSP is a particular class of CSP where variables
represent times (time points, time intervals, or durations)
and constraints represent sets of allowed temporal rela-
tions between them (Schwalb and Vila 1998). Different
classes of constraints are characterized by the underly-
ing set of basic temporal relations (BTR). Most types of
TCSPs can be represented using point algebra (PA), with
BTR = {∅,<,=,>,≤,≥, ?}. A commonly used approach
is Allen’s interval algebra (Allen 1983), which defines sev-
eral relations between time intervals, with BTR = {<,>,

m,mi, o, oi, s, si, d, di, f, f i,=}.

In the related literature, Mouhoub (2002) proved that on
real-time or Maximal TCSPs (MTCSPs), the best meth-
ods for solving TCSPs are Min-Conflict-Random-Walk
(MCRW) for under and middle-constrained problems, and
Tabu search and Steepest-Descent-Random-Walk (SDRW)
in the over-constrained case. In this work, the author also
developed a temporalmodel (TemProMouhoub 2004)which
was based on interval algebra, to translate an application
involving temporal information into a CSP. A TCSP can per-
fectly represent a multi-UAV mission as a set of temporal
constraints over the time the tasks in the mission start and
end.

2.3 Genetic algorithms

Genetic algorithms (GAs) have been traditionally used in
a large number of different domains, mainly related to
optimization problems (Holland 1992). These stochastic
methods are inspired by natural evolution and genetics, and
the complexity of the algorithm depends on the codifica-
tion and the operations used to reproduce, cross, mutate, and
select the different individuals of the population. There is a
wide range of applications where GAs have been successful,
from optimization (Bin et al. 2010) to data mining (Bello-
Orgaz and Camacho 2014; Menendez et al. 2014). GAs have
demonstrated to be robust, able to find satisfactory solutions
in highlymulti-dimensional problemswith complex relation-
ships between the variables. In recent works (Hao and Liu
2015; Ramirez-Atencia et al. 2015a), GAs have been used to
represent CSPs.

There exists several research studies regarding the appli-
cation of GAs to solve MPPs, but most of them are focused
on just one UAV or in a single type of task. The Soliday et
al.’s (1999) approach developed a GA to solve UAVmissions
under complex constraints. The GA was constructed using
a representation based on the nearest neighbor search, being
each allele an Nth nearest neighbor, and uses a qualitative fit-
ness function based on the number of mission objectives and
the time permitted. Tang et al. (2011) created a nested GA
for military planning (resource allocation and task schedul-
ing) based on the robustness measure (RM) and test it with
different probabilities and durations. In Geng et al. (2013)
work, the authors designed a graph based representation for
mission planning of UAVs to carry out a series of tasks. The
flying space for these tasks was constrained with the pres-
ence of flight-prohibited zones (EPZs) and enemy radar sites.
Finally, in Savuran and Karakaya (2015), authors presented
a GA for the Capacity Mobile Depot Vehicle Routing Prob-
lem, improving the GA process using insertion local search
(ILS) and 2-opt local search.

Several criteria can be taken into account in MPPs for
multi-UAVs to measure the quality of a solution, such as the
fuel consumption, the makespan, or the cost of the mission,
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Fig. 1 Hypervolume for two optimization variables. The optimal POF
is represented in red, the solutions obtained using a specific algorithm
are represented in blue, and the hypervolume comprised between them
is represented in yellow (color figure online)

among others. Therefore, it can be interesting to optimize
simultaneously different objectives in order to get the best
solutions. This type of problems can be solved using multi-
objective genetic algorithms (MOGAs) (Zhou et al. 2011;
Zitzler et al. 2004) based on Pareto-optimization techniques.
The most known approaches are SPEA2 (Deb et al. 2002)
and NSGA-II (Zitzler et al. 2001).

Finally, there exist some metrics to evaluate the perfor-
mance of the algorithm, such as the hypervolume (Zitzler
et al. 2007) or the generational distance (Van Veldhuizen
et al. 2000). The hypervolume value of a set of solutions with
n objective variables consists of the n-dimensional domain
comprised between these solutions (the approximated POF)
and the optimal POF of the problem (see Fig. 1). When the
optimal POF is obtained, the volume comprised between the
obtained solutions and the optimal POF is 0, so is the hyper-
volume. Otherwise, the higher the hypervolume, the worse
the approximated POF.

On the other hand, it is also necessary to decide when the
algorithm has reached a good POF and stop its execution.

There exist several stopping criteria (Wagner et al. 2011) in
the literature. One of the most used consists of a comparison
function which will stop the execution if the POF remains
changeless for a number of generations.

3 Description of the multi-UAV mission planning
problem

A UAV mission is typically defined as a number n of
tasks, T = {t1, t2, ...tn}, performed by a team of m UAVs,
U = {u1, u2, ...um}, at a specific time interval. Each mis-
sion should be performed in a specific geographic zone. In
addition, in this approach, there exist a number l of GCSs,
G = {g1, g2, ..., gl}, controlling theseUAVs.A solution for a
mission planning problem should be the assignment of each
task to a specific UAV, and each UAV to a specific GCS,
ensuring that the mission can be successfully performed.

In Fig. 2, a mission scenario with 7 tasks (represented in
green), 5 UAVs, and 3GCSs is presented. As shown in figure,
the zone of the mission could contain some No Flight Zones
(NFZs), represented in red. These zones must be avoided in
the trajectories of the UAVs during the mission.

In this section, we define the different components of
a mission and the computations that must be achieved to
obtained the different times related to the assignments of
tasks. First, we will define the types and characteristics of
tasks, UAVs, and GCSs. Then, we will describe the compu-
tations that are performed in the process of task assignments.

3.1 Task description

There exists different kinds of task, such as monitoring a
zone or photographing a target in a specific point. These

Fig. 2 Mission with 7 tasks (2 of them multi-UAV), 5 UAVs, and 3 GCSs
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Table 1 Type of tasks

ID Name Description Multi-UAV Sensors needed

MON Monitoring a zone Fly circling in a zone during a specific time No Videotracking EO/IR sensor

ISAR radar

ES Escorting a path Follow a path No Thermal EO/IR sensor

SAR radar

TP Target photographing Go to a point and take a photograph No EO/IR sensor

MAP Mapping a zone Travel a zone performing a step & stare pattern Yes SAR radar

ISAR radar

MPR radar

For each task, a description is given, as well as the sensors that could be used to perform it and whether this task can be performed by several UAVs
or not

Table 2 Different UAV features considered

Feature Description Symbol

Initial position The position of the UAV at the beginning of the mission posu

Initial fuel The fuel of the UAV at the beginning of the mission f uel(u)

Available sensors The sensors contained in the UAV sensors(u)

Range The maximum distance that the UAV can traverse in the mission range(u)

Autonomy The maximum time that the UAV can stay in fly autonomy(u)

Cost The cost per hour of use of the UAV cost (u)

Max. speed The maximum speed attainable by the UAV maxspeed (u)

Max. altitude The highest altitude that the UAV can reach maxalt (u)

Max. fuel The maximum fuel capacity of the UAV tank max f uel (u)

Flight profiles (FP) One or more profiles that specify at each moment the fly features of the UAV f ps(u)

FP Speed Speed of the UAV for a flight profile speed( f pu)

FP Fuel consumption ratio Fuel consumption by hour of the UAV for a flight profile f uel Ratio( f pu)

FP Altitude Altitude of the UAV when using a route flight profile alti tude( f pu)

FP Angle Angle of the UAV when using a climb/descent flight profile angle( f pu)

tasks are performed using the sensors available by the UAVs
of the mission: electro-optical and infrared sensors (EO/IR
sensors), synthetic aperture radars (SARs), inverse synthetic
aperture radars (ISARs), and maritime patrol radars (MPRs).

Definition 1 Given a task t ∈ T , the set of sensors that can
be used to perform a task is represented as sensors(t).

The different tasks considered in this approach and the
sensor or sensors required to perform each task are repre-
sented in Table 1.

In addition, each task has a time interval, which could be
specified with a start and end time for the task, or just with
the task duration. In the last case, the start and end times will
be obtained at the planning process.

On the other hand, a mission can have some task depen-
dencies. There exist two types of task dependencies: vehicle
dependencies, which impose if two tasks must be performed
by the same or by different UAVs, and time dependencies,
which constraint the relationof the time intervals of two tasks.

These time dependencies are represented using Allen’s inter-
val algebra (Allen 1983).

Definition 2 Given two tasks t1, t2 ∈ T, vehicle dependency
sameU AV (t1, t2) constraints both tasks to be performed by
the same UAV.

Definition 3 Given two tasks t1, t2 ∈ T, vehicle dependency
di f f U AV (t1, t2) constraints both tasks to be performed by
different UAVs.

3.2 UAV description

The UAVs of a mission, u ∈ U, have some features that
must be considered when checking whether a plan is correct.
These features are presented in Table 2.

On the other hand, during the mission, the UAV will be
positioned in different points at each moment.

Definition 4 Given a UAV u ∈ U , the position of u at any
time t ∈ R is represented as pos(u, t).
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Table 3 Different types of UAVs considered and their features

Name Range (NM) Autonomy (h) Cost/h Max. speed (kt) Max. altitude (ft) Max. fuel (kg) Available sensors

URAV 1000 20 5 120 20000 500 Videotracking and thermal EO/IR sensor

MALE 5000 30 10 250 40000 2500 EO/IR sensor

MPR radar

HALE 15000 40 15 400 65000 6000 Videotracking EO/IR sensor

ISAR radar

UCAV 1500 15 25 450 35000 9000 EO/IR sensor

SAR radar

Table 4 Basic features
considered for a GCS

Feature Description Symbol

Position The position of the GCS posg

Max. number of UAVs The maximum number of UAVs that
the GCS can control

maxNum(g)

Permitted types The permitted types of UAVs that the GCS can control t ypes(g)

Coverage The within range of the GCS coverage(g)

Each type of UAV, t ype(u), will have different values for
these features. In this approach, four basic types of UAVs
have been considered. These are described in Table 3.

3.3 GCS description

To solve multi-UAV missions, it is necessary to use sev-
eral GCSs controlling the UAVs. Therefore, the problem
is multi-GCS, and it should be checked that each UAV
is controlled by an appropriate GCS. Every GCS g ∈ G
has some features to be considered that are represented in
Table 4.

In Fig. 2, the coverage is represented for each GCS in
translucent orange. It can be appreciated that GCS3 has a
low coverage, while GCS1 and GCS2 have a higher range.

3.4 Task assignment processes

In Fig. 3, an assignment of a UAV u to two tasks i and
j is represented, and the different times computed in the
process can be observed. In this assignment process, it is
necessary to compute several variables related to time, fuel
consumption, and distance traversed, in order to validate that
the task can be fulfilled at its time interval using the assigned
UAV.

The variables related to time that must be computed in this
task assignment process are:

– The departure time when the vehicle starts moving to the
task zone. In Fig. 3, it is represented as td i for task i , and
td j for task j .

– The duration of the path between the departure of the
UAV and the start of the task. In order to compute this
duration, the path flight profile used by the UAV in this
path must be set. With the speed (vi ) provided by this
profile and the distance from the UAV departure position
to the task zone, it is possible to compute the duration of
the path (du→i ).

– The start time of the task. This time could be fixed in the
definition of the task. If not, it is computed during the
assignment process. It is represented as si in Fig. 3 for
task i .

– The duration of the task (τi ). This time could be given
(e.g., in monitoring tasks) or must be computed (e.g.,
in mapping tasks). In the second case, it is necessary to
know the speed (vi ) of the UAV in the task performance.
This is given by the sensor used by the UAV to perform
the task, which provides the optimum speed and altitude
for its use.

– The end time of the task. This time could be fixed in the
definition of the task. If not, it is computed during the
assignment process. It is represented as ei in Fig. 3 for
task i .

– The duration of the loiter. When start and end times of
tasks are fixed, it may happen that the time when a UAV
finishes a task does not meet the time when the UAV
departs for the next task. The difference between these
two times is known as the loiter duration for the second
task.

– The duration of the return. In order to compute this dura-
tion, the return flight profile used by the UAV in this
return must be set. With the speed (vu) provided by this
profile and the distance from the zone of the last task of
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Fig. 3 Example of assignment of a UAV to two tasks. The path to each task, the task performance, the loiter and the return phases are represented,
as well as every time point and duration related

the UAV to its initial position, it is possible to compute
the duration of the return (d j→u).

– The return time when the UAV has returned to its initial
position. It is computed as the sum of the end time of the
last task performed by the UAV and the duration of the
return.

On the other hand, there are some variables related to fuel
consumption that must be computed in this task assignment
process. These variables are computed using the previous
durations and the fuel consumption ratio given by the flight
profile used in each case. Specifically, these variables are:
the fuel consumption of the path; the fuel consumption of
the task; the fuel consumption of the loiter; and the fuel con-
sumption of the return.

Finally, the variables related to the distance traversed are
computed as the sums of distances between the points of the
path employed in each case. These variables are: the distance
of the path; the distance of the task; the distance of the loiter;
and the distance of the return.

Definition 5 Given two points p1, p2 ∈ R
3 in 3D geo-

graphic coordinates (longitude, latitude, altitude), we define
the distance function distance(p1, p2) between them as the
3D distance in WGS84 system.

4 Modeling the MPP as a CSP

In this section, we define how theMPP can be modeled using
a CSP. First, we define which are the variables of the CSP
and their domain. Then, we explain the different constraints
considered for the MPP.

4.1 CSP variables

Looking at the assumptions explained so far in the previous
section, the variables of the CSP that we have considered are
as follows:

– Assignments (assign) of tasks to UAVs. As some tasks
could be multi-UAV, these variables are represented as a
binary array of size n×m. An assignment assign[t, u] =
1 means that task t is assigned to UAV u.

– Orders (order ), which define the order in which each
UAV performs the tasks assigned to it. These variables
are necessary when start and end times of tasks are not
fixed, and they are represented as an array of size n ×m.
Their domain is [−1..n − 1], where −1 is only assigned
when the UAV does not perform the task.

– Assignments of UAVs to GCSs (gcss). There arem vari-
ables of this type, and their domain is [−1..l − 1], where
−1 is only assigned when the UAV is not assigned to any
task.

– Path Flight Profiles ( f pPath), setting the flight profile
that the vehiclemust take for the path performance. These
variables are represented as a n × m array, and their
domains are the flight profiles of the UAV in the column:
f pPath[t, u] ∈ f ps(u).

– Return Flight Profiles ( f pReturn), similar to the previ-
ous set of variables but for the return path of each UAV.
There arem variables of this type, and their domain is the
same as the previous variables: f pReturn[u] ∈ f ps(u).

– Sensor used in the task performance (sensT ask). These
variables set the sensor of the vehicle that will be used
during the task performance. It will be necessary to con-
sider these variables just in the case that the vehicle
performing the task has several sensors that could per-
form that task. These variables are represented as a n×m
array, and their domains are the sensors of the task and
UAV available for that assignment: sensT ask[t, u] ∈
sensors(t) ∩ sensors(u).

On the other hand, there are some extra variables that
will be computed during the propagation phase of the CSP.
These variables are directly related to the variables presented
in Sect. 3.4: departure, durPath, start, durTask, end, dur-
Loiter, durReturn, returnTime, fuelPath, fuelTask, fuelLoiter,
fuelReturn, distancePath, distanceTask, distanceLoiter, and
distanceReturn.
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4.2 CSP constraints

Now, we define the different constraints of the CSP, which
consider all the specifications explained so far:

1. Sensor constraints: they check whether a UAV has
the sensor needed to perform its assigned tasks. Let
sensors(u) denote the sensors available for UAV u and
sensors(t) the sensors that could perform the task t then:

∀t ∈ T ∀u ∈ U assign[t, u] = 1 ⇒
|sensors(t) ∩ sensors(u)| > 0 (1)

2. Order constraints: they assure that the values of the order
variables are less than the number of tasks assigned to
the UAV performing that task:

∀t ∈ T ∀u ∈ U assign[t, u] = 1 ⇒
order [t, u] < � {τ ∈ T |assign[τ, u] = 1} (2)

and if two tasks are assigned to the same UAV, they have
different orders:

∀i, j ∈ T ∀u ∈ U assign[i, u] = assign[ j, u] = 1 ⇒
order [i, u] 	= order [ j, u] (3)

3. GCS constraints: they assure that the GCSs assignments
are correct. First, it is necessary to assure that the UAVs
assigned to the GCS are of a type supported by that
GCS (both in initial assignment and during tasks per-
formance):

∀u ∈ U ∀g ∈ G gcss[u] = g ⇒
t ype(u) ⊂ t ypes(g) (4)

Then, a constraint assures that the maximum number of
UAVs that a GCS can handle is not overpassed at any
moment:

∀g ∈ G � {u ∈ U |gcss[u] = g} < maxNum(g) (5)

Finally, it is necessary to check that GCS can cover the
UAV during the mission:

∀u ∈ U ∀g ∈ G gcss[u] = g ⇒ ∀t ∈ R

distance(pos(u, t), posg) ≤ coverage(g) (6)

4. Temporal constraints: they assure the consistency of all
the time variables considered. First, it is necessary to
assure that the start time of the task equals the sum of the

departure time and the duration for the path:

∀t ∈ T ∀u ∈ U assign[t, u] = 1 ⇒
departure[t, u] + dur Path[t, u] = start[t, u] (7)

and that end time is the sum of the start time and the
duration of the task:

∀t ∈ T ∀u ∈ U assign[t, u] = 1 ⇒
start[t, u] + durTask[t, u] = end[t, u] (8)

Then, the duration of the path is computed as the distance
traversed in the path divided by the speed given by the
path flight profile:

∀t ∈ T ∀u ∈ U assign[t, u] = 1 ⇒
dur Path[t, u] = distancePath[t, u]

speed( f pPath[t, u]) (9)

If tasks have fixed start and end times, then it is neces-
sary to compute the duration of the loiter as the difference
between the end of a task and the departure for its con-
secutive task:

∀i, j ∈ T ∀u ∈ U assign[i, u] = assign[ j, u] = 1

∧ order [i, u] = order [ j, u] − 1 ⇒
dur Loiter [ j, u] = departure[ j, u] − end[i, u]

(10)

On the other hand, the duration of the return is computed
as the distance traversed in the return path divided by the
speed given by the return flight profile:

∀u ∈ U dur Return[u] = distanceReturn[u]
speed( f pReturn[u])

(11)

Once we have computed the return path duration, we can
compute the return time as the sum of the end of the last
task performed by the UAV and this return duration:

∀t ∈ T ∀u ∈ U assign[t, u] = 1

∧ order [t, u] = � {τ ∈ T |assign[τ, u] = 1} − 1 ⇒
returnT ime[u] = end[t, u] − dur Return[u] (12)

Finally, it is necessary to assure that two tasks that collide
in time are never assigned to the same UAV:

∀i, j ∈ T ∀u ∈ U assign[i, u] = assign[ j, u] = 1

∧ order [i, u] < order [ j, u] ⇒
end[i, u] ≤ departure[ j, u] (13)
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5. Dependency Constraints: these constraints are related to
the time and vehicle dependencies mentioned before.
The time dependency constraints, based on Allen’s inter-
val algebra (Allen 1983), for each pair of tasks i and
j , assuming ∀i, j ∈ T ∀u ∈ U assign[i, u] =
assign[ j, u] = 1, are as follow:

i < j ⇒ end[i, u] ≤ start[ j, u] (14)

i m j ⇒ end[i, u] = start[ j, u] (15)

i o j ⇒

⎧
⎪⎨

⎪⎩

start[i, u] ≤ start[ j, u]
end[i, u] ≥ start[ j, u]
end[i, u] ≤ end[ j, u]

(16)

i s j ⇒
{
start[i, u] = start[ j, u]
end[i, u] ≤ end[ j, u] (17)

i d j ⇒
{
start[i, u] ≥ start[ j, u]
end[i, u] ≤ end[ j, u] (18)

i f j ⇒
{
start[i, u] ≥ start[ j, u]
end[i, u] = end[ j, u] (19)

i = j ⇒
{
start[i, u] = start[ j, u]
end[i, u] = end[ j, u] (20)

On the other hand, vehicle dependencies imply the fol-
lowing constraints:

∀i, j ∈ T sameU AV (i, j) ⇒
∀u ∈ U assign[i, u] = assign[ j, u]

(21)

∀i, j ∈ T di f f U AV (i, j) ⇒
∀u ∈ U assign[i, u] 	= assign[ j, u] (22)

6. Autonomy constraints: they assure that the total flight
time for each vehicle is less than its autonomy:

∀u ∈ U f lightT ime[u]
=

∑

t∈T
assign[t]=u

(dur Path[t]

+ durTask[t] + dur Loiter [u]) + dur Return[u]
< autonomy(u) (23)

7. Distance constraints: they assure that the distance tra-
versed by each vehicle is less than its range:

∀u ∈ U distance[u]
=

∑

t∈T
assign[t]=u

(distancePath[t]

+ distanceT ask[t] + distanceLoiter [u])
+ distanceReturn[u] < range(u) (24)

To compute these distances, we have used Geograph-
icLb1 for the computation of distance and points in
geographic coordinates; and Theta* (Nash et al. 2007) to
perform a path between these points avoiding No Flight
Zones (NFZ) and terrain obstacles. The elevation of the
terrain has been read from DTED maps using GDAL.2

8. Fuel constraints: they assure that the fuel consumed by
each vehicle is less than its initial fuel f uelu :

∀u ∈ U f uel[u] =
∑

t∈T
assign[t]=u

( f uel Path[t] + f uelT ask[t]

+ f uelLoiter [t]) + f uel Return[u]
< f uel(u) (25)

Each one of these fuel consumptions is computed as the
product of its associated duration and fuel consumption
ratio. For example, the fuel consumption for the path is
computed multiplying the fuel consumption ratio given
by the path flight profile and the duration of the path:

∀t ∈ T ∀u ∈ U assign[t, u] = 1 ⇒ f uel Path[t, u]
= dur Path[t, u] × f uel Ratio( f pPath[t, u]) (26)

5 MOGA-CSP algorithm for multi-UAV mission
planning problems

Given the large amount of solutions that the problem can
generate and the huge amount of constraints involved in the
search of solutions, we have decided to use a hybrid approach
based on MOGAs and CSPs to solve MPPs. In this new
approach, the constraints of the problem have been applied
as penalty function in the evaluation phase of the genetic
algorithm. This section describes this algorithm, including
the encoding, the fitness function designed, and the genetic
operators implemented.

5.1 Encoding

To encode the multi-UAVMPP, a representation based on six
different alleles has been designed (see Fig. 4). Each allele

1 http://geographiclib.sourceforge.net/.
2 http://www.gdal.org/.
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Fig. 4 Example of an individual that represents a possible solution for a problem with 5 tasks, 3 UAVs, and 2 GCSs

Table 5 Optimization variables used in the fitness function by MOGA-CSP algorithm

Variable Description Formula

Nuavs The number of UAVs used in the mission � {u ∈ U |∃t ∈ T assign[t] = u}
totalFlightT ime The total flight time of all the UAVs during the mission

∑
u∈U f lightT ime[u]

totalFuel The total fuel consumed by all the UAVs during the
mission

∑
u∈U f uelConsumed[u]

totalDistance The total distance traversed by all the UAVs in the mission
∑

u∈U distance[u]
totalCost The total cost of the mission, computed as the sum of

the individual cost of each UAV

∑
u∈U cost (u) × f lightT ime[u]

makespan The time when the mission ends (all UAVs have returned) maxu∈U returnT ime[u]

is used to encode the features that have been described in
previous sections representing a complete solution that will
be optimized by MOGA algorithm. Next, a short description
for each allele is given:

1. UAVs assigned to each task. If the Ti task is multi-UAV,
then this cell contains a vector representing the different
UAVs assigned to this task.

2. Permutation of the task orders. These values indicate the
absolute order of the tasks. It is only used if there are
several tasks assigned to the sameUAV and some of them
do not have the start and end times fixed.

3. GCSs controlling each UAV.
4. Flight profiles used for each UAV to each assigned task.

As in the first allele, some of the cells could contain a
vector if the corresponding task is performed by several
UAVs.

5. Sensors used for the task performance by each UAV.
6. Flight Profiles used by each UAV to return to the base.

An example of this representation is shown in Fig. 4.
Firstly, this figure shows a mission with 5 tasks. Assuming
that there is not any task with start and end time fixed, it is
necessary to use the permutation allele for the task orders
(2). Using together, this allele and the allele of UAV assign-
ments (1), we have that UAV 1 performs tasks 1, 4, and 5 in
this order; UAV 2 performs tasks 2, 1, 4, and 3; and UAV 3
performs tasks 1, 4, and 3. On the other hand, according to
allele of GCCs information (3), we have that UAVs 1 and 3
are controlled by GCS 1, while UAV2 is controlled by GCS
2. Furthermore, in the allele of Flight profiles per task (4), we

can see that UAV 1 uses minimum consumption flight profile
for all its assigned tasks; UAV 2 uses minimum consumption
profile for task 1, and maximum speed profile for the rest
of tasks, and UAV 3 uses minimum consumption profile for
task 3, while maximum speed profile for the rest of tasks.
Regarding the sensors used (5), it can be seen that task 1 is
performed by UAV 1 using MPR (mR) sensor, while UAV 2
uses an ISAR (iR), and UAV 3 uses a SAR (sR); task 2 is per-
formed using EO/IR sensor (eiS), etc. Finally, the last allele
(6) represents that UAVs 1 and 2 use minimum consumption
profile for their return path, while UAV 3 uses maximum
speed profile.

A key point in this representation is that only a valid sensor
to perform the task assigned could be used for the allele of
sensors used per task. With this, the algorithm is avoiding
some invalid solutions due to sensor constraints.

5.2 Fitness function

Evaluation is computed in terms of a fitness function com-
posed by two check steps. First, for a given solution, it
handles that all constraints are fulfilled. If not, it acts as
a penalty function, giving the solution the worst possible
value so it would not be evolved in future generations. If all
constraints are fulfilled, the fitness function works as a multi-
objective function minimizing the objectives of the problem.
For this purpose, we have considered the optimization vari-
ables described in Table 5.

The multi-objective fitness function compares the solu-
tion evaluated with the stored solutions in order to obtain
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the Pareto-optimality frontier (POF) based on the NSGA-II
approach (Deb et al. 2002).

5.3 Algorithm

In this new approach, as shown in Algorithm 1, after eval-
uating the individuals of the population with the fitness
previously explained (Line 8), a N elitist selection is per-
formed. It means that a number N of best individuals in the
population is retained (Line 9). Then, a roulette wheel selec-
tion over these N individuals (Line 12) selects those that will
be applied the genetic operators.

Algorithm 1: Hybrid MOGA-CSP algorithm for Mis-
sion Planning Problems

Input: A mission M = (T,U,G) where T is a set of tasks to
perform denoted by {t1, . . . , tn}, U is a set of UAVs
denoted by {u1, . . . , um} and G is a set of GCSs denoted
by {g1, . . . , gl }. And positive numbers generations,
population, μ, λ,mutprobabili t y and stopGeneration

Output: POF obtained with best solutions
1 S ← randomly generated set of population of p chromosomes
with 6 alleles representing the tasks assignments to UAVs, the
orders, the UAVs assignments to GCSs, the path flight profiles,
the sensors used and the return flight profiles

2 i ← 1
3 convergence ← 0
4 pof ← createPOF(S)

5 while i ≤ generations ∧ convergence < stopGenerations do
6 F ← ∅
7 for j ← 1 to p do
8 F ← Fitness(S j )

9 Sbest ← Select N Best (μ, F)

10 newS ← Sbest
11 for j ← μ to λ do
12 p1, p2 ← RouleWheelSelection(Sbest)
13 i1, i2 ← Crossover(p1, p2)
14 i1 ← Mutation(i1,mutprobabili t y)
15 i2 ← Mutation(i2,mutprobabili t y)
16 newS ← newS ∪ {i1, i2}
17 NSGA2UpdatePopulation(S, newS)

18 newpof ← createPOF(S)

19 if newpof = pof then
20 convergence ← convergence + 1

21 pof = newpof
22 i ← i + 1

23 return pof

Next, we use a proper crossover operator (Line 13) to
combine the chromosomes of each pair of parents to gener-
ate a new pair of children. This operator consists of a specific
crossover operation for each of the alleles of the represen-
tation. The first allele performs a 2-point crossover, and the
same cross points used for this allele are reused for the fourth
and fifth allele in order to maintain the size for multi-UAV
tasks and the consistency of the sensors used. On the other

hand, in the second allele, as it is a permutation, is applied
a partially matched crossover (PMX). This passes a chunk
of values from one parent to the other and then performs a
replacement of the invalid values of the new child based on
its previous parent. Finally, in the third and sixth alleles are
applied another 2-point crossover (with different points than
the previous). Figure 5 shows an example of this crossover
operation,where the first, fourth, andfifth allele have selected
points 2 and 4 for the 2-point crossover. In the second allele,
a chunk composed of tasks T2..T3 has been selected for the
PMX crossover, and finally, the third and sixth allele have
selected points 1 and 2 for the 2-point crossover.

Once the new pair of individuals has been generated from
crossover operation, a mutation operator (Line 14) will be
applied to them depending on a probability Pm (usually low,
∼ 5%). This genetic operator helps to avoid that the obtained
solutions stagnate at local minimums. This mutation opera-
tor is designed to perform a uniform mutation over the same
genes for the first, fourth, and fifth allele in order to main-
tain the size of multi-UAV tasks and avoid invalid solutions
accomplishing sensor constraints. On the other hand, the sec-
ond allele is applied an insert mutation, which will select two
random positions from the permutation and move the second
one next to the first one. Finally, the third and sixth allele are
updated using another uniform mutation. Figure 6 presents
an example of this mutation, where T4 has been mutated for
the first, fourth, and fifth allele, the insertmutation hasmoved
the value of T4 next to T1, and the third and sixth allele have
mutated the value of U1.

Finally, after the population is updated by NSGA-II (Line
16), the stopping criteria designed for this algorithm compare
the POF obtained so far in each generation with the POF
from the previous generation (Line 18). If this POF remains
unchangeable for a number of generations, then the algorithm
will stop and return this POF.

6 Experiments

In this section, we explain the experiments carried out to test
the functionality of the newMOGA-CSP approach for MPP.
For this purpose, we have designed several missions with
different configurations of tasks, UAVs, GCSs, and NFZs
in order to check the different characteristics of the model.
These datasets are described in Table 6 which shows the
characteristics of the model that are checked for each one.

The first experiment shows the results obtained when the
different objectives are optimized individually and by pairs,
and compare it with their optimization all together. From
this experiment, we will obtain which variables are the most
appropriate to use for this problem for the MOGA-CSP.

Finally, all datasets are tested using the objective variables
obtained in the previous experiment. In order to evaluate
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Fig. 5 Example of crossover of two parents with 5 tasks, 3 UAVs, and 2 GCSs. Each allele is performed a different type of crossover: UAV, FpPath,
and SensUsed are performed a 2-point crossover; Order is applied a PMX crossover, and GCS and FpReturn are applied another 2-point crossover

Fig. 6 Example of mutation for an individual with 5 tasks, 3 UAVs, and 2 GCSs. Each allele is performed a different type of mutation: UAV,
FpPath, and SensUsed are performed an uniform; Order is applied an insert mutation, and GCS and FpReturn are applied another uniform mutation

the performance of the algorithm, the hypervolume metric
is calculated. To apply this metric, it is necessary to com-
pute the optimal POF using the MOBB algorithm for each
dataset. For this purpose, MOBB algorithm provided from
Rodriguez-Fernandez et. al. approach (2015a) is applied.
Then, the solutions returned by the MOGA-CSP are com-
pared with the MOBB results to analyze their optimality.

6.1 Experimental setup

Table 7 shows the parameters used throughout the experi-
mental phase. μ + λ represents the selection criteria used,
where λ is the number of offspring (population size), and μ

the elitism size (i.e., the number of the best parents that sur-
vive from current generation to the next). Each problem is
run 10 times, and the best of these 10 executions is selected.

6.2 Comparative assessment of objective variables

There are several parameters which can be used to mea-
sure the quality of a solution, such as the fuel consumption,
the makespan, and the cost of the mission. As shown in
section 5.2, this new algorithm considers 6 different opti-
mization variables: number of UAVs, total flight time, total
fuel consumption, total distance traversed, total cost, and the
makespan. A comparative assessment of these variables is
carried out in order to tune up the fitness function designed
for the new algorithm. For this purpose, the mission from
dataset 1 has been chosen to study the behavior of the algo-
rithm according to the variables which are being optimized.

In these experiments, the average of each optimization
variable is computed when obtaining several solutions in an
execution. Then, in order to compare different executions (of
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Table 6 Features of the different datasets designed

Dataset Tasks UAVs GCSs NFZs Task times

Id. Description Fixed Unfixed Deps.

1 Simple mission with fixed times 2 MON 1 HALE 1 0 6 0 0

1 MALE

2 ES 1 UCAV

2 TP 1 URAV

2 Path avoidance 2 MON 1 HALE 1 1 6 0 0

1 MALE

2 ES 1 UCAV

2 TP 1 URAV

3 Multi-UAV tasks 3 MAP 1 HALE 1 0 0 3 0

1 MALE

4a Multi-GCS with fixed times 2 MON 1 HALE 2 2 6 0 0

1 MALE

2 ES 1 UCAV

2 TP 2 URAV

4b Multi-GCS with half fixed times 2 MON 1 HALE 2 2 3 3 0

1 MALE

2 ES 1 UCAV

2 TP 2 URAV

4c Multi-GCS with half fixed times and dependencies 2 MON 1 HALE 2 2 3 3 1

1 MALE

2 ES 1 UCAV

2 TP 2 URAV

4d Multi-GCS with unfixed times 2 MON 1 HALE 2 2 0 6 0

1 MALE

2 ES 1 UCAV

2 TP 2 URAV

4e Multi-GCS with unfixed times and dependencies 2 MON 1 HALE 2 2 0 6 3

1 MALE

2 ES 1 UCAV

2 TP 2 URAV

5 Complex mission with all assets at a time 2 MON 3 3 4 3 1

2 MALE

1 ES 1 UCAV

2 TP 2 URAV

2 MAP

different optimization variables), aweighted average over the
values of the optimization variables is employed as rating
value:

Rating(sol) =
∑

v∈OptVar

v(sol) − min(v)

max(v) − min(v)
(27)

First, each variable is optimized individually. The results
obtained for each optimization variable are shown in Table 8.
Analyzing the results, it can be noticed that there are many
different optimal solutions for the variables number of

Table 7 Experimental setup for the MOGA-CSP

Mutation probability 0.1

Generations 300

Population size 1000

Selection criteria (μ + λ) 100 + 1000

Stopping criteria generations 10

UAVs and makespan. In fact, none of them got to converge
because new solutions were still being obtained at generation
300.
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Table 8 Comparative assessment of optimization variables using each variable individually

Variable N. Sol. N. Gen. UAVs Fuel (L) F. Time (h) Dist. (NM) Cost Mak. (h) Rating

Distance 1 13 4 754.12 3.02 939.09 47.66 3.64 1.611

F. Time 4 14 4 771.08 3.02 949.74 47.66 3.64 2.031

Cost 4 14 4 771.08 3.02 949.74 47.66 3.64 2.031

Fuel 1 13 4 751.57 3.24 939.17 49.69 3.67 2.828

Makespan 1000 300 3 810.06 3.21 1021.35 52.71 3.59 3.355

UAVs 1000 300 3 798.44 3.52 1018.49 52.84 3.64 4.332

The values of the optimization variables presented here are the average of their values in all the solutions obtained. The best result for each
optimization variable is marked in bold

Regarding the rest of variables, it can be seen that optimiz-
ing the cost or flight time gave the same results. However, the
fuel consumption and the distance traversed gave different
results. In the case of the distance, it can be appreciated that
it also got the best optimizationvalue for cost, andnearly opti-
mal value for flight time (with a difference of 10−6 respect to
the best value). In fact, optimizing the distance obtained the
best rating, so it is a potential candidate to use in the fitness
function of the MOGA-CSP approach.

Afterward, the MOGA-CSP algorithm has been run opti-
mizing each pair of the previous variables. The results
obtained are shown in Table 9.

In these results, it is appreciable that the two best combina-
tions obtained according to the rating (i.e., the optimization
of the distance and the flight time, and the distance and the
cost) obtained good results for four of the variables (the cost,
the distance, the fuel, and the flight time), but poor results
for the rest (the makespan and the number of UAVs). On the
other hand, the third and fourth best combinations accord-
ing to the rating (i.e., the optimization of the distance and
the makespan, and the distance and the number of UAVs)
obtained medium results for all the variables.

So, in order to find good solutions optimizing all the vari-
ables, the variables selected to optimize are the distance and
the makespan, which gave medium values for all the opti-
mization variables. Other possibility would have been using
the number of UAVs instead of the makespan, but as the
makespan is a float value, it will be better for optimizing
problems with very similar solutions (e.g., all the best solu-
tions when optimizing any variable uses 1 UAV because the
mission can be performed with just one and other available
UAVs are far away from the tasks of the mission).

Finally, the MOGA-CSP algorithm is executed with this
problem trying to optimize all the six objective variables, and
the results obtained are shown in Table 10. As can be seen,
the average obtained here for all objective variables are worst
than the ones obtained in the previously proposed combina-
tion of distance and makespan, as well as the rating value.
This corroborates the assumption of selecting this combina-

tion, which will be used in the fitness of the MOGA-CSP in
the next experiment when solving the different datasets.

6.3 Evaluation of the algorithm results

Once the fitness function of the algorithm has been tuned
up, and the better optimization variables (distance and
makespan) have been selected, the MOGA-CSP algorithm
is tested using them for each dataset described in Table
6. To evaluate the results obtained, the real POF of each
dataset is computed usingMOBB algorithm. Then, it is com-
pared with the solutions provided by the new MOGA-CSP
approach using the hypervolume metric. As was mentioned
in Sect. 2.3, when the hypervolume is 0, the obtained solu-
tions are optimal. On the other hand, as this value increases,
the result obtained distances from the optimal result. The
tests have been run in a Haswell 2.3 GHz with 20 cores and
256GB DDR4 RAM. Table 11 shows the results obtained
from this experiment. This table presents the hypervolumes
obtained, the number of generations needed to converge for
each dataset, and the runtime spent for each execution.

As can be appreciated, the datasets with 1 GCS (from 1 to
3) converge very fast, independently of the NFZs needed to
avoid or the multi-UAV tasks. On the other hand, the datasets
with 2 GCS (from 4 to 5) converge near generation 50. We
observed that it is easier to obtain convergence for the prob-
lems with more fixed times tasks and harder for the problems
with more unfixed tasks. The dataset 4d did not get a hyper-
volume so good as the others datasets. Figure 7 represents the
distance vs. makespan POFs for the solutions obtained with
both algorithms (MOGA-CSP and MOBB) in this problem.
There, it is appreciable that theMOGA-CSP approach did not
get to obtain the best solution optimizing the distance (left
of the POF), and this made the hypervolume (represented in
yellow) higher in this problem.

Finally, the complex solution with 7 tasks, 5 UAVs, and
3 GCSs, i.e., mission 5, got to converge at generation 122,
and its hypervolume resulted quite good, very close to the
optimum POF.
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Table 9 Comparative assessment of optimization variables using each pair of variables

Variables N. Sol. N. Gen. UAVs Fuel (L) F. Time (h) Dist. (NM) Cost Mak. (h) Rating

Distance 3 16 4 757.57 3.02 939.32 47.66 3.64 1.396

F. Time

Distance 4 15 4 759.39 3.02 941.50 47.66 3.64 1.450

Cost

Distance 2 15 3.5 769.57 3.10 965.57 49.48 3.61 1.681

Makespan

Distance 2 17 3.5 769.57 3.10 965.57 49.48 3.61 1.681

UAVs

F. Time 4 15 4 771.08 3.02 949.74 47.66 3.64 1.729

Cost

Cost 13 14 4 753.50 3.11 939.17 48.47 3.66 1.741

Fuel

Distance 20 14 4 752.67 3.12 939.12 48.50 3.66 1.745

Fuel

F. Time 12 15 4 753.48 3.11 939.18 48.58 3.66 1.784

Fuel

Fuel 4 15 3.5 767.52 3.25 965.62 50.76 3.63 2.179

Makespan

Cost 9 18 3.11 805.22 3.16 1004.30 50.89 3.59 2.529

Makespan

Cost 9 16 3.11 805.22 3.16 1004.30 50.89 3.59 2.529

UAVs

Makespan 1000 300 3 808.92 3.21 1020.69 52.65 3.58 3.046

UAVs

F. Time 18 16 3.11 815.64 3.12 1027.05 51.97 3.59 3.121

Makespan

F. Time 18 20 3.11 815.64 3.12 1027.05 51.97 3.59 3.121

UAVs

Fuel 2 14 3.5 757.53 3.87 977.82 51.96 3.75 3.879

UAVs

The values of the optimization variables presented here are the average of their values in all the solutions obtained. The best result for each
optimization variable is marked in bold

Table 10 Comparative
assessment of optimization
variables using all variables

Variable N. Sol. N. Gen. UAVs Fuel (L) F. Time (h) Dist. (NM) Cost Mak. (h) Rating

All 46 20 3.52 772.76 3.15 970.13 50.13 3.62 2.077

The values of the optimization variables presented here are the average of their values in all the solutions
obtained

In conclusion, theMOGA-CSPapproachwith the distance
and the makespan used as optimization variables approxi-
mates quite well the POF in most cases. As the problem
becomes more complex, specially in number of GCSs, the
algorithm needs more generations to converge.

7 Discussion

In this paper, the multi-UAV mission planning problem has
been presented, with a special consideration as a multi-GCS

problem. This problem involves a complex characteristic
management during the process of task assignment, such as
task dependencies, NFZ avoidance, and time computations.

The problem has been modeled as a temporal constraint
satisfaction problem, where six sets of variables have been
considered for the CSP: the task assignments, the orders, the
GCS assignments, the path flight profiles, the return flight
profiles, and the sensors used. On the other hand, a wide
range of constraints have been presented, including GCS
constraints, temporal constraints, dependency constraints,
autonomy constraints, or distance constraints among others.
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Table 11 Hypervolume, number of generations needed for conver-
gence and runtime of the MOGA-CSP solver for the 9 MPP datasets
provided

Problem Hypervolume Generations Runtime

1 0 15 3min 5s

2 0 14 4min 33s

3 0 12 4min 12s

4a 0 39 11min 56s

4b 0 43 13min 27s

4c 0 56 15min 42s

4d 0.99 57 16min 32s

4e 0 62 18min 13s

5 0.01 122 26min 43s

Fig. 7 Hypervolume for the solutions obtainedwithMOGA-CSP opti-
mizing the distance and the makespan in dataset 4d

Finally, a hybrid MOGA-CSP approach has been pre-
sented for solving the MPP problem. This approach uses
a fitness function divided in two phases. Firstly, a penalty
function uses the CSP to check whether the solutions are
valid. Then, a multi-objective function tries to approach the
Pareto-optimal frontier of the problem minimizing the opti-
mization variables (number of UAVs employed, makespan
of the mission, total fuel consumption, etc.). In addition, the
crossover and mutation operators, and also the stopping cri-
teria have been specifically designed and implemented for
this approach.

The experiments presented have been performed using
varied datasets of different complexity. First, a comparative
assessment of the optimization variables has been performed
in order to tune up the fitness function designed. The results
show that the best combination in order to obtain good
results for all the variables is optimizing the distance and
the makespan.

Afterward, the MOGA-CSP approach using the previous
combination of variables in the fitness function has been
tested with all the datasets designed. Analyzing the experi-
mental results, it can be seen that the MOGA-CSP algorithm
obtains good results for all the proposed datasets, converg-

ing to the optimal POF in most of them. Nevertheless, as the
problems become more complex, the MOGA-CSP approach
needs more generations to reach an optimal or near-optimal
solution. In order to outperform these results, it can be inter-
esting to extend the new approach applying some constraints
in the operators of the GA in order to avoid some invalid
solutions before the CSP check.

In futureworks, the approachwill be compared using other
multi-objective algorithms, such as SPEA2, in order to find
the best performing combination for this approach. In order
to find an optimum configuration, a meta-evolutionary algo-
rithm will be implemented and used to optimize the different
parameters of the approach. On the other hand, this prob-
lem will be extended adding a decision-making layer that
will interact with a UAV mission operator. This new feature
will allow the operator to decide which variables must be
optimized and which of the obtained solutions are the most
suitable. Finally, this work will be used as a starting point
for a further real-time approach, which will be developed in
order to support onboard replanning.
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