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Abstract Niching is the technique of finding and preserving
multiple stable niches, or favorable parts of the solution space
possibly around multiple optima, for the purpose of solv-
ing multimodal optimization problems. Chaos optimization
algorithm (COA) is one of the global optimization tech-
niques, but as far as we know, a niching variant of COA
has not been developed . In this paper, a novel niching chaos
optimization algorithm (NCOA) is proposed. The circle map
with a proper parameter setting is employed considering the
fact that the performance of COA is affected by the chaotic
map. In order to achieve niching, NCOAutilizes several tech-
niques including simultaneously contracted multiple search
scopes, deterministic crowding and clearing. The effects
of some components and parameters of NCOA are inves-
tigated through numerical experiments. Comparison with
other state-of-the-art multimodal optimization algorithms
demonstrates the competitiveness of the proposed NCOA.
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1 Introduction

Many practical scientific and engineering problems could be
considered as multimodal optimization problems. Concern-
ing these problems, it is often desirable to simultaneouslyfind
all or most of the multiple global and local optima instead
of a single optimum and then to choose the most appropriate
solution on the basis of practical issues.

Niching (Yu and Suganthan 2010) refers to the technique
of finding and preserving multiple stable niches, or favorable
parts of the solution space possibly around multiple optima,
with a view of preventing convergence to a single optimum.
Many niching methods have been developed in last two
decades, including crowding (Sareni and Krähenbühl 1998),
fitness sharing (Miller and Shaw 1996), speciation (Li et al.
2002), clearing (Pétrowski 1996), ABSE (Xu et al. 2015).
Moreover,many niching evolutionary algorithms (EAs)were
developed, such as species-based PSO (Parrott and Li 2006),
FER-PSO (Li 2007), LIPS (Qu et al. 2013), lbest PSO with
a ring topology (Li 2010), FER-DE (Liang et al. 2014),
NGKA (Sheng et al. 2010), Niching GSA (Yazdani et al.
2014), TSC (Stoean et al. 2010). But the issues, such as large
size of population, low convergence speed and low success
rate, still remain challenges for these niching algorithms.

Chaos optimization algorithm (COA) (Li and Jiang 1998)
is one of the global optimization techniques, which utilizes
chaotic numerical sequences. COA has some positive fea-
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tures such as easy implementation, short execution time and
robust mechanism of escaping from the local optimum (Yuan
et al. 2012). The effects of chaotic maps were investigated
by Yang et al. (2007) and Tavazoei and Haeri (2007). To
improve the performance of COA, parallel COA was pro-
posed (Yuan et al. 2015) and hybrid approaches with other
search techniques were developed (Yuan et al. 2012, 2014).
But, as far as we know, a niching variant of COA has not
been developed .

In this paper, a niching chaos optimization algorithm
(NCOA) is proposed for solving multimodal optimization
problems. In viewof the fact that the computational efficiency
of COA is affected by the chaotic maps, NCOA employs
the circle map with a proper parameter setting rather than
the logistic map that commonly used in COA. NCOA is a
population-based parallel COA, and in order to achieve nich-
ing, several techniques including simultaneously contracted
multiple search scopes, deterministic crowding (Sareni and
Krähenbühl 1998) and clearing (Pétrowski 1996) are uti-
lized in NCOA. The effects of some components of NCOA
are investigated through numerical experiments, and reason-
able parameter settings are recommended. The performance
of NCOA is demonstrated by comparing with seven other
state-of-the-art niching algorithmson a set of commonly used
multimodal optimization problems. The experimental results
claim that NCOA has competitive capability (small size of
population, high convergence speed and high success rate)
for multimodal optimization.

The rest of the paper is organized as follows: Sect. 2 briefly
reviews the previous researches on COAs with a viewpoint
of developing a niching variant of COA. Then the proposed
NCOA approach is introduced in Sect. 3. The performance of
NCOA is analyzed through numerical experiments in Sect. 4.
Finally, the paper is concluded in Sect. 5.

2 Chaos optimization algorithms (COAs)

Consider the optimization problem for (multimodal) objec-
tive function with boundary constraints:

max f (x) = f (x1, x2, . . . , xn)

s.t. lbi ≤ xi ≤ ubi (i = 1, 2, . . . , n) (1)

where f is a objective function, x = (x1, x2, . . . , xn)T ∈ R
n

is a vector in the n-dimensional search space, and LB =
(lb1, lb2, . . . , lbn) and UB = (ub1, ub2, . . . , ubn) are lower
and upper boundaries of the decision variables, respectively.

Chaos optimization algorithm (COA) is a global optimiza-
tion technique,which utilizes numerical sequences generated
by means of chaotic maps. The pseudo-code of COA (Yang
et al. 2007; Tavazoei and Haeri 2007) can be illustrated as
Algorithm 1. In that, zk, k = 0, 1, 2, . . . is a n-dimensional

Algorithm 1 COA

z0 ← RAND(), f ∗ ← − inf, k ← 0
while (!Stopping condition) do
xk ← LinearMap(zk)
if f (xk) > f ∗ then
x∗ ← xk , f ∗ ← f (xk)

end if
zk+1 ← ChaosMap(zk), k ← k + 1

end while
return x∗, f ∗

chaos variable, xk, k = 0, 1, 2, . . . is a feasible solution,
ChaosMap is a chaos map, and LinearMap is a linear
map that maps chaos variables into search space.

From the first article (Li and Jiang 1998) on COA was
reported, the research on COAs has been advanced in three
branches.

First, the effects of chaos maps on the performance of
COA have been investigated. The first version of COA used
the logistic map (May 1976) defined as Eq. (2).

zk+1 = μzk(1 − zk), zk ∈ (0, 1), 0 < μ ≤ 4 (2)

where μ is a control parameter. When μ = 4, numerical
sequence generated by the logistic map is chaotic, and its
probability density function (PDF) ρ(z) and the Lyapunov
exponent (LE) can be derived as Eqs. (3) and (4), respec-
tively:

ρ(z) = 1

π
√
z(1 − z)

(3)

LE = lim
n→∞

1

n

n∑

k=0

ln | f ′(zk)| = 0.6931 (4)

The PDF of chaotic sequences of the logistic map is shown
in Fig. 1a, and a chaotic sequence of the logistic map in two-
dimensional space (z1, z2) is shown in Fig. 1b.

Yang et al. (2007) and Chen et al. (2011) noticed that the
PDF of the logistic map rapidly increases near two ends of
the interval (0, 1), and so numerous searches are close to
the two ends. This may reduce the computational efficiency
and global searching capability. Therefore, they proposed
the improved logistic map to flatten the PDF of the logistic
map. Tavazoei and Haeri (2007) and Yang et al. (2014) intro-
duced several chaos maps that can be used as search pattern
in COAs and compared them based on numerical simulation.
They also recommended to adopt an appropriate chaotic map
generating chaotic sequences with a uniform or nearly uni-
form PDF and a large LE such as the circle map. But they
have not discussed the effects of control parameters of the
circle map.
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Fig. 1 The PDF and the chaos
sequence of the logistic map. a
The PDF of the logistic map. b
The chaos sequence of the
logistic map

(a) (b)

Second, parallel version of COAwas proposed. An essen-
tial feature of chaotic sequence is the sensitivity on initial
condition, that is, a small perturbation on the starting value
leads to vastly different future behavior. Therefore, COAs’
performance is usually affected by starting values. To over-
come this limitation,Yuan et al. (2012, 2014, 2015) proposed
mutative-scale parallel COA (MPCOA). In MPCOA, a pop-
ulation (a set of feasible solutions) (Pop) is reserved and
updated:

Pop = [
x∗
1, . . . , x

∗
p, . . . , x

∗
N

] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

x∗
11 · · · x∗

1p · · · x∗
1N

...
. . .

...
. . .

...

x∗
i1 · · · x∗

i p · · · x∗
i N

...
. . .

...
. . .

...

x∗
n1 . . . x∗

np · · · x∗
nN

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(5)

where i = {1, 2, . . . , n} represents the index of decision
variable of the objective function and p = {1, 2, · · · , N }
represents the index of individual in the population. The pth
individual (feasible solution) x∗

p is represented by:

x∗
p =

[
x∗
1p, . . . , x

∗
i p, . . . , x

∗
np

]T
, p = 1, 2, . . . , N (6)

The objective function is evaluated on each individual and
represented by:

F∗ = [
f ∗
1 , . . . , f ∗

p , . . . , f ∗
N

]

= [
f (x∗

1), . . . , f (x∗
p), . . . , f (x∗

N )
]

(7)

The best individual is represented as:

x∗ = x∗
q , q = arg max

1≤p≤N
f ∗
p (8)

The search scopes of all of the individuals are equal and
represented as Eq. (9).

LB′ = (lb′
1, . . . , lb

′
i , . . . , lb

′
n)

T

UB′ = (ub′
1, . . . , ub

′
i , . . . , ub

′
n)

T (9)

where lb′
i and ub

′
i are the lower and upper boundaries of the

i th decision variable and represented as Eq. (10).

lb′
i = max{x∗

i − Φ(ubi − lbi ), lbi }
ub′

i = min{x∗
i + Φ(ubi − lbi ), ubi }, i = 1, 2, . . . , n (10)

where x∗
i is a i th decision variable of the best individual x∗

andΦ is a parameter called the contraction factor. InEq. (10),
to avoid search scopes exceeding the boundaries of the orig-
inal search space, they are restricted to those boundaries.

The contraction factor Φ is gradually reduced so as to
improve the accuracy of solutions, and several contraction
patterns have been proposed. In Yuan et al. (2014, 2015), the
contraction factor is defined as:

Φ =
(
S − l

S

)4

(11)

where l is a iteration number and S is a maximum number of
iteration allowed. And in Yuan et al. (2012), the contraction
factor is defined as:

Φ =
⎧
⎨

⎩
1 −

(
l − S1

l

)2

, l ≥ S1

1, l < S1

(12)

where S1 is normally selected to (0.05–0.2S). But they have
not presented the theoretical validity for these contraction
patterns. It can also be noticed that in MPCOA approach,
the search scopes of all of the individuals are equal, and
therefore, at the end of search process, all of the individuals
are converged to one solution.
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Table 1 Hybrid approaches with COAs

Type of hybrid approach Refs.

COA + BFGS Yang et al. (2007, 2014)

MCOA + SSM Zhu et al. (2012)

MCOA + CCIC, MCOA+HSA Yuan et al. (2012)

MPCOA + cross, merge operation Yuan et al. (2014, 2015)

MPCOA + artificial emotion Yang et al. (2012)

Finally, hybrid approaches were researched. Several
hybrid approaches are listed in Table 1.

In all of the hybrid approaches,COAtakes chargeof global
search and companions are of local search. This is based on
the consideration that COAs’ local search capability is gener-
ally bad. The motion steps of chaotic variables between two
successive iterations are commonly big, which causes fea-
sible solutions to jump far away in the search space. Thus,
even if COA has approached around the optimum, it may
need to spend much computational effort to reach the opti-
mum eventually (Yang et al. 2007). But this limitation can be
overcome by using appropriate contraction pattern without
any other local searcher.

Based on the study of earlier researches on COAs, we pro-
pose niching variant of COA. First of all, the effect of control
parameters of the circle map is investigated and reasonable
values of parameters are selected. For the purpose of niching,
each individual of the population has own search scope and
is converged various solution by using niching techniques
including deterministic crowding and clearing. Moreover, to
assure thatNCOAhas good capability of not only exploration
but also exploitation, optimal contraction pattern is utilized.
The details of NCOA are presented in the next section.

3 The niching chaos optimization algorithm
(NCOA)

3.1 The effect of control parameters of the circle map

The circle map (Devaney 2003) is a one-dimensional map
expressed as:

zk+1 = zk + Ω − K

2π
sin(2π zk) mod 1 (13)

The circle map exhibits very unexpected behavior as a func-
tion of parameters Ω and K . In the case in which the
parameterΩ is fixed toΩ = 0.5, the relation between the LE
and the parameter K is shown in Table 2, and the PDF and
chaotic sequences in two-dimensional space are illustrated in
Fig. 2. Table 1 and Fig. 2 show that not only the LE of the cir-
cle map gets bigger, but also the PDF of the chaos sequence

Table 2 The relation between the LE and the parameter K of the circle
map (Ω = 0.5)

K 3 5 7 9 11

LE 0.8670 1.0734 1.2565 1.6560 1.8042

becomes more uniform with an increase in the parameter K .
So, the circle map with the parameters Ω = 0.5, K = 11 is
employed for the proposed NCOA.

3.2 Simultaneously contracted multiple search scopes

To accomplish niching, search scopes should be simultane-
ously contracted at each individual rather than only at the best
one in the current population. That is, there coexist N search
scopes centered on each individual, and they are gradually
contracted during search process (Fig. 3).

The search scope of the pth individual is expressed as
Eq. (14) and Eq. (15).

LB′
p = (lb′

1p, . . . , lb
′
i p, . . . , lb

′
np)

T

UB′
p = (ub′

1p, . . . , ub
′
i p, . . . , ub

′
np)

T, p = 1, 2, . . . , N

(14)

lb′
i p = max{x∗

i p − Φ(ubi − lbi ), lbi }
ub′

i p = min{x∗
i p + Φ(ubi − lbi ), ubi }, i = 1, 2, . . . , n

(15)

where lb′
i p and ub′

i p are the lower and upper boundaries of
the i th decision variable of the pth individual.

A chaos variable z = (z1, . . . , zi , . . . , zn) is mapped onto
the search scope of the pth individual by using Eq. (16):

xi = lb′
i p + zi × (ub′

i p − lb′
i p),

i = 1, 2, . . . , n; p = 1, 2, . . . , N (16)

where the index of individual p is selected in order. As a
result, a chaos variable z = (z1, . . . , zi , . . . , zn) ismapped to
a new feasible solution x = (x1, . . . , xi , . . . , xn) that lies in
the hypercube

∏n
i=1[lb′

i p, ub
′
i p] centered at the pth individual

x∗
p.
According to the optimal contraction theorem (Chen et al.

2009), in an optimal contraction way, the whole search cost
is evenly distributed in all contraction stages, and each con-
traction takes the same contracting ratio. In other words, the
uniform contraction pattern is optimal. Furthermore, more
contraction stages are preferred as optimization hardness
increases. So, the uniform contraction pattern is utilized in
NCOA.

At the beginning of search process, the contraction factor
is initialized toΦ = 0.5 andupdated at each N×NumSample
function evaluations such as:
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Fig. 2 The PDF and chaos
sequences of the circle map with
different parameter settings. a
The PDF and a chaos sequence
of the circle map with the
parameter Ω = 0.5, K = 3. b
The PDF and a chaos sequence
of the circle map with the
parameter Ω = 0.5, K = 7. c
The PDF and a chaos sequence
of the circle map with the
parameter Ω = 0.5, K = 11

(a)

(b)

(c)

Φ ← Φ × CR (17)

where NumSample is a number of feasible solutions gen-
erated around each individual in one contraction stage and
CR(< 1) is a contracting ratio between adjacent contraction
stages.

If the maximum number of function evaluation and a level
of accuracy are predefined, then NumSample and CR can be
calculated as Eq. (18) and Eq. (19):

NumSample =
[

EvalLimit

(10 ∼ 50) × N

]
(18)

CR =
⎛

⎝ accuracy√∑n
i=1(ubi − lbi )2

⎞

⎠

N×NumSample
EvalLimit

(19)

where EvalLimit is the maximum number of function eval-
uation and accuracy is a level of accuracy. During search
process, all of the search scopes are contracted more than
(10 ∼ 50) times, and at the end of search process, the diam-
eter of all of the contracted search scopes should be smaller
than accuracy.

3.3 Deterministic crowding and clearing

According to the idea of deterministic crowding (Sareni
and Krähenbühl 1998), the new feasible solution is com-
peted with the nearest individual (not the pth individual) and
replaces it if the new feasible solution has a better fitness.
That is,

x∗
q ← x, f ∗

q ← f (x) if f (x) > f ∗
q (20)
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Φ(ub1-lb1)

Fig. 3 Simultaneously contracted multiple search scopes

where q = argmin1≤p≤N d(x, x∗
p) and d(·, ·) is the Euclid-

ean distance.
If the technique of crowding is not utilized and the new

feasible solution is competed with just the pth individual,
then the metric information is not used in competition, and
so NCOA could not guarantee to find all optima for even a
simple multimodal problem.

During search process, some individuals may be gathered
around a same peak, in spite of crowding. If it happened, it
would affect the efficiency of the optimization algorithm and
the output of final solutions. Furthermore, it is ideal that each
individual is a locateddifferent optimumand each optimum is
occupied by only one individual at the end of search process.
Thus, clearing method (Pétrowski 1996) is utilized.

The population is checked at each contraction stage. If
some individuals are gathered closer than predefined radius
(clearing radius) Rclear, then only the best individual is sur-
vived and the others are eliminated. The clearing radius
should be smaller than the distance between the nearest two
optima. It is normally selected as (0.01∼ 0.1) times of the
size of search space:

Rclear = (0.01∼ 0.1)

√√√√
n∑

i=1

(ubi − lbi )2 (21)

The pseudo-code of clearing can be illustrated as Algo-
rithm 2.

3.4 Population initialization based on partition

Most niching algorithms utilize the distance information,
and so initial distribution of the population may have an
effect on the performance of algorithms. To improve the per-

Algorithm 2 Clearing

Input: Population before clearing old Pop, population size N ,
clearing radius Rclear

Output: Population after clearing newPop, new population size N
Procedure:

for each couple of individuals
(
x∗
p, x

∗
q

)
do

if d(x∗
p, x

∗
q ) < Rclear then

if f ∗
p < f ∗

q then
eliminate the pth individual from the population;

else
eliminate the qth individual from the population;

end if
end if

end for
N ← size of the new population;

formance of niching algorithms, it is desirable that initial
population is evenly distributed in the whole search space.
Thus, partition-based population initialization (Yazdani et al.
2014) is utilized in NCOA.

If the initial population size is N , the number of dimension
is n, and each dimension is divided into s sections, then the
following inequality is satisfied.

(s − 1)n < N ≤ sn (22)

So the number of segment can be calculated as:

s = �N 1
n  (23)

where �x means the smallest integer which is not less than
x . And the number of partition is

NumPartition = sn (24)

At the beginning of search process, the population is ini-
tialized by a set of center points of N randomly selected
partitions.

The pseudo-code of the partition-based partition initial-
ization can be illustrated as Algorithm 3.

3.5 The implementation of NCOA

The pseudo-code of NCOA is illustrated in Algorithm 4, and
the flowchart of NCOA is presented in Fig. 4.

4 Experimental study

4.1 Benchmark functions and performance criteria

To assess the performance of NCOA, a set of 14 multimodal
optimization benchmark functions (Li 2010) are employed.
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Algorithm 3 Partition-based population initialization

Input: Population size N , number of dimension n,
lower/upper boundaries of the decision variables LB,UB

Output: Initial population ini t Pop = [
x∗
1, · · · , x∗

p, · · · , x∗
N

] = [
x∗
i p

]

Procedure:

s ← �N 1
n , NumParti tion ← sn ;

/* calculate the number of sections and partitions*/
index ← �rand × NumParti tion� ;

/* randomly select a arbitrary partition*/
for each individual p in the population do
for each decision variable i do
k ← �index/si−1� mod s ;
x∗
i p ← lbi + (k + 0.5) × (ubi − lbi )/s ;

end for
index ← (index + s + 1) mod NumParti tion ;

end for

The characteristics of these functions are listed in Table 3.
These benchmark functions are categorized into 5 groups
according to the difficulty: 1-D deceptive functions (F1–F3),

1-D multimodal functions (F4–F7), 2-D multimodal func-
tions (F8–F10), more challenging two or higher-dimensional
multimodal functions (F11, F12), and high-dimensionalmul-
timodal functions (F13, F14). More detailed characteristics
of these functions are could be referred to Li (2010) and Qu
et al. (2012).

To investigate the effect of each component of NCOA and
compare the performanceof differentmultimodal optimizers,
30 independent runs concerning each algorithm have been
achieved on each benchmark function.

The performances of the algorithms have been measured
in terms of the following four criteria (Qu et al. 2012):

1. SR: Success rate (the percentage of runs, in which all of
the desired peaks are successfully located)

2. PF: Average number of peaks found
3. Mean and standard deviation of the number of function

evaluation

Algorithm 4 NCOA

Input: objective function f , number of dimension n, lower/upper boundaries LB = [lb1, lb2, · · · , lbn] and UB = [ub1, ub2, · · · , ubn],
population size N , maximum number of function evaluation EvalLimit , the level of accuracy accuracy

Output: final population (located optima) Pop = [x∗
1, · · · , x∗

p, · · · , x∗
N ] , fitness values of the located optima F∗ = [ f ∗

1 , · · · , f ∗
p , · · · , f ∗

N ]
Procedure:
Φ ← 0.5; /* initialize the contraction factor */
NumSample ← EvalLimit

(10∼50)×N ; /*select the number of samples generated around each individual in one iteration*/

CR ←
(

accuracy√∑n
i=1(ubi−lbi )2

) N×NumSample
EvalLimit

; /*select the contracting ratio*/

Rclear ← (0.01 ∼ 0.001) ×
√∑n

i=1 (ubi − lbi )2; /*select the clearing radius*/
Pop ← InitPop(N , n, LB,UB); /*Algorithm 2*/
for each individual do, f ∗

p ← f (x∗
p), end for

EvalCount ← N ; Count ← N ;
p ← 1; /*initialize the index of individual*/
for each dimension do, zi ← rand (0, 1); end for /*initialize the chaos variable*/
while EvalCount < EvalLimit do
if mod(Count, N × NumSample) = 0 do /*clearing and contraction of search scopes*/
Count ← 0;
[Pop, N ] ← Clearing(Pop, N , Rclear ); /*Algorithm 1*/
p ← �rand × N; /*re-initialize the index of individual*/
Φ ← Φ × CR;
for each individual p do /*calculate the contracted search scopes*/
for each dimension i do
lb

′
i p ← max{x∗

i p − Φ(ubi − lbi ), lbi };
ub

′
i p ← min{x∗

i p + Φ(ubi − lbi ), ubi };
end for

end for
end if
for each dimension i do, xi ← lb

′
i p + zi × (ub

′
i p − lb

′
i p), end for /*map the chaos variable onto search space*/

f ← f (x); /*evaluate the objective function on the new feasible solution x */
EvalCount ← EvalCount + 1; Count ← Count + 1;
q ← arg min

1≤p≤N
d(x, x∗

p) ; /*find the individual x∗
q which is nearest to the new feasible solution*/

if f ∗
q < f then x∗

q ← x, f ∗
q ← f ; end if /*deterministic crowding*/

p ← mod(p, N ) + 1 ; /*select the next individual*/
for each dimension i do, zi ← CircleMap(zi ) , end for /*generate the next chaos variable*/

end while
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Find the nearest individual and 
compete with the new feasible solution

Partition-based population initialization

Select NumSample, CR, Rclear; initialize the chaos variable

Calculate the simultaneously
contracted search scopes

Clearing

Generate the next chaos variable by using the Circle map

Map the chaos variable onto search space and 
evaluate the objective function

Start

Stopping condition

mod(Count, N*NumSample) = 0
Yes

No

Yes

No

End

Fig. 4 The flowchart of NCOA

4. SP: Success performance (the ratio of the average number
of function evaluations to the success rate)

4.2 The effects of the components of NCOA

First of all, the effects of the components of NCOA includ-
ing population size, chaos map, initialization and contraction
parameters are tested. We noticed that the results on the
benchmark functions in the same group have much similar
tendency, and thus, the results only for the benchmark func-
tions F3, F7, F9, F10 and F11 are presented in order to avoid
intricacy. The function F12 is also excluded in this test, since
NCOA is not be able to succeed in all runs on function F12.

4.2.1 The effect of population size

To investigate the effect of population size, the population
size is varied in (1–4) times of the number of optima, and the
performance criteria SR and SP are investigated. The popu-
lation sizes are quantified by the number of optima, and SP
are quantified by the maximum number of function evalua-
tion. The results are illustrated in Fig. 5. These graphs show
that, as the difficulty of problem increases, a greater popula-
tion size is required for successful search. But an excessive
population size causes SP to increase. Thus, if the number of

optima is known or predictable, it is advisable to select the
population size to (2–3) times of the number of optima.

4.2.2 The effect of chaotic map

In NCOA, the circle map with parameter Ω = 0.5, K =
11 is employed instead of the logistic map. To investigate
the effect of chaotic map, the circle map (Ω = 0.5, K =
11) is replaced by the circle map (Ω = 0.5, K = 3), the
logistic map and the uniformly random number generator,
respectively. The results of SR and SP with ranks (inside
the brackets) are listed in Tables 4 and 5, respectively. The
best approach of each test function is boldfaced. Total ranks
(summation of all of the individual ranks) are listed in the last
row of the tables. From the results, it can be observed that
the performance of NCOA is affected by the chaotic map,
and the highest performance is attained when the circle map
(Ω = 0.5, K = 11) is selected. Of course, it is not unique
and the other chaotic map or the other parameter settings
could be employed.

4.2.3 The effect of initialization

The effect of partition-based initialization is compared with
random initialization and listed in Table 6. The table shows
that, in the case of using random initialization, the perfor-
mance of NCOA is significantly decreased, and especially
success rate not reached 1 for all of the test functions.

4.2.4 The effect of contraction parameters

NCOA has two contraction parameters (contracting ratio CR
and a number of feasible solutions generated around each
individual in one contraction stage NumSample), and the
performance (convergence speed and success rate) of NCOA
is intensely affected by these two parameters.

To investigate the effect of these parameters on the per-
formance of NCOA, several pairs of the values of these
parameters are selected and tested on the benchmark func-
tions F3, F7, F8, F9, F10 and F11 (Fig. 6). The parameter CR
is picked as CR = 0.9m (m = 1, . . . , 10), and the parameter
NumSample is picked as (2, 4, . . . , 20) for F3, F7, F8 F9
and picked as (10, 20, . . . , 100) for F10 and F11. In Fig. 6,
vertical axis indicates the criterion SP, and bars are displayed
only if SR = 1.0 for F3, F7, F8, F9 and SR > 0.8 for F10
and F11.

From the results, it can be noticed that if the parameter CR
is fixed, then success rate tends to increasewith an increase in
the parameter NumSample, but convergence speed should be
slower. If the parameter NumSample is fixed, then success
rate tends to increase as the parameter CR approaches 1,
but convergence speed should be slower. These parameters
are inseparable from each other, and optimal pairs of these
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(a)

(b)

Fig. 5 The effect of population size. a Success rate. b Success perfor-
mance

Table 4 Success rate according to the chaotic maps

Test func. Circle map Circle map Logistic Random
(K=11) (K=3) map number

F3 1 (1) 1 (1) 1 (1) 1 (1)

F7 1 (1) 1 (1) 1 (1) 1 (1)

F9 1 (1) 0.97 (4) 1 (1) 1 (1)

F10 0.90 (1) 0.77 (4) 0.83 (3) 0.87 (2)

F11 0.93(2) 0.93 (2) 0.97 (1) 0.90 (4)

Total rank 6 12 7 9

parameters are dependent upon the difficulty of optimization
problem.

4.3 Comparison with other multimodal optimizers

The performance of NCOA is compared with those of
state-of-the-art multimodal optimization algorithms. These
algorithms are listed as follows.

1. SPSO (Parrott and Li 2006): Species-based PSO, in
which the species radius rs is set to a value smaller than
the distance between two closest optima.

Table 5 Success performance according to the chaotic maps

Test func. Circle map Circle map Logistic Random
(K=11) (K=3) map number

F3 573 (1) 633 (4) 591 (3) 587 (2)

F7 616 (2) 587 (1) 633 (3) 638 (4)

F9 2104 (1) 2183 (3) 2276 (4) 2162 (2)

F10 31,161 (1) 34,964 (3) 35,788 (4) 31,733 (2)

F11 32,787 (2) 30,269 (1) 33,613 (3) 34,760 (4)

Total rank 7 12 17 14

Table 6 The effect of initialization

Test func. Partition-based initialization Random initialization

SR (PF) SP SR (PF) SP

F3 1 (5) 577 0.83 (4.83) 696

F7 1 (5) 638 0.87 (4.87) 720

F9 1 (4) 2142 0.97 (3.97) 2255

F10 0.90 (24.80) 30,590 0.80 (24.80) 34,253

F11 0.93 (17.90) 32,058 0.77 (17.73) 38,861

2. FER-PSO (Li 2007): Fitness–Euclidean distance ratio
PSO.

3. R2PSO (Li 2010): A lbest PSO with a ring topology, in
which each member interacts with only its immediate
member to its right.

4. R3PSO (Li 2010): A lbest PSO with a ring topology, in
which eachmember interactswith its immediatemember.

5. R2PSO-lhc (Li 2010): The same asR2PSO, butwith non-
overlapping neighborhoods.

6. R3PSO-lhc (Li 2010): The same asR3PSO, butwith non-
overlapping neighborhoods.

7. FER-DE (Liang et al. 2014): Fitness–Euclidean distance
ratio DE, in which “DE/rand/1” mutation strategy is uti-
lized.

Level of accuracy, the maximum number of function
evaluation and population size for NCOA and the other opti-
mizers are listed in Table 7. Note that the population size for
NCOA is much smaller than the other optimizers.

4.3.1 Comparison on the test functions F1–F12

The results for the performance criteria SR and PF (inside the
bracket) for the different multimodal optimizers are listed in
Table 8. The best performance is reported in boldface. These
results show that NCOA has overcome all of the other mul-
timodal optimizers in terms of success rate, and that NCOA
has found almost all of the desired optima for all of the test
functions except F12. Even though NCOA did not succeed
in all runs on function F12, it could be considered to have
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(a) (b) (c)

(f)(e)(d)

Fig. 6 The effect of contraction parameters on NCOA’s success performance. a F3 (success rate = 1). b F7 (success rate = 1). c F8 (success rate
= 1). d F9 (success rate = 1). e F10 (success rate > 0.8). f F11 (success rate > 0.8)

Table 7 Parameters settings for NCOA and the other multimodal opti-
mizers

Func. Level of accuracy Eval. limit Pop. size

NCOA Others NCOA Others

F1–F3 10−3 103 104 10 50

F4–F7 10−6 103 104 10 50

F8 5 × 10−4 2 × 103 104 10 50

F9 10−6 5 × 103 104 15 50

F10 0.05 5 × 104 105 50 250

F11 0.05 5 × 104 105 50 250

F12 10−3 105 105 100 500

F13 – 105 105 100 300

F14 0.1 105 105 50 300

progression over the other optimizers in terms of the average
number of peaks found.

The results for mean and standard deviation of the num-
ber of function evaluation are listed in Table 9. The best
performance is reported in boldface. From the results, it
can be observed that the convergence speed of NCOA is
significantly faster (far more than threefold) than the other
optimizers on the test functions F1–F9. NCOA also shows
competitive convergence speed on the test functions F10

and F11, even though it does not rank top. Furthermore,
the standard deviation of the number of function evalu-
ation of NCOA is much smaller than the others, which
means that the convergence behavior of NCOA is very
stable.

4.3.2 Comparison on the test functions F13 and F14

We carry out the following experiments to study the effect of
increasing dimensionality on the performance of NCOA.

The inverted Rastrigin function (F13) has a single global
peak and many local peaks. The number of local peaks
increases exponentially as the dimension increases. To locate
the single global optimum, optimizers have to overcome
these local peaks. We consider an algorithm has located
the global peak if the difference between the fitness of
the global peak and the best individual is less than 5.
Figure 7 shows the results for SR of all multimodal opti-
mizers on the function F13 with varying dimensions from
8 to 15. It is noticeable that the success rates of the
other optimizers were rapidly degraded with the dimension
increases. On the contrary, NCOA’s success rate was scarcely
degraded.

Figure 8 shows the results of PF on the generic Hump
function (F14). Few algorithms were able to succeed on
F14, and thus the criterion PF was used as the performance
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Table 8 The experimental results for SR and PF

Test func. NCOA SPSO FER-PSO R2PSO R3PSO R2PSO-lhc R3PSO-lhc FER-DE

F1 1.00 (2.00) 0.87 (1.83) 0.73 (1.70) 0.43 (1.40) 0.30 (1.30) 0.63 (1.63) 0.80 (1.77) 1.00 (2.00)

F2 1.00 (2.00) 0.97 (1.97) 0.60 (1.60) 0.77 (1.77) 0.27 (1.23) 0.70 (1.70) 0.90 (1.90) 1.00 (2.00)

F3 1.00 (5.00) 0.33 (3.97) 0.20 (3.80) 0.00 (1.40) 0.00 (1.46) 0.30 (4.67) 0.13 (3.53) 0.57 (4.50)

F4 1.00 (5.00) 0.87 (4.83) 1.00 (5.00) 0.87 (4.87) 0.83 (4.80) 0.97 (4.97) 0.93 (4.93) 1.00 (5.00)

F5 1.00 (5.00) 0.97 (4.97) 1.00 (5.00) 0.00 (1.10) 0.00 (1.00) 0.80 (4.77) 0.23 (4.00) 1.00 (5.00)

F6 1.00 (5.00) 0.73 (4.70) 1.00 (5.00) 0.93 (4.93) 0.67 (4.63) 1.00 (5.00) 0.93 (4.93) 0.87 (4.87)

F7 1.00 (5.00) 0.93 (4.93) 1.00 (5.00) 0.01 (1.60) 0.00 (1.03) 0.97 (4.97) 0.53 (4.43) 0.90 (4.90)

F8 1.00 (4.00) 0.73 (3.70) 1.00 (4.00) 0.17 (2.80) 0.53 (3.50) 1.00 (4.00) 0.90 (3.90) 0.97 (3.97)

F9 1.00 (4.00) 0.30 (3.03) 0.73 (3.70) 0.00 (1.67) 0.00 (2.00) 0.43 (3.37) 0.13 (2.73) 0.17 (2.80)

F10 0.90 (24.90) 0.10 (22.57) 0.87 (24.37) 0.00 (9.87) 0.00 (3.60) 0.50 (24.17) 0.10 (22.83) 0.27 (23.60)

F11 0.93 (17.93) 0.93 (17.93) 0.57 (17.40) 0.93 (17.93) 0.83 (17.83) 0.63 (17.57) 0.70 (17.63) 0.93 (17.93)

F12 0.00 (30.13) 0.00 (5.67) 0.00 (20.80) 0.00 (18.23) 0.00 (18.47) 0.00 (23.77) 0.00 (22.70) 0.00 (22.67)

Table 9 The experimental results for mean and standard deviation of the number of function evaluation

Test func. NCOA SPSO FER-PSO R2PSO R3PSO R2PSO-lhc R3PSO-lhc FER-DE

F1 498 (76) 4815 (2455) 4007 (2283) 3496 (2602) 3617 (1800) 4545 (2469) 4860 (2794) 2578 (702)

F2 477 (63) 4248 (2328) 3778 (2159) 2572 (1342) 1663(1195) 4431 (2887) 3944 (2855) 1965 (656)

F3 580 (39) 7485 (1569) 5092 (1976) – – 5628 (2655) 6138 (2584) 3347 (1049)

F4 607 (31) 7848 (1375) 3612 (516) 4206 (661) 4702(987) 3772 (450) 4243 (920) 3963 (1030)

F5 614 (22) 6107 (595) 3733 (589) – – 4492 (699) 4429 (987) 4095 (1111)

F6 622 (34) 7818 (1264) 3758 (443) 4805 (1080) 4920(716) 4133 (702) 4548 (812) 4469 (1399)

F7 620 (31) 6361 (1091) 3722 (365) – – 4132 (669) 4500 (880) 4717 (1769)

F8 1180 (50) 7771 (1473) 3987 (479) 6330 (1139) 4813(1279) 4653 (924) 4143 (560) 4462 (917)

F9 2196 (72) 8378 (722) 7805 (835) – – 7954 (1306) 7175 (417) 8140 (1206)

F10 27,539 (1431) 89,583 (21262) 15,962 (3247) – – 22,767 (3886) 33,417 (12751) 65,438 (27,885)

F11 29,397 (2555) 51366 (14,331) 25,838 (27,234) 25,598 (20,946) 23,680 (14,780) 25,079 (17,065) 20,143(12,467) 29,033 (6514)

F12 – – – – – – – –

Fig. 7 The results of SR on F13

indicator. From Fig. 8, it can be observed that NCOA has
found the most number of peaks and NCOA has been less
affected by the increment of dimensionality than the other
optimizers.

Fig. 8 The results of PF on F14

5 Conclusion

In this paper, a niching variant of COA called NCOA was
proposed for multimodal optimization. In NCOA, the cir-
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cle map with a proper parameter setting was employed
instead of the logistic map. Various techniques (partition-
based population initialization, simultaneously contracted
search scopes, deterministic crowding and clearing) had been
utilized in NCOA to accomplish niching. The effects of the
components and parameters of NCOA had been investigated
through numerical experiments. Experimental results and
comparison with other state-of-the-art multimodal optimiza-
tion algorithms demonstrate that NCOA has a competitive
performance for multimodal optimization.

Onemore step to extend the currentworkwould be analyz-
ing the searchbehavior ofNCOAmoredeeply and combining
NCOA with other heuristic algorithms (e.g., PSO, DE, har-
mony search, imperialist competitive algorithm) to speed up
the exploitation.
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