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Abstract Smarandache initiated neutrosophic sets (NSs)
as a tool for handling undetermined information. Wang
et al. proposed single valued neutrosophic sets (SVNSs)
that is an especial NSs and can be used expediently to
deal with real-world problems. In this paper, we propose
single valued neutrosophic rough sets by combining sin-
gle valued neutrosophic sets and rough sets. We study the
hybrid model by constructive and axiomatic approaches.
Firstly, by using the constructive approach, we propose the
lower/upper single valued neutrosophic approximation oper-
ators and illustrate the connections between special single
valued neutrosophic relations (SVNRs) and the lower/upper
single valued neutrosophic approximation operators. Then,
by using the axiomatic approach, we discuss the operator-
oriented axiomatic characterizations of single valued neutro-
sophic rough sets. We obtain that different axiom sets of the
lower/upper single valued neutrosophic set-theoretic oper-
ators guarantee the existence of different classes of SVNRs
which produce the same operators. Finally, we introduce sin-
gle valued neutrosophic rough sets on two-universes and
an algorithm of decision making based on single valued
neutrosophic rough sets on two-universes, and use an illustra-
tive example to demonstrate the application of the proposed
model.
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1 Introduction

Although there are many theories of dealing with impre-
cise information and knowledge, such as fuzzy set theory,
intuitionistic fuzzy set theory and rough set theory, they
can only solve a part of uncertain problems in real-world.
To this end, Smarandache (1998, 1999) initiated neutro-
sophic set theory by fusing the non-standard analysis and
a tri-component set. A NS consists of three membership
functions (truth-membership function, indeterminacy mem-
bership function and falsity-membership function), where
every function value is a real standard or non-standard
subset of the nonstandard unit interval ]0−, 1+[. NSs has
achieved good applications in image processing and cluster
analysis (Guo and Cheng 2009; Guo and Sengur 2015). By
applying the neutrosophic idea to logics, Riverain (Rivieccio
2008) proposed neutrosophic logicswhich is a generalization
of fuzzy logics and studied some basic properties. By com-
bining neutrosophic set theory and rough set theory (Pawlak
1982), Broumi and Smarandache (2014) and Salama and
Broumi (2014) initiated a new hybrid mathematical struc-
ture called rough neutrosophic sets, handling incomplete and
indeterminate information, and studied some operations and
their properties.

Wang et al. (2010) proposed SVNSs by simplifying NSs.
SVNSs can also be looked as an extension of intuitionis-
tic fuzzy sets (Atanassov 1986), in which three membership
functions are unrelated and their function values belong to
the unit closed interval. SVNSs results in a new hot research
issue. Ye (2013, 2014a) proposed decision making based
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on correlation coefficients and weighted correlation coeffi-
cient of SVNSs, and illustrated the application of proposed
methods. Majumdar and Samant (2014) studied distance,
similarity and entropy of SVNSs from a theoretical aspect.
Şahin and Küçük (2015) proposed a subsethood measure of
SVNSs based on distance and showed its effectiveness by
an example. Peng et al. (2014) gave some novel operations
of SVNSs and proposed a ranking approach which can be
used to solve decision-making problems based on outrank-
ing relation of simplified neutrosophic numbers. Yang et al.
(2016) proposed SVNRs and studied some kinds of kernels
and closures of SVNRs.

Pawlak (1982) initiated rough set theorywhich has proved
to be an efficient theory in dealing with imperfect informa-
tion. For the study of rough sets, the constructive approach
and algebraic approach are two important methods (Yao
2015). Many kinds of rough set models were constructed by
using the constructive approach including arbitrary binary
relation-based rough sets (Yao 1998a, b), covering-based
rough sets (Bonikowski et al. 1998; Zhu and Wang 2007),
fuzzy rough sets and rough fuzzy sets (Dubois and Prade
1990). Pei andWu et al. studied generalized fuzzy rough sets
from different point of views (Pei 2005; Wu et al. 2003;
Yeung et al. 2005). Cornelis et al. (2003) first proposed
intuitionistic fuzzy rough sets and obtained some important
results. Intuitionistic fuzzy rough sets has been addressed by
many researchers (Yang et al. 2012; Zhou andWu2008;Yang
et al. 2012). Zhang et al. gave a general framework of intu-
itionistic fuzzy rough set theory (Zhang et al. 2012). By use
of the axiomatic approach, rough set approximation opera-
tors can be characterized by a pair of dual abstract operators
with a set of axioms. Yao (1998a) systematically illustrated
axiomatic characterizations of crisp rough sets.Mi andZhang
(2004) studied axiomatic characterizations of fuzzy rough
sets. Wu et al. (2016) studied constructions and axiomatic
characterizations of (S, T )-fuzzy rough sets based on a tri-
angular conorm S and a triangular norm T . Zhou and Hu
(2016) applied axiomatic approaches to rough set models
on a complete completely distributive lattice. Zhang (2013)
applied interval type-2 fuzzy sets to rough set and studied
the constructions and axiomatic characterizations interval
type-2 fuzzy sets. Yang et al. (2014) proposed hesitant fuzzy
rough sets and studied the model’s axiomatic characteriza-
tions by combining hesitant fuzzy sets and rough sets. As a
continuation of Yang et al. (2014), Zhang et al. (2016) fur-
ther gave the construction and axiomatic characterizations of
interval-valued hesitant fuzzy rough sets, and illustrated the
application of the model.

SVNSs and rough sets are two different tools of deal-
ing with inaccuracy information. To exploit simultaneously
the advantages of SVNSs and rough sets, it is necessary to
establish a hybrid model of SVNSs and rough sets. For this
purpose, Broumi and Smarandache proposed single valued

neutrosophic information systems based on rough set theory.
They studied rough approximation of every single valued
neutrosophic set in the single valued neutrosophic informa-
tion system and investigated the knowledge reduction and
extension of the single valued neutrosophic information sys-
tem. Along this line, in the present paper, we shall propose
single valued neutrosophic rough sets by fusing SVNSs and
rough sets, and explore a general framework of the study of
single valued neutrosophic rough sets. Concretely, we shall
study the hybrid model by using constructive and axiomatic
approaches.

The rest of this paper is organized as follows. In the
next section, we provide the basic notions and operations
of Pawlak rough sets, NSs and SVNSs. Based on a SVNR,
Sect. 3 proposes the notion of single valued neutrosophic
rough sets by use of the constructive approach. Properties
of lower/upper approximation operators are studied. The
connections between special SVNRs and single valued neu-
trosophic lower/upper approximation operators are explored.
In Sect. 4, we investigate the axiomatic characterizations
of single valued neutrosophic rough sets. In other words,
it is obtained that single valued neutrosophic approximation
lower/upper operators can be defined by axioms. In Sect. 5,
single valued neutrosophic rough sets on two-universes is
introduced, and an example is used to illustrate the useful-
ness of given rough set model. The last section summarizes
the conclusions and gives an outlook for future research.

2 Preliminaries

In this section, we give basic notions and operations on
Pawlak rough sets, NSs and SVNSs.

2.1 Pawlak rough sets

Definition 2.1 (Pawlak 1982, 1991). LetU be a non-empty
finite universe and R be an equivalence relation inU . (U, R)

is called a Pawlak approximation space. ∀X ⊆ U , the lower
and upper approximations of X , denoted by R(X) and R(X),
are defined as follows, respectively:

R(X) = {x ∈ U | [x]R ⊆ X},
R(X) = {x ∈ U | [x]R ∩ X �= ∅},

where [x]R = {y ∈ U | (x, y) ∈ R}. R and R are called as
lower and upper approximation operators, respectively. The
pair (R(X), R(X)) is called a Pawlak rough set.
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2.2 Neutrosophic sets and single valued neutrosophic
sets

Definition 2.2 (Smarandache 1998). Let U be a space of
points (objects), with a generic element in U denoted by x .
ANS ˜A inU is characterized by threemembership functions,
a truth-membership function T

˜A, an indeterminacy mem-
bership function I

˜A and a falsity-membership function F
˜A,

where ∀x ∈ U , T
˜A(x), I

˜A(x) and F
˜A(x) are real standard or

non-standard subsets of ]0−, 1+[.
There is no restriction on the sum of T

˜A(x), I
˜A(x) and

F
˜A(x), thus 0− ≤ sup T

˜A(x)+ sup I
˜A(x)+ sup F

˜A(x) ≤ 3+.

Definition 2.3 (Smarandache 1998). Let ˜A and ˜B be two
NSs in U . If ∀x ∈ U , inf T

˜A(x) ≤ inf T
˜B(x), sup T

˜A(x) ≤
sup T

˜B(x), inf I
˜A(x) ≥ inf I

˜B(x), sup I
˜A(x) ≥ sup I

˜B(x),
inf F

˜A(x) ≥ inf F
˜B(x) and sup F

˜A(x) ≥ sup F
˜B(x), then we

called ˜A is contained in ˜B, denoted by ˜A � ˜B.

To apply NSs conveniently, Wang et al. proposed SVNSs as
follows.

Definition 2.4 (Wang et al. 2010). Let U be a space of
points (objects), with a generic element in U denoted by
x . A SVNS ˜A in U is characterized by three membership
functions, a truth-membership function T

˜A, an indeterminacy
membership function I

˜A and a falsity-membership function
F

˜A, where ∀x ∈ U , T
˜A(x), I

˜A(x), F
˜A(x) ∈ [0, 1].

There is no restriction on the sum of T
˜A(x), I

˜A(x), and
F

˜A(x), thus 0 ≤ T
˜A(x) + I

˜A(x) + F
˜A(x) ≤ 3.

The SVNS ˜A can be denoted by ˜A = {〈x, T
˜A(x), I

˜A(x),
F

˜A(x)〉 | x ∈ U } or ˜A = (T
˜A, I

˜A, F
˜A). ∀x ∈ U , ˜A(x) =

(T
˜A(x), I

˜A(x), F
˜A(x)), and (T

˜A(x), I
˜A(x), F

˜A(x)) is called
a single valued neutrosophic number.

In this paper, SVNS(U ) will denote the family of all
SVNSs in U . Let ˜A be a SVNS in U . If ∀x ∈ U ,
T

˜A(x) = 0 and I
˜A(x) = F

˜A(x) = 1, then ˜A is called
an empty SVNS, denoted by ˜∅. If ∀x ∈ U , T

˜A(x) = 1,
and I

˜A(x) = F
˜A(x) = 0, then ˜A is called a full SVNS,

denoted by ˜U . ∀α1, α2, α3 ∈ [0, 1], ̂α1, α2, α3 denotes a
constant SVNS satisfying, T

̂α1,α2,α3
(x) = α1, I

̂α1,α2,α3
(x) =

α2, F
̂α1,α2,α3

(x) = α3.
For any y ∈ U , a single valued neutrosophic singleton set

1y and its complement 1U−{y} are defined as: ∀x ∈ U ,

T1y (x) =
{

1, x = y
0, x �= y

, I1y (x) = F1y (x) =
{

0, x = y
1, x �= y

;

T1U−{y}(x) =
{

0, x = y
1, x �= y

,

I1U−{y}(x) = F1U−{y}(x) =
{

1, x = y
0, x �= y

.

Definition 2.5 (Ye 2014b). Let ˜A and ˜B be two SVNSs in
U . If for any x ∈ U , T

˜A(x) ≤ T
˜B(x), I

˜A(x) ≥ I
˜B(x) and

F
˜A(x) ≥ F

˜B(x), then we called ˜A is contained in ˜B, i.e.,
˜A � ˜B. If ˜A � ˜B and ˜B � ˜A, then we called ˜A is equal to
˜B, denoted by ˜A = ˜B.

It is easy to see that Definition 2.5 is consistent to Defini-
tion 2.3, and Definition 2.5 can be regarded as a special case
of Definition 2.3.

Definition 2.6 (Wang et al. 2010). Let ˜A be a SVNS in U .
The complement of ˜A is denoted by ˜Ac, where ∀x ∈ U ,
T

˜Ac (x) = F
˜A(x), I

˜Ac (x) = 1− I
˜A(x), and F

˜Ac (x) = T
˜A(x).

Definition 2.7 (Yang et al. 2016). Let ˜A and ˜B be two
SVNSs in U .

(1) The union of ˜A and ˜B is a SVNS ˜C , denoted by ˜C =
˜A � ˜B, where ∀x ∈ U ,
T

˜C (x) = T
˜A(x) ∨ T

˜B(x), I
˜C (x) = I

˜A(x) ∧ I
˜B(x) and

F
˜C (x) = F

˜A(x) ∧ F
˜B(x);

(2) The intersection of ˜A and ˜B is a SVNS ˜D, denoted by
˜D = ˜A � ˜B, where ∀x ∈ U ,
T

˜D(x) = T
˜A(x) ∧ T

˜B(x), I
˜D(x) = I

˜A(x) ∨ I
˜B(x), and

F
˜D(x) = F

˜A(x) ∨ F
˜B(x), where “∨” and “∧” denote

maximum and minimum, respectively.

Proposition 2.1 (Yang et al. 2016). Let ˜A and ˜B be two
SVNSs in U. The following results hold:

(1) ˜A � ˜A � ˜B and ˜B � ˜A � ˜B;
(2) ˜A � ˜B � ˜A and ˜A � ˜B � ˜B;
(3) (˜Ac)c = ˜A;
(4) (˜A � ˜B)c = ˜Ac � ˜Bc;
(5) (˜A � ˜B)c = ˜Ac � ˜Bc.

3 The constructive approach of single valued
neutrosophic rough sets

3.1 The notion of single valued neutrosophic rough sets

In this section, we will introduce notions of single valued
neutrosophic approximations and single valued neutrosophic
rough sets. To begin with, we recall some notions of single
valued neutrosophic relations (Yang et al. 2016).

A SVNS ˜R inU×U is called a single valued neutrosophic
relation (SVNR) in U , denoted by ˜R = {〈(x, y), T

˜R(x, y),
I
˜R(x, y), F

˜R(x, y)〉 | (x, y) ∈ U × U }, where T
˜R : U ×

U −→ [0, 1], I
˜R : U ×U −→ [0, 1], and F

˜R : U ×U −→
[0, 1] denote the truth-membership function, indeterminacy
membership function, and falsity-membership function of ˜R,
respectively.
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Table 1 SVNR ˜R
˜R x1 x2 x3 x4 x5

x1 (0.2,0.6,0.4) (0,0.3,0.7) (0.9,0.2,0.4) (0.3,0.9,1) (1,0.2,0)

x2 (0.4,0.5,0.1) (0.1,0.7,0) (1,1,1) (1,0.3,0) (0.5,0.6,1)

x3 (0,1,1) (1,0.5,0) (0,0,0) (0.2,0.8,0.1) (1,0.8,1)

x4 (1,0,0) (0,0,1) (0.5,0.7,0.1) (0.1,0.4,1) (1,0.8,0.8)

x5 (0,1,0) (0.9,0,0) (0,0.1,0.7) (0.8,0.9,1) (0.6,1,0)

Table 2 Complement ˜Rc of ˜R
˜Rc x1 x2 x3 x4 x5

x1 (0.4,0.4,0.2) (0.7,0.7,0) (0.4,0.8,0.9) (1,0.1,0.3) (0,0.8,1)

x2 (0.1,0.5,0.4) (0,0.3,0.1) (1,0,1) (0,0.7,1) (1,0.4,0.5)

x3 (1,0,0) (0,0.5,1) (0,1,0) (0.1,0.2,0.2) (1,0.2,1)

x4 (0,1,1) (1,1,0) (0.1,0.3,0.5) (1,0.6,0.1) (0.8,0.2,1)

x5 (0,0,0) (0,1,0.9) (0.7,0.9,0) (1,0.1,0.8) (0,0,0.6)

Let ˜R be a SVNR inU , the complement ˜Rc of ˜R is defined
as,

˜Rc = {〈(x, y), T
˜Rc (x, y), I

˜Rc (x, y), F
˜Rc (x, y)〉 | (x, y)

∈ U ×U },

where ∀(x, y) ∈ U ×U , T
˜Rc(x, y) = F

˜R(x, y), I
˜Rc (x, y) =

1 − I
˜R(x, y) and F

˜Rc(x, y) = T
˜R(x, y).

Example 3.1 Let U = {x1, x2, x3, x4, x5}. A SVNR ˜R in U
is given in Table 1. We can get ˜Rc which is given in Table 2.

Let ˜R be a SVNR in U . If ∀x ∈ U , T
˜R(x, x) = 1 and

I
˜R(x, x) = F

˜R(x, x) = 0, then ˜R is called a reflexive
SVNR. If ∀x, y ∈ U , T

˜R(x, y) = T
˜R(y, x), I

˜R(x, y) =
I
˜R(y, x) and F

˜R(x, y) = F
˜R(y, x), then ˜R is called a

symmetric SVNR. If ∀x ∈ U ,
∨

y∈U T
˜R(x, y) = 1 and

∧

y∈U I
˜R(x, y) = ∧

y∈U F
˜R(x, y) = 0, then ˜R is called a

serial SVNR. If ∀x, y, z ∈ U ,
∨

y∈U (T
˜R(x, y)∧T

˜R(y, z)) ≤
T

˜R(x, z),
∧

y∈U (I
˜R(x, y) ∨ I

˜R(y, z)) ≥ I
˜R(x, z) and

∧

y∈U (F
˜R(x, y) ∨ F

˜R(y, z)) ≥ F
˜R(x, z), then ˜R is called

a transitive SVNR, where “∨” and “∧” denote maximum
and minimum, respectively.

Similarly to the union and intersection of SVNSs, we can
define the union ˜R1 � ˜R2 and intersection ˜R1 � ˜R2 of two
SVNRs ˜R1 and ˜R1. It is easy to verify that the union and
intersection of SVNRs satisfy commutative law, associative
law and distributive law.

Definition 3.1 Let ˜R be a SVNR in U , the tuple (U, ˜R)

is called a single valued neutrosophic approximation space.
∀˜A ∈ SVNS(U ), the lower and upper approximations of ˜A

with respect to (U, ˜R), denoted by ˜R(˜A) and ˜R(˜A), are two
SVNSswhosemembership functions are defined as:∀x ∈ U ,

T
˜R(˜A)(x) =

∧

y∈U
(F

˜R(x, y) ∨ T
˜A(y)),

I
˜R(˜A)(x) =

∨

y∈U
((1 − I

˜R(x, y)) ∧ I
˜A(y)),

F
˜R(˜A)(x) =

∨

y∈U
(T

˜R(x, y) ∧ F
˜A(y));

T
˜R(˜A)

(x) =
∨

y∈U
(T

˜R(x, y) ∧ T
˜A(y)),

I
˜R(˜A)

(x) =
∧

y∈U
(I

˜R(x, y) ∨ I
˜A(y)),

F
˜R(˜A)

(x) =
∧

y∈U
(F

˜R(x, y) ∨ F
˜A(y)).

The pair (˜R(˜A), ˜R(˜A)) is called the single valued neutro-

sophic rough set of ˜A with respect to (U, ˜R). ˜R and ˜R are
referred to as the single valued neutrosophic lower and upper
approximation operators, respectively.

Example 3.2 Let U = {x1, x2, x3}, ˜R ∈ SVNS(U × U ) is
given in Table 3. ˜A = {〈x1, (0.2, 0.8, 0.1)〉, 〈x2, (1, 0.3, 1)〉,
〈x3, (0.5, 0.3, 0)〉} is a SVNS in U .

Table 3 SVNR ˜R

˜R x1 x2 x3

x1 (0,0,1) (0.2,0.1,0.6) (1,0,0.5)

x2 (0,0.1,0.3) (0.5,0.4,1) (0.5,1,0)

x3 (1,1,0) (0.4,1,1) (1,0,0)
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According to Definition 3.1, we have

T
˜R(˜A)(x1) =

∧

y∈U
(F

˜R(x1, y) ∨ T
˜A(y)) = 0.5,

I
˜R(˜A)(x1) =

∨

y∈U
((1 − I

˜R(x1, y)) ∧ I
˜A(y)) = 0.8,

F
˜R(˜A)(x1) =

∨

y∈U
(T

˜R(x1, y) ∧ F
˜A(y)) = 0.2;

T
˜R(˜A)

(x1) =
∨

y∈U
(T

˜R(x1, y) ∧ T
˜A(y)) = 0.5,

I
˜R(˜A)

(x1) =
∧

y∈U
(I

˜R(x1, y) ∨ I
˜A(y)) = 0.3,

F
˜R(˜A)

(x1) =
∧

y∈U
(F

˜R(x1, y) ∨ F
˜A(y)) = 0.5.

Hence, ˜R(˜A)(x1) = (0.5, 0.8, 0.2) and ˜R(˜A)(x1) =
(0.5, 0.3, 0.5).

Similarly, we can obtain

˜R(˜A)(x2) = (0.3, 0.8, 0.5), ˜R(˜A)(x2) = (0.5, 0.4, 0),

˜R(˜A)(x3) = (0.2, 0.3, 0.4), ˜R(˜A)(x3) = (0.5, 0.3, 0).

3.2 The properties of single valued neutrosophic rough
sets

Next, we discuss the properties of single valued neutrosophic
rough sets.

Theorem 3.1 Let (U, ˜R) be a single valued neutrosophic
approximation space. The single valued neutrosophic lower
and upper approximation operators defined in Definition 3.1
have the following properties: ∀˜A, ˜B ∈ SVNS(U ), ∀α1, α2,

α3 ∈ [0, 1],

(1) ˜R(˜U ) = ˜U, ˜R(˜∅) = ˜∅;
(2) If ˜A � ˜B, then ˜R(˜A) � ˜R(˜B) and ˜R(˜A) � ˜R(˜B);

(3) ˜R(˜A� ˜B) = ˜R(˜A)� ˜R(˜B), ˜R(˜A� ˜B) = ˜R(˜A)� ˜R(˜B);

(4) ˜R(˜A� ˜B) � ˜R(˜A)� ˜R(˜B), ˜R(˜A� ˜B) � ˜R(˜A)� ˜R(˜B);

(5) ˜R(˜Ac) = (˜R(˜A))c, ˜R(˜Ac) = (˜R(˜A))c;
(6) ˜R(A � ̂α1, α2, α3) = ˜R(˜A) � ̂α1, α2, α3, ˜R(A �

̂α1, α2, α3) = ˜R(˜A) � ̂α1, α2, α3;
(7) ˜R( ̂α1, α2, α3) = ̂α1, α2, α3 ⇐⇒ ˜R(˜∅) = ˜∅,

˜R( ̂α1, α2, α3) = ̂α1, α2, α3 ⇐⇒ ˜R(˜U ) = ˜U.

Proof (2) and (4) are following immediately from Defini-
tion 3.1. We only show (1), (3) and (5)–(7).

(1) By Definition 3.1, ∀x ∈ U ,

T
˜R(˜U )(x) =

∧

y∈U
(F

˜R(x, y) ∨ T
˜U (y)) =

∧

y∈U
(F

˜R(x, y) ∨ 1) = 1,

I
˜R(˜U )(x) =

∨

y∈U
((1 − I

˜R(x, y)) ∧ I
˜U (y))

=
∨

y∈U
((1 − I

˜R(x, y)) ∧ 0) = 0,

F
˜R(˜U )(x) =

∨

y∈U
(T

˜R(x, y) ∧ F
˜U (y)) =

∨

y∈U
(T

˜R(x, y) ∧ 0) = 0.

Therefore, ˜R(˜U ) = ˜U .
By Definition 3.1,

T
˜R(˜∅)

(x) =
∨

y∈U
(T

˜R(x, y) ∧ T̃∅(y)) =
∨

y∈U
(T

˜R(x, y) ∧ 0) = 0,

I
˜R(˜∅)

(x) =
∧

y∈U
(I

˜R(x, y) ∨ Ĩ∅(y)) =
∧

y∈U
(I

˜R(x, y) ∨ 1) = 1,

F
˜R(˜∅)

(x) =
∧

y∈U
(F

˜R(x, y) ∨ F̃∅(y)) =
∧

y∈U
(F

˜R(x, y) ∨ 1) = 1.

Thus, ˜R(˜∅) = ˜∅.
(3) By Definitions 2.6 and 3.1, ∀x ∈ U ,

T
˜R(˜A�˜B)(x) =

∧

y∈U
(F

˜R(x, y) ∨ T
˜A�˜B(y))

=
∧

y∈U
(F

˜R(x, y) ∨ (T
˜A(y) ∧ T

˜B(y)))

=
∧

y∈U
(F

˜R(x, y) ∨ T
˜A(y))

∧
∧

y∈U
(F

˜R(x, y) ∨ T
˜B(y))

= T
˜R(˜A)(x) ∧ T

˜R(˜B)(x),

I
˜R(˜A�˜B)(x) =

∨

y∈U
((1 − I

˜R(x, y)) ∧ I
˜A�˜B(y))

=
∨

y∈U
((1 − I

˜R(x, y)) ∧ (I
˜A(y) ∨ I

˜B(y)))

=
∨

y∈U
((1 − I

˜R(x, y)) ∧ I
˜A(y))

∨
∨

y∈U
((1 − I

˜R(x, y)) ∧ I
˜B(y))

= I
˜R(˜A)(x) ∨ I

˜R(˜B)(x),

F
˜R(˜A�˜B)(x) =

∨

y∈U
(T

˜R(x, y) ∧ F
˜A�˜B(y))

=
∨

y∈U
(T

˜R(x, y)) ∧ (F
˜A(y) ∨ F

˜B(y)))

=
∨

y∈U
(T

˜R(x, y) ∧ F
˜A(y))
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∨
∨

y∈U
(T

˜R(x, y) ∧ F
˜B(y))

= F
˜R(˜A)(x) ∨ F

˜R(˜B)(x).

Thus, ˜R(˜A � ˜B) = ˜R(˜A) � ˜R(˜B). Similarly, we can show
˜R(˜A � ˜B) = ˜R(˜A) � ˜R(˜B).

(5) We only need to show the former part. ∀x ∈ U ,

T
˜R(˜Ac)(x) =

∧

y∈U
(F

˜R(x, y) ∨ T
˜Ac (y))

=
∧

y∈U
(F

˜R(x, y) ∨ F
˜A(y)) = F

˜R(˜A)
(x)

= T
(˜R(˜A))c

(x),

I
˜R(˜Ac)(x) =

∨

y∈U
((1 − I

˜R(x, y)) ∧ I
˜Ac (y))

=
∨

y∈U
((1 − I

˜R(x, y)) ∧ (1 − I
˜A(y)))

= 1 −
∧

y∈U
(I

˜R(x, y) ∨ I
˜A(y))

= 1 − I
˜R(˜A)

(x) = I
(˜R(˜A))c

(x),

F
˜R(˜Ac)(x) =

∨

y∈U
(T

˜R(x, y) ∧ F
˜Ac (y))

=
∨

y∈U
(T

˜R(x, y) ∧ T
˜A(y)) = T

˜R(˜A)
(x)

= F
(˜R(˜A))c

(x).

So ˜R(˜Ac) = (˜R(˜A))c.
(6) By Definition 3.1, ∀x ∈ U , we have

T
˜R(˜A� ̂α1,α2,α3)

(x) =
∧

y∈U
(F

˜R(x, y) ∨ T
˜A� ̂α1,α2,α3

(y))

=
∧

y∈U
(F

˜R(x, y) ∨ (T
˜A(y) ∨ T

̂α1,α2,α3
(y)))

=
∧

y∈U

(

F
˜R(x, y) ∨ T

˜A(y) ∨ α1
)

=
⎛

⎝

∧

y∈U
(F

˜R(x, y) ∨ T
˜A(y))

⎞

⎠ ∨ α1

= T
˜R(˜A)(x) ∨ α1,

I
˜R(˜A� ̂α1,α2,α3)

(x) =
∨

y∈U
((1 − I

˜R(x, y)) ∧ I
˜A� ̂α1,α2,α3

(y))

=
∨

y∈U
((1 − I

˜R(x, y)) ∧ (I
˜A(y) ∧ I

̂α1,α2,α3
(y)))

=
∨

y∈U

(

((1 − I
˜R(x, y)) ∧ I

˜A(y)) ∧ α2
)

=
⎛

⎝

∨

y∈U
((1 − I

˜R(x, y)) ∧ I
˜A(y))

⎞

⎠ ∧ α2

= I
˜R(˜A)(x) ∧ α2,

F
˜R(˜A� ̂α1,α2,α3)

(x) =
∨

y∈U
(T

˜R(x, y) ∧ F
˜A� ̂α1,α2,α3

(y))

=
∨

y∈U
(T

˜R(x, y) ∧ (˜F
˜A(y) ∧ F

̂α1,α2,α3
(y)))

=
∨

y∈U

(

T
˜R(x, y) ∧ F

˜A(y) ∧ α3
)

=
⎛

⎝

∨

y∈U

(

T
˜R(x, y) ∧ F

˜A(y)
)

⎞

⎠ ∧ α3

= F
˜R(˜A)(x) ∧ α3.

So ˜R(˜A � ̂α1, α2, α3) = ˜R(˜A) � ̂α1, α2, α3.

Similarly, we can show ˜R(˜A � ̂α1, α2, α3) = ˜R(˜A) �
̂α1, α2, α3.
(7) If ˜R(˜∅) = ˜∅, according to (6),wehave ˜R( ̂α1, α2, α3) =

˜R(˜∅ � ̂α1, α2, α3) = ˜R(˜∅) � ̂α1, α2, α3 = ̂α1, α2, α3.
Conversely, if ∀α1, α2, α3 ∈ [0, 1], ˜R( ̂α1, α2, α3) =

̂α1, α2, α3, Take α1 = 0 and α2 = α3 = 1, i.e., ̂α1, α2, α3 =
˜∅, then we have ˜R(˜∅) = ˜∅.

Similarly, we can show ˜R( ̂α1, α2, α3) = ̂α1, α2, α3 ⇐⇒
˜R(U ) = U . ��

Theorem 3.2 Let ˜R1, ˜R2 be two SVNRs in U, ∀˜A ∈
SVNS(U ), we have

(1) ˜R1 � ˜R2(˜A) = ˜R1(˜A) � ˜R2(˜A);

(2) ˜R1 � ˜R2(˜A) = ˜R1(˜A) � ˜R2(˜A).

Proof (1) ∀x ∈ U , by Definition 3.1, we have

T
˜R1�˜R2(˜A)(x) =

∧

y∈U
(F

˜R1�˜R2
(x, y) ∨ T

˜A(y))

=
∧

y∈U
([F

˜R1
(x, y) ∧ F

˜R2
(x, y)] ∨ T

˜A(y))

=
∧

y∈U
([F

˜R1
(x, y) ∨ T

˜A(y)] ∧ [F
˜R2

(x, y) ∨ T
˜A(y)])

=
∧

y∈U
(F

˜R1
(x, y) ∨ T

˜A(y)) ∧
∧

y∈U
(F

˜R2
(x, y) ∨ T

˜A(y))

= T
˜R1(˜A)(x) ∧ T

˜R2(˜A)(x),

I
˜R1�˜R2(˜A)(x) =

∨

y∈U
((1 − I

˜R1�˜R2
(x, y)) ∧ I

˜A(y))

=
∨

y∈U
([(1 − I

˜R1
(x, y)) ∨ (1 − I

˜R2
(x, y))] ∧ I

˜A(y))

=
∨

y∈U
([(1− I

˜R1
(x, y)) ∧ I

˜A(y)] ∨ [(1− I
˜R2

(x, y)) ∧ I
˜A(y)])

=
∨

y∈U
((1− I

˜R1
(x, y)) ∧ I

˜A(y)) ∨
∨

y∈U
((1− I

˜R2
(x, y)) ∧ I

˜A(y))

= I
˜R1(˜A)(x) ∨ I

˜R2(˜A)(x),

F
˜R1�˜R2(˜A)(x) =

∨

y∈U
(T

˜R1�˜R2
(x, y) ∧ F

˜A(y))

=
∨

y∈U
([T

˜R1
(x, y) ∨ T

˜R2
(x, y)] ∧ F

˜A(y))
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=
∨

y∈U
([T

˜R1
(x, y) ∧ F

˜A(y)] ∨ [T
˜R2

(x, y) ∧ F
˜A(y)])

=
∨

y∈U
(T

˜R1
(x, y) ∧ FA(y)) ∨

∨

y∈U
(T

˜R2
(x, y) ∧ F

˜A(y))

= F
˜R1(˜A)(x) ∨ F

˜R2(˜A)(x).

Hence, ˜R1 � ˜R2(˜A) = ˜R1(˜A) � ˜R2(˜A).

(2) By (1) and Theorem 3.1 (5), ˜R1 � ˜R2(˜A) =
(˜R1 � ˜R2(˜Ac))c = (˜R1(˜Ac) � ˜R2(˜Ac))c = (˜R1(˜Ac))c �
(˜R2(˜Ac))c = ˜R1(˜A) � ˜R2(˜A). ��
Theorem 3.3 Let ˜R1 and ˜R2 be two SVNRs in U, ∀˜A ∈
SVNS(U ), we have

(1) ˜R1 � ˜R2(˜A) � ˜R1(˜A) � ˜R2(˜A) � ˜R1(˜A) � ˜R2(˜A);

(2) ˜R1 � ˜R2(˜A) � ˜R1(˜A) � ˜R2(˜A).

Proof (1) ∀x ∈ U , by Definition 3.1,

T
˜R1�˜R2(˜A)(x) =

∧

y∈U
(F

˜R1�˜R2
(x, y) ∨ T

˜A(y))

=
∧

y∈U
([F

˜R1
(x, y) ∨ F

˜R2
(x, y)] ∨ T

˜A(y))

=
∧

y∈U
([F

˜R1
(x, y) ∨ T

˜A(y)] ∨ [F
˜R2

(x, y)

∨ T
˜A(y)])

≥
∧

y∈U
(F

˜R1
(x, y)

∨ T
˜A(y)) ∨

∧

y∈U
(F

˜R2
(x, y) ∨ T

˜A(y))

= T
˜R1(˜A)(x) ∨ T

˜R2(˜A)(x),

I
˜R1�˜R2(˜A)(x) =

∨

y∈U
((1 − I

˜R1�˜R2
(x, y)) ∧ I

˜A(y))

=
∨

y∈U
([(1 − I

˜R1
(x, y)) ∧ (1 − I

˜R2
(x, y))]

∧ I
˜A(y))

=
∨

y∈U
([(1 − I

˜R1
(x, y)) ∧ I

˜A(y)]

∧ [(1 − I
˜R2

(x, y)) ∧ I
˜A(y)])

≤
∨

y∈U
((1 − I

˜R1
(x, y) ∧ I

˜A(y))

∧
∨

y∈U
((1 − I

˜R2
(x, y) ∧ I

˜A(y))

= I
˜R1(˜A)(x) ∧ I

˜R2(˜A)(x),

F
˜R1�˜R2(˜A)(x) =

∨

y∈U
(T

˜R1�˜R2
(x, y) ∧ F

˜A(y))

=
∨

y∈U
([T

˜R1
(x, y) ∧ T

˜R2
(x, y)] ∧ F

˜A(y))

=
∨

y∈U
([T

˜R1
(x, y) ∧ F

˜A(y)]

∧ [T
˜R2

(x, y) ∧ F
˜A(y)])

≤
∨

y∈U
(T

˜R1
(x, y) ∧ F

˜A(y))

∧
∨

y∈U
(T

˜R2
(x, y) ∧ F

˜A(y))

= F
˜R1(˜A)(x) ∧ F

˜R2(˜A)(x).

Hence, ˜R1 � ˜R2(˜A) � ˜R1(˜A) � ˜R2(˜A).

So ˜R1 � ˜R2(˜A) � ˜R1(˜A) � ˜R2(˜A) � ˜R1(˜A) � ˜R2(˜A).
(2) By (1) and Theorem 3.1 (5),

˜R1 � ˜R2(˜A) = (˜R1 � ˜R2(˜A
c))c � (˜R1(˜A

c) � R2(˜A
c))c

= (˜R1(˜A
c))c � (R2(˜A

c))c = ˜R1(˜A) � ˜R2(˜A).

��
By Theorem 3.3, we have the following corollary:

Corollary 3.1 Let ˜R1 and ˜R2 be two SVNRs in U, ∀˜A ∈
SVNS(U ). If ˜R1 � ˜R2, then

˜R2(˜A) � ˜R1(˜A) and ˜R1(˜A) � ˜R2(˜A).

The following Theorem 3.4 establishes the relationships
between special SVNRs and single valued neutrosophic
approximation operators.

Theorem 3.4 Let (U, ˜R) be a single valued neutrosophic

approximation space. ˜R(˜A) and ˜R(˜A) are the lower and
upper approximation in Definition 3.1, then we have

(1) ˜R is serial ⇐⇒ ˜R( ̂α1, α2, α3)

= ̂α1, α2, α3,∀α1, α2, α3 ∈ [0, 1],
⇐⇒ ˜R(˜∅) = ˜∅,

⇐⇒ ˜R( ̂α1, α2, α3)

= ̂α1, α2, α3,∀α1, α2, α3 ∈ [0, 1],
⇐⇒ ˜R(˜U ) = ˜U ,

⇐⇒ ˜R(˜A) � ˜R(˜A),∀˜A ∈ SVNS(U );

(2) ˜R is reflexive ⇐⇒ ˜R(˜A) � ˜A,∀˜A ∈ SVNS(U ),

⇐⇒ ˜A � ˜R(˜A),∀˜A ∈ SVNS(U );

(3) ˜R is symmetric ⇐⇒ ˜R(1U−{x})(y)
= ˜R(1U−{y})(x),∀x, y ∈ U,

⇐⇒ ˜R(1x )(y) = ˜R(1y)(x),∀x, y ∈ U ;
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(4) ˜R is transitive ⇐⇒ ˜R(˜A) � ˜R(˜R(˜A)),∀˜A∈ SVNS(U ),

⇐⇒ ˜R(˜R(˜A)) � ˜R(˜A),∀˜A ∈ SVNS(U ).

Proof By the duality of lower and upper single valued neu-
trosophic approximation operators, we need only to prove the
properties for the upper single valued neutrosophic approxi-
mation operator.

(1) According to Theorem 3.1 (1) and (7), we only need
to show

˜R is serial ⇐⇒ ˜R( ̂α1, α2, α3) = ̂α1, α2, α3 ⇐⇒
˜R(˜A) � ˜R(˜A), ∀α1, α2, α3 ∈ [0, 1].

(i) We first show ˜R is serial ⇐⇒ ˜R( ̂α1, α2, α3) =
̂α1, α2, α3, ∀α1, α2, α3 ∈ [0, 1].
If ˜R is serial, then ∀x ∈ U ,

∨

y∈U T
˜R(x, y) = 1 and

∧

y∈U I
˜R(x, y) = ∧

y∈U F
˜R(x, y) = 0. ∀α1, α2, α3 ∈

[0, 1], by Definition 3.1, ∀x ∈ U ,

T
˜R( ̂α1,α2,α3)

(x) =
∧

y∈U
(F

˜R(x, y) ∨ T
̂α1,α2,α3

(y))

=
∧

y∈U
(F

˜R(x, y) ∨ α1)

= α1 ∨
∧

y∈U
F

˜R(x, y) = α1 ∨ 0 = α1,

I
˜R( ̂α1,α2,α3)

(x) =
∨

y∈U
((1 − I

˜R(x, y)) ∧ I
̂α1,α2,α3

(y))

=
∨

y∈U
((1 − I

˜R(x, y)) ∧ α2)

= α2 ∧
⎛

⎝1 −
∧

y∈U
I
˜R(x, y)

⎞

⎠ = α2 ∧ (1 − 0)

= α2,

F
˜R( ̂α1,α2,α3)

(x) =
∨

y∈U
(T

˜R(x, y) ∧ F
̂α1,α2,α3

(y))

=
∨

y∈U
(T

˜R(x, y)) ∧ α3)

= α3 ∧
∨

y∈U
T

˜R(x, y) = α3 ∧ 1 = α3.

Therefore, ∀α1, α2, α3 ∈ [0, 1], ˜R( ̂α1, α2, α3) = ̂α1, α2, α3.

Conversely, if ∀α1, α2, α3 ∈ [0, 1], ˜R( ̂α1, α2, α3) =
̂α1, α2, α3. Take α1 = 0, α2 = α3 = 1, according to Defini-

tion 3.1, ∀x ∈ U ,

0 = T
˜R(̂0,1,1)

(x) =
∧

y∈U
(F

˜R(x, y) ∨ T
̂0,1,1

(y))

=
∧

y∈U
(F

˜R(x, y) ∨ 0) =
∧

y∈U
F

˜R(x, y),

1 = I
˜R(̂0,1,1)

(x) =
∨

y∈U
((1 − I

˜R(x, y)) ∧ I
̂0,1,1

(y))

=
∨

y∈U
((1 − I

˜R(x, y)) ∧ 1) = 1

−
∧

y∈U
I
˜R(x, y), it follows that

∧

y∈U
I
˜R(x, y) = 0,

1 = F
˜R(̂0,1,1)

(x) =
∨

y∈U
(T

˜R(x, y) ∧ F
̂0,1,1

(y))

=
∨

y∈U
(T

˜R(x, y) ∧ 1) =
∨

y∈U
T

˜R(x, y).

Then, ˜R is serial.
So ˜R is serial ⇐⇒ ˜R( ̂α1, α2, α3) = ̂α1, α2, α3, ∀α1, α2,

α3 ∈ [0, 1].
(ii) Next, we show ˜R is serial ⇐⇒ ˜R(˜A) � ˜R(˜A), ∀˜A ∈

SVNS(U ).
Assume that ˜R is serial. As U is finite, there exists z ∈ U

such that T
˜R(x, z) = 1 and I

˜R(x, z) = F
˜R(x, z) = 0. By

Definition 3.1, ∀x ∈ U ,

T
˜R(˜A)(x) =

∧

y∈U
(F

˜R(x, y) ∨ T
˜A(y))

=
∧

y∈U−{z}
(F

˜R(x, y)∨T
˜A(y))∧(F

˜R(x, z)∨T
˜A(z))

=
∧

y∈U−{z}
(F

˜R(x, y) ∨ T
˜A(y)) ∧ T

˜A(z) ≤ T
˜A(z).

T
˜R(˜A)

(x) =
∨

y∈U
(T

˜R(x, y) ∧ T
˜A(y))

=
∨

y∈U−{z}
(T

˜R(x, y)∧T
˜A(y))∨(T

˜R(x, z)∧T
˜A(z))

=
∨

y∈U−{z}
(T

˜R(x, y) ∧ T
˜A(y)) ∨ T

˜A(z) ≥ T
˜A(z),

Then, T
˜R(˜A)(x) ≤ T

˜R(˜A)
(x).

Similarly,we can show I
˜R(˜A)(x) ≥ I

˜R(˜A)
(x) and F

˜R(˜A)(x)

≥ F
˜R(˜A)

(x). So ˜R(˜A) � ˜R(˜A).

Conversely, if ∀˜A ∈ SVNS(U ), ˜R(˜A) � ˜R(˜A). Take ˜A =
˜U , by Theorem 3.1 (1) and Definition 3.1, then we have

1 = T
˜U (x) = T

˜R(˜U )(x) ≤ ˜R(˜U )(x) = ∨

y∈U (T
˜R(x, y)∧

T
˜U (y)) = ∨

y∈U T
˜R(x, y), which means

∨

y∈U T
˜R(x, y) =

1,
0 = I

˜U (x) = I
˜R(˜U )(x) ≥ ˜R(˜U )(x) = ∧

y∈U (I
˜R(x, y) ∨

I
˜U (y)) = ∧

y∈U I
˜R(x, y),which implies that

∧

y∈U I
˜R(x, y)

= 0,
0 = F

˜U (x) = F
˜R(˜U )(x) ≥ ˜R(˜U )(x) = ∧

y∈U (F
˜R(x, y)∨

F
˜U (y)) = ∧

y∈U F
˜R(x, y), which means

∧

y∈U F
˜R(x, y) =

0.
Hence, ˜R is serial.
(2) “�⇒” If ˜R is reflexive, then ∀x ∈ U , we have

T
˜R(x, x) = 1 and I

˜R(x, x) = F
˜R(x, x) = 0. By Defini-

tion 3.1, ∀˜A ∈ SVNS(U ), ∀x ∈ U ,
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T
˜R(˜A)(x) = ∧

y∈U (F
˜R(x, y) ∨ T

˜A(y)) ≤ F
˜R(x, x) ∨

T
˜A(x) = 0 ∨ T

˜A(x) = T
˜A(x),

I
˜R(˜A)(x) = ∨

y∈U ((1 − I
˜R(x, y)) ∧ I

˜A(y)) ≥ (1 −
I
˜R(x, x)) ∧ I

˜A(x) = (1 − 0) ∧ I
˜A(x) = I

˜A(x),
F

˜R(˜A)(x) = ∨

y∈U (T
˜R(x, y) ∧ F

˜A(y)) ≥ T
˜R(x, x) ∧

F
˜A(x) = 1 ∧ F

˜A(x) = F
˜A(x).

So ˜R(˜A) � ˜A.
“⇐�” Assume ∀˜A ∈ SVNS(U ), ˜R(˜A) � ˜A. ∀x ∈ U ,

take ˜A = 1U−{x}, then we have
0 = T1U−{x}(x) ≥ T

˜R(1U−{x})(x) = ∧

y∈U (F
˜R(x, y) ∨

T1U−{x}(y)) = (F
˜R(x, x)∨T1U−{x}(x))∧

∧

y∈U−{x}(F˜R(x, y)
∨ T1U−{x}(y)) = (F

˜R(x, x) ∨ 0) ∧ 1 = F
˜R(x, x), then

F
˜R(x, x) = 0,
1 = I1U−{x}(x) ≤ I

˜R(1U−{x})(x) = ∨

y∈U ((1− I
˜R(x, y))∧

I1U−{x}(y)) = ((1− I
˜R(x, x))∧ I1U−{x}(x))∨

∨

y∈U−{x}((1−
I
˜R(x, y)) ∧ I1U−{x}(y)) = ((1 − I

˜R(x, x)) ∧ 1) ∨ 0 = 1 −
I
˜R(x, x), then I

˜R(x, x) = 0,
1 = F1U−{x}(x) ≤ F

˜R(1U−{x})(x) = ∨

y∈U (T
˜R(x, y) ∧

F1U−{x}(y)) = (T
˜R(x, x)∧F1U−{x}(x))∨

∨

y∈U−{x}(T˜R(x, y)
∧ F1U−{x}(y)) = (T

˜R(x, x) ∧ 1) ∨ 0 = T
˜R(x, x), then

T
˜R(x, x) = 1.
Thus, ˜R is reflexive.
So ˜R is reflexive ⇐⇒ ˜R(˜A) � ˜A, ∀˜A ∈ SVNS(U ).
(3) By Definition 3.1, ∀x, y ∈ U

T
˜R(1U−{x})(y) =

∧

z∈U
(F

˜R(y, z) ∨ T1U−{x}(z))

= [F
˜R(y, x) ∨ T1U−{x}(x)] ∧

∧

z∈U−{x}
(F

˜R(y, z) ∨ T1U−{x}(z))

= [F
˜R(y, x) ∨ 0] ∧ 1 = F

˜R(y, x),

T
˜R(1U−{y})(x) =

∧

z∈U
(F

˜R(x, z) ∨ T1U−{y}(z))

= [F
˜R(x, y) ∨ T1U−{y}(y)] ∧

∧

z∈U−{y}
(F

˜R(x, z) ∨ T1U−{y}(z))

= [F
˜R(x, y) ∨ 0] ∧ 1 = F

˜R(x, y),

I
˜R(1U−{x})(y) =

∨

z∈U
((1 − I

˜R(y, z)) ∧ I1U−{x}(z))

= [(1 − I
˜R(y, x)) ∧ I1U−{x}(x)]

∨
∨

z∈U−{x}
((1− I

˜R(y, z)) ∧ I1U−{x}(z)) = [(1− I
˜R(y, x)) ∧ 1]

∨ 0 = 1 − I
˜R(y, x),

I
˜R(1U−{y})(x) =

∨

z∈U
((1 − I

˜R(x, z)) ∧ I1U−{y}(z))

= [(1 − I
˜R(x, y)) ∧ I1U−{y}(y)]

∨
∨

z∈U−{y}
((1 − I

˜R(x, z)) ∧ I1U−{y}(z))

= [(1 − I
˜R(x, y)) ∧ 1] ∨ 0 = 1 − I

˜R(x, y),

F
˜R(1U−{x})(y) =

∨

z∈U
(T

˜R(y, z) ∧ F1U−{x}(z))

= [T
˜R(y, x) ∧ F1U−{x}(x)]

∨
∨

z∈U−{x}
(T

˜R(y, z) ∧ F1U−{x}(z))

= [T
˜R(y, x) ∧ 1] ∨ 0 = T

˜R(y, x),

F
˜R(1U−{y})(x) =

∨

z∈U
(T

˜R(x, z) ∧ F1U−{y}(z))

= [T
˜R(x, y) ∧ F1U−{y}(y)] ∨

∨

z∈U−{y}
(T

˜R(x, z) ∧ F1U−{y}(z))

= [T
˜R(x, y) ∧ 1] ∨ 0 = T

˜R(x, y).

Note that ˜R is symmetric iff ∀x, y ∈ U , T
˜R(x, y) =

T
˜R(y, x), I

˜R(x, y) = I
˜R(y, x), and F

˜R(x, y) = F
˜R(y, x).

Then ˜R is symmetric iff ∀x, y ∈ U , T
˜R(1U−{x})(y) =

T
˜R(1U−{y})(x), I˜R(1U−{x})(y) = I

˜R(1U−{y})(x), and F
˜R(1U−{x})

(y) = F
˜R(1U−{y})(x), which implies that ˜R is symmetric iff

∀x, y ∈ U , ˜R(1U−{x})(y) = ˜R(1U−{y})(x).
(4) “�⇒” If ˜R is transitive, then ∀x, y, z ∈ U ,

∨

y∈U (T
˜R(x, y) ∧ T

˜R(y, z)) ≤ T
˜R(x, z),

∧

y∈U (I
˜R(x, y) ∨

I
˜R(y, z)) ≥ I

˜R(x, z), and
∧

y∈U (F
˜R(x, y) ∨ F

˜R(y, z)) ≥
F

˜R(x, z). By Definition 3.1, ∀x ∈ U , we have

T
˜R(˜R(˜A))(x) =

∧

y∈U
(F

˜R(x, y) ∨ T
˜R(˜A)(y))

=
∧

y∈U
(F

˜R(x, y) ∨
∧

z∈U
(F

˜R(y, z) ∨ T
˜A(z)))

=
∧

z∈U

∧

y∈U
(F

˜R(x, y) ∨ F
˜R(y, z) ∨ T

˜A(z))

=
∧

z∈U

⎛

⎝

∧

y∈U
(F

˜R(x, y) ∨ F
˜R(y, z)) ∨ T

˜A(z)

⎞

⎠

≥
∧

z∈U
(F

˜R(x, z) ∨ T
˜A(z))

= T
˜R(˜A)(x),

I
˜R(˜R(˜A))(x) =

∨

y∈U
((1 − I

˜R(x, y)) ∧ I
˜R(˜A)(y))

=
∨

y∈U
((1− I

˜R(x, y)) ∧
∨

z∈U
((1− I

˜R(y, z)) ∧ I
˜A(z)))

=
∨

z∈U

∨

y∈U
((1− I

˜R(x, y)) ∧ (1− I
˜R(y, z)) ∧ I

˜A(z))

=
∨

z∈U

⎛

⎝

⎡

⎣1 −
∧

y∈U
(I

˜R(x, y) ∨ I
˜R(y, z))

⎤

⎦ ∧ I
˜A(z)

⎞

⎠

≤
∨

z∈U
((1 − I

˜R(x, z)) ∧ I
˜A(z))

= I
˜R(˜A)(x),

F
˜R(˜R(˜A))(x) =

∨

y∈U
(T

˜R(x, y) ∧ F
˜R(˜A)(y))

=
∨

y∈U
(T

˜R(x, y) ∧
∨

z∈U
(T

˜R(y, z) ∧ F
˜A(z)))

=
∨

z∈U

∨

y∈U
(T

˜R(x, y) ∧ T
˜R(y, z) ∧ F

˜A(z))
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=
∨

z∈U

⎛

⎝

∨

y∈U
(T

˜R(x, y) ∧ T
˜R(y, z)) ∧ F

˜A(z)

⎞

⎠

≤
∨

z∈U
(T

˜R(x, z) ∧ F
˜A(z))

= F
˜R(˜A)(x).

��
Hence, ˜R(˜A) � ˜R(˜R(˜A)).

“⇐�” If ∀˜A ∈ SVNS(U ), ˜R(˜A) � ˜R(˜R(˜A)). ∀x, y, z ∈
U , take ˜A = 1U−{z}, we have

F
˜R(x, z) = T

˜R(1U−{z})(x) ≤ T
˜R(˜R(1U−{z}))(x)

=
∧

y∈U
(F

˜R(x, y) ∨ T
˜R(1U−{z})(y))

=
∧

y∈U
(F

˜R(x, y) ∨ F
˜R(y, z)),

1−I
˜R(x, z) = I

˜R(1U−{z})(x) ≥ I
˜R(˜R(1U−{z}))(x) = ∨

y∈U ((1−
I
˜R(x, y)) ∧ I

˜R(1U−{z})(y)) = ∨

y∈U ((1 − I
˜R(x, y)) ∧ (1 −

I
˜R(y, z))) = 1−∧

y∈U (I
˜R(x, y)∨I

˜R(y, z)), then I
˜R(x, z) ≤

∧

y∈U (I
˜R(x, y) ∨ I

˜R(y, z)),

T
˜R(x, z) = F

˜R(1U−{z})(x) ≥ F
˜R(˜R(1U−{z}))(x)

=
∨

y∈U
(T

˜R(x, y) ∧ F
˜R(1U−{z})(y))

=
∨

y∈U
(T

˜R(x, y) ∧ T
˜R(y, z)).

So ˜R is transitive.

4 Axiomatic characterizations of single valued
neutrosophic rough sets

In this section, we will give axiomatic characterizations
of single valued neutrosophic rough sets by defining a
pair of abstract operators. For single valued neutrosophic
rough sets, we consider a system (SVNS(U ),�,�, c, L , H),
where L , H : SVNS(U ) −→ SVNS(U ) are two oper-
ators from SVNS(U ) to SVNS(U ). Let T (U ), I (U ) and
F(U ) be the family of truth-membership function, inde-
terminacy membership functions, and falsity-membership
functions, respectively. L and H can be represented by L =
(LT , L I , LF ) and H = (HT , HI , HF ), respectively, where
LT , HT : T (U ) −→ T (U ), L I , HI : I (U ) −→ I (U )

and LF , HF : F(U ) −→ F(U ). For ˜A ∈ SVNS(U ),
L(˜A) = (LT (T

˜A), L I (I˜A), LF (F
˜A)) which means that

TL(˜A) = LT (T
˜A), IL(˜A) = L I (I˜A), and FL(˜A) = LF (F

˜A).
H(˜A) = (HT (T

˜A), HI (I˜A), HF (F
˜A)) which means that

TH(˜A) = HT (T
˜A), IH(˜A) = HI (I˜A), and FH(˜A) = HF (F

˜A).

Definition 4.1 Let L , H : SVNS(U ) −→ SVNS(U ) be two
single valued neutrosophic set operators. ∀˜A = {〈x, T

˜A(x),
I
˜A(x), F

˜A(x)〉 | x ∈ U } ∈ SVNS(U ), L and H are called
dual operators if they satisfy the following axioms:

(SVNSL1) L(˜A) = (H(˜Ac))c, i.e., ∀x ∈ U , LT (T
˜A)(x)

= HF (T
˜A)(x), L I (I˜A)(x) = 1 − HI (1 − I

˜A)(x),
LF (F

˜A)(x) = HT (F
˜A)(x);

(SVNSU1) H(˜A)(x) = (L(˜Ac))c(x), i.e., ∀x ∈ U ,
HT (T

˜A)(x) = LF (T
˜A)(x), HI (I˜A)(x) = 1 − L I (1 −

I
˜A)(x), HF (F

˜A)(x) = LT (F
˜A)(x),

where 1 is a constant fuzzy set in U satisfying ∀x ∈ U ,
1(x) = 1.

It is easy to see that axioms (SVNSL1) and (SVNSU1)
are equivalent.

Theorem 4.1 Let L , H : SVNS(U ) −→ SVNS(U ) be two
dual operators. Then, there exists a SVNR ˜R in U such that

L(˜A) = ˜R(˜A) and H(˜A) = ˜R(˜A) for all ˜A ∈ SVNS(U ) iff
L satisfies the following axioms (SVNSL2) and (SVNSL3), or
equivalently, H satisfies axioms (SVNSU2) and (SVNSLU3):
∀˜A, ˜B ∈ SVNS(U ), ∀α1, α2, α3 ∈ [0, 1],

(SVNSL2) L(˜A � ̂α1, α2, α3) = L(˜A) � ̂α1, α2, α3, i.e.,
∀x ∈ U, LT (T

˜A � α1)(x) = LT (T
˜A)(x) ∨ α1, L I (I˜A �

α2)(x) = L I (I˜A)(x)∧α2, L F (F
˜A �α3)(x) = LF (F

˜A)(x)∧
α3, where αi is a constant fuzzy set in U satisfying ∀x ∈ U,
αi (x) = αi (i = 1, 2, 3);

(SVNSL3) L(˜A � ˜B) = L(˜A) � L(˜B), i.e., ∀x ∈
U, LT (T

˜A�˜B)(x) = LT (T
˜A � T

˜B)(x) = LT (T
˜A)(x) ∧

LT (T
˜B)(x), L I (I˜A�˜B)(x) = L I (I˜A� I

˜B)(x) = L I (I˜A)(x)∨
L I (I˜B)(x), L F (F

˜A�˜B)(x) = LF (F
˜A�F

˜B)(x) = LF (F
˜A)(x)

∨ LF (F
˜B)(x);

(SVNSU2) H(˜A � ̂α1, α2, α3) = H(˜A) � ̂α1, α2, α3, i.e.,
∀x ∈ U, HT (T

˜A � α1)(x) = HT (T
˜A)(x) ∧ α1, HI (I˜A �

α2)(x) = HI (I˜A)(x)∨α2, HF (F
˜A�α3)(x) = HF (F

˜A)(x)∨
α3, where αi is a constant fuzzy set in U satisfying ∀x ∈ U,
αi (x) = αi (i = 1, 2, 3);

(SVNSU3) H(˜A � ˜B) = H(˜A) � H(˜B), i.e., ∀x ∈
U, HT (T

˜A�˜B)(x) = HT (T
˜A � T

˜B)(x) = HT (T
˜A)(x) ∧

HT (T
˜B)(x), HI (I˜A�˜B)(x) = HI (I˜A�I

˜B)(x) = HI (I˜A)(x)∨
HI (I˜B)(x),
HF (F

˜A�˜B)(x) = HF (F
˜A � F

˜B)(x) = HF (F
˜A)(x) ∨

HF (F
˜B)(x).

Proof “�⇒” It follows immediately from Theorem 3.1.
“⇐�” Suppose that the operator H satisfies axioms

(SVNSU2) and (SVNSU3). By using H , we can define a
SVNR ˜R = {〈(x, y), T

˜R(x, y), I
˜R(x, y), F

˜R(x, y)〉 | x, y ∈
U } as follows,

∀x, y ∈ U , T
˜R(x, y) = HT (T1y )(x), I

˜R(x, y) =
HI (I1y )(x), and F

˜R(x, y) = HF (F1y )(x).
Obviously, ∀˜A ∈ SVNS(U ), we have
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T
˜A = ⋃

y∈U (T1y � T
˜A(y)), I

˜A = �y∈U (I1y � I
˜A(y)), and

F
˜A = ⋂

y∈U (F1y � F
˜A(y)).

By Definition 3.1, (SVNSU2) and (SVNSU3), we have

T
˜R(˜A)

(x) =
∨

y∈U
(T

˜R(x, y) ∧ T
˜A(y))

=
∨

y∈U
(HT (T1y )(x) ∧ T

˜A(y))

=
∨

y∈U
HT (T1y � T

˜A(y))(x)

= HT

⎛

⎝

⋃

y∈U
(T1y � T

˜A(y))

⎞

⎠ (x)

= HT (T
˜A)(x)

= TH(˜A)(x),

I
˜R(˜A)

(x) =
∧

y∈U
(I

˜R(x, y) ∨ I
˜A(y))

=
∧

y∈U
(HI (I1y )(x) ∨ I

˜A(y))

=
∧

y∈U
HI (I1y � I

˜A(y))(x)

= HI

⎛

⎝

⋂

y∈U
(I1y � I

˜A(y))

⎞

⎠ (x)

= HI (I˜A)(x)

= IH(˜A)(x),

F
˜R(˜A)

(x) =
∧

y∈U
(F

˜R(x, y) ∨ F
˜A(y))

=
∧

y∈U
(HF (F1y )(x) ∨ F

˜A(y))

=
∧

y∈U
HF (F1y � F

˜A(y))(x)

= HF

⎛

⎝

⋂

y∈U
(F1y � F

˜A(y))

⎞

⎠ (x)

= HF (F
˜A)(x)

= FH(˜A)(x).

Therefore, H(˜A) = ˜R(˜A). As L and H are dual operators

and H(˜A) = ˜R(˜A), we can easily obtain L(˜A) = ˜R(˜A). ��
From Theorem 4.1, it follows that axioms (SVNSU1),

(SVNSL1)–(SVNSL3), (or equivalently, axioms (SVNSL1),
(SVNSU1)–(SVNSU3)) are the basic axioms of single val-
ued neutrosophic approximation operators. Then, we have
the following definition.

Definition 4.2 Let L , H : SVNS(U ) −→ SVNS(U ) be
two dual operators, if L satisfies axioms (SVNSL2) and
(SVNSL3), or equivalently H satisfies axioms (SVNSU2)
and (SVNSU3), then the system (SVNS(U ),�,�, c, L , H )
is called a single valued neutrosophic rough set algebra, and
L and H are called single valued neutrosophic lower and
upper approximation operators, respectively.

Next, we explore axiomatic characterizations of some
special classes of single valued neutrosophic approximation
operators.

Theorem 4.2 Let L , H : SVNS(U ) −→ SVNS(U ) be two
dual operators, then there exists a serial SVNR ˜R in U such

that ∀˜A ∈ SVNS(U ), L(˜A) = ˜R(˜A), H(˜A) = ˜R(˜A) if and
only if L satisfies axioms (SVNSL2), (SVNSL3), and one of
the following equivalent axioms, or equivalently H satis-
fies axioms (SVNSU2), (SVNSU3), and one of the following
equivalent axioms:

(SVNSL4) L(˜∅) = ˜∅;
(SVNSU4) H(˜U ) = ˜U;
(SVNSL5) L( ̂α1, α2, α3) = ̂α1, α2, α3;
(SVNSU5) H( ̂α1, α2, α3) = ̂α1, α2, α3;
(SVNSLU5) L(˜A) � H(˜A), ∀˜A ∈ SVNS(U ).

Proof It follows from Theorems 3.4 (1) and 4.1. ��
Theorem 4.3 Let L , H : SVNS(U ) −→ SVNS(U ) be two
dual operators, then there exists a reflexive SVNR ˜R in U

such that ∀˜A ∈ SVNS(U ), L(˜A) = ˜R(˜A), H(˜A) = ˜R(˜A) if
and only if L satisfies axioms (SVNSL2), (SVNSL3), and one
of the following equivalent axioms, or equivalently H satis-
fies axioms (SVNSU2), (SVNSU3), and one of the following
equivalent axioms:

(SVNSL6) L(˜A) � ˜A, ∀˜A ∈ SVNS(U );
(SVNSU6) ˜A � H(˜A), ∀˜A ∈ SVNS(U ).

Proof It follows from Theorems 3.4 (2) and 4.1. ��
Theorem 4.4 Let L , H : SVNS(U ) −→ SVNS(U ) be two
dual operators, then there exists a symmetric SVNR ˜R in
U such that ∀˜A ∈ SVNS(U ), L(˜A) = ˜R(˜A) and H(˜A) =
˜R(˜A) if and only if L satisfies axioms (SVNSL2), (SVNSL3),
and one of the following equivalent axioms, or equivalently
H satisfies axioms (SVNSU2), (SVNSU3), and one of the
following equivalent axioms:

(SVNSL7) L(1U−{x})(y) = L(1U−{y})(x), ∀x, y ∈ U;
(SVNSU7) H(1x )(y) = H(1y)(x), ∀x, y ∈ U.

Proof It follows from Theorems 3.4 (3) and 4.1.
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Theorem 4.5 Let L , H : SVNS(U ) −→ SVNS(U ) be two
dual operators, then there exists a transitive SVNR ˜R in U

such that ∀˜A ∈ SVNS(U ), L(˜A) = ˜R(˜A), H(˜A) = ˜R(˜A) if
and only if L satisfies axioms (SVNSL2), (SVNSL3), and one
of the following equivalent axioms, or equivalently H satis-
fies axioms (SVNSU2), (SVNSU3), and one of the following
equivalent axioms:

(SVNSL8) L(˜A) � L(L(˜A)), ∀˜A ∈ SVNS(U );
(SVNSU8) H(H(˜A)) � H(˜A), ∀˜A ∈ SVNS(U ).

Proof It follows from Theorems 3.4 (4) and 4.1.

5 An application of single valued neutrosophic
rough sets

As an efficient tool of dealing with inaccurate informa-
tion and data, rough sets especially rough sets on two
different universes have applications in many fields such as
multi-attribute decision making, clustering, data mining and
medical diagnosis. In order to explore the application of sin-
gle valued neutrosophic rough sets, we first extend the single
valued neutrosophic rough sets to two-universes case.

Definition 5.1 Let U, V be two space of points (objects).
A SVNS ˜R in U × V is called a single valued neutro-
sophic relation (SVNR) from U to V , denoted by ˜R =
{〈(x, y), T

˜R(x, y), I
˜R(x, y), F

˜R(x, y)〉 | (x, y) ∈ U × V },
where T

˜R : U × V −→ [0, 1], I
˜R : U × V −→ [0, 1]

and F
˜R : U × V −→ [0, 1] denote the truth-membership

function, indeterminacy membership function and falsity-
membership function of ˜R, respectively.

Definition 5.2 Let ˜R be a SVNR from U to V , the triple
(U, V, ˜R) is called a generalized single valued neutrosophic
approximation space on two-universes. ∀˜A ∈ SVNS(V ),
the lower and upper approximations of ˜A with respect to

(U, V, ˜R), denoted by ˜R(˜A) and ˜R(˜A), are two SVNSs
whose membership functions are defined as: ∀x ∈ U ,

T
˜R(˜A)(x) =

∧

y∈V
(F

˜R(x, y) ∨ T
˜A(y)),

I
˜R(˜A)(x) =

∨

y∈V
((1 − I

˜R(x, y)) ∧ I
˜A(y)),

F
˜R(˜A)(x) =

∨

y∈V
(T

˜R(x, y) ∧ F
˜A(y));

T
˜R(˜A)

(x) =
∨

y∈V
(T

˜R(x, y) ∧ T
˜A(y)),

I
˜R(˜A)

(x) =
∧

y∈V
(I

˜R(x, y) ∨ I
˜A(y)),

F
˜R(˜A)

(x) =
∧

y∈V
(F

˜R(x, y) ∨ F
˜A(y)).

The pair (˜R(˜A), ˜R(˜A)) is called a single valued neutrosophic
rough set on two-universes.

Peng et al. (2014) introduced the operations of simplified
neutrosophic numbers and gave a outranking approach of
simplified neutrosophic numbers. Similarly, we can define
the operations of single valued neutrosophic numbers and
give a outranking approach of single valued neutrosophic
numbers.

Definition 5.3 Let n1 = (Tn1, In1 , Fn1) and n2 = (Tn2 , In2 ,
Fn2) be two single valued neutrosophic numbers, the opera-
tions of single valued neutrosophic numbers can be defined
as follows:

(1) λn1 = (1 − (1 − Tn1)
λ, (In1)

λ, (Fn1)
λ);

(2) nλ
1 = ((Tn1)

λ, 1 − (1 − In1)
λ, 1 − (1 − Fn1)

λ);
(3) n1 ⊕ n2 = (Tn1 + Tn2 − Tn1 · Tn2 , In1 · In2 , Fn1 · Fn2);
(4) n1 � n2 = (Tn1 · Tn2 , In1 + In2 − In1 · In2 , Fn1 + Fn2 −

Fn1 · Fn2).

By Definition 5.3 (3), we can define the sum of two SVNSs
in U as follows.

Definition 5.4 Let ˜A and ˜B be two SVNSs in U , we define
the sum of ˜A and ˜B as

˜A � ˜B = {〈x, ˜A(x) ⊕ ˜B(x) | x ∈ U }.

To rank single valued neutrosophic numbers in the
decision-making process,Ye (2013) proposed the cosine sim-
ilaritymeasure between single valued neutrosophic numbers.

Definition 5.5 (Ye 2013). Let n = (Tn, In, Fn) be a sin-
gle valued neutrosophic number, n∗ = (Tn∗, In∗ , Fn∗) =
(1, 0, 0) be an ideal single valued neutrosophic number, then
the cosine similarity measure between n and n∗ is defined as
follows:

S(n, n∗) = Tn · Tn∗ + In · In∗ + Fn · Fn∗
√

T 2
n + I 2n + F2

n · √

(Tn∗)2 + (In∗)2 + (Fn∗)2
.

By Definition 5.5, the bigger the measure value S(n, n∗)
is, the bigger the single valued neutrosophic number n is,
because n is close to the ideal value n∗. Through comparing
the cosine similarity measure between each single valued
neutrosophic number and the ideal single valued neutro-
sophic number, the ranking of all single valued neutrosophic
numbers can be determined.

For the multi-attribute decision-making problem under
single valued neutrosophic environment, the characteristics
of the alternatives xi (i = 1, 2, . . . , n) are represented by
single valued neutrosophic numbers nxi . Define the alterna-
tive x∗ with the idea characteristics value n∗ = (1, 0, 0) as
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Table 4 Single valued
neutrosophic relation ˜R between
the symptoms and diseases

˜R x1 x2 x3 x4 x5

y1 (0.6,0,1,0.4) (1,0.2,0) (0.8,0.1,0.5) (1,0.3,0.1) (0.1,0.2,0.7)

y2 (1,0,0) (0,0,1) (0,0.3,1) (0,0,1) (0,0,1)

y3 (0.6,0.2,0.2) (0.8,0.1,0.1) (0.2,0.2,0.8) (0.3,0.1,0.7) (0,0.2,0.9)

y4 (0.8,0.3,0.2) (0.1,0.1,0.7) (0.2,0.1,0.8) (0,0,1) (0.2,0.1,0.7)

y5 (0,0,1) (0,0,1) (0.7,0.1,0.2) (0,0,1) (1,0,0)

y6 (0.9,0.1,0.2) (0.8,0.2,0.1) (0.1,0.2,0.8) (0.7,0.3,0.2) (0,0,1)

y7 (0.1,0.1,0.9) (0.2,0.1,0.6) (1,0,0) (0,0,1) (0.7,0.3,0.2)

the ideal alternative (Ye 2013, 2014b). The bigger the value
of the cosine similarity measure S(nxi , n

∗) is, the better the
alternative xi is, because the alternative xi is close to the ideal
alternative x∗. By comparing the cosine similarity measure
value, the ranking of all alternatives can be determined and
we can obtain the optimal alternative.

Next, we present the whole medical diagnosis decision
procedure based on single valued neutrosophic rough sets on
two-universes.

Assume that the universe U = {x1, x2, . . . , xn} denotes
a set of diseases, and the universe V = {y1, y2, . . . , ym}
denotes a set of symptoms. Let R ∈ SVNR(U × V ) be a
SVNR from U to V , where ∀(xi , y j ) ∈ U × V , R(xi , y j )
denotes the degree that the disease xi (xi ∈ U ) has the symp-
tom y j (y j ∈ V ). R can be obtained according to a medical
knowledge statistic data. Given a patient ˜A, symptoms of the
patient (we also use ˜A to denote it) are described by a SVNS
˜A in the universe V according to a doctor’s evaluation. By
use of the following algorithm, we can determine what kind
of the diseases the patient ˜A is suffering from.

Algorithm
Step 1. ByDefinition 5.2, we calculate the lower and upper

approximations ˜R(˜A) and ˜R(˜A) of ˜A.

Step 2. By Definition 5.4, we get ˜R(˜A) � ˜R(˜A).
Step 3. By Definition 5.5, we compute S(nxi , n

∗)(i =
1, 2, . . . , n).

Step 4. The optimal decision is to select xk (which means
that the most possible disease is xk) if S(nxk , n

∗) = max

i∈{1,2,...,n}(S(nxi , n
∗)).

Step 5. If k has more than one value, then each xk will
be the optimal decision. In this case, the patient may suffer
more than one disease and each xk will be chosen as the most
possible disease, or we need other methods to make a further
decision.

In the following, we give a numerical example to illustrate
the application of single valued neutrosophic rough sets on
two-universes by use of the algorithm above.

Example 5.1 Let U = {x1, x2, x3, x4, x5} be five diseases,
where xi (i = 1, 2, 3, 4, 5) stand for “common cold,” “viral
fever,” “malaria,” “typhoid” and “stomach problem,” respec-

tively. V = {y1, y2, y3, y4, y5, y6, y7} be five symptoms in
clinic, where y j ( j = 1, 2, 3, 4, 5, 6, 7) stand for “tired,”
“a stuffed-up nose,” “headache,” “chill,” “stomach pain,”
“dry cough” and “chest-pain,” respectively. ˜R is a medical
knowledge statistic data of the relationship of the disease xi
(xi ∈ U ) and the symptom y j (y j ∈ V ), and ˜R is actually a
SVNR from U to V (given in Table 4).

Suppose the symptoms of a patient ˜A are described by a
SVNS in the universe V , and

˜A = {〈y1, 0.2, 0.6, 0.7〉, 〈y2, 0.5, 0.2, 0.1〉, 〈y3, 0.1, 0.8, 0.6〉,
〈y4, 0.9, 0.3, 0.1〉, 〈y5, 0, 1, 0.5〉,
〈y6, 0.7, 0.7, 0.4〉, 〈y7, 0.5, 0.8, 0.9〉}.

By Definition 5.2, we calculate the lower and upper approx-

imations ˜R(˜A) and ˜R(˜A) of the patient ˜A as follows:

˜R(˜A) = {〈x1, 0.1, 1, 0.6〉, 〈x2, 0.1, 0.8, 0.7〉,
〈x3, 0.2, 0.9, 0.9〉, 〈x4, 0.2, 0.8, 0.7〉,
〈x5, 0, 0.8, 0.7〉},

˜R(˜A) = {〈x1, 0.8, 0.2, 0.1〉, 〈x2, 0.7, 0.2, 0.4〉,
〈x3, 0.5, 0.3, 0.5〉, 〈x4, 0.7, 0.2, 0.4〉,
〈x5, 0.5, 0.2, 0.5〉}.

By Definition 5.4, we have

˜R(˜A) � ˜R(˜A) = {〈x1, 0.82, 0.02, 0.06〉, 〈x2, 0.73, 0.16, 0.28〉,
〈x3, 0.6, 0.27, 0.45〉,
〈x4, 0.76, 0.16, 0.28〉, 〈x5, 0.5, 0.16, 0.35〉}.

Then, byDefinition 5.5,we can compute the cosine similarity
measure between the single valued neutrosophic number nxi
corresponding to xi and the ideal single valued neutrosophic
number n∗ as follows:

S(nx1 , n
∗) = 0.997, S(nx2 , n

∗)=0.915, S(nx3 , n
∗)=0.753,

S(nx4 , n
∗) = 0.921, S(nx5 , n

∗) = 0.792.
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Then, we have

S(nx1 , n
∗) > S(nx4 , n

∗) > S(nx2 , n
∗) > S(nx5 , n

∗)
> S(nx3 , n

∗).

So, the optimal decision is to select x1. That is, we can con-
clude that the patient ˜A is suffering from common cold x1.

To explore the effectiveness of themethod proposed in this
paper, we compare it with the method proposed in Yang et al.
(2012). The method given in Yang et al. (2012) only deals
with the decision-making problems with bipolar fuzzy (i.e.,
intuitionistic fuzzy) information, but not the decision-making
problems with the single valued neutrosophic information,
while the model proposed in the present paper can handle the
decision-making problems not only with bipolar fuzzy (i.e.,
intuitionistic fuzzy) information (since intuitionistic fuzzy
sets can be regarded as an especial case of SVNSs) but also
with single valued neutrosophic information. Thus, the pro-
posed method is more general and its application domain is
wider than that of the method in Yang et al. (2012).

6 Conclusion

Neutrosophic sets and rough sets are two hot research topics.
In this paper, we propose a hybrid model of single valued
neutrosophic sets and rough sets, named single valued neu-
trosophic rough sets. We present a general framework of
the study of single valued neutrosophic rough sets through
constructive and axiomatic approaches. The single valued
neutrosophic rough sets on two-universes are also introduced.
We present an algorithm of decision making based on single
valued neutrosophic rough sets on two-universes. We also
give a numerical example to show the usefulness of single
valued neutrosophic rough sets on two-universes.

As far as future directions are concerned, these will
include studying other types of fusions of rough sets and neu-
trosophic sets, and reducts of these model. We will address
these issues in our forthcoming research.
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