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Abstract This work introduces a novel methodology to
perform the comparative analysis of evolutionary optimiza-
tion algorithms. The methodology relies simply on linear
regression and quantile–quantile plots. The methodology
is extrapolated as the one-to-one comparison, one-to-many
comparison and many-to-many comparison of solution qual-
ity and convergence rate. Most of the existing approaches
utilize both solution quality and convergence rate to perform
comparative analysis. However, many-to-many comparison,
i.e., ranking of algorithms is done only in terms of solution
quality. The proposed method is capable of ranking algo-
rithms in terms of both solution quality and convergence
rate. Method is analyzed with well-established algorithms
and real data obtained from 25 benchmark functions.

Keywords Evolutionary optimization algorithms · Linear
regression · Particle swarm optimization · Differential
evolution · Visual analysis

1 Introduction

Evolutionary optimization algorithms (EOAs) are heuristic
stochastic processes. EOAs generate next state in each suc-
cessive step depending on the current state, and the process
continues until certain predefined conditions aremet.Numer-
ous algorithms have been developed in last decades following
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same iterative notion. Most of these algorithms are devel-
oped for optimization purpose. Although the notion of these
algorithms is similar and designed for the same problem,
strategies adopted for generating next states are different. No
free lunch theorem (Wolpert and Macready 1997) states that
it is not possible to find one algorithm being better for any
problem. It has also been noticed that for the same problem,
algorithms behave in different ways depending on the degree
of knowledge about problem (García et al. 2009). Hence, it is
essential to know when algorithm behaves better and which
algorithm performs better. With the rapid growth of applica-
tions of EOAs as well as algorithms in several application
domains, comparative analysis of EOAs has drawn attention
in recent years.

Numerous approaches have been developed for evaluating
the performance of EOAs. Nonparametric approaches (Gar-
cía et al. 2007; Moreno-Pérez et al. 2007; Derrac et al. 2011)
are very popular andwidely used to evaluate the performance
of EOAs. These approaches simply generate different para-
meters to solutions obtained over multiple executions of an
algorithm, and performances are estimated in terms of those
parameters. Rojas et al. (2002) and Czarn et al. (2004) have
proposed parametric approaches that infer parameters from
the probability distribution of solutions. Shilane et al. (2008)
has extended these approaches further for analyzing perfor-
mance specific to any parameter. Francois and Lavergne
(2001) has introduced a statistical methodology to choose
efficient parameter settings. The analysis method of EOAs
has further grown in several directions such as bootstrapping
(Nijssen and Back 2003; Carrano et al. 2008), exploratory
landscape analysis (ELA) (Mersmann et al. 2010) and
drift analysis (He and Yao 2001). Mathematical approaches
(Muhlenbein and Mahnig 2001; Yang 2011; Lockett 2013;
He and Chen 2013) and visual analysis approach (Wu et al.
1999; Lutton and Fekete 2011) have drawn attention for
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evaluatingEOAs in recent years. In this paper, a simplemech-
anism has been developed based on linear regression analysis
and quantile–quantile plot to design a methodology for ana-
lyzing EOAs visually.

Although many approaches have been developed over the
decade, parametric and nonparametric approaches are still
treated to bemore effective and utilized immensely for analy-
sis of EOAs. Most of these approaches incorporate results
obtained in perspective of benchmark functions or some spe-
cific problems. Basic statistical measures such as standard
deviation, mean, median, minimum and maximum are esti-
mated to determine overall performance. We have proposed
a nonparametric approach in which interpretation of para-
meters is done through visual inspection. Proposed approach
furnishesmore direct interpretation of original solutionswith
quantile–quantile plot and simple linear regression analy-
sis. With proposed approach, the performance of EOAs is
analyzed in terms of both solution quality and convergence
rate. Method has been examined in directives such as one-to-
one comparison, one-to-many comparison, and for ranking
many-to-many comparison.

A preliminary report of parts of this study was published
as a conference paper (Biswas andBiswas 2014). The current
version of paper significantly extends earlier work as well as
results with more in-depth discussions. The methodology is
also extended for convergence rate and analyzed with addi-
tional benchmark objective functions.

Rest of the paper is organized as follows: Sect. 2 explains
preliminary concepts related to proposed approach with
suitable example, Sect. 3 elaborates regression line shift-
ing mechanism and derives important properties, Sect. 4
describes comparative analysis methodology of solution
quality and convergence in detail with regression line shifting
mechanism, Sect. 5 studies proposed analysis method with
25 benchmark functions and provides thorough analysis with
detailed experimental setups, and finally, Sect. 6 concludes
with remarks about the advantages and drawbacks of pro-
posed method.

2 Preliminaries

In this section, various background topics such as linear
regression analysis, regression line and quantile plot are
briefedwith suitable examples. Readers already familiarwith
these topicsmay skip this section,whereaswe suggest novice
readers to follow this section to better understand proposed
methodology.

2.1 Linear regression

Linear regression attempts to establish the relationship
between dependent variable and one or more explanatory

Fig. 1 Linear regression example. A best-fitted line is drawn through
the given data points

variables. Involvement of single explanatory variable is
referred as simple linear regression (SLR), otherwise referred
as multiple linear regression. In this paper, we will deal only
with SLR. In SLR, a best-fitting straight line called regression
line is derived from the set of points as shown in Fig. 1.

Definition 1 (Regression line (RL)) A linear regression line
or simply regression line has an equation of the form Y =
mX + c, where X is the explanatory variable and Y is the
dependent variable. The gradient of line and intercept, i.e.,
m and c, respectively, are computed during SLR analysis of
variables X and Y .

Vertical distances between best-fitted line and the points
of the data set are referred as residuals. SLR attempts to
find a regression line such that sum of squared residuals is
minimum. Thus, SLR is nothing but an optimization process
that minimizes the sum of squared residuals. This regres-
sion line is the representative line of the set of points from
where it is being derived. The corresponding value of the
dependent variable for any value of the explanatory variable
is predictable by referring regression line.

2.2 Quantile plot

A quantile plot is a very simple and effective way of display-
ing univariate data graphically. It displays all the data for
a given attribute. First, the data set is sorted, and then data
points are plotted against their respective quantile informa-
tion. Quantiles are the points taken at a regular interval from
the data set. Consider that data set X = {x1, x2, x3, . . . ,
xN } is sorted in non-decreasing order. Each observation xi
is coupled with a percentage fi (referred as f -value), which
implies approximately 100× fi % of data are below xi . The
f -value of i th observation is computed as follows:
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Fig. 2 Quantile plot example. Every value of X is plotted against their
corresponding f -values

fi = (i − 0.5)

N
(1)

where fi is ranged from 1
2N (which is slightly above 0) to

1− 1
2N (which is slightly below 1) and it increases with equal

step size 1
N . These f -values are the quantiles corresponding

to each observation xi . In quantile plot, a graph is plotted
with xi versus fi . An example of quantile plot is shown in
Fig. 2.

2.3 Quantile–quantile plot

In the quantile–quantile plot, quantiles of two univariate data
sets are plotted one against another. The dominance of one
data set over another is visualizedwith this plot. Unlike quan-
tile plot discussed above, quantile–quantile plot consists of
two quantile plots, one with respect to the x-axis and another
one with respect to the y-axis. Let X = {x1, x2, x3, . . . , xN }
and Y = {y1, y2, y3, . . . , yM } are two data sets, and both
are sorted in non-decreasing order. Quantiles of data sets X
and Y are plotted one against another. Any point (xi , yi ) on
the plot corresponds to quantile fi of first data set X (i.e., x-
coordinate) against same quantile of second data set Y (i.e.,
y-coordinate). If M = N , then plotting is simply xi versus
yi . If (M < N ) or (M > N ) then plotting is little bit difficult.
In this case, yi is plotted against xi till satisfies (M < N )

or (M > N ). Remaining observations of the larger data set
are plotted through interpolation. In this paper, we will deal
only with the first situation, i.e., equal-sized data sets. An
example of the quantile–quantile plot is shown in Fig. 3. It is
clear from plotting that, for given data sets X and Y , initial
portion is dominated by Y , whereas rest of portion is domi-
nated by X . These observations are even more clear with the
visualization of plotting in reference to X = Y line.

Fig. 3 Quantile–quantile plot example. Data sets X and Y are of equal
size. Quantiles of X and Y are plotted against each other

3 Regression line shifting

In this section, point dominance and line dominance of two
data sets are discussed. Shifting mechanism of the regres-
sion line is discussed with suitable examples, particularly
positive shift and negative shift. Some important properties
are derived.

3.1 Point dominance

The dominance of a data set defines how good are the data
values of the data set in comparison with another data set.
Evaluation of dominance of a data set over other is a complex
task. Most data values of the set are good with respect to
some portion but bad for remaining portion of data values
of other data sets. Quantile–quantile plot eases evaluation of
dominance of one data set over another set as discussed in
the previous section. We refer data set whose dominance is
to be evaluated as actor and data set with respect to whom
dominance is evaluated as competitor. Let Da = {ai |i =
1, 2, 3, . . . , r} and Dc = {ci |i = 1, 2, 3, . . . , r} are actor
data set and competitor data set, respectively, sorted in non-
decreasing order. We consider equal-sized actor data set and
competitor data set, so quantile–quantile plot is simply a plot
of Da versus Dc. We specify x-axis for plotting actor and
y-axis for plotting competitor. With these prespecifications,
both actor and competitor sets are presented in the quantile–
quantile plot as shown in Fig. 4. Each point (ai , ci ) in plot is
a pair of ai ∈ Da and ci ∈ Dc. We define point dominance
at any point (ai , ci ) in reference to neutral line.

Definition 2 (Neutral line (NL)) A line Y = mX + c is
referred as NL if it goes through the origin (i.e., intercept
c = 0) and gradient m = 1. The line is neutral in the sense
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Fig. 4 An illustrative example of point dominance. Data sets of com-
paring algorithm (Da) and competitor algorithm (Dc) are plotted in
quantile–quantile plot. Three points P1, P2 and P3 are considered as
on, below and above the X = Y line, respectively

that at every point (x, y) in the NL, x = y. Thus, simply we
say X = Y line is NL.

We interpret smaller value implies higher dominance
because this work deals with minimization problems dur-
ing result analysis. In reference to NL, we define three kinds
of possible dominance at any point (ai , ci ) in plot as follows:

Non-dominance:Dominance of actor set over competitor
set at any point (ai , ci ) that lies on the NL is referred as
non-dominance since ai = ci , i.e., neither ai dominates
ci nor ci dominates ai .
Actor-dominance: Dominance of actor set over competi-
tor set at any point (ai , ci ) that lies below the NL is
referred as actor-dominance since ai < ci , i.e., ai domi-
nates ci .
Competitor-dominance: Dominance of actor set over
competitor set at any point (ai , ci ) that lies above the
NL is referred as competitor-dominance since ai > ci ,
i.e., ci dominates ai .

In Fig. 4, points P1, P2 and P3 are examples of non-
dominance, actor-dominance and competitor-dominance,
respectively. Note that dominance at any point (ai , ci ) is
nothing but operator that fits the comparison between ai and
ci . Thus, we have three operators =,< and > for defining
dominance on quantile–quantile. Based on the dominance
of different points on quantile–quantile plot following situ-
ations may arise for actor set and competitor set. Suppose,
all points in quantile–quantile plots of Da and Dc are non-
dominated, i.e., we have condition ai = ci ,∀ai ∈ Da

and ∀ci ∈ Dc. If initial consecutive points are competitor-
dominated, while remaining points are non-dominated then
we have condition ai > ci , i = 1, 2, . . . ,m and ai =

ci , i = m + 1,m + 2, . . . , r . In first case, points are sum-
marized in a single partition comprising all non-dominated
points. However, in second case, points are partitioned into
two sets one for competitor-dominated and another one for
non-dominated points. In this way, we can havemultiple con-
ditions depending on partitioning of points with respect to
operators (=,<,>) in quantile–quantile plot.

Proposition 1 With three operators (=,<,>) and k parti-
tions 3k number of conditions are possible.

Proof By permutations with repetition. ��
Proposition 2 With three operators (=,<,>) and k > 1

partitions (3k+3)
2 number of distinct conditions are possible.

Proof For k = 1

1. ai = ci , ∀ai ∈ Da and ∀ci ∈ Dc

2. ai < ci , ∀ai ∈ Da and ∀ci ∈ Dc

3. ai > ci , ∀ai ∈ Da and ∀ci ∈ Dc

For k = 2

1. ai = ci , i = 1, 2, . . . ,m and ai < ci , i = m + 1,m +
2, . . . , r

2. ai = ci , i = 1, 2, . . . ,m and ai > ci , i = m + 1,m +
2, . . . , r

3. ai < ci , i = 1, 2, . . . ,m and ai = ci , i = m + 1,m +
2, . . . , r

4. ai > ci , i = 1, 2, . . . ,m and ai = ci , i = m + 1,m +
2, . . . , r

5. ai < ci , i = 1, 2, . . . ,m and ai > ci , i = m + 1,m +
2, . . . , r

6. ai > ci , i = 1, 2, . . . ,m and ai < ci , i = m + 1,m +
2, . . . , r

7. ai = ci , i = 1, 2, . . . ,m and ai = ci , i = m + 1,m +
2, . . . , r

8. ai < ci , i = 1, 2, . . . ,m and ai < ci , i = m + 1,m +
2, . . . , r

9. ai > ci , i = 1, 2, . . . ,m and ai > ci , i = m + 1,m +
2, . . . , r

In the above situation, although for two partitions we can
have32 conditions, but note that conditions 7, 8 and9 actually
represent the same situations as in the case of k = 1, i.e., the
conditions 1, 2 and 3, respectively. Hence, we actually have
32 − 3 = 6 conditions out of 9 conditions. In this way, we

can have 3k − (3(k−1) + 3(k−2) + · · · + 31) = 1
2

{
3k − (

3 ×
(3(k−1) − 1)

)} = (3k+3)
2 conditions for k possible partitions,

where k > 1. ��
As shown inPropositions 1 and2,wehave to dealwith sev-

eral conditions that arise with the partitioning of points based
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on their dominance in quantile–quantile plot. Therefore, eval-
uation of overall dominance of a data set over other becomes
complicated with quantile–quantile plot since we have to
accumulatemeaning of all conditions to express overall dom-
inance of data set. In following subsections, mechanisms for
accumulating the meaning of various conditions, those arise
with the partitioning of points in the quantile–quantile plot,
are discussed.

3.2 Regression line shifting and dominance

Simple linear regression (SLR) analysis derives a linear rela-
tionship between two variables of the bivariate data set.
Regression line (RL) is the representative for the relation-
ship drawn between two variables of data set with SLR.
Point dominance discussed in previous subsection incorpo-
rates two data sets, where actor and competitor data sets
are presented in a quantile–quantile plot. However, the accu-
mulation of overall dominance was difficult due to various
conditions that arise with the partitioning of points in the
quantile–quantile plot. SLR analysis on quantiles of data
points in quantile–quantile plot will accumulate all the point
dominance by simply deriving a linear relationship. The SLR
analysis on quantiles is different from ordinary SLR analysis
on scatter plot explained in Sect. 2. In case of SLR analysis
on scatter plot, one of the two distinct variables of a single
bivariate data set is considered as explanatory variable and
other one as dependent variable. Corresponding data values
for both the variables are considered directly during SLR
analysis as they appeared in the data set. On contrary, in case
of SLR analysis on quantile–quantile plot, two univariate
data sets of same variable are considered. Actor data set and
competitor data set are considered as explanatory and depen-
dent variable, respectively. Data values are considered with
respect to quantiles of each variable during SLR analysis.

The RL obtained with SLR analysis on quantile–quantile
plot preserves overall dominance of actor data set over com-
petitor data set. If point dominance changes, i.e., dominance
of some points changes from one dominance to another (e.g.,
actor-dominance to competitor-dominance) then accordingly
RL also shifts to new position. The shifting mechanism of
RL depending on various conditions appeared in the points
of quantile–quantile plot are discussed as follows

For instance, if the partitioning implies condition 1 for
k = 1, i.e., ai = ci ,∀ai ∈ Da and ∀ci ∈ Dc. At condition 1,
all points lie on the NL so the RL also lies on NL. Similarly,
at condition 3 for k = 1, all values of Da are dominated by
Dc, so RL appears below and parallel to the NL. Suppose,
first m values of Da and Dc are changed in such a way that
{ai ≤ ci , i = 1, 2, . . . ,m}. Itmeans that condition 1 and con-
dition 3 for k = 1 changed to condition 3 for k = 2, i.e., {ai <

ci , i = 1, 2, . . . ,m and ai = ci , i = m + 1,m + 2, . . . , r}
and condition 5 for k = 2, i.e., {ai < ci , i = 1, 2, . . . ,m

and ai > ci , i = m + 1,m + 2, . . . , r}, respectively. New
conditions imply the portion from the beginning to m to lie
on or above the NL, i.e., the new RL no longer remains par-
allel to NL. Initial portion of the RL shifts toward NL, and
it intersects somewhere at the starting portion. This shifting
follows a clockwise rotation of the RL with respect to previ-
ous position of the RL. If such kinds of changing in Da and
Dc continue further up to last point (i.e.,m = r ), the RL also
rotates with respect to previous position, and it shifts more
toward the NL. Various instances of RL with incremental
changing in the portions of Da and Dc are shown in Fig. 5.
One can notice that with rotational shifting of RL, intersect-
ing point on NL also moves ahead toward end. Whenm = r ,
i.e., becomes condition 2, the RL again becomes parallel to
NL as well as above the NL. Hence at any point, the domi-
nance relation of Da and Dc is determined by the angle and
position of intersecting point between RL and NL. Depend-
ing on dominance of actor data set over competitor data set,
we divide the shifting of RL into two categories. If the shift-
ing of RL implies increment in dominance of actor data set
over competitor data set, we refer it as positive shift, and
otherwise, we refer it as negative shift.

3.2.1 Positive shift

The positive shifting of RL achieved in two ways as fol-
lows. Changing condition 3 for k = 1 to either condition
2 or condition 5 for k = 2 as explained above actually
implies improvement in Da so as the dominance of actor
data set. If the change continued up to r , the improvement
in Da becomes worst to best. During the changes in Da and
Dc from worst dominance of actor data set to best domi-
nance, the RL corresponding to that situation also undergoes
clockwise rotational shift toward the NL. This rotational pos-
itive shift is with respect to the last point in the clockwise
direction, so it is referred as clockwise positive shift (CPS).
Similarly with respect to starting point, we will also have
positive shift if we change values from last point to m such
that {ai ≤ ci , i = m,m + 1, . . . , r}, i.e., changed to either
condition 4 or 6 for k = 2. In this case, the positive shifting of
RL is in the anticlockwise direction, and hence, it is referred
as anticlockwise positive shift (APS). The CPS and APS of
different instances of RLs are presented in Figs. 5 and 6.

3.2.2 Negative shift

Similar to positive shift we also have negative shift if we
do similar changing on condition 2 for k = 1 in Da and
Dc. The condition 2 for k = 1 means all values of Da are
dominated by Dc, so the RL appears above and parallel to
the NL. However, in the context of minimization problems,
actually all values of Dc are dominated by Da , which means
dominance of actor data set over competitor data set is in the
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Fig. 5 Clockwise positive shift. Here, NL is the neutral line. RL1,
RL2, RL3 and RL4 are the various instances of regression line after
successive incremental modification of first m values of Da and Dc

Fig. 6 Anticlockwise positive shift. Here, NL is the neutral line. RL1,
RL2, RL3 and RL4 are the various instances of regression line after
successive incremental modification of last m values of Da and Dc

best situation. If we change first m values of Da and Dc to
become either condition 1 or condition 6 for k = 2, it results
in anticlockwise rotational shifting of RL as shown in Fig. 7.
Similarly, if we change lastm values of Da and Dc then con-
dition 2 for k = 1 changes to either condition 3 or condition
5 for k = 2, which results in clockwise rotational shifting of
RL as shown in Fig. 8. From the perspective of minimization
problem, these shifts indicate degradation in dominance of
actor data set. Therefore, these shifts are referred as nega-
tive shift. The clockwise and anticlockwise rotational shift
that results negative effect is referred as clockwise nega-
tive shift (CNS) and anticlockwise negative shift (ANS),
respectively.

Fig. 7 Anticlockwise negative shift. Here, NL is the neutral line. RL1,
RL2, RL3 and RL4 are the various instances of regression line after
successive incremental modification of first m values of Da and Dc

Fig. 8 Clockwise negative shift. Here, NL is the neutral line. RL1,
RL2, RL3 and RL4 are the various instances of regression line after
successive incremental modification of last m values of Da and Dc

Theorem 1 Forminimization problems, theCPSorCNS can
always have greater than 315◦ angle between RL and NL .

Proof Let us consider one RL that has the angle with the
NL less than 315◦ for the purpose of contradiction. Note that
when the angle betweenRL andNL is 315◦, at this timeRL is
parallel to y-axis as shown inFig. 9.Now, consider twopoints
p and q in the RL, above and below the intersecting point on
NL. It is clear that for these two points, the conditions {ap <

cp}, {aq > cp}, {cp > cq} and {ap < aq} are satisfied.
We have plotted Da and Dc which are sorted in increasing
order. Therefore, the condition cp > cq contradicts, as in an
increasing ordered list Dc = c1, c2, . . . cr it is not possible to
have an ordered pair (ci , c j ) such that ci > c j and i < j . The
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Fig. 9 Angular displacement in CPS and CNS. The Start andEnd indicate the starting and ending point of regression line, respectively. Coordinates
of points p and q are (ap, cp) and (aq , cq ), respectively

Fig. 10 Angular displacement in APS and ANS. Start and End indicates starting and ending point of regression line, respectively. Coordinates of
points p and q are (ap, cp) and (aq , cq ), respectively

RL represents the dominance relationship between Da and
Dc. Hence, if any point in the RL has to satisfy cp > cq , it
implies that there have to be some points (ai , ci ) and (a j , c j )
where we have a pair (ci , c j ) such that ci > c j and i < j ,
which is a contradiction. Hence, it is proved that for CPS or
CNS angle between RL and NL is always greater than 315◦.

��
Theorem 2 Forminimization problems, the APS or ANS can
always have less than 45◦ angle between RL and NL.

Proof Let us consider a RL that has angle greater than 45◦
with NL. Note that when angle between RL and NL is 45◦,
at this time the RL is parallel to x-axis as shown in Fig. 10.
Now, consider two point p and q in the RL below and above
the intersecting point in NL. It is clear that for these two
points, the conditions {ap > cp}, {aq < cp}, {cp < cq}
and {ap > aq} are satisfied. Similar to Theorem 1, it can be
shown that the condition ap > aq contradicts. If any point

in the RL has to satisfy ap > aq , it implies that there have
to be some points (ai , ci ) and (a j , c j ) where we have a pair
(ai , a j ) such that ai > a j and i < j . Hence, it is proved that
for APS or ANS angle between RL and NL angle less than
45◦. ��

Theorem 3 The maximum positive or negative rotational
shift of RL is 90◦, and rotational area covers half of 1st quad-
rant and half of 4th quadrant with respect to NL.

Proof By Theorem 1, it is clear that the RL can attain max-
imum angle of 360◦ up to minimum angle of 315◦ and takes
place in 4th quadrant with respect to NL. Thus, maximum
possible rotation would be 360◦ − 315◦ = 45◦. Similarly
from Theorem 2, it is also clear that maximum possible rota-
tion would be 45◦, i.e., in 1st quadrant, as the RL rotates from
0◦ to 45◦ with respect to NL. Hence, we have 45◦ in 1st and
45◦ in 4th quadrant totaling 90◦ shift of RL. ��
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4 The analysis methodology

This section elaborates the implication detail of regression
line shifting mechanism with respect to NL for comparing
performance of EOAs. Solution quality and convergence
rate are the two major aspects in evaluation of perfor-
mance of EOAs. Shifting mechanism is extrapolated to both
solution quality- and convergence-based performance com-
parison. With the same notion as discussed above, we refer
as acting algorithm whose performance has to be evalu-
ated, and we refer as competing algorithm with respect to
whom the performance of acting algorithm is evaluated. To
evaluate performance of acting algorithm- over competing
algorithm-based solution quality, best solutions generated
by the algorithms in multiple trials are considered. How-
ever, for convergence analysis central tendency of population
per iteration of the algorithm is considered. Dominance of
acting algorithm over competing algorithms is expressed
with clockwise shifting or anticlockwise shifting of RL with
respect to NL. Different types of shifting and their signif-
icance in terms of performance of EOAs are discussed in
following subsections.

4.1 Quality comparison

Solution quality of EOAs is evaluated in following three
ways: first, the one-to-one comparison, where performance
of acting algorithm is compared with only one competing
algorithm at a time; second, the one-to-many comparison,
where performance of acting algorithm is compared with
multiple competing algorithms; at the last, many-to-many
comparison, where ranking of acting algorithm is done based
on performance with other competing algorithms.

4.1.1 One-to-one comparison

To compare performance of an acting algorithm A over com-
peting algorithm C in terms of best solutions obtained over
t trials are plotted in quantile–quantile plot. Assume that the
objective function is a minimization problem. SLR analysis
on quantile–quantile plot generates one RLwith the method-
ology explained above. Note that we have single RL for this
instance. We have already noticed that same instance can be
attained through either positive shift or negative shift. Thus,
it is unpredictable for a single instance of RL whether the
instance is attained through positive shift or negative shift.
However, with Theorem 2 we have anticlockwise shifting
(i.e., APS or ANS) angle between RL and NL which is less
than equal to 45◦. Again, with Theorem 1 we have clock-
wise shifting (i.e., CPS or CNS) with angle which is greater
than equal to 315◦. Therefore, simply by visualizing the
angle, it can be determined whether it is a clockwise shift
or anticlockwise shift. From the perspective of performance,

if detected shift is clockwise then smaller angle indicates act-
ing algorithm A performs better than competing algorithmC .
If detected shift is anticlockwise then larger angle indicates
better performance of A. Along with the angle between RL
and NL, another significant aspect of visual inspection is the
position of intersection RL on NL. For clockwise shifting,
the intersecting point toward the end indicates better perfor-
mance of A, while the intersecting point toward the beginning
indicates better performance of A for anticlockwise shift.

4.1.2 One-to-many comparison

The one-to-many comparison plays important role in decid-
ing whether any algorithm is better than all other algorithms.
Particularly when any new algorithm is introduced, it has
to be compared with existing state-of-the-art algorithms to
prove its superiority. Let us consider, any new algorithm
A, i.e., the acting algorithm whose performance has to be
evaluated with respect to other n competing algorithms
C1,C2,C3, . . . ,Cn . As discussed above, best solutions
obtained over t trials on an objective function (minimization
say) are plotted in quantile–quantile plot for each (A,Ci ) pair
and performed SLR analysis. Thus, we have n different RLs
for all pairs of acting and competing algorithms. Each RL
represents dominance of acting algorithm A over respective
competing algorithm Ci . To decide on dominance of acting
algorithm A over any competing algorithm Ci , the intersect-
ing point ofRLonNLand anglewithNL is noted.Depending
on the significance of these two observations for the RL (dis-
cussed earlier), the performance of the acting algorithm A
with respect to any competing algorithm Ci is decided.

4.1.3 Many-to-many comparison

One challenging task is to compare performance of n algo-
rithms with each other and rank them. It is challenging in
the sense that performance of all algorithms varies with
respect to other algorithms. One algorithm may perform
better with respect to r algorithms and perform worst with
respect to remaining (n − r − 1) algorithms. In this way,
we may obtain different sets of best-performing and worst-
performing algorithms for each algorithm. Therefore, it is
difficult to determine from the multiple possibilities that
which of the algorithm exactly performs best or worst. Pro-
posed methodology provides a very simplistic way to tackle
this task.

The many-to-many comparison of n algorithms sim-
ply imply n one-to-many comparisons, where each of the
algorithm is considered as acting algorithm, and remaining
algorithms are competing algorithms. On the other hand,
one-to-many comparison of n algorithms imply n one-to-
one comparison.When one-to-one comparison is performed,
the influence of competing algorithm in dominance relation-
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ship of acting algorithm is actually determined through RL.
In that sense, to get combined influence of all n competing
algorithms the influence of all algorithms has to be added.
Thus, one-to-many comparison of n algorithms reduced to
single one-to-one comparison, where one algorithm is con-
sidered as acting algorithm, and remaining n − 1 algorithms
are collectively considered as one single competing algo-
rithm. Therefore, we have n one-to-one comparisons instead
of one-to-many comparisons formany-to-many comparisons
of n algorithms. For each of the n one-to-one comparisons,
one of the n algorithms is considered as acting algorithm,
and remaining n − 1 algorithms are collectively considered
as one comparing algorithm. The collective influence of all
n − 1 competing algorithms is obtained as follows. Let us
consider, we have n algorithms A1, A2, A3, . . . , An . Let Am

is the acting algorithm and all remaining Ai , i �= m algo-
rithms are competing algorithm. Let we have the data sets
D = {Di |i = 1, 2, . . . , n} comprising the sets of best solu-
tions of all algorithms for t is the number of trials, where
Di = {di j | j = 1, 2, . . . , t} arranged in non-decreasing
order. Influence of all n − 1 competing algorithms with
respect to acting algorithm Am is computed as follows:

Dc =
⎧⎨
⎩

i=n∑
i=1&i �=m

di j | j = 1, 2, . . . , t

⎫⎬
⎭ (2)

The set Dc represents the collective influences of all n−1
algorithms, and it is considered as a single competing algo-
rithm. For the acting algorithm Am we have the set of best
solutions for t is the number of trials Dm = {dmj | j =
1, 2, . . . , t}. The Dm and Dc are plotted in the quantile–
quantile plot andwithSLRanalysis obtained oneRL.Besides
this RL for Am , we will have n − 1 RLs for remaining n − 1
algorithms.

With this methodology, the RL of best-performing algo-
rithm automatically acquires the highest position in terms of
RL position. Similarly, the RL of the second best algorithm
acquires the position below the best and so on up to the RL of
the worst algorithm. The acquiring of RL positions depend-
ing on algorithms’ performance can be understood with the
following example. For instance, if algorithm Am is the best
algorithm that means most values in Dm will be dominated
by the values of Di , i = {1, 2, . . . , n & i �= m}. This means
that all Di contains larger values than Dm , and hence, their
sum Dc will definitely contain the set of highest values. The
values in Dc will produce the highest domination to Dm ,
attaining the highest possible position of RL.

4.2 Convergence comparison

Convergence rate is very crucial for an evolutionary opti-
mization algorithm. Most of these algorithms are population

based. EOAs are stochastic in nature and follows unsuper-
vised learning process. At each generation, the algorithm
learns the solution space and improves the solutions of
the population. Thus for any algorithm, it is expected that
the population moves ahead toward the optimal solution
by improving previous states. Overall improvement of the
population is measured in terms of central tendency of the
population. The central tendency of any data set is measured
with themean value ormedian value of the data set. Improve-
ment in the mean value indicates the entire population is
converging toward the optimal value. Often, the mean value
of the population is plotted against each generation to visu-
alize the rate at which the algorithm converges. Sometimes
best value obtained in each generation also plotted against
the generation to visualize convergence. Similar procedure
is followed for comparing convergence of one algorithm
with other competing algorithms. However, with the existing
approaches, the dominance of EOAs in terms of convergence
rate cannot be measured.

Similar to the quality comparison, convergence compari-
son is also divided into three types: one-to-one comparison,
one-to-many comparison and many-to-many comparison.
A more direct comparative analysis of convergence is per-
formed with the quantile–quantile plot. With the quantile–
quantile plot, the dominance of acting algorithm over com-
peting algorithms in terms of convergence rate is expressed
very easily. Unlike the quality comparison where data sets
are sorted before quantile plot and performed SLR analy-
sis, here data sets are not sorted and SLR analysis is not
performed. Main reason for the unsorted quantile–quantile
plotting is to observe the dominance in convergence at every
generation in the same order as they had appeared during the
execution of the algorithm. Another key difference with the
quality comparison is that the data sets considered in conver-
gence comparison are not the best values obtained in various
trials; instead, it contains values obtained at each generation
for a single trial. To determine the dominance of an acting
algorithm over competing algorithms, the quantile–quantile
plot is observed with reference to the NL. The portions that
are below the NL indicate actor-dominance, portions above
the NL indicate competitor-dominance, and the portions on
the NL indicate non-dominance. The level of dominance
is determined based on how far the actor-dominating or
competitor-dominating portions are from the NL.

5 Experimental evaluation and discussion

Empirical analysis is performed with 25 benchmark func-
tions. Well-established algorithms are evaluated with the
proposed methodology and verified with the existing stud-
ies. The details of empirical analysis such as benchmark
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functions, algorithms and experimental setup are briefed as
follows.

5.1 CEC-2005 benchmark functions

We have selected the set of 25 benchmark test problems that
appeared in the CEC-2005 special session on real parameter
optimization (Suganthan et al. 2005). All these optimization
problems are minimization problems. The set contains fol-
lowing standard functions:

– 5 unimodal functions

– f1: shifted sphere function.
– f2: shifted Schwefel’s problem 1.2.
– f3: shifted rotated high-conditioned elliptic function.
– f4: shifted Schwefel’s problem 1.2 with noise in fit-
ness.

– f5: Schwefel’s problem 2.6 with global optimum on
bounds.

– 20 multimodal functions

– 7 basic functions
• f6: shifted Rosenbrock’s function.
• f7: shifted rotated Griewank function without
bounds.

• f8: shifted rotated Ackley’s function with global
optimum on bounds.

• f9: shifted Rastrigin’s function.
• f10: shifted rotated Rastrigin’s function.
• f11: shifted rotated Weierstrass function.
• f12: Schwefel’s problem 2.13.

– 2 expanded functions
• f13: expanded extended Griewank’s plus
Rosenbrock’s (Ef8f2)

• f14: shifted rotated expanded Scaffers F6.
– 11 hybrid functions (f15–f25). Each of these func-
tions has been defined through compositions of 10
out of the 14 previous functions.

The optima of all the functions have been displaced from the
origin or from the previous position to ensure that the optimal
solutions can never be obtained at the center of the solution
space. This displacement mechanism has made it difficult
for the algorithms that have central tendency to converge
toward the optimal solution. Hybridization has added more
difficulty to the problem so that algorithm unable to follow
certain patterns to reach the optimal solution.

5.2 Algorithms considered

We have considered three well-established EOAs for study-
ing the proposed methodology for analyzing performance,

which includes two variants of PSO (Biswas et al. 2015)
and one most efficient variant of DE (Veček et al. 2014).
Numerous new EOAs are developed in recent years. How-
ever, the applicability of those algorithms has to be studied
with variety of applications. The algorithms considered are
very popular and already applied to wide range of applica-
tions of various domains. Besides this fact, another reason for
considering these three algorithms is for a clear understand-
ing of the methodology and verify with the existing studies.
The algorithms are briefed as follows:

SADE: Self-Adaptive Deferential Evolution (Qin and
Suganthan 2005) is an extension to the differential evo-
lution model. SADE can adapt parameters CR and F,
suitable to corresponding situation.
PSO-TVIW: PSO-Time-Varying Inertia Weight (Shi and
Eberhart 1999) is an instance of particle swarm opti-
mization (PSO). In PSO-TVIW, linearly decrement of
the weight parameter implies global search ability at the
beginning and local search ability at the end of execu-
tion. The weight (ω) is decreased from ωmax = 0.9 to
ωmin = 0.4.
PSO-TVAC: PSO-Time Varying Acceleration Coeffi-
cients (Ratnaweera et al. 2004) is an extension of
PSO-TVIW, where linearly varying acceleration coeffi-
cients C1 and C2 are considered in addition to ω. This
additional linearity to PSO-TVIWbecamemore effective
to global search during execution of the algorithm and to
local search at the end. C1 is varied from 2.5 to 0.5, C2

from 0.5 to 2.5 and ω from 0.9 to 0.4.

5.3 Experimental setup

All experiments are carried out with population size 100.
Dimensions 50 and 70 are considered for quality comparison
and convergence comparison, respectively. For quality com-
parison, all algorithms are carried out 50 trials for observing
best values. Each run stops when total functional evaluation
exceeds 300,000. For convergence comparison, each algo-
rithm is observed up to 1000 generations and noted the best
value achieved at each generation. Functions f1–f14 are con-
sidered for quality comparison, which includes 5 unimodal
functions, and rest of the functions are multimodal functions.
Among these 14 functions f1–f4, f5–f12 and f6 & f8–f14
are considered for one-to-one, one-to-many and many-to-
many quality comparison, respectively. Functions f15–f25
are considered for convergence comparison, all of them are
hybridmultimodal functions.Among these 11 functions f15–
f17, f18–f21 and f22–f25 are considered for the one-to-one,
one-to-many and many-to-many convergence comparison,
respectively.
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Fig. 11 One-to-one solution quality comparison in CEC2005 functions f1–f4

Fig. 12 Numeric values used for quality comparison in CEC2005 functions f1–f4

Fig. 13 One-to-many solution quality comparison in CEC2005 functions f5–f12
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Fig. 14 Numeric values used for quality comparison in CEC2005 functions f5–f8

Fig. 15 Numeric values used for quality comparison in CEC2005 functions f9–f14

5.4 Experimental analysis

5.4.1 Quality analysis

For one-to-one and one-to-many comparison, SADE is con-
sidered as the acting algorithm, whose performance has to
be evaluated with respect to other two competing algorithms.
For many-to-many comparison, each of the three algorithms
is considered as acting algorithm (comparing algorithm)
during its turn and other two are considered as competing
algorithms (counter competitor).

In Fig. 11, one-to-one comparison of SADE with TVIW
(shorted PSO-TVIW) and TVAC (shorted PSO-TVAC) is
presented. The interpretation of visual results is discussed

in Sect. 4, particularly the significance of the angle between
NL and RL, and the position of RL with respect to NL is
detailed. The visual results are analyzed based on the angle
and position ofRLwith reference toNLas follows. For f1–f3,
the RL is above and produce high angle (nearly themaximum
angle 45◦) with theNL. This implies SADEoutperforms over
both TVIW and TVAC. However, in the case of f4, solution
quality of SADE is poor in comparison with TVIW, as RL
lies below the NL. The numeric values (best fitness) that are
used to generate the graphs in Fig. 11 are presented in Fig. 12.
Clearly, most of the numeric values of SADE for f1–f3 are
better than both TVIW and TVAC. The visual results also
indicated the same. Similarly, in the case of f4, numeric val-
ues are clearly better thanSADE.Visual results also indicated
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Fig. 16 Many-to-many solution quality comparison in CEC2005 functions f6 and f8–f14

Fig. 17 One-to-one convergence comparison in CEC-2005 functions f15–f17

Fig. 18 Numeric values used for convergence comparison in CEC2005 functions f15–f17

the poor performance of SADE in comparison with TVIW.
EOAs always have the tendency to perform better in some
functions, whereas overall they may perform worst (Wolpert
and Macready 1997). Generally, TVAC performs better than
TVIW (Biswas et al. 2015) and the SADE is best-performing

DE variant (Veček et al. 2014). Thus, better performance of
SADE thanTVAC justifies the poor performance than TVIW.
Nevertheless, SADEperforms better in other functions f1–f3.

In Fig. 13, visual results of the one-to-many comparison
of SADE with respect to TVIW and TVAC are presented.
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Fig. 19 One-to-many convergence comparison in CEC-2005 functions f18–f21

Fig. 20 Numeric values used for convergence comparison in CEC2005 functions f18–f25

Fig. 21 Many-to-many convergence comparison in CEC-2005 functions f22–f25

Clearly, SADE’s performance is better in f5, f6, f9, f10 and
f12 as RL corresponding to TVIW and TVAC lies above
producing higher angle with NL. The numeric results for
respective functions presented in Figs. 14 and 15 also indi-
cated the same. In the visual results for f7, f8 and f11, RLs lie
below theNL,which indicates poor solution quality of SADE
in contrast to TVIW and TVAC. Clearly, one can notice the
worst numeric values of SADE for f7, f8 and f11. However,
overall SADE performs better than both TVIW and TVAC

since five out of eight functions SADE performs better than
both the algorithms.

Thevisual results ofmany-to-many comparison, i.e., rank-
ing of SADE, TVIW and TVAC are presented in Fig. 16. The
RL representing SADE in f6, f8–f10, f12 and f13 lies above
the NL, and it also lies above the RLs of both TVIW and
TVAC. Therefore, SADE is ranked as best for these func-
tions. Moreover, the angle between RL and NL for SADE is
high in these functions, which indicates the SADE produces

123



Regression line shifting mechanism for analyzing evolutionary optimization algorithms 6251

best solutions than TVIW and TVAC. The numeric results
for respective functions presented in Figs. 14 and 15 also
indicated the same for these functions; particularly, one can
notice the consistent best numeric values of SADE for the
functions f9, f10 and f13. Now, the next best would be one of
the two, i.e., either TVIW or TVAC for these functions. For
the functions f6, f10 and f12, TVAC is the second best, while
TVIW is the second best for rest of the functions. In case of
f11, TVIW is ranked as best since angle between RL and NL
is largest. In case of f14, although SADE has largest angle
between RL and NL, SADE is not the best because its RL is
not above the NL and intersect almost the middle of RL and
NL. In this case, TVAC is best since its RL lies above all RLs
and NL. One can notice in Fig. 15 that for both f11 and f14,
SADE shows the worst numeric values in comparison with
TVIW and TVAC.

5.4.2 Convergence analysis

Similar to the quality comparison, SADE is considered as an
acting algorithm for one-to-one andone-to-many comparison
to evaluate performance in terms of convergence rate. For
many-to-many comparison, each of the three algorithms is
considered as acting algorithm (comparing algorithm) during
its turn and other two are considered as competing algorithms
(counter competitor).

In Fig. 17, one-to-one convergence comparison is pre-
sented. In all f15–f17, SADE’s convergence rate is higher
than TVIW and TVAC except f15, since the entire portion of
the plotting lies above the NL. In f15, initially, SADE’s con-
vergence is almost similar to TVIW, as the portion of plotting
almost coincides with the NL. However, that middle portion
lies below the NL indicates slight degradation in the conver-
gence of SADE and at the end again shows improvement.
The numeric values presented in Fig. 18 also show similar
characteristics.

In Fig. 19, one-to-many convergence comparison is pre-
sented. In all f18–f21, convergence rate is almost similar for
SADE with respect to both competitors, and in the middle
of execution, convergence rate slightly degrades and again
improves at the end. Numeric results presented in Fig. 20
also indicate same. In f19, althoughwith respect to TVIW the
rate improves at the end but with respect to TVAC degrada-
tion continues until the end. Most of the parts of the plotting
of TVIW are above the NL, which indicates SADE’s con-
vergence rate is better in those portions. One can notice in
Fig. 20 that the numeric values of SADE are also better in
those portions, especially at the end of the plotting. This
shows the plotting in visual results remains above NL if the
convergence rate of SADE is better, which is valid for all the
remaining functions as well.

In Fig. 21, visual results of many-to-many convergence
comparison are presented. In f22–f24, the convergence rate

of SADE is higher than that of both counter competitors, i.e.,
TVIW and TVAC; the plotting also lies above both. There-
fore, SADE is ranked as best in terms of convergence rate
for the functions f22–f24. Accordingly, one can notice the
best numeric values of SADE for f22–f24 in Fig. 20. In f25,
TVAC’s convergence rate is best with respect to both SADE
and TVIW, and numeric values also indicate the same. It is
clear that the second best convergence rate is TVIW for the
functions f22, f24 and f25. In f23, TVAC is ranked as the
second best algorithm in terms of convergence rate.

6 Conclusion

A visual analysis method is proposed to evaluate the per-
formance of EOAs in terms of both solution quality and
convergence rate. The methodology is designed based on
the concepts of quantile–quantile plot and simple regres-
sion analysis. The quantile–quantile plot of data sets ensures
involvement of each individual data in the evaluation process.
In the case of quality comparison, the dominance of an algo-
rithm is determined simply by observing the angle between
RL and NL and position of the intersection of RL and NL.
In the case of convergence comparison, the involvement of
individual data is clearer since unsorted data are directly
plotted in the quantile–quantile plot. The dominance of an
algorithm in convergence comparison is simply determined
by observing the distance of quantile–quantile plotting and
NL. The proposed methodology is studied with three well-
established algorithms: PSO-TVIW, PSO-TVAC and SADE.
Data obtained on CEC-2005 benchmark functions are con-
sidered for the analysis. Clear shifting angles betweenRLand
NL and intersecting points onNL are visualized through one-
to-one, one-to-many andmany-to-many in the case of quality
comparisons. For convergence comparison, the dominance in
the quantile–quantile plots is visualized with respect to NL.

The major advantage of the proposed method is that the
underlying concepts are relatively simple and well known
to most of the researchers in this domain. The methodology
relies simply on linear regression and quantile–quantile plots
to illustrate the dominance of one algorithm over another (or
a set of algorithms). Another advantage is that the ranking
of EOAs in terms of convergence rate is done very easily
with proposed methodology, which cannot be done with the
existingmethods including widely used parametric approach
and other approaches such as ELA or drift analysis. More-
over, the ranking of EOAs based on solution quality is also
very simple, just needs to observe the position of the RLs
of respective algorithms. However, for very large number
of algorithms the visualization of RLs may become a little
bit difficult because of overlapping of multiple lines. Other
than this limitation, the proposed methodology has several
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advantages, especially easy ranking of EOAs in terms of both
solution quality and convergence rate.
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