
Soft Comput (2018) 22:541–570
https://doi.org/10.1007/s00500-016-2353-1

METHODOLOGIES AND APPLICATION

Dynamic differential evolution with combined variants and a
repair method to solve dynamic constrained optimization
problems: an empirical study

María-Yaneli Ameca-Alducin1 · Efrén Mezura-Montes1 · Nicandro Cruz-Ramírez1

Published online: 27 September 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract An empirical study of the algorithm dynamic dif-
ferential evolution with combined variants with a repair
method (DDECV + Repair) in the solution of dynamic
constrained optimization problems is presented. Unexplored
aspects of the algorithm are of particular interest in this
work: (1) the role of each one of its elements, (2) its sen-
sitivity to different change frequencies and change severities
in the objective function and the constraints, (3) its ability
to detect a change and recover after it, besides its diversity
handling (percentage of feasible and infeasible solutions)
during the search, and (4) its performance with dynamism
present in different parts of the problem. Seven perfor-
mance measures, eighteen recently proposed test problems
and eight algorithms found in the specialized literature are
considered in four experiments. The statistically validated
results indicate that DDECV + Repair is robust to change
frequency and severity variations, and that it is particu-
larly fast to recover after a change in the environment,
but highly depends on its repair method and its mem-
ory population to provide competitive results. DDECV +
Repair shows evidence on the convenience of keeping a
proportion of infeasible solutions in the population when
solving dynamic constrained optimization problems. Finally,

Communicated by V. Loia.

B María-Yaneli Ameca-Alducin
yaneliameca@gmail.com

Efrén Mezura-Montes
emezura@uv.mx

Nicandro Cruz-Ramírez
ncruz@uv.mx

1 Artificial Intelligence Research Center, University of
Veracruz, Sebastián Camacho 5 Centro, Xalapa, Veracruz,
Mexico

DDECV + Repair is highly competitive particularly when
dynamism is present in both, objective function and con-
straints.

Keywords Differential evolution · Constraint handling ·
Dynamic optimization · Dynamic constrained optimization
problem

1 Introduction

In the specialized literature on constrained numerical opti-
mization problems with meta-heuristics, evolutionary algo-
rithms (EAs) stand out as a valid option to solve them
(Coello Coello 2002; Mezura-Montes 2009; Michalewicz
and Schoenauer 1996). However, in recent years, the pres-
ence of some kind of dynamism in the objective function
and/or the constraints has raised the interest of researchers
and practitioners (Mezura-Montes and Coello 2011; Nguyen
et al. 2012; Nguyen and Yao 2012, 2013). This type of
problem is known as the dynamic constrained optimization
problem (DCOP) (Nguyen et al. 2012; Nguyen and Yao
2009, 2012, 2013; Singh et al. 2009). A DCOP could be
considered as a single search problem in which the objec-
tive function and/or the constraints change through time.
Given those conditions, traditional EAs must be adapted
to identify changes in the fitness landscape and/or in the
feasible region so as to be able to find new feasible opti-
mal solutions (Nguyen et al. 2012; Nguyen and Yao 2012,
2013).

The specialized literature on EAs shows a significant
amount of research in dynamic unconstrained optimization,
e.g., multimodal functions (Rohlfshagen and Yao 2013; Fil-
ipiak andLipinski 2014;Li et al. 2014, 2015;Mukherjee et al.
2016; Umenai et al. 2016; Zhang et al. 2016; Yu and Wu

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-016-2353-1&domain=pdf

542 M.-Y. Ameca-Alducin et al.

2016; Pekdemir and Topcuoglu 2016) and multi-objective
optimization (Liu et al. 2014; Azzouz et al. 2015; Martínez-
Peñaloza and Mezura-Montes 2015; Jiang and Yang 2016).
Nevertheless, in the presence of dynamic constraints in
continuous search spaces, the research is still scarce as men-
tioned in a survey on evolutionary constrained optimization
(Mezura-Montes andCoello 2011). In a recent reviewonEAs
to solve DCOPs, the genetic algorithm (GA) appears as the
most popular algorithm. However, there are new proposals
based on other bio-inspired algorithms, e.g., differential evo-
lution (DE) (Ameca-Alducin et al. 2014), gravitational search
algorithm (GSA) (Pal et al. 2013b), evolutionary algorithm
(EA) (Sharma and Sharma 2012b), T cell artificial immune
system (Aragón et al. 2013) and multi-population algorithm
(Bu et al. 2016). To deal with a constrained dynamic space,
twomain types ofmechanisms have been added to the above-
mentioned algorithms: (1) introduction and maintenance
of diversity as in a GA with elitism and random immi-
grants (RIGAElit) (Grefenstette 1992), a GA with elitism
and hypermutation (HyperMElit) (Cobb 1990), a dynamic
constrained T cell (DCTC) (Aragón et al. 2013), intelli-
gent constraint handling evolutionary algorithm (ICHEA)
(Sharma and Sharma 2012b), a dynamic species-based par-
ticle swam optimization (DSPSO) (Bu et al. 2016) and a
DE with two variants (DE/rand/1/bin and DE/best/1/bin)
called dynamic differential evolution with combined vari-
ants (DDECV) (Ameca-Alducin et al. 2014) and (2) repair
mechanisms within a GA (GA + Repair) (Nguyen and Yao
2012), within DE (DE + Repair) (Pal et al. 2013a) and also
within GSA (GSA + Repair) (Pal et al. 2013b).

Recently, an improved version ofDDECV, calledDDECV
+Repair (Ameca-Alducin et al. 2015a, b), was proposed,
where a simple but effective repair method based on the dif-
ferential mutation operator and resampling was proposed.
The novelty of this repair method with respect to the above-
mentioned is the fact that no feasible solutions are required. In
contrast, the usage of the differential mutation with random
vectors is emphasized so as to generate feasible solutions.

Even though DDECV + Repair was already proposed, its
empirical validation was very limited [i.e., just a couple of
measures were adopted in the experiments (Ameca-Alducin
et al. 2015a, b)]. Therefore, this work aims to provide an in-
depth analysis of DDECV + Repair, where the following
unexplored issues are investigated:

1. The role of each one of its elements in the search behavior
and expected performance.

2. The effects of (a) the change frequency and (b) the sever-
ity of the change in both, the objective function and the
constraints, in its overall performance.

3. Its ability to detect a change and recover after it, and the
waydiversity is handled (i.e., suitable infeasible solutions
maintenance during the search).

4. Its performancewhen solving problemswhere dynamism
is present only in the objective function, only in the con-
straints or dynamism in both of them.

For each one of those four issues an experiment is
designed. The empirical evidence provided in this work
comprises both, direct and indirect comparisons. seven per-
formance measures are computed (offline error, recovery
rate, absolute recovery rate, percentage of infeasible solu-
tions, detected change count, best error before change and
feasible offline error), and statistical tests are applied to val-
idate the findings observed in the samples of runs carried
out. Eight approaches found in the specialized literature are
adopted for comparison purposes. The contribution of this
work aims to add knowledge about the capabilities of this par-
ticular DE-based algorithm to deal with a dynamic numerical
constrained search space.

The rest of the paper is divided as follows. In Sect. 2
the problem of interest is stated, while Sect. 3 briefly intro-
duces DE, DECV (the base algorithm) and details DDECV
+ Repair. Section 4 presents the four experiments and their
corresponding results, where a recently proposed benchmark
is solved (Nguyen and Yao 2012). Finally, Sect. 5 includes
the conclusions and directions regarding future research.

2 Problem statement

A DCOP can be seen as a search problem where its fitness
landscape and feasible region change through time. Without
loss of generality, a DCOP can be defined as to:
Find x, at each time t , which:

min
x∈Ft⊆[L ,U] f (x, t)

where t ∈ N+ is the current time,

[L ,U] = {x = (x1, x2, . . . , xD) |Li ≤ xi ≤ Ui ,

i = 1 . . . D}

is the search space,
subject to:

Ft = {x|x ∈ [L ,U], gi (x, t) ≤ 0, i = 1 . . .m,

h j (x, t) = 0, j = 1 . . . p
}

is called the feasible region at time t .
∀x ∈ Ft if there exists a solution x∗ ∈ Ft such that

f (x∗, t) ≤ f (x, t), then x∗ is called a feasible optimal
solution and f (x∗, t) is called the feasible optima value at
time t .

123

Dynamic differential evolution with combined variants and a repair method to solve dynamic… 543

Four types of DCOPs are defined: (1) a static objective
function and static constraints (i.e., a static constrained opti-
mization problem), (2) a dynamic objective function and
static constraints, (3) a static objective function and dynamic
constraints and (4) a dynamic objective function and dynamic
constraints.

3 DDECV + Repair

3.1 Differential evolution

DE is a stochastic search algorithm which operates with a
population of solutions called vectors (Price et al. 2005). The
population is represented as: xi,G , i = 1, . . . ,NP, where xi,G
represents vector i at generation G, and NP is the population
size. Each target vector xi,G generates one trial vector ui,G

by using a mutant vector vi,G . The mutant vector is obtained
as in Eq. (1), where xr0,G , xr1,G and xr2,G are vectors chosen
at random from the current population (r0 �= r1 �= r2 �= i);
xr0,G is known as the base vector, and xr1,G and xr2,G are
the difference vectors. F > 0 is a scale factor defined by the
user.

vi,G = xr0,G + F(xr1,G − xr2,G) (1)

After the mutant vector vi,G is generated, it is combined
with the target vector xi,G to generate the trial vector ui,G by
applying a crossover operator as shown in Eq. (2).

ui, j,G =
{
vi, j,G if (rand j ≤ CR) or (j = Jrand)

xi, j,G otherwise
(2)

where CR ∈ [0, 1] defines the similarity between the trial
vector and the mutant vector, rand j generates a random
real number with uniform mutation between 0 and 1, j ∈
{1, . . . , D} is the j th variable of the D-dimensional vector,
Jrand ∈ [1, D] is an random integer which prevents a target
vector copy as its trial vector.

Finally, the best vector, based on its objective function
value, between the target and trial vector is chosen to remain
in the population for the next generation as shown in Eq. (3)
(assuming minimization):

xi,G+1 =
{

ui,G if
(
f (ui,G) ≤ f (xi,G)

)
,

xi,G otherwise
(3)

This DE variant is known as DE/rand/1/bin, where “rand”
means the criterion to choose the base vector xr0,G , “1” indi-
cates the number of vector differences, and “bin” is the type
of crossover (binomial in this case, as in Eq. (2)).

Another DE variant is DE/best/1/bin, where the only dif-
ference with respect to DE/rand/1/bin is that the best vector

in the current population, represented as xbest,G , is the base
vector for all differential mutations [see Eq. (4)]. Details of
other DE variants, particularly for constrained optimization,
can be found in (Mezura-Montes et al. 2010)

vi,G = xbest,G + F(xr1,G − xr2,G) (4)

3.2 Differential evolution with combined variants
(DECV)

DDECV + Repair algorithm is based on differential evolu-
tion with combined variants (DECV) (Mezura-Montes et al.
2010), where DE/rand/1/bin is used at the beginning of the
search, and after a percentage of feasible vectors (PFV),
defined by the user, is found, DE/best/1/bin is used instead.
DECVwas initially proposed to solve static constrained opti-
mization problems (SCOPs) (Mezura-Montes et al. 2010).
The feasibility rules proposed by Deb (2000) are used in
DECV as selection criteria in Eq. (3), and also every time the
best vector is selected in DE/best/1/bin. The three rules are
as follows:

1. Between two feasible vectors, the onewith the best objec-
tive function value is selected.

2. If one vector is feasible and the other one is infeasible,
the feasible vector is selected.

3. If both vectors are infeasible, the one with the lowest sum
of constraint violation is selected.

To favor a self-contained paper, the complete pseudocode of
DECV is detailed in Algorithm 1

Algorithm 1 DECV algorithm
1: G=0
2: Create a randomly generated initial population xi,G ∀i, i =

1, . . . , N P
3: Evaluate each xi,G ∀i, i = 1, . . . , N P
4: eval = eval+N P
5: while eval ≤ Max_eval do
6: Compute feasiblePercent
7: for i ← 1 to N P do
8: if feasiblePercent ≤ PFV then
9: Generate ui,G with Equations 1 and 2
10: else
11: Generate ui,G with Equations 4 and 2
12: end if
13: if f (ui,G) is better than f (xi,G) based on the feasibility rules

then
14: xi,G+1 = ui,G
15: else
16: xi,G+1 = xi,G
17: end if
18: end for
19: G = G+1
20: end while

123

544 M.-Y. Ameca-Alducin et al.

3.3 DDECV + Repair

To deal with DCOPs, DDECV + Repair was added with
a change detection mechanism which covers modifica-
tions in the objective function and the constraints. When a
change is detected, DDECV + Repair utilizes DECV’s two-
variant combination to promote exploration in the dynamic
constrained search space. As it is important to promote
exploration after a change, approaching faster to the, maybe
different, feasible region, is essential as well. Therefore, a
repair mechanism based on the differential mutation and
resampling is applied to infeasible vectors. Finally, a set of
randomly generated vectors called immigrants are added to
increase diversity in the population. In the following sub-
sections, those four DDECV + Repair elements are detailed
(Ameca-Alducin et al. 2015a, b).

3.3.1 Change detection

Atimely change detection of the objective function and/or the
constraints of aDCOP is the desired startingpoint to dealwith
a dynamic search space (du Plessis 2012; Richter 2009b).
Therefore, DDECV+Repair uses a solution (i.e., vector) re-
evaluation, also known as sensor-based detection (Richter
2009a). At each generation, before the first target vector and
the target vector at the middle of the current population gen-
erate their corresponding trial vector, they are evaluated again
and their objective function values and constraint values are
compared against their previous values. If any value is differ-
ent, an indicator is activated and the best vector in the current
population is stored in an archive, called the memory popu-
lation. Furthermore, all vectors in the current population and
also those in the memory population are re-evaluated so as to
get them updated. The memory population keeps promising
solutions, based on the DCOP features before the detected
change, that can be used afterward if similar conditions return
later in the dynamic search (Nguyen et al. 2013). Using the
first vector and the one located at themiddle of the population
for change detection purposes look to decrease the chance
of missing a change as such a mechanism operates twice
during a single generation and just two extra solution evalua-
tions are computed. The pseudocode of the change detection
mechanism (Ameca-Alducin et al. 2015b) is detailed inAlgo-
rithm 2.

3.3.2 Exploration promotion

DDECV + Repair, as in the original DECV, starts using
DE/rand/1/bin. Once a change is detected (see Algorithm 2),
then the exploration promotion mechanism is activated as
follows: the DE variant is changed to DE/best/1/bin, whose
usage will last a number of generations defined by the user
(Genbest), and the F value is increased during such period of

Algorithm 2 Change_detection_mechanism
Require: xi,t−1
1: Evaluate xi,t at time t
2: if any value is not the same as those of its previous evaluation then
3: Copy the best vector in the population xbest,t to the memory pop-

ulation
4: Re-evaluate all vectors in the current population and also in the

memory population
5: eval = eval+current_population_si ze+memory_

population_si ze
6: end if

time to favor larger movements promoting exploration. Fur-
thermore, considering that DE/best/1/bin is used, the best
vector can be chosen from either the current population or
the memory population (the best vectors found in previous
environments). The idea of usingDE/best/1/binwith larger F
values to promote diversity in a constrained search space was
concluded in Mezura-Montes et al. (2010), and it is adopted
in this work. The details of the exploration promotion mech-
anism can be seen in Algorithm 3.

Algorithm 3 Exploration_promotion_mechanism
1: if counter for using DE/best/1/bin < Genbest then
2: Generate ui,t with Equation 4 with expanded F value and Equa-

tion 2
3: else
4: Generate ui,t with Equations 1 and 2
5: end if
6: return ui,t

3.3.3 The repair method

Repairing, in the context of constrained optimization, is
understood as the process of converting an infeasible solu-
tion into a feasible one. Reference feasible solutions are then
required for that purpose (Michalewicz and Nazhiyath 1995;
Nguyen and Yao 2012, 2009; Pal et al. 2013a, b). However,
the repair method used inDDECV+Repair does not use fea-
sible vectors as reference. It is a resampling approach based
on the differential mutation operator which works as follows
(Ameca-Alducin et al. 2015b):

After each trial vector is generated, if it is infeasible, three
new and temporal vectors are randomly generated with uni-
form distribution in order to apply the differential mutation
operator [see Eq. (1)] in a similar way as a mutant vector is
created in DE. Feasibility is then checked on the obtained
vector. The process repeats until either a feasible vector is
generated or Repair_Limit iterations are computed. Regard-
less of the feasibility of the vector obtained after the repair
process, it is considered as the trial vector to increase diver-
sity in the population. As only constraints are evaluated by
the repair method, such evaluations are not added to the

123

Dynamic differential evolution with combined variants and a repair method to solve dynamic… 545

total evaluations required by DDECV+Repair. Algorithm 4
includes the repair details.

Algorithm 4 Repair_Method
Require: ui,G {trial vector}
1: counter = 0
2: while ui,G is infeasible and counter ≤ Repair_Limit do
3: Generate three random vectors (ur0,G , ur1,G and ur2,G)
4: ui,G = ur0,G+F(ur1,G − ur2,G)

5: counter = counter+1
6: end while
7: Return ui,G

3.3.4 The random immigrants

To add more diversity to the current population in DDECV
+Repair, a number of IB immigrants (vectors generated at
random with uniform distribution) are added to the popula-
tion at the end of each generation. IB stands for “Immigrants
Before a change”. Moreover, during the period of time the
exploration promotion is working (controlled by the Genbest
parameter), such number of immigrants (IA, “Immigrants
After a change”) is increased. In both cases, the immigrants
replace the worst vectors in the current population.

The pseudocode of DDECV + Repair is shown in
Algorithm 5.

Algorithm 5 DDECV + Repair algorithm
1: G=0
2: Create a randomly generated initial population xi,G ∀i, i =

1, . . . , N P
3: Evaluate each xi,G ∀i, i = 1, . . . , N P
4: eval = eval+N P
5: while eval ≤ Max_eval do
6: for i ← 1 to N P do
7: if i = 1 or i = N P/2 then
8: Change_detection_Mechanism (xi,G) {Algorithm 2}
9: eval = eval + 1
10: end if
11: ui,G = Exploration_promotion_mechanism {Algorithm 3}
12: if ui,G is infeasible then
13: Repair_Method(ui,G) {Algorithm 4}
14: end if
15: eval = eval + 1
16: if f (ui,G) is better than f (xi,G) based on the feasibility rules

then
17: xi,G+1 = ui,G
18: else
19: xi,G+1 = xi,G
20: end if
21: end for
22: Add I A or I B immigrants to the current population and evaluate

them
23: eval = eval + I A(or + I B)
24: G = G+1
25: end while

4 Experiments and results

4.1 Experimental design

Recalling from Sect. 1, the aim of this paper is to deepen into
the empirical analysis of DDECV + Repair by considering
(1) the role of each one of its elements, (2) how affected is
with different change frequencies and severities, (3) its abil-
ity to detect a change and recover after it and its diversity
handling and (4) its performance with dynamism in differ-
ent parts of the problem. Therefore, four experiments were
designed:

– A comparison of DDECV + Repair against own ver-
sions, each one without one of its elements (exploration
promotion, repair method and random immigrants).

– A comparison of DDECV + Repair against recent app-
roaches to solveDCOPs by varying the change frequency
and severity.

– A comparison of DDECV + Repair against recent app-
roaches to solve DCOPs by measuring changes detected,
recovery rate and balance between feasible and infeasible
vectors in the population.

– A comparison of DDECV + Repair against two recent
approaches (ICHEA and DCTC) to analyze the pres-
ence of dynamism in different parts of the problem, i.e.,
dynamic objective function and static constraints, static
objective function and dynamic constraints and dynamic
objective function and dynamic constraints.

The four experiments solved a recently proposed bench-
mark for DCOPs (Nguyen and Yao 2012), which contains
eighteen problems. The main features of those problems
are summarized in Table 1, and the details can be found
in Nguyen and Yao (2012, 2013). The parameters used for
DDECV are those in Table 3. Such values were taken from
(Ameca-Alducin et al. 2015b) and were obtained by using
the iRace tool for parameter tuning (López-Ibáñez and Stüt-
zle 2012). The parameters used for the benchmark problems
are detailed in Table 2, where different change frequencies
and severities were considered.

4.1.1 Performance measures

The following seven performance measures were used in this
work:

1. Offline error (Branke and Schmeck 2003) the most pop-
ular measure in the specialized literature of DCOPs
(Nguyen and Yao 2012; Pal et al. 2013b). It is defined as
the average of the computed errors at each one of the gen-
erations covering the total number of times. The offline
error is always greater than or equal to zero. This lat-

123

546 M.-Y. Ameca-Alducin et al.

Table 1 Main features of the
test problems (Nguyen and Yao
2012)

Problem Obj. function Constraints DFR SwO bNAO OICB OISB Path

g24_u Dynamic No constraints 1 No No No Yes N/A

g24_1 Dynamic Static 2 Yes No Yes No N/A

g24_f Static Static 2 No No Yes No N/A

g24_uf Static No constraints 1 No No No Yes N/A

g24_2* Dynamic Static 2 Yes No Yes and no Yes and no N/A

g24_2u Dynamic No constraints 1 No No No Yes N/A

g24_3 Static Dynamic 2–3 No Yes Yes No N/A

g24_3b Dynamic Dynamic 2–3 Yes No Yes No N/A

g24_3f Static Static 1 No No Yes No N/A

g24_4 Dynamic Dynamic 2–3 Yes No Yes No N/A

g24_5* Dynamic Dynamic 2–3 Yes No Yes and no Yes and no N/A

g24_6a Dynamic Static 2 Yes No No Yes Hard

g24_6b Dynamic Static 1 No No No Yes N/A

g24_6c Dynamic Static 2 Yes No No Yes Easy

g24_6d Dynamic Static 2 Yes No No Yes Hard

g24_7 Static Dynamic 2 No No Yes No N/A

g24_8a Dynamic No constraints 1 No No No No N/A

g24_8b Dynamic Static 2 Yes No Yes No N/A

DFR, number of disconnected feasible regions; SwO, switched global optimum between disconnected
regions; bNAO, better newly appear optimum without changing existing ones; OICB, global optimum is in
the constraint boundary; OISB, global optimum is in the search boundary; Path, indicate if it is easy or
difficult to use mutation to travel between feasible regions; Dynamic, the function is dynamic; Static, there
is no change
* In some change periods, the landscape either is a plateau or contains infinite number of optima and all
optima (including the existing optimum) lie in a line parallel to one of the axes

Table 2 Parameter values for the test problems taken fromNguyen and
Yao (2012)

Benchmark problem settings

Number of runs 50

Number of changes 5/k

Change frequencies 250, 500, 1000, 2000 and
4000 Evals.

Obj. function change severity k 0.25 (small) 0.5 (medium)
and 1.0 (large)

Constraint change severity S 10 (small), 20 (medium)
and 50 (large)

Table 3 DDECV + Repair parameter values taken from Ameca-
Alducin et al. (2014, 2015b)

Pop size 25

Crossover CR = 0.8399

F before change F = 0.9644

F after change FA = 1.0820

Immigrants before change IB = 5

Immigrates after change IA = 3

Genbest 16

Repair_Limit 100

ter value indicates a perfect performance (Nguyen et al.
2012). This measure is defined as in Eq. (5):

offline_error = 1

Gmax

Gmax∑

G=1

e(G) (5)

where Gmax is the number of generations computed by
the algorithm and e(G) denotes the error in the current
generation G [see Eq. (6)]:

e(G) = | f (x∗, t) − f (xbest,G , t)| (6)

where f (x∗, t) denotes the feasible global optima in cur-
rent time t , and f (xbest,G , t) is the best solution (feasible
or infeasible) found so far at generationG in current time
t . Using the absolute value of the error mitigates those
problems related to the presence of infeasible solutions
with a better objective function value with respect to the
feasible optimum of the corresponding time.

2. Detected_change count each detected change is counted
to verify whether the algorithm has the ability to detect
all of them during the search process.

3. Recovery rate (RR) (Nguyen and Yao 2012) this measure
was designed to analyze how quickly an algorithm recov-

123

Dynamic differential evolution with combined variants and a repair method to solve dynamic… 547

ers after a change and starts converging to the new best
solution before the next change occurs. Such new best
solution is not necessarily the global optimum. The RR
value would be 1 in the best case where the algorithm is
able to recover and converge to the best solution imme-
diately after a change. A value closer to zero means the
algorithm is unable to recover [see (Eq. 7)]:

RR = 1

tmax

tmax∑

t=1

∑Gmax(t)
G=1

[
f (xbest,G , t) − f (xbest,1, t)

]

Gmax(t)
[
f (xbest,G , t) − f (xbest,1, t)

]

(7)

where tmax is the total number of times (changes) in the
environment and every change occurs at time t , Gmax(t)
is the total number of generations at time t , f (xbest,G , t)
is the objective function value of the best feasible solu-
tion found at current generation G in current time t , and
f (xbest,1, t) is the objective function value of the best fea-
sible solution at the first generation of the new time (i.e.,
the first best feasible solution obtained by the algorithm
after a change).

4. Absolute recovery rate (ARR) (Nguyen and Yao 2012) it
is similar toRR, but used to analyze how fast an algorithm
starts converging to the global optimum before the next
change occurs. The ARR value would be 1 in the best
case when the algorithm is able to recover and converge
to the global optimum immediately after a change and
would be zero in case the algorithm is unable to recover
[see Eq. (8)]:

ARR = 1

tmax

tmax∑

t=1

∑Gmax(t)
G=1 [f (xbest,G , t) − f (xbest,1, t)]
Gmax(t)[f (x∗, t) − f (xbest,1, t)]

(8)

where f (x∗, t) is the feasible global optima in current
time t . tmax, t , Gmax(t), G, f (xbest,G , t) and f (xbest,1, t)
were defined in Eq. (7) for RR.

5. Percentage of selected infeasible individuals thismeasure
computes the average of the number of infeasible vectors
at each one of theGmax generations. A value greater than
zero is desirable for most of the search, as the algorithm
is able to maintain infeasible solutions to avoid feasible
local optima.

6. Best error before change this measure, proposed in Tro-
janowski and Michalewicz (1999), is calculated as the
average of the smallest errors accomplished at the end of
each period of time right before a change of time occurs
[see Eq. (9)]:

Ebest = 1

tmax

tmax∑

t=1

ebest(Gmax(t)) (9)

where tmax is the total number of times (changes) in
the environment and every change occurs at time t ,
Gmax(t) is the total number of generations at time t ,
and ebest(Gmax(t)) is the difference between the feasi-
ble global optima in current time t and the best solution
found so far at generationG in current time t [see (Eq. 6)].

7. Feasible offline error (Aragón et al. 2013) it is similar
to offline error [see Eq. (5)], but only the feasible solu-
tions are computed. If an infeasible solution is found,
then nothing is added.

4.1.2 Compared algorithms

The results obtained by DDECV + Repair were compared
with those obtained by the following eight state-of-the-art
algorithms in dynamic constrained optimization, which are
briefly described below.

GAElit is a traditional genetic algorithm (GA) with
elitism. In this algorithm, nonlinear ranking parent selec-
tion, arithmetic crossover and uniform mutation are
employed. To copewith constraints, a static penalty func-
tion is used. To avoid obsolete data, the change detection
mechanism (see Algorithm 2) is applied when elitism
takes place.
HyperMElit is similar to GAElit, but with an adaptive
mechanism to switch between twomutation rates: (1) low
(standard mutation) rate and (2) high (hypermutation)
rate, to increase diversity. If the best solution gets worse,
the hypermutation is applied for an user-defined number
of generations (Cobb 1990).
RIGAElit is also similar to GAElit. However, after the
mutation operator is applied, a fraction of the current
population is replaced with randomly generated individ-
uals (random immigrants). This fraction is determined
by a random immigrant rate (also named replacement
rate). In the experiments of this work, the third part of the
current population is replaced by random immigrants in
order to maintain diversity throughout the search process
(Grefenstette 1992).
GA + Repair was proposed in Nguyen and Yao (2009).
This algorithm is similar to GAElit but with a repair
method based on GENOCOP III (Michalewicz and
Nazhiyath 1995). The repair method converts infeasible
solutions in the population (called search population) into
feasible ones by using feasible solutions as reference.
Those feasible solutions are in the so-called reference
population, where only feasible solutions are allowed.
To avoid obsolete data, the change detection mechanism
is applied (see Algorithm 2).
DE +Repair is based on DE/rand/1/bin with a change
detection mechanism, in which the solutions are re-
evaluated in order to detect modifications in the environ-

123

548 M.-Y. Ameca-Alducin et al.

ment.Amodified repairmethodproposedbyMichalewicz
and Nazhiyath (1995) is used as a constraint handler,
whose application is based on closeness in the variable
space between the reference (feasible) solution and the
infeasible solution to be repaired (Pal et al. 2013a).
GSA + Repair is based on the gravitational search algo-
rithm (GSA) (Rashedi et al. 2009) and shares the same
change detection mechanism and repair method with DE
+ Repair (Pal et al. 2013b).
ICHEA is a variation of an EA. This approach uses a
intermarriage crossover operator which employs knowl-
edge from constraints rather than blindly searching the
solution. This crossover is intended to make a generic
offspring that tries to satisfy more than one constraint
because its parents are selected from two different feasi-
ble regions (Sharma and Sharma 2012a). The algorithm
favors those offspring which satisfy more constraints
by using Deb’s rules (Deb 2000). To avoid the loss of
diversity in the population, this algorithm has a diversity
management and a stagnant local optimal solutions man-
agementwhichworks like tabu search algorithm (Sharma
and Sharma 2012b).
Dynamic constrained T cell (DCTC) is an algorithm
inspired on the T cell model, which operates on four
populations, corresponding to the groups in which the
T-cells are divided: (1) virgin cells to provide diversity,
(2) effector cells CD4 to explore the search space, (3)
effector cells CD8 to use real numbers representation and
(4) memory cells to explore the neighborhood of the best
found solutions. Furthermore, a change detection mech-
anism in the environment through the re-evaluation of
solutions is added. The feasibility criteria are used as
constraint handler (Aragón et al. 2013).

The parameter values used for the abovementioned com-
pared algorithms, where direct comparisons were carried out
(experiment 3), are given in Table 4.

4.2 Results

4.2.1 Experiment 1. DDECV + Repair element analysis

The first experiment compared DDECV+Repair against its
own versions, where in each one of them, a single element
was deactivated, as follows:

– DDE rand + Repair A version without the exploration
promotion mechanism (i.e., without the combined vari-
ants and memory population), where only DE/rand/1/bin
is used.

– DDE best + Repair A version without the exploration
promotion mechanism (i.e., without the combined vari-

Table 4 Parameter values for the tested algorithms (GAElit, RIGAElit,
HyperMElit and GA + Repair), taken fromNguyen and Yao (2012)

All algorithms

Pop size 25

Elitism Elitism is applied ever

Selection Nonlinear ranking

Mutation Uniform, P = 0.15

Crossover Arithmetic, P = 0.1

RIGAElit

Immigrants rate P = 0.3

HyperMElit

Triggered mutate Uniform, P = 0.5

GA + Repair

Search pop size Pop size (4/5)

Reference pop size Pop size (1/5)

Replacement rate 0

ants and memory population), where only DE/best/1/bin
is used.

– DDECV −Repair A version with all the elements with
the exception of the repair method.

– DDECV− Imm+ Repair A version with all the elements
with the exception of the random immigrants.

– DDECV−Mem+RepairAversionwith all the elements
with the exception of the memory population (the best
vectors in the previous times).

The eighteen test problems were solved by each one of
the six versions, and the offline error measure was computed.
The change frequency was 1000 evaluations, and the severity
of the change was medium (i.e., k = 0.50 and S = 20).
Those values are the most used in the specialized literature
of DCOPs (Nguyen and Yao 2012). The results obtained are
summarized in Table 5. The statistical validation was made
with the 95% confidence Kruskal–Wallis (KW) test and the
Bergmann–Hommels post hoc test, as suggested in Derrac
et al. (2011). Such tests indicated no significant differences
among DDECV + Repair versions by considering all the
eighteen test problems.

To get a closer look, each test problem was analyzed sep-
arately. In this way, the 95% confidence Wilcoxon rank-sum
test was applied for each test problem in pairwise compar-
isons between DDECV + Repair and each one of its five
versions. The results are presented in Table 6.

Based on such results, DDECV + Repair outperformed
DDE_rand +Repair in fourteen test problems (g24_u,
g24_1, g24_2, g24_3, g24_3b, g24_4, g24_5, g24_6a,
g24_6b, g24_6c, g24_6d, g24_7, g24_8a and g24_8b), while
DDE_rand + Repair was better in just one (unconstrained)
test problem (g24_2u). In three test problems (g24_f, g24_uf

123

Dynamic differential evolution with combined variants and a repair method to solve dynamic… 549

Table 5 Average and standard
deviation offline error values
obtained by DDECV + Repair
and its five incomplete versions
with a change frequency of 1000
evaluations and a medium
severity of change (k = 0.50
and S = 20)

Algorithms Functions

G24_u G24_1 G24_f

DDE_rand + Repair 0.046 (±0.007) 0.08 (±0.014) 0.023 (±0.008)

DDE_best + Repair 0.044 (±0.005) 0.063 (±0.013) 0.013 (±0.004)

DDECV−Repair 0.037 (±0.005) 0.094 (±0.024) 0.031 (±0.01)

DDECV− Imm + Repair 0.101 (±0.025) 0.067 (±0.014) 0.02 (±0.007)

DDECV−Mem + Repair 0.04 (±0.006) 0.075 (±0.015) 0.025 (±0.007)

DDECV + Repair 0.039 (±0.007) 0.061 (±0.01) 0.021 (±0.006)

G24_uf G24_2 G24_2u

DDE_rand + Repair 0.012 (±0.004) 0.081 (±0.011) 0.035 (±0.003)

DDE_best + Repair 0.006 (±0.002) 0.065 (±0.011) 0.033 (±0.002)

DDECV−Repair 0.011 (±0.005) 0.088 (±0.016) 0.031 (±0.001)

DDECV− Imm + Repair 0.01 (±0.004) 0.067 (±0.014) 0.46 (±0.249)

DDECV−Mem + Repair 0.011 (±0.004) 0.062 (±0.011) 0.031 (±0.001)

DDECV + Repair 0.009 (±0.002) 0.062 (±0.006) 0.036 (±0.001)

G24_3 G24_3b G24_3f

DDE_rand + Repair 0.074 (±0.006) 0.146 (±0.019) 0.013 (±0.003)

DDE_best + Repair 0.054 (±0.005) 0.118 (±0.013) 0.009 (±0.003)

DDECV−Repair 0.061 (±0.009) 0.131 (±0.021) 0.025 (±0.008)

DDECV− Imm + Repair 0.042 (±0.003) 0.095 (±0.012) 0.011 (±0.003)

DDECV−Mem + Repair 0.045 (±0.005) 0.101 (±0.014) 0.012 (±0.004)

DDECV+ Repair 0.046 (±0.006) 0.084 (±0.006) 0.01 (±0.002)

G24_4 G24_5 G24_6a

DDE_rand + Repair 0.144 (±0.016) 0.092 (±0.012) 0.044 (±0.005)

DDE_best + Repair 0.117 (±0.013) 0.079 (±0.008) 0.034 (±0.004)

DDECV−Repair 0.131 (±0.02) 0.122 (±0.023) 0.065 (±0.026)

DDECV− Imm + Repair 0.094 (±0.009) 0.38 (±0.162) 0.032 (±0.005)

DDECV−Mem + Repair 0.099 (±0.014) 0.082 (±0.012) 0.033 (±0.007)

DDECV + Repair 0.088 (±0.011) 0.078 (±0.008) 0.036 (±0.005)

G24_6b G24_6c G24_6d

DDE_rand + Repair 0.055 (±0.01) 0.051 (±0.007) 0.099 (±0.009)

DDE_best + Repair 0.041 (±0.008) 0.039 (±0.006) 0.094 (±0.009)

DDECV−Repair 0.049 (±0.012) 0.051 (±0.014) 0.115 (±0.024)

DDECV− Imm + Repair 0.037 (±0.006) 0.035 (±0.005) 0.111 (±0.014)

DDECV−Mem + Repair 0.045 (±0.01) 0.042 (±0.009) 0.082 (±0.011)

DDECV + Repair 0.041 (±0.01) 0.041 (±0.01) 0.079 (±0.006)

G24_7 G24_8a G24_8b

DDE_rand + Repair 0.129 (±0.018) 0.215 (±0.02) 0.145 (±0.042)

DDE_best + Repair 0.107 (±0.012) 0.138 (±0.019) 0.09 (±0.034)

DDECV−Repair 0.169 (±0.027) 0.159 (±0.023) 0.13 (±0.035)

DDECV− Imm + Repair 0.099 (±0.013) 0.283 (±0.064) 0.076 (±0.024)

DDECV−Mem + Repair 0.114 (±0.015) 0.18 (±0.021) 0.098 (±0.029)

DDECV + Repair 0.107 (±0.011) 0.138 (±0.015) 0.074 (±0.025)

Best results are remarked in boldface

123

550 M.-Y. Ameca-Alducin et al.

Table 6 95% confidence
Wilcoxon rank-sum test results
on pairwise comparisons
between DDECV + Repair
against each one of its five
incomplete versions based on
the offline error results in
Table 5

Functions Algorithms

DDE_rand
+ Repair

DDE_best +
Repair

DDECV −
Repair

DDECV −
Imm+Repair

DDECV − Mem
+ Repair

g24_u + + − + +
g24_1 + = + = +
g24_f = − + − +
g24_uf = − = = +
g24_2 + = + = +
g24_2u − − = + −
g24_3 + + + − +
g24_3b + + + + +
g24_3f = − + + +
g24_4 + + + + +
g24_5 + = + + +
g24_6a + − + = −
g24_6b + + = − +
g24_6c + − + − +
g24_6d + + + + +
g24_7 + + + − =
g24_8a + + = + +
g24_8b + + + + +
“+” means that DDECV + Repair outperformed the version in the corresponding column. “−” means that
the version in the corresponding column outperformed DDECV + Repair. No significant differences
between DDECV + Repair and the version in the corresponding columns are indicated with “=”

and g24_3f), all of them static and the second of them uncon-
strained, no significant differences were observed.

DDECV + Repair outperformed DDE_best + Repair in
nine test problems (g24_u, 24_3, g24_3b, g24_4, g24_6b,
g24_6d, g24_7, g24_8a and g24_8b). On the other hand,
DDE_best+Repair had a better performance in six test prob-
lems (g24_f, g24_uf, g24_2u, g24_3f, g24_6a and g24_6c
test). No significant differences were observed in three test
problems (g24_1, g24_2 and g24_5). It is important to note
that the problems where DDE_best + Repair provided a
better performance have static constraints or they are uncon-
strained ones.

Regarding DDECV − Repair, the results indicate that
DDECV + Repair outperformed it in thirteen test prob-
lems (g24_1, g24_f, g24_2, g24_3, g24_3b, g24_3f, g24_4,
g24_5, g24_6a, g24_6c, g24_6d, g24_7 and g24_8b). In
contrast, DDECV − Repair was better in just one uncon-
strained test problem (g24_u). No significant differences
were observed in four test problems (g24_uf, g24_2u, g24_6b
and g24_8a), where the first two are unconstrained. Those
results highlight the importance of the repair method in
DDECV + Repair.

Furthermore, DDECV + Repair obtained better results
with respect to DDECV − Imm + Repair in nine test
problems (g24_u, g24_2u, g24_3b, g24_3f, g24_4, g24_5,
g24_6d, g24_8a and g24_8b), while DDECV − Imm+

Repair surpassed the results of DDECV + Repair in five
test problems (g24_f, g24_3, g24_6b, g24_6c and g24_7). In
four test problems (g24_1, g24_uf, g24_2, and g24_6a) no
significant differences were obtained. The common feature
of three test problems where the version with no immigrants
was better than DDECV+Repair (g24_f, g24_3 and g24_7)
is that the global optimum is in the boundaries of the feasi-
ble region, while in the other two test problems (g24_6b and
g24_6c), the feasible global optimum is in the boundaries
of the search space. Therefore, the addition of those ran-
domly generated solutions into the current population seems
to affect the convergence to those solutions located in the
boundaries of either the feasible region or the search space.

Finally,DDECV+Repair outperformedDDECV−Mem
+ Repair in fifteen test problems (g24_u, g24_1, g24_f,
g24_uf, g24_2, g24_3, g24_3b, g24_3f, g24_4, g24_5,
g24_6b, g24_6c, g24_6d, g24_8a andg24_8b),whileDDECV
− Mem + Repair had a better performance in two test
problems (g24_2u and g24_6a), where the first problem
is unconstrained and the second has static constraints. No
significant differences were observed in just one test prob-
lem (g24_7), where the main feature is that the global
optimum is in the boundaries of the feasible region. The
results suggest the importance of the memory population,
because the previous search conditions appear later in the
search.

123

Dynamic differential evolution with combined variants and a repair method to solve dynamic… 551

Table 7 Average and standard
deviation offline error values
obtained by DDECV + Repair
and the compared algorithms
with a change frequency of 250
evaluations and a medium
change severity (k = 0.5 and
S = 20)

Algorithms Functions

G24_u G24_1 G24_f

GAElit 0.265 (±0.05) 0.781 (±0.168) 0.326 (±0.161)

RIGAElit 0.316 (±0.056) 0.706 (±0.12) 0.351 (±0.129)

HyperMelit 0.274 (±0.045) 0.667 (±0.12) 0.34 (±0.109)

GA + Repair 0.674 (±0.099) 0.414 (±0.099) 0.125 (±0.052)

DDECV + Repair 0.179 (±0.013) 0.269 (±0.021) 0.097 (±0.027)

G24_uf G24_2 G24_2u

GAElit 0.177 (±0.055) 0.469 (±0.081) 0.234 (±0.066)

RIGAElit 0.202 (±0.06) 0.386 (±0.055) 0.195 (±0.035)

HyperMelit 0.185 (±0.069) 0.434 (±0.061) 0.198 (±0.045)

GA + Repair 0.463 (±0.152) 0.412 (±0.06) 0.46 (±0.071)

DDECV + Repair 0.039 (±0.018) 0.245 (±0.011) 0.189 (±0.01)

G24_3 G24_3b G24_3f

GAElit 0.646 (±0.179) 0.857 (±0.188) 0.35 (±0.188)

RIGAElit 0.655 (±0.126) 0.797 (±0.094) 0.413 (±0.12)

HyperMelit 0.562 (±0.13) 0.732 (±0.108) 0.364 (±0.163)

GA + Repair 0.115 (±0.027) 0.382 (±0.098) 0.059 (±0.022)

DDECV + Repair 0.11 (±0.013) 0.28 (±0.03) 0.038 (±0.011)

G24_4 G24_5 G24_6a

GAElit 0.844 (±0.112) 0.452 (±0.07) 1.179 (±0.232)

RIGAElit 0.773 (±0.114) 0.398 (±0.062) 0.775 (±0.138)

HyperMelit 0.738 (±0.105) 0.398 (±0.048) 0.83 (±0.095)

GA + Repair 0.252 (±0.058) 0.263 (±0.046) 0.785 (±0.192)

DDECV + Repair 0.277 (±0.029) 0.25 (±0.031) 0.191 (±0.014)

G24_6b G24_6c G24_6d

GAElit 0.814 (±0.088) 0.77 (±0.097) 0.842 (±0.099)

RIGAElit 0.624 (±0.071) 0.649 (±0.084) 0.75 (±0.1)

HyperMelit 0.67 (±0.057) 0.708 (±0.056) 0.723 (±0.081)

GA + Repair 0.738 (±0.101) 0.673 (±0.076) 0.622 (±0.118)

DDECV + Repair 0.237 (±0.028) 0.227 (±0.021) 0.437 (±0.029)

G24_7 G24_8a G24_8b

GAElit 0.631 (±0.141) 0.404 (±0.033) 0.926 (±0.115)

RIGAElit 0.771 (±0.089) 0.526 (±0.046) 0.913 (±0.086)

HyperMelit 0.619 (±0.105) 0.46 (±0.023) 0.923 (±0.053)

GA + Repair 0.211 (±0.047) 0.389 (±0.05) 0.511 (±0.126)

DDECV + Repair 0.169 (±0.03) 0.48 (±0.039) 0.349 (±0.021)

Best results are remarked in boldface

The overall results of this first experiment lead to the fol-
lowing conclusions:

– The most important mechanism in DDECV + Repair is
precisely the repair mechanism. However, even without

it, the algorithm can provide competitive results but only
in unconstrained dynamic problems.

– The absence of the diversity promotion mechanism also
affectsDDECV+Repair’s performance, but such impact
is less significant. In fact, evenwithout it, ifDE/best/1/bin

123

552 M.-Y. Ameca-Alducin et al.

Table 8 Average and standard
deviation offline error values
obtained by DDECV + Repair
and the compared algorithms
with a change frequency of 500
evaluations and a medium
change severity (k = 0.5 and
S = 20)

Algorithms Functions

G24_u G24_1 G24_f

GAElit 0.184 (±0.035) 0.641 (±0.057) 0.175 (±0.083)

RIGAElit 0.235 (±0.025) 0.496 (±0.046) 0.266 (±0.051)

HyperMElit 0.163 (±0.026) 0.52 (±0.065) 0.209 (±0.053)

GA + Repair 0.5 (±0.059) 0.264 (±0.024) 0.077 (±0.011)

DDECV + Repair 0.086 (±0.009) 0.123 (±0.015) 0.04 (±0.009)

G24_uf G24_2 G24_2u

GAElit 0.091 (±0.022) 0.372 (±0.05) 0.132 (±0.017)

RIGAElit 0.125 (±0.02) 0.325 (±0.037) 0.146 (±0.024)

HyperMElit 0.091 (±0.012) 0.364 (±0.043) 0.115 (±0.016)

GA + Repair 0.358 (±0.018) 0.298 (±0.036) 0.354 (±0.029)

DDECV + Repair 0.019 (±0.005) 0.137 (±0.008) 0.089 (±0.008)

G24_3 G24_3b G24_3f

GAElit 0.375 (±0.049) 0.631 (±0.084) 0.252 (±0.058)

RIGAElit 0.436 (±0.048) 0.545 (±0.051) 0.264 (±0.048)

HyperMElit 0.404 (±0.05) 0.557 (±0.088) 0.244 (±0.051)

GA + Repair 0.063 (±0.008) 0.184 (±0.019) 0.035 (±0.008)

DDECV + Repair 0.064 (±0.008) 0.143 (±0.012) 0.024 (±0.007)

G24_4 G24_5 G24_6a

GAElit 0.646 (±0.075) 0.367 (±0.029) 1.038 (±0.157)

RIGAElit 0.542 (±0.047) 0.287 (±0.035) 0.534 (±0.05)

HyperMElit 0.573 (±0.075) 0.324 (±0.039) 0.694 (±0.071)

GA + Repair 0.143 (±0.015) 0.196 (±0.024) 0.616 (±0.074)

DDECV + Repair 0.145 (±0.012) 0.139 (±0.014) 0.08 (±0.016)

G24_6b G24_6c G24_6d

GAElit 0.631 (±0.057) 0.666 (±0.052) 0.664 (±0.075)

RIGAElit 0.436 (±0.039) 0.443 (±0.029) 0.512 (±0.057)

HyperMElit 0.535 (±0.039) 0.543 (±0.051) 0.584 (±0.041)

GA + Repair 0.567 (±0.048) 0.518 (±0.038) 0.475 (±0.038)

DDECV + Repair 0.097 (±0.01) 0.093 (±0.011) 0.193 (±0.015)

G24_7 G24_8a G24_8b

GAElit 0.441 (±0.053) 0.356 (±0.028) 0.807 (±0.056)

RIGAElit 0.565 (±0.068) 0.405 (±0.028) 0.758 (±0.064)

HyperMElit 0.43 (±0.062) 0.355 (±0.028) 0.71 (±0.071)

GA + Repair 0.134 (±0.017) 0.341 (±0.032) 0.38 (±0.068)

DDECV + Repair 0.135 (±0.023) 0.262 (±0.031) 0.176 (±0.033)

Best results are remarked in boldface

is used, problems with a dynamic objective function but
with static constraints can still be solved.

– The random immigrants have apositive effect onDDECV
+ Repair. However, the presence of random solutions at
each generation may affect the algorithm’s performance

when the feasible global optimum is located at the bound-
aries of either the feasible region or the search space.

– Other important mechanism in DDECV + Repair is
the memory population. Without it, the performance of
DDECV + Repair is affected.

123

Dynamic differential evolution with combined variants and a repair method to solve dynamic… 553

Table 9 Average and standard
deviation offline error values
obtained by DDECV + Repair
and the compared algorithms
with a change frequency of 1000
evaluations and a medium
change severity (k = 0.5 and
S = 20)

Algorithms Functions

G24_u G24_1 G24_f

GAElit 0.106 (±0.035) 0.459 (±0.057) 0.154 (±0.083)

RIGAElit 0.149 (±0.025) 0.346 (±0.046) 0.178 (±0.051)

HyperMelit 0.111 (±0.026) 0.384 (±0.065) 0.149 (±0.053)

GA + Repair 0.468 (±0.059) 0.226 (±0.024) 0.041 (±0.011)

DE + Repair 0.099 (±0.01) 0.151 (±0.024) 0.039 (±0.022)

GSA + Repair 0.049 (±0.004) 0.132 (±0.015) 0.029 (±0.012)

DDECV + Repair 0.039 (±0.007) 0.061 (±0.01) 0.021 (±0.006)

G24_uf G24_2 G24_2u

GAElit 0.063 (±0.022) 0.288 (±0.05) 0.073 (±0.017)

RIGAElit 0.069 (±0.02) 0.246 (±0.037) 0.091 (±0.024)

HyperMelit 0.053 (±0.012) 0.253 (±0.043) 0.068 (±0.016)

GA + Repair 0.218 (±0.018) 0.281 (±0.036) 0.294 (±0.029)

DE + Repair 0.057 (±0.019) 0.191 (±0.014) 0.141 (±0.012)

GSA + Repair 0.047 (±0.009) 0.182 (±0.019) 0.196 (±0.012)

DDECV + Repair 0.009 (±0.002) 0.062 (±0.006) 0.036 (±0.001)

G24_3 G24_3b G24_3f

GAElit 0.289 (±0.049) 0.457 (±0.084) 0.158 (±0.058)

RIGAElit 0.308 (±0.048) 0.386 (±0.051) 0.167 (±0.048)

HyperMelit 0.243 (±0.05) 0.394 (±0.088) 0.128 (±0.051)

GA + Repair 0.156 (±0.008) 0.171 (±0.019) 0.025 (±0.008)

DE + Repair 0.091 (±0.012) 0.121 (±0.019) 0.013 (±0.009)

GSA + Repair 0.028 (±0.004) 0.076 (±0.009) 0.009 (±0.007)
DDECV + Repair 0.046 (±0.006) 0.084 (±0.006) 0.01 (±0.002)

G24_4 G24_5 G24_6a

GAElit 0.453 (±0.075) 0.266 (±0.029) 0.674 (±0.157)

RIGAElit 0.421 (±0.047) 0.24 (±0.035) 0.333 (±0.05)

HyperMelit 0.426 (±0.075) 0.248 (±0.039) 0.491 (±0.071)

GA + Repair 0.211 (±0.015) 0.236 (±0.024) 0.431 (±0.074)

DE + Repair 0.121 (±0.021) 0.121 (±0.011) 0.047 (±0.009)

GSA + Repair 0.073 (±0.012) 0.153 (±0.013) 0.033 (±0.003)
DDECV + Repair 0.088 (±0.011) 0.078 (±0.008) 0.036 (±0.005)

G24_6b G24_6c G24_6d

GAElit 0.408 (±0.057) 0.441 (±0.052) 0.51 (±0.075)

RIGAElit 0.309 (±0.039) 0.325 (±0.029) 0.342 (±0.057)

HyperMelit 0.39 (±0.039) 0.394 (±0.051) 0.456 (±0.041)

GA + Repair 0.427 (±0.048) 0.39 (±0.038) 0.354 (±0.038)

DE + Repair 0.101 (±0.012) 0.79 (±0.01) 0.91 (±0.011)

GSA + Repair 0.047 (±0.003) 0.045 (±0.004) 0.037 (±0.007)
DDECV + Repair 0.041 (±0.01) 0.041 (±0.01) 0.079 (±0.006)

G24_7 G24_8a G24_8b

GAElit 0.316 (±0.053) 0.266 (±0.028) 0.662 (±0.056)

RIGAElit 0.416 (±0.068) 0.304 (±0.028) 0.598 (±0.064)

HyperMelit 0.315 (±0.062) 0.279 (±0.028) 0.608 (±0.071)

GA + Repair 0.181 (±0.017) 0.496 (±0.032) 0.391 (±0.068)

DE + Repair 0.033 (±0.009) 0.217 (±0.033) 0.227 (±0.039)

GSA + Repair 0.018 (±0.002) 0.202 (±0.041) 0.192 (±0.034)

DDECV + Repair 0.107 (±0.011) 0.138 (±0.015) 0.074 (±0.025)

Best results are remarked in boldface

123

554 M.-Y. Ameca-Alducin et al.

Table 10 Average and standard
deviation offline error values
obtained by DDECV + Repair
and the compared algorithms
with a change frequency of 2000
evaluations and a medium
change severity (k = 0.5 and
S = 20)

Algorithms Functions

G24_u G24_1 G24_f

GAElit 0.065 (±0.011) 0.332 (±0.074) 0.092 (±0.052)

RIGAElit 0.11 (±0.014) 0.235 (±0.038) 0.106 (±0.037)

HyperMelit 0.072 (±0.015) 0.289 (±0.053) 0.084 (±0.042)

GA + Repair 0.262 (±0.04) 0.055 (±0.012) 0.023 (±0.006)

DDECV + Repair 0.023 (±0.003) 0.036 (±0.01) 0.011 (±0.004)

G24_uf G24_2 G24_2u

GAElit 0.032 (±0.01) 0.183 (±0.024) 0.049 (±0.008)

RIGAElit 0.047 (±0.015) 0.168 (±0.023) 0.057 (±0.011)

HyperMelit 0.028 (±0.008) 0.172 (±0.037) 0.044 (±0.012)

GA + Repair 0.164 (±0.054) 0.147 (±0.022) 0.171 (±0.04)

DDECV + Repair 0.005 (±0.001) 0.035 (±0.007) 0.018 (±0.001)

G24_3 G24_3b G24_3f

GAElit 0.164 (±0.033) 0.32 (±0.058) 0.072 (±0.032)

RIGAElit 0.208 (±0.026) 0.262 (±0.024) 0.1 (±0.026)

HyperMelit 0.168 (±0.029) 0.288 (±0.048) 0.082 (±0.036)

GA + Repair 0.019 (±0.004) 0.044 (±0.009) 0.01 (±0.003)

DDECV + Repair 0.036 (±0.002) 0.063 (±0.009) 0.006 (±0.001)

G24_4 G24_5 G24_6a

GAElit 0.333 (±0.074) 0.196 (±0.026) 0.408 (±0.05)

RIGAElit 0.309 (±0.037) 0.174 (±0.022) 0.236 (±0.026)

HyperMelit 0.287 (±0.067) 0.182 (±0.019) 0.287 (±0.036)

GA + Repair 0.044 (±0.009) 0.111 (±0.023) 0.3 (±0.054)

DDECV + Repair 0.057 (±0.005) 0.041 (±0.004) 0.02 (±0.004)

G24_6b G24_6c G24_6d

GAElit 0.274 (±0.028) 0.282 (±0.033) 0.318 (±0.059)

RIGAElit 0.21 (±0.025) 0.213 (±0.027) 0.242 (±0.027)

HyperMelit 0.234 (±0.019) 0.249 (±0.034) 0.281 (±0.03)

GA + Repair 0.306 (±0.03) 0.287 (±0.042) 0.263 (±0.024)

DDECV + Repair 0.026 (±0.005) 0.022 (±0.004) 0.044 (±0.003)

G24_7 G24_8a G24_8b

GAElit 0.217 (±0.047) 0.232 (±0.023) 0.499 (±0.048)

RIGAElit 0.303 (±0.043) 0.269 (±0.017) 0.496 (±0.042)

HyperMelit 0.253 (±0.036) 0.237 (±0.013) 0.463 (±0.052)

GA + Repair 0.05 (±0.015) 0.247 (±0.02) 0.136 (±0.035)

DDECV + Repair 0.057 (±0.005) 0.075 (±0.015) 0.041 (±0.012)

Best results are remarked in boldface

4.2.2 Experiment 2: Change frequency and severity
analysis

The second experiment analyzed the effects of different
change frequencies and also different change severities in
the performance provided by DDECV+Repair. The six algo-

rithms already describedwere used for comparison purposes,
and their results were taken from their corresponding docu-
ments (Cobb 1990; Cobb and Grefenstette 1993; Nguyen
et al. 2012; Nguyen and Yao 2010; Pal et al. 2013a, b).
The eighteen test problems, as in Experiment 1, were
solved.

123

Dynamic differential evolution with combined variants and a repair method to solve dynamic… 555

Table 11 Average and standard
deviation offline error values
obtained by DDECV + Repair
and the compared algorithms
with a change frequency of 4000
evaluations and a medium
change severity (k = 0.5 and
S = 20)

Algorithms Functions

G24_u G24_1 G24_f

GAElit 0.038 (±0.009) 0.192 (±0.052) 0.069 (±0.036)

RIGAElit 0.061 (±0.013) 0.155 (±0.016) 0.073 (±0.034)

HyperMElit 0.046 (±0.01) 0.195 (±0.025) 0.066 (±0.044)

GA + Repair 0.332 (±0.017) 0.032 (±0.008) 0.012 (±0.003)

DDECV + Repair 0.01 (±0.001) 0.019 (±0.005) 0.005 (±0.002)

G24_uf G24_2 G24_2u

GAElit 0.016 (±0.003) 0.141 (±0.021) 0.028 (±0.006)

RIGAElit 0.03 (±0.007) 0.12 (±0.013) 0.036 (±0.01)

HyperMElit 0.015 (±0.005) 0.138 (±0.034) 0.025 (±0.008)

GA + Repair 0.117 (±0.025) 0.096 (±0.01) 0.114 (±0.029)

DDECV + Repair 0.002 (±0.001) 0.021 (±0.005) 0.01 (±0.001)

G24_3 G24_3b G24_3f

GAElit 0.119 (±0.034) 0.2 (±0.05) 0.057 (±0.016)

RIGAElit 0.148 (±0.019) 0.188 (±0.026) 0.054 (±0.02)

HyperMElit 0.104 (±0.019) 0.192 (±0.026) 0.052 (±0.02)

GA + Repair 0.01 (±0.002) 0.024 (±0.004) 0.005 (±0.001)

DDECV + Repair 0.029 (±0.003) 0.038 (±0.006) 0.003 (±0.001)

G24_4 G24_5 G24_6a

GAElit 0.193 (±0.029) 0.141 (±0.018) 0.226 (±0.04)

RIGAElit 0.218 (±0.039) 0.132 (±0.017) 0.148 (±0.016)

HyperMElit 0.209 (±0.034) 0.144 (±0.024) 0.169 (±0.022)

GA + Repair 0.025 (±0.004) 0.086 (±0.017) 0.217 (±0.028)

DDECV + Repair 0.037 (±0.006) 0.024 (±0.003) 0.01 (±0.002)

G24_6b G24_6c G24_6d

GAElit 0.166 (±0.02) 0.164 (±0.02) 0.183 (±0.024)

RIGAElit 0.141 (±0.019) 0.143 (±0.019) 0.152 (±0.019)

HyperMElit 0.151 (±0.017) 0.151 (±0.017) 0.17 (±0.023)

GA + Repair 0.205 (±0.025) 0.212 (±0.04) 0.191 (±0.02)

DDECV + Repair 0.013 (±0.003) 0.012 (±0.002) 0.024 (±0.002)

G24_7 G24_8a G24_8b

GAElit 0.148 (±0.03) 0.205 (±0.011) 0.344 (±0.04)

RIGAElit 0.21 (±0.04) 0.232 (±0.01) 0.363 (±0.042)

HyperMElit 0.158 (±0.037) 0.215 (±0.013) 0.332 (±0.034)

GA + Repair 0.026 (±0.007) 0.217 (±0.014) 0.068 (±0.019)

DDECV + Repair 0.034 (±0.005) 0.041 (±0.014) 0.018 (±0.006)

Best results are remarked in boldface

The first comparison of this second experiment focused
on the change frequency. The results of the 95% confi-
dence Kruskal–Wallis test applied to the offline error results
obtained by DDECV + Repair and the compared algorithms

(GAElit, RIGAElit, HyperMElit, GA+Repair, DE+Repair
and GSA + Repair) with five different change frequencies
and a medium change severity (k = 0.5 and S = 20) are
presented in Table 12 (250, 500, 2000 and 4000 evaluations)

123

556 M.-Y. Ameca-Alducin et al.

Table 12 95% confidence Kruskal–Wallis test results on the offline error values in Tables 7, 8, 10 and 11, obtained by DDECV+Repair, GAElit,
RIGAElit, HyperMElit and GA + Repair with different change frequencies and a medium change severity (k = 0.5 and S = 20)

Frequency Algorithms

GAElit (1) RIGAElit (2) HyperMElit (3) GA + Repair (4) DDECV + Repair (5)

250 5(−) 5(−) 5(−) 1(+), 2(+) and 3(+)

500 5(−) 5(−) 5(−) 5(−) 1(+), 2(+), 3(+) and 4(+)

2000 5(−) 5(−) 5(−) 5(−) 1(+), 2(+), 3(+) and 4(+)

4000 5(−) 5(−) 5(−) 5(−) 1(+), 2(+), 3(+) and 4(+)

“X (+)” means that the algorithm in the corresponding column outperformed algorithm X. “X (−)” means that the algorithm in the corresponding
column was outperformed by algorithm X. If algorithm X does not appear in column, Y means no significant differences between X and Y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

DDECV+Repair

GA+Repair

HyperMElit

RigaElit

GAElit

Frequency 250 evals, k=0.50 and S=20

3 groups have mean ranks significantly different from DDECV+Repair

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

DDECV+Repair

GA+Repair

HyperMElit

RigaElit

GAElit

Frequency 500 evals, k=0.50 and S=20

4 groups have mean ranks significantly different from DDECV+Repair

(b)

Fig. 1 Bonferroni–Dunn post hoc test results based on the offline error values obtained by DDECV + Repair and the compared algorithms with
a medium change severity (k = 0.5 and S = 20), considering two change frequencies: a 250 evaluations and b 500 evaluations

and Table 13 (1000 evaluations, which was presented sepa-
rately becauseDE+Repair andGSA+Repair only reported
results for that change frequency).

The complete offline error values of this comparison are
detailed in Tables 7, 8, 9,10, and 11, for 250, 500, 1000, 2000
and 4000 evaluations, respectively.

123

Dynamic differential evolution with combined variants and a repair method to solve dynamic… 557

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

DDECV+Repair

GA+Repair

HyperMElit

RigaElit

GAElit

Frequency 2000 evals, k=0.50 and S=20

4 groups have mean ranks significantly different from DDECV+Repair

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

DDECV+Repair

GA+Repair

HyperMElit

RigaElit

GAElit

Frequency 4000 evals, k=0.50 and S=20

4 groups have mean ranks significantly different from DDECV+Repair

(b)

Fig. 2 Bonferroni–Dunn post hoc test results based on the offline error values obtained by DDECV + Repair and the compared algorithms with
a medium change severity (k = 0.5 and S = 20), considering two change frequencies: a 2000 evaluations and b 4000 evaluations

From Table 12 it was observed that DDECV + Repair
outperformed all algorithms in all change frequencies, with
the exception of GA + Repair with 250 evaluations. The
results of the Bonferroni–Dunn post hoc test for 250 and
500 evaluations in Fig. 1 and for 2000 and 4000 evaluations
in Fig. 2 confirm such finding. Regarding the change fre-
quency of 1000 evaluations (Table 13), DDECV + Repair
outperformed again GAElit, RIGAElit, HyperMElit and GA
+ Repair. On the other hand, its performance was similar
with respect to DE + Repair and GSA + Repair. Figure 3,
with the Bonferroni–Dunn post hoc test results, confirms the
abovementioned.

The second comparison of the second experiment aimed
to analyze the impact of the change severity in DDECV +

Repair. The results of the 95% confidence Kruskal–Wallis
test applied to the offline error results obtained by DDECV
+ Repair and the compared algorithms (GAElit, RIGAElit,
HyperMElit and GA+Repair) with a low (k = 0.25 and S =
10) and a high (k = 1.0 and S = 50) change severities, both
with 1000 evaluations as change frequency, are presented in
Table 16. DE + Repair and GSA + Repair were omitted in
this experiment because no results were found. The complete
offline error values of this comparison are detailed in Tables
14 and 15, for the low change severity and the high change
severity, respectively.

Based on the results in Table 16, DDECV + Repair out-
performed the compared algorithms in both, low and high
change severities. Theonly exceptionwasGA+Repairwhen

123

558 M.-Y. Ameca-Alducin et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

DDECV+Repair

GSA+Repair

DE+Repair

GA+Repair

HyperMElit

RigaElit

GAElit

Frequency 1000 evals, k=0.5 and S=20

4 groups have mean ranks significantly different from DDECV+Repair

Fig. 3 Bonferroni–Dunn post hoc test results based on the offline error values obtained by DDECV + Repair and the compared algorithms
considering 1000 evaluations as a change frequency and a medium change severity (k = 0.5 and S = 20)

Table 13 95% confidence Kruskal–Wallis test results on the offline
error values inTable 9, obtained byDDECV+Repair,GAElit, RIGAElit,
HyperMElit, GA + Repair DE + Repair and GSA + Repair with a

change frequency of 1000 evaluations and a medium change severity
(k = 0.5 and S = 20)

GAElit (1) RIGAElit (2) HyperMElit (3) GA + Repair (4) DE + Repair (5) GSA + Repair (6) DDECV + Repair (7)

6(−) and 7(−) 6(−) and 7(−) 6(−) and 7(−) 6(−) and 7(−) 1(+), 2(+), 3(+), 4(+) 1(+), 2(+), 3(+), 4(+)

“X (+)” means that the algorithm in the corresponding column outperformed algorithm X. “X (−)” means that the algorithm in the corresponding
column was outperformed by algorithm X. If algorithm X does not appear in column, Y means no significant differences between X and Y

the severity is low. In that case, both algorithms performed in
a similar way. The results of the Bonferroni–Dunn post hoc
test in Fig. 4a, b uphold that observation.

The second experiment provided the following research
findings:

– DDECV + Repair was robust to different change fre-
quencies. However, when the change frequency took
medium values (i.e., 1000 evaluations), just comparable
resultswere obtainedwith respect to two approacheswith
repair methods in their elements, DE + Repair and GSA
+ Repair.

– DDECV + Repair was not sensitive to low and high
change severities in both, the objective function and the
constraints of a DCOP.

4.2.3 Experiment 3: Change detection, recovery and
diversity analysis

The third experiment studied the ability of DDECV+Repair
to detect a change in the objective function and/or the con-
straints and its capacity to recover after it. Moreover, its

diversity handling (feasible and infeasible solutions in the
population) was also analyzed.

In Table 17, the average and standard deviation of the
number of successful changes detected per each dynamic
test problem in 50 independent runs by DDECV + Repair
and HyperMElit are presented (static test problems were
not considered in this experiment). Due to the fact that,
among the compared algorithms, only HyperMElit uses a
different detection mechanism (best objective function value
decrease), it was selected for comparison purposes. The
change frequencywas set to 1000 evaluations, and the change
severity was medium (k = 0.5 and S = 20).

Recalling that the total number of changes in a single run
is 10, the results suggest that the re-evaluation of solutions
used by DDECV + Repair is more effective with respect to
the objective function value decrease when solving DCOPs
(e.g., inG24_3 test problemHyperMElit was unable to detect
changes in the dynamic constraints because the objective
function is static). Furthermore, the feasible global optimum
switches between disconnected regions. This performance
was observed with the other change frequencies and severi-
ties.

123

Dynamic differential evolution with combined variants and a repair method to solve dynamic… 559

Table 14 Average and standard
deviation offline error values
obtained by DDECV + Repair
and the compared algorithms
with a change frequency of 1000
evaluations and a low change
severity (k = 0.25 and S = 10)

Algorithms Functions

G24_u G24_1 G24_f

GAElit 0.101 (±0.021) 0.319 (±0.06) 0.113 (±0.06)

RIGAElit 0.155 (±0.018) 0.246 (±0.043) 0.119 (±0.039)

HyperMelit 0.094 (±0.016) 0.273 (±0.047) 0.119 (±0.05)

GA + Repair 0.348 (±0.055) 0.067 (±0.011) 0.034 (±0.009)

DDECV + Repair 0.027 (±0.005) 0.052 (±0.013) 0.023 (±0.006)

G24_uf G24_2 G24_2u

GAElit 0.035 (±0.011) 0.157 (±0.03) 0.05 (±0.013)

RIGAElit 0.049 (±0.011) 0.152 (±0.025) 0.073 (±0.013)

HyperMelit 0.033 (±0.012) 0.151 (±0.029) 0.051 (±0.013)

GA + Repair 0.157 (±0.033) 0.141 (±0.023) 0.237 (±0.032)

DDECV + Repair 0.01 (±0.004) 0.047 (±0.006) 0.022 (±0.001)

G24_3 G24_3b G24_3f

GAElit 0.18 (±0.047) 0.313 (±0.038) 0.101 (±0.05)

RIGAElit 0.212 (±0.033) 0.301 (±0.041) 0.115 (±0.032)

HyperMelit 0.179 (±0.037) 0.303 (±0.059) 0.095 (±0.029)

GA + Repair 0.015 (±0.003) 0.038 (±0.008) 0.018 (±0.004)

DDECV + Repair 0.057 (±0.005) 0.076 (±0.012) 0.011 (±0.003)

G24_4 G24_5 G24_6a

GAElit 0.367 (±0.06) 0.192 (±0.033) 0.652 (±0.104)

RIGAElit 0.344 (±0.025) 0.191 (±0.023) 0.358 (±0.029)

HyperMelit 0.33 (±0.051) 0.19 (±0.018) 0.452 (±0.047)

GA + Repair 0.062 (±0.009) 0.131 (±0.024) 0.442 (±0.064)

DDECV + Repair 0.077 (±0.012) 0.075 (±0.012) 0.035 (±0.006)

G24_6b G24_6c G24_6d

GAElit 0.427 (±0.035) 0.435 (±0.031) 0.504 (±0.052)

RIGAElit 0.325 (±0.025) 0.326 (±0.021) 0.344 (±0.031)

HyperMelit 0.374 (±0.024) 0.392 (±0.039) 0.427 (±0.045)

GA + Repair 0.428 (±0.047) 0.409 (±0.044) 0.366 (±0.039)

DDECV + Repair 0.043 (±0.01) 0.038 (±0.007) 0.083 (±0.011)

G24_7 G24_8a G24_8b

GAElit 0.259 (±0.042) 0.164 (±0.021) 0.427 (±0.063)

RIGAElit 0.357 (±0.048) 0.271 (±0.023) 0.426 (±0.058)

HyperMelit 0.27 (±0.049) 0.171 (±0.018) 0.388 (±0.05)

GA + Repair 0.063 (±0.015) 0.191 (±0.031) 0.113 (±0.027)

DDECV + Repair 0.362 (±0.083) 0.2 (±0.02) 0.07 (±0.015)

Best results are remarked in boldface

After getting some knowledge about how effective is
DDECV + Repair to detect a change, Figs. 5a–c and
6a, b depict the recovery rate (RR) and absolute recovery
rate (ARR) diagrams of the following algorithms: GAElit,
RIGAElit, HyperMElit, GA+Repair andDDECV+Repair,

all of them with five change frequencies (250, 500, 1000,
2000 and 4000 evaluations) and a medium change severity
(k = 0.5 and S = 20). Such results indicate that DDECV +
Repair recovers faster than the compared algorithms, regard-
less of the change frequency. The same behavior is observed

123

560 M.-Y. Ameca-Alducin et al.

Table 15 Average and standard
deviation offline error values
obtained by DDECV + Repair
and the compared algorithms
with a change frequency of 1000
evaluations and a high change
severity (k = 1.0 and S = 50)

Algorithms Functions

G24_u G24_1 G24_f

GAElit 0.106 (±0.02) 0.574 (±0.114) 0.265 (±0.146)

RIGAElit 0.142 (±0.031) 0.481 (±0.044) 0.231 (±0.06)

HyperMelit 0.111 (±0.031) 0.502 (±0.069) 0.221 (±0.094)

GA + Repair 0.375 (±0.068) 0.222 (±0.045) 0.055 (±0.022)

DDECV + Repair 0.082 (±0.013) 0.086 (±0.012) 0.022 (±0.007)

G24_uf G24_2 G24_2u

GAElit 0.093 (±0.039) 0.474 (±0.094) 0.186 (±0.048)

RIGAElit 0.101 (±0.032) 0.392 (±0.06) 0.266 (±0.046)

HyperMelit 0.09 (±0.032) 0.428 (±0.077) 0.187 (±0.058)

GA + Repair 0.309 (±0.095) 0.441 (±0.068) 0.633 (±0.1)

DDECV + Repair 0.009 (±0.004) 0.056 (±0.006) 0.037 (±0.001)

G24_3 G24_3b G24_3f

GAElit 0.324 (±0.088) 0.615 (±0.114) 0.201 (±0.099)

RIGAElit 0.413 (±0.095) 0.482 (±0.07) 0.237 (±0.06)

HyperMelit 0.318 (±0.071) 0.54 (±0.097) 0.227 (±0.06)

GA + Repair 0.056 (±0.012) 0.17 (±0.041) 0.025 (±0.011)

DDECV + Repair 0.026 (±0.003) 0.096 (±0.008) 0.011 (±0.003)

G24_4 G24_5 G24_6a

GAElit 0.62 (±0.06) 0.673 (±0.079) 0.719 (±0.183)

RIGAElit 0.528 (±0.098) 0.592 (±0.062) 0.353 (±0.052)

HyperMelit 0.55 (±0.098) 0.607 (±0.047) 0.44 (±0.074)

GA + Repair 0.102 (±0.046) 0.408 (±0.048) 0.452 (±0.093)

DDECV + Repair 0.096 (±0.007) 0.087 (±0.01) 0.033 (±0.007)

G24_6b G24_6c G24_6d

GAElit 0.411 (±0.047) 0.491 (±0.066) 0.495 (±0.076)

RIGAElit 0.284 (±0.036) 0.307 (±0.034) 0.369 (±0.082)

HyperMelit 0.347 (±0.041) 0.357 (±0.046) 0.426 (±0.056)

GA + Repair 0.432 (±0.071) 0.438 (±0.059) 0.387 (±0.083)

DDECV + Repair 0.044 (±0.01) 0.04 (±0.008) 0.082 (±0.008)

G24_7 G24_8a G24_8b

GAElit 0.378 (±0.109) 0.364 (±0.037) 1.069 (±0.108)

RIGAElit 0.487 (±0.109) 0.339 (±0.034) 0.938 (±0.106)

HyperMelit 0.387 (±0.06) 0.383 (±0.039) 0.94 (±0.135)

GA + Repair 0.09 (±0.025) 0.384 (±0.047) 0.511 (±0.069)

DDECV + Repair 0.106 (±0.015) 0.075 (±0.013) 0.111 (±0.016)

Best results are remarked in boldface

in Fig. 7a, b, where a change frequency of 1000 evalua-
tions coupled with a low change severity (k = 0.25 and
S = 10) and a high change severity (k = 1.0 and S = 50),
respectively, was considered. It was noted that the recovery
ability showed by DDECV + Repair, as those of the com-

pared algorithms, seems to be more affected by a fast change
(i.e., 250 evaluations in Fig. 5a) than a high change severity
(i.e., k = 1.0 and S = 50 in Fig. 7b).

Finally, for DDECV + Repair and the compared algo-
rithms, the diversity handling, in the context of a constrained

123

Dynamic differential evolution with combined variants and a repair method to solve dynamic… 561

Table 16 95% confidence Kruskal–Wallis test results on the offline
error values in Tables 14 and 15, obtained byDDECV+Repair, GAElit,
RIGAElit, HyperMElit and GA+Repair with a low (k = 0.25 and

S = 10) and a high (k = 1.0 and S = 50) change severities, both
with 1000 evaluations as change frequency

The severity of change Algorithms

k S GAElit (1) RIGAElit (2) HyperMElit (3) GA + Repair (4) DDECV + Repair (5)

0.25 10 5(−) 5(−) 5(−) 1(+), 2(+) and 3(+)

1.00 50 5(−) 5(−) 5(−) 5(−) 1(+), 2(+), 3(+) and 4(+)

“X (+)” means that the algorithm in the corresponding column outperformed algorithm X. “X (−)” means that the algorithm in the corresponding
column was outperformed by algorithm X. If algorithm X does not appear in column, Y means no significant differences between X and Y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

DDECV+Repair

GA+Repair

HyperMElit

RigaElit

GAElit

Frequency 1000 evals, k=0.25 and S=10

3 groups have mean ranks significantly different from DDECV+Repair

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

DDECV+Repair

GA+Repair

HyperMElit

RigaElit

GAElit

Frequency 1000 evals, k=1.0 and S=50

4 groups have mean ranks significantly different from DDECV+Repair

(b)

Fig. 4 Bonferroni–Dunn post hoc test results based on the offline error values obtained by DDECV + Repair and the compared algorithms with
1000 evaluations as the change frequency, considering two change severities: a low (k = 0.25 and S = 10) and b high (k = 1.0 and S = 50)

search space (i.e., the percentage of feasible and infeasi-
ble solutions in the population), was assessed by calculating
the percentage of infeasible solutions in the population. The

averages of infeasible solutions in the population consid-
ering the whole set of test problems with five different
change frequencies (250, 500, 1000, 2000 and 4000 eval-

123

562 M.-Y. Ameca-Alducin et al.

Fig. 5 Mapping of the
RR/ARR scores of GAElit,
RIGAElit, HyperMElit, GA +
Repair and DDECV + Repair to
the RR-ARR diagram for three
change frequencies: a 250
evaluations, b 500 evaluations
and c 1000 evaluations. If a
point is closer to the right-hand
side area of the graph, it
indicates a faster recovery.
Moreover, if the point lies on the
diagonal line, the algorithm has
been able to recover from the
change and also converge to the
new global optimum. The
RR-ARR diagram was proposed
in Nguyen and Yao (2012)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Frequency 250 evals, k=0.5 and S=20

RR

A
R

R

GAElit
RIGAElit
HyperMElit
GA+Repair
DDECV+Repair

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Frequency 500 evals, k=0.5 and S=20

RR

A
R

R

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Frequency 1000 evals, k=0.50 and S=20

RR

A
R

R

(c)

123

Dynamic differential evolution with combined variants and a repair method to solve dynamic… 563

Fig. 6 Mapping of the
RR/ARR scores of GAElit,
RIGAElit, HyperMElit, GA +
Repair and DDECV + Repair to
the RR-ARR diagram for two
change frequencies: a 2000
evaluations and b 4000
evaluations. If a point is closer
to the right-hand side area of the
graph, it indicates a faster
recovery. Moreover, if the point
lies on the diagonal line, the
algorithm has been able to
recover from the change and
also converge to the new global
optimum. The RR-ARR
diagram was proposed in
Nguyen and Yao (2012)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Frequency 2000 evals, k=0.50 and S=20

RR

A
R

R

GAElit
RIGAElit
HyperMElit
GA+Repair
DDECV+Repair

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Frequency 4000 evals, k=0.50 and S=20

RR

A
R

R

(b)

uations) and a medium change severity (k = 0.5 and
S = 20) are shown in Table 18. The same information
is presented in Table 19, with 1000 evaluations as the
change frequency, but now considering a low (k = 0.25
and S = 10) and a high (k = 1.0 and S = 50) change
severities.

In both tables, regardless of different change frequencies
and severities, a similar behavior was observed, where the
two algorithms with a repair method kept a lower percentage
of feasible solutions than those approaches without it. Fur-
thermore, it is worth noticing that, from both repair-based
algorithms, GA + Repair and DDECV + Repair, the lat-
ter maintained a higher proportion of infeasible solutions
(approximately between 8 and 14%). Such ratio, consider-
ing the competitive overall results obtained by DDECV +
Repair, seems to be suitable for an algorithm dealing with
DCOPs. In fact, such finding agrees with the importance of

keeping some feasible solutions to favor a successful search
in the presence of constraints (Mezura-Montes and Coello
2011).

From this third experiment the following can be summa-
rized:

– DDECV + Repair’s change detection mechanism based
on solution re-evaluation was particularly effective in the
set of dynamic test problems solved in this study.

– DDECV + Repair provided the fastest recovery after a
change. Moreover, it was found that faster changes affect
this ability more than high severity changes.

– Similarly to static constrained optimization, keeping a
low proportion of infeasible solutions (between 8 and
14%), helps DDECV + Repair to provide competitive
results when solving DCOPs.

123

564 M.-Y. Ameca-Alducin et al.

Fig. 7 Mapping of the
RR/ARR scores of GAElit,
RIGAElit, HyperMElit, GA +
Repair and DDECV + Repair to
the RR-ARR diagram with a
change frequency of 1000
evaluations and: a a low change
severity (k = 0.25 and S = 10)
and b a high change severity
(k = 1.0 and S = 50). If a point
is closer to the right-hand side
area of the graph, it indicates a
faster recovery. Moreover, if the
point lies on the diagonal line,
the algorithm has been able to
recover from the change and
also converge to the new global
optimum. The RR-ARR
diagram was proposed in
Nguyen and Yao (2012)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Frequency 1000 evals, k=0.25 and S=10

RR

A
R

R

GAElit
RIGAElit
HyperMElit
GA+Repair
DDECV+Repair

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Frequency 1000 evals, k=1.0 and S=50

RR

A
R

R

(b)

4.2.4 Experiment 4: Dynamism in different parts of the
problem and best-error-before-change analysis

The fourth experiment studied the performance of DDECV
+ Repair with dynamism in different parts of the problem.
ICHEA and DCTC algorithms, already described, were used
for comparison purposes, and their results were taken from
their corresponding documents (Sharma and Sharma 2012b;
Aragón et al. 2013). The twelve out of eighteen test problems,
as in Experiment 1, were solved.

The first comparison of this fourth experiment was
betweenDDECV+Repair and ICHEA (Sharma and Sharma
2012a), and the Best-error-before-change measure was com-
puted. The change frequency was 1000 evaluations, and the
severity of the change was medium (i.e., k = 0.50 and
S = 20). The results obtained are presented in Table 20.

The statistical validation was made with the 95% confidence
Wilcoxon rank-sum test. Such test indicated no significant
difference between DDECV+Repair and ICHEA algorithm
by considering all the four test problems (g24_u, g24_1,
g24_3 and g24_4). Therefore, DDECV + Repair has a simi-
lar performancewith respect to ICHEA to reach the optimum
solution before a change occurs.

The second comparison of this fourth experiment stud-
ied the effects of dynamism in different parts of the problem
with several change frequencies and also different change
severities in the performance provided by DDECV + Repair
and DCTC (Aragón et al. 2013). The measure used in this
comparison was the feasible offline error. The change fre-
quencies were 250, 500 and 1000 evaluations and different
change severities (k = 0.25, 0.5 and 1.0 and S = 10, 20
and 50). The statistical validation was made with the 95%

123

Dynamic differential evolution with combined variants and a repair method to solve dynamic… 565

Table 17 Average number of changes successfully detected by
DDECV + Repair and HyperMElit with a change frequency of 1000
evaluations and a medium change severity (k = 0.5 and S = 20)

Functions Change detection mechanism

HyperM DDECV + Repair

g24_u 6.0 (±0.0) 10.0 (±0.0)

g24_1 6.0 (±0.0) 10.0 (±0.0)

g24_2 4.7 (±0.8) 10.0 (±0.0)

g24_2u 4.5 (±0.5) 10.0 (±0.0)

g24_3 0 10.0 (±0.0)

g24_3b 6.0 (±0.0) 10.0 (±0.0)

g24_4 5.9 (±0.3) 10.0 (±0.0)

g24_5 6.5 (±0.5) 10.0 (±0.0)

g24_6a 5.0 (±0.0) 10.0 (±0.0)

g24_6b 5.0 (±0.0) 10.0 (±0.0)

g24_6c 5.0 (±0.0) 10.0 (±0.0)

g24_6d 5.0 (±0.0) 10.0 (±0.0)

g24_7 9.3 (±0.7) 10.0 (±0.0)

g24_8a 9.0 (±0.9) 10.0 (±0.0)

g24_8b 7.3 (±0.9) 10.0 (±0.0)

Static problems were discarded in this comparison. The total number
of changes is 10 for all test problems

confidence Wilcoxon rank-sum test. The comparisons were
divided by the kind of test problems as:

1. Dynamic objective function and dynamic constraints. In
Table 21 the mean and standard deviation values of the
feasible offline error are shown forDDECV+Repair and
DCTC in three test problems (g24_3b, g24_4 and g24_5)
with different change frequencies (250, 500 and 1000
evaluations) and different change severities (k = 0.25,
0.5 and 1.0 and S = 10, 20 and 50). Twenty-seven
combinations were carried out by each test problem.
The statistical test indicated that there were significant
differences. Based on such results, DDECV + Repair
outperformed DCTC in all combinations of the two
test problems (g24_3b and g24_4). On the other hand,
DDECV+Repair outperformedDCTC in nineteen com-
binations of one test problem (g24_5), while DCTC was
better in eight combinations regardless of the frequency
change with low and medium values of the severities of
change in the objective function and high values of sever-
ity in the constraints.

2. Dynamic objective function and static constraints. In
Table 22 the mean and standard deviation values of
the feasible offline error are presented for DDECV +
Repair and DCTC in three test problems (g24_1, g24_2
and g24_8b) with different change frequencies (250, 500
and 1000 evaluations) and different change severities in
the objective function (k = 0.25, 0.50 and 1.0). Nine

combinations were computed by each test problem. The
statistical test indicated that there were significant dif-
ferences. According to those results, DCTC was better
in all combinations of two test problems (g24_1 and
g24_2) and also eight combinations of one test prob-
lem (g24_8b). On the other hand, DDECV + Repair
surpassed the results on just one combination when the
frequency change was 250 evaluations and the sever-
ity change was high (S = 50). In Table 23, the mean
and standard deviation values of the feasible offline
error are presented for DDECV + Repair and DCTC in
three test problems (g24_6a, g24_6c and g24_6d) with
different change frequencies (250, 500 and 1000 eval-
uations) without a change severity. The results suggest
that DDECV + Repair performance was similar with
respect toDCTC, because no significant differences were
observed.

3. Static objective function and dynamic constraints. In
Table 24 the mean and standard deviation values of the
feasible offline error are presented for DDECV+ Repair
and DCTC in two test problems (g24_3 and g24_7)
with different change frequencies (250, 500 and 1000
evaluations) and different change severities in the con-
straints (S = 10, 20 and 50). Nine combinations were
calculated by each test problem. Such results indicated
that DDECV + Repair performance was similar with
respect toDCTC, because no significant differences were
observed.

The fourth experiment generated the following conclu-
sions:

– DDECV + Repair outperformed the compared algo-
rithms where the test problems had dynamism in the
objective function and constraints.

– In the test problems with a dynamic objective function
and static constraints, DCTC outperformed DDECV +
Repair.

– Similar results were obtained betweenDDECV+Repair
and DCTC in test problems with a static objective func-
tion and dynamic constraints.

5 Conclusions and future work

This paper presented an empirical assessment of the dynamic
differential evolution with combined variants plus a repair
method (DDECV + Repair) in the solution of dynamic con-
strained optimization problems (DCOPs). Four unexplored
issues of DDECV + Repair were addressed: (1) the role of
the exploration promotionmechanism, the repairmethod, the
random immigrants and the memory in its performance, (2)
its sensitivity to different change frequencies and severities,

123

566 M.-Y. Ameca-Alducin et al.

Table 18 Average of percentage of selected infeasible individuals with change frequency of 250, 500, 1000, 2000 and 4000 evaluations

Frequency Algorithms

GAElit (%) RIGAElit (%) HyperMElit (%) GA + Repair (%) DDECV + Repair (%)

250 53.7 39.7 54.5 5.0 13.2

500 52.4 39.8 53.1 2.0 12.9

1000 52.3 39.5 52.7 1.0 10.7

2000 51.9 39.5 52.2 0.0 9.5

4000 52.3 39.4 52.2 0.0 8.8

The severity of change is medium (k = 0.5 and S = 20). Only constrained problems are included to calculate this measure

Table 19 Average of percentage of selected infeasible individuals with frequency at 1000 evaluations and the severity of change is small and large
(k = 0.25, 1.0 and S = 20, 50)

The severity of change Algorithms

k S GAElit (%) RIGAElit (%) HyperMElit (%) GA + Repair (%) DDECV + Repair (%)

0.25 10 50.8 40.9 52.8 3.6 13.5

1.00 50 53.4 39.6 53.7 3.6 10.9

Only constrained problems are included to calculate this measure

Table 20 Average and standard deviation Best-error-before-change values obtained by DDECV + Repair and ICHEA with a change frequency of
1000 evaluations and a medium severity of change (k = 0.50 and S = 20)

Algorithms Functions

G24_u G24_1 G24_3 G24_4

ICHEA 0.0051 (±0.004) 0.0333 (±0.005) 0.0187 (±0.003) 0.0799 (±0.006)

DDECV + Repair 0.000 (±0.000) 0.012 (±0.010) 0.004 (±0.001) 0.008 (±0.006)

Best results are remarked in boldface

(3) its ability to detect and recover after a change, besides its
diversity handling during the search, and (4) its performance
to solve problemswith dynamism in both (the objective func-
tion and constraints) or dynamism in only one of them. Using
seven performance measures, eight algorithms found in the
specialized literature and a recently proposed set of test prob-
lems, four experiments were designed.

From the obtained results, statistically validated, it was
found that the repair method is the most relevant mecha-
nism in DDECV+ Repair, while the presence of the random
immigrants is positive, but may affect the results in problems
where the feasible global optimum is located at the bound-
aries of either the feasible region or the search space. The
memory mechanism plays an important role in DDECV +
Repair because the optimal solution sometimes returns to
the locations near its previous regions. Moreover, the sensi-
tivity of DDECV + Repair to different change frequencies
and severities was low, and from those two sources of dif-
ficulty, faster changes may affect its good ability to recover
after a change. Furthermore, the re-evaluation-based change

detection mechanism proved to be very effective. Moreover,
it was showed that, as in the case of static constrained opti-
mization, keeping a low ratio of feasible solutions during the
search helps DDECV + Repair to reach competitive results
in the resolution of DCOPs. Finally, DDECV+Repair had a
better performance solving test problems with dynamism in
both (the objective function and constraints) and a competi-
tive performance in problems with dynamism in only one of
them.

Part of the future work includes testing DDECV+Repair
with random change frequencies and severities. Also, the
immigrants technique will be revisited so as to analyze
the negative effect of a feasible global optimum at the
boundaries of either the search space or the feasible region.
Furthermore, other modifications will be designed in order
to improve the performance of DDECV + Repair to deal
dynamism in the objective function and constraints sep-
arately. Finally, other test problems with smaller feasible
regions will be sought so as to test the repair method in those
situations.

123

Dynamic differential evolution with combined variants and a repair method to solve dynamic… 567

Ta
bl

e
21

A
ve
ra
ge

an
d
st
an
da
rd

de
vi
at
io
n
Fe
as
ib
le
of
fli
ne

er
ro
r
va
lu
es

ob
ta
in
ed

by
D
D
E
C
V

+
R
ep
ai
r
an
d
D
C
T
C
w
ith

di
ff
er
en
tc

ha
ng
e
fr
eq
ue
nc
ie
s
(2
50
,5

00
an
d
10
00

ev
al
ua
tio

ns
)
an
d
se
ve
ra
l

se
ve
ri
tie
s
of

ch
an
ge

(k
=

0.
25
,
0.
5
an
d
1.
0
an
d
S

=
10

,
20

an
d
50
),
fo
r
te
st
pr
ob
le
m
s
w
ith

dy
na
m
ic
ob
je
ct
iv
e
fu
nc
tio

n
an
d
dy
na
m
ic
co
ns
tr
ai
nt
s

E
va
ls

A
lg
or
ith

m
s

Fu
nc
tio

ns
Fu

nc
tio

ns
Fu

nc
tio

ns

G
24
_3
b

G
24
_4

G
24
_5

G
24
_3
b

G
24
_4

G
24
_5

G
24
_3
b

G
24
_4

G
24
_5

k
=

0.
25

S
=

10
S

=
20

S
=

50

25
0

D
C
T
C

0.
59

(±
0.
15
)

0.
43

(±
0.
07
)

0.
21

(±
0.

02
)

0.
54

(±
0.
15
)

0.
41

(±
0.
05
)

0.
18

(±
0.
02
)

0.
56

(±
0.
14
)

0.
28

(±
0.
04
)

0.
11

(±
0.

02
)

D
D
E
C
V

+
R
ep
ai
r

0.
22

7
(±

0.
04

2)
0.

22
2

(±
0.

04
)

0.
23
5
(±

0.
02
7)

0.
21

3
(±

0.
01

8)
0.

20
7

(±
0.

03
3)

0.
18

(±
0.

02
6)

0.
17

4
(±

0.
01

9)
0.

17
2

(±
0.

01
9)

0.
17
1
(±

0.
02
8)

50
0

D
C
T
C

0.
54

(±
0.
16
)

0.
36

(±
0.
05
)

0.
18

(±
0.
01
)

0.
49

(±
0.
13
)

0.
35

(±
0.
02
)

0.
15

(±
0.
01
)

0.
49

(±
0.
1)

0.
23

(±
0.
03
)

0.
07

(±
0.

01
)

D
D
E
C
V

+
R
ep
ai
r

0.
13

8
(±

0.
02
)

0.
13

8
(±

0.
02

2)
0.

14
3

(±
0.

02
2)

0.
13

3
(±

0.
01

8)
0.

13
1

(±
0.

01
9)

0.
11

6
(±

0.
02
)

0.
09

4
(±

0.
01

3)
0.

09
8

(±
0.

01
2)

0.
10
1
(±

0.
01
9)

10
00

D
C
T
C

0.
47

(±
0.
12
)

0.
32

(±
0.
02
)

0.
17

(±
0.
02
)

0.
43

(±
0.
08
)

0.
32

(±
0.
02
)

0.
12

(±
0.
02
)

0.
39

(±
0.
06
)

0.
19

(±
0.
01
)

0.
06

(±
0.

01
)

D
D
E
C
V

+
R
ep
ai
r

0.
08

3
(±

0.
01

4)
0.

08
1

(±
0.

01
2)

0.
09

6
(±

0.
01

4)
0.

08
(±

0.
01
)

0.
08

1
(±

0.
01

1)
0.

07
4

(±
0.

01
1)

0.
05

3
(±

0.
00

8)
0.

05
4

(±
0.

00
3)

0.
06
4
(±

0.
00
7)

k
=

0.
5

S
=

10
S

=
20

S
=

50

25
0

D
C
T
C

0.
55

(±
0.
13
)

0.
71

(±
0.
08
)

0.
34

(±
0.
04
)

0.
57

(±
0.
13
)

0.
62

(±
0.
05
)

0.
31

(±
0.
04
)

1.
15

(±
0.
13
)

0.
28

(±
0.
06
)

0.
12

(±
0.

04
)

D
D
E
C
V

+
R
ep
ai
r

0.
29

2
(±

0.
03

8)
0.

3
(±

0.
03

5)
0.

23
1

(±
0.

02
8)

0.
29

1
(±

0.
03

3)
0.

28
8

(±
0.

02
7)

0.
24

8
(±

0.
02

7)
0.

24
9

(±
0.

02
2)

0.
24

4
(±

0.
02

1)
0.
26
2
(±

0.
02
7)

50
0

D
C
T
C

0.
49

(±
0.
14
)

0.
63

(±
0.
05
)

0.
28

(±
0.
02
)

0.
51

(±
0.
11
)

0.
55

(±
0.
04
)

0.
26

(±
0.
03
)

1.
03

(±
0.
1)

0.
2
(±

0.
04
)

0.
07

(±
0.

03
)

D
D
E
C
V

+
R
ep
ai
r

0.
15

9
(±

0.
02

3)
0.

16
1

(±
0.

02
1)

0.
14

3
(±

0.
02
)

0.
15

(±
0.

01
5)

0.
14

9
(±

0.
01

5)
0.

14
8

(±
0.

01
8)

0.
11

7
(±

0.
01
)

0.
11

9
(±

0.
01
)

0.
14
5
(±

0.
01
8)

10
00

D
C
T
C

0.
41

(±
0.
12
)

0.
57

(±
0.
02
)

0.
25

(±
0.
01
)

0.
45

(±
0.
09
)

0.
5
(±

0.
02
)

0.
23

(±
0.
01
)

0.
98

(±
0.
09
)

0.
15

(±
0.
02
)

0.
03

(±
0.

02
)

D
D
E
C
V

+
R
ep
ai
r

0.
08

7
(±

0.
01

6)
0.

08
6

(±
0.

01
4)

0.
08

7
(±

0.
01

4)
0.

08
8

(±
0.

01
)

0.
08

9
(±

0.
01
)

0.
08

2
(±

0.
01
)

0.
06

1
(±

0.
00

6)
0.

06
3

(±
0.

00
5)

0.
08
2
(±

0.
01
3)

k
=

1.
0

S
=

10
S

=
20

S
=

50

25
0

D
C
T
C

1.
67

(±
0.
26
)

1.
53

(±
0.
13
)

0.
46

(±
0.
08
)

1.
09

(±
0.
29
)

1.
33

(±
0.
09
)

0.
28

(±
0.

11
)

1.
68

(±
0.
2)

1.
33

(±
0.
11
)

0.
31

(±
0.
09
)

D
D
E
C
V

+
R
ep
ai
r

0.
45

8
(±

0.
04

1)
0.

46
5

(±
0.

04
)

0.
27

8
(±

0.
02

6)
0.

46
(±

0.
03
)

0.
47

4
(±

0.
03

7)
0.
29
5
(±

0.
02
9)

0.
42

1
(±

0.
02

6)
0.

42
(±

0.
02

6)
0.

30
8

(±
0.

03
1)

50
0

D
C
T
C

1.
59

(±
0.
23
)

1.
41

(±
0.
06
)

0.
38

(±
0.
04
)

0.
93

(±
0.
18
)

1.
26

(±
0.
08
)

0.
2
(±

0.
05
)

1.
54

(±
0.
16
)

1.
2
(±

0.
07
)

0.
25

(±
0.
07
)

D
D
E
C
V

+
R
ep
ai
r

0.
23

6
(±

0.
01

5)
0.

23
2

(±
0.

02
1)

0.
16

(±
0.

01
8)

0.
22

5
(±

0.
01

3)
0.

22
5

(±
0.

01
4)

0.
17

9
(±

0.
02

2)
0.

19
5

(±
0.

01
4)

0.
19

5
(±

0.
01

4)
0.

18
4

(±
0.

01
9)

10
00

D
C
T
C

1.
44

(±
0.
18
)

1.
36

(±
0.
05
)

0.
34

(±
0.
03
)

0.
83

(±
0.
14
)

1.
17

(±
0.
05
)

0.
15

(±
0.
03
)

1.
45

(±
0.
08
)

1.
13

(±
0.
05
)

0.
2
(±

0.
03
)

D
D
E
C
V

+
R
ep
ai
r

0.
10

8
(±

0.
01

1)
0.

11
3

(±
0.

01
1)

0.
09

(±
0.

01
1)

0.
09

3
(±

0.
00

8)
0.

09
4

(±
0.

00
8)

0.
09

8
(±

0.
01

1)
0.

09
3

(±
0.

00
8)

0.
09

4
(±

0.
00

8)
0.

09
8

(±
0.

01
1)

B
es
tr
es
ul
ts
ar
e
re
m
ar
ke
d
in

bo
ld
fa
ce

123

568 M.-Y. Ameca-Alducin et al.

Table 22 Average and standard deviation Feasible offline error val-
ues obtained by DDECV + Repair and DCTC with different change
frequencies (250, 500 and 1000 evaluations) and several severities of

change (k = 0.25, 0.5 and 1.0), for test problems with dynamic objec-
tive function and static constraints

Evals Algorithms Functions Functions Functions

G24_1 G24_2 G24_8b G24_1 G24_2 G24_8b G24_1 G24_2 G24_8b

k = 0.25 k = 0.50 k = 1.0

250 DCTC 0.03 (±0.01) 0.08 (±0.03) 0.11 (±0.04) 0.05 (±0.03) 0.12 (±0.03) 0.25 (±0.08) 0.12 (±0.04) 0.18 (±0.1) 0.58 (±0.19)

DDECV
+ Repair

0.186 (±0.034) 0.159 (±0.016) 0.217 (±0.029) 0.27 (±0.032) 0.164 (±0.017) 0.377 (±0.045) 0.46 (±0.54) 0.252 (±0.022) 0.532 (±0.065)

500 DCTC 0.0 (±0.0) 0.05 (±0.02) 0.04 (±0.02) 0.01 (±0.01) 0.06 (±0.03) 0.12 (±0.06) 0.03 (±0.02) 0.12 (±0.07) 0.29 (±0.13)

DDECV
+ Repair

0.113 (±0.028) 0.099 (±0.012) 0.127 (±0.024) 0.132 (±0.02) 0.131 (±0.014) 0.188 (±0.027) 0.215 (±0.026) 0.129 (±0.015) 0.297 (±0.048)

1000 DCTC 0.0 (±0.0) 0.03 (±0.01) 0.01 (±0.01) 0.0 (±0.01) 0.03 (±0.03) 0.03 (±0.06) 0.0 (±0.0) 0.04 (±0.04) 0.07 (±0.07)

DDECV
+ Repair

0.058 (±0.012) 0.049 (±0.006) 0.069 (±0.018) 0.066 (±0.015) 0.063 (±0.012) 0.09 (±0.028) 0.084 (±0.011) 0.061 (±0.008) 0.12 (±0.019)

Best results are remarked in boldface

Table 23 Average and standard
deviation Feasible offline error
values obtained by DDECV +
Repair and DCTC with different
change frequencies (250, 500
and 1000 evaluations), for test
problems with dynamic
objective function and static
constraints

Evals Algorithms Functions

G24_6a G24_6c G24_6d

250 DCTC 0.26 (±0.38) 0.12 (±0.05) 0.14 (±0.18)

DDECV+Repair 0.183 (±0.018) 0.214 (±0.031) 0.424 (±0.03)

500 DCTC 0.06 (±0.12) 0.06 (±0.03) 0.04 (±0.14)

DDECV+Repair 0.082 (±0.01) 0.095 (±0.015) 0.186 (±0.016)

1000 DCTC 0.02 (±0.02) 0.04 (±0.03) 0.0 (±0.0)

DDECV+Repair 0.035 (±0.007) 0.041 (±0.008) 0.079 (±0.009)

Best results are remarked in boldface

Table 24 Average and standard deviation Feasible offline error val-
ues obtained by DDECV + Repair and DCTC with different change
frequencies (250, 500 and 1000 evaluations) and several severities of

change (S = 10, 20 and 50), for test problems with static objective
function and dynamic constraints

Evals Algorithms Functions Functions Functions

G24_3 G24_7 G24_3 G24_7 G24_3 G24_7

S = 10 S = 20 S = 50

250 DCTC 0.16 (±0.15) 0.15 (±0.02) 0.15 (±0.21) 0.11 (±0.03) 0.12 (±0.07) 0.1 (±0.03)

DDECV + Repair 0.130 (±0.019) 0.240 (±0.038) 0.105 (±0.018) 0.16 (±0.03) 0.072 (±0.008) 0.124 (±0.032)

500 DCTC 0.13 (±0.14) 0.12 (±0.02) 0.1 (±0.13) 0.07 (±0.02) 0.1 (±0.11) 0.06 (±0.02)

DDECV + Repair 0.083 (±0.01) 0.175 (±0.018) 0.063 (±0.009) 0.15 (±0.022) 0.041 (±0.008) 0.112 (±0.025)

1000 DCTC 0.11 (±0.03) 0.1 (±0.02) 0.05 (±0.03) 0.05 (±0.01) 0.05 (±0.04) 0.04 (±0.01)

DDECV + Repair 0.059 (±0.005) 0.11 (±0.015) 0.044 (±0.008) 0.115 (±0.015) 0.026 (±0.004) 0.108 (±0.013)

Best results are remarked in boldface

Acknowledgements The first author acknowledges support from the
Mexican National Council of Science and Technology (CONACyT)
through a scholarship to pursue graduate studies at the University of
Veracruz. The second author acknowledges support from CONACyT
through Project No. 220522. This study was funded by the Mexican
National Council of Science and Technology CONACyT (Grant No.
220522).

Compliance with ethical standards

Conflict of interest María-Yaneli Ameca-Alducin declares that she
has no conflict of interest. Efrén Mezura-Montes declares that he has

no conflict of interest. Nicandro Cruz-Ramírez declares that he has no
conflict of interest.

Human and animal rights This article does not contain any studies
with human participants or animals performed by any of the authors.

References

Ameca-Alducin MY, Mezura-Montes E, Cruz-Ramirez N (2014) Dif-
ferential evolution with combined variants for dynamic con-

123

Dynamic differential evolution with combined variants and a repair method to solve dynamic… 569

strained optimization. In: Evolutionary computation (CEC), 2014
IEEE congress on, pp 975–982. doi:10.1109/CEC.2014.6900629

Ameca-Alducin MY, Mezura-Montes E, Cruz-Ramírez N (2015a)
Differential evolution with a repair method to solve dynamic con-
strained optimization problems. In: Proceedings of the companion
publication of the 2015 on genetic and evolutionary computation
conference. ACM, New York, GECCO companion ’15, pp 1169–
1172. doi:10.1145/2739482.2768471

Ameca-Alducin MY, Mezura-Montes E, Cruz-Ramírez N (2015b) A
repair method for differential evolution with combined variants
to solve dynamic constrained optimization problems. In: Pro-
ceedings of the 2015 on genetic and evolutionary computation
conference. ACM, New York, GECCO ’15, pp 241–248. doi:10.
1145/2739480.2754786

Aragón V, Esquivel S, Coello C (2013) Artificial immune system for
solving dynamic constrained optimization problems. In: Alba E,
Nakib A, Siarry P (eds) Metaheuristics for dynamic optimization,
studies in computational intelligence, vol 433. Springer, Berlin, pp
225–263. doi:10.1007/978-3-642-30665-5_11

Azzouz R, Bechikh S, Said LB (2015) A dynamic multi-objective
evolutionary algorithm using a change severity-based adaptive
population management strategy. Soft Comput. doi:10.1007/
s00500-015-1820-4

Branke J, Schmeck H (2003) Designing evolutionary algorithms for
dynamic optimization problems. In: Ghosh A, Tsutsui S (eds)
Advances in evolutionary computing, Natural Computing Series.
Springer, Berlin, pp 239–262. doi:10.1007/978-3-642-18965-4_
9

Bu C, Luo W, Yue L (2016) Continuous dynamic constrained opti-
mization with ensemble of locating and tracking feasible regions
strategies. IEEE Trans Evol Comput. doi:10.1109/TEVC.2016.
2567644

Cobb H (1990) An investigation into the use of hypermutation as an
adaptive operator in genetic algorithms having continuous, time-
dependent nonstationary environments. Technical report, Naval
Research Lab, Washington

CobbH,Grefenstette J (1993) Genetic algorithms for tracking changing
environments. In: Forrest S (ed) ICGA. Morgan Kaufmann, Los
Altos, pp 523–530

CoelloCoelloCA (2002) Theoretical and numerical constraint handling
techniques used with evolutionary algorithms: a survey of the state
of the art. Comput Methods Appl Mech Eng 191(11–12):1245–
1287

duPlessisM (2012)Adaptivemulti-population differential evolution for
dynamic environments, Ph.D. thesis. Faculty of Engineering, Built
Environment and Information Technology, University of Pretoria

Deb K (2000) An efficient constraint handling method for genetic algo-
rithms. Comput Methods Appl Mech Eng 186(24):311–338

Derrac J,García S,MolinaD,HerreraF (2011)Apractical tutorial on the
use of nonparametric statistical tests as amethodology for compar-
ing evolutionary and swarm intelligence algorithms. Swarm Evol
Comput 1(1):3–18. doi:10.1016/j.swevo.2011.02.002

Filipiak P, Lipinski P (2014) Univariate marginal distribution algorithm
withMarkov chain predictor in continuous dynamic environments.
Springer, Cham, pp 404–411

Grefenstette J (1992) Genetic algorithms for changing environments.
In: Parallel problem solving from nature 2. Elsevier, Amsterdam,
pp 137–144

Jiang S, Yang S (2016) Evolutionary dynamic multiobjective optimiza-
tion: benchmarks and algorithm comparisons. IEEETrans Cybern.
doi:10.1109/TCYB.2015.2510698

Li C, Yang S, Yang M (2014) An adaptive multi-swarm optimizer for
dynamic optimization problems. Evol Comput 22(4):559–594

Liu R, ChenY,MaW,MuC, Jiao L (2014b) A novel cooperative coevo-
lutionary dynamic multi-objective optimization algorithm using a
new predictive model. Soft Comput 18(10):1913–1929

Liu R, ChenY,MaW,MuC, Jiao L (2014b) A novel cooperative coevo-
lutionary dynamic multi-objective optimization algorithm using a
new predictive model. Soft Comput 18(10):1913–1929

López-Ibáñez M, Stützle T (2012) Automatically improving the any-
time behaviour of optimisation algorithms, Technical Report.
TR/IRIDIA/2012-012, IRIDIA, Université Libre de Bruxelles,
Belgium, published in European Journal of Operations Research
Radulescu et al. (2013)

Martínez-Peñaloza MG, Mezura-Montes E (2015) Immune general-
ized differential evolution for dynamicmultiobjective optimization
problems. In: 2015 IEEE Congress on evolutionary computation
(CEC), pp 1918–1925. doi:10.1109/CEC.2015.7257120

Mezura-Montes E (ed) (2009) Constraint-handling in evolutionary opti-
mization, studies in computational intelligence, vol 198. Springer,
Berlin

Mezura-Montes E, Coello CAC (2011) Constraint-handling in nature-
inspired numerical optimization: past, present and future. Swarm
Evol Comput 1(4):173–194

Mezura-Montes E, Miranda-Varela ME, del Carmen Gómez-Ramón R
(2010) Differential evolution in constrained numerical optimiza-
tion. An empirical study. Inf Sci 180(22):4223–4262

Michalewicz Z, Nazhiyath G (1995) Genocop III: a co-evolutionary
algorithm for numerical optimization problems with nonlinear
constraints. In: Evolutionary computation, IEEE international con-
ference on, vol 2, pp 647–651. doi:10.1109/ICEC.1995.487460

Michalewicz Z, SchoenauerM (1996) Evolutionary algorithms for con-
strained parameter optimization problems.EvolComput 4(1):1–32

Mukherjee R, Debchoudhury S, SwagatamD (2016)Modified differen-
tial evolution with locality induced genetic operators for dynamic
optimization. Eur J Oper Res 253(2):337–355

Nguyen TT, Yao X (2009) Benchmarking and solving dynamic con-
strained problems. In: Evolutionary computation, 2009. CEC ’09.
IEEE congress on, pp 690–697. doi:10.1109/CEC.2009.4983012

Nguyen T, Yao X (2010) Detailed experimental results of GA, RIGA,
HYPERm and GA + Repair on the G24 set of benchmark
problems. Technical report, School Computer Science, Univer-
sity of Birmingham, Birmingham. http://www.staff.livjm.ac.uk/
enrtngu1/Papers/DCOPfulldata

NguyenT,YaoX (2012)Continuous dynamic constrained optimization:
the challenges. IEEE Trans Evol Comput 16(6):769–786. doi:10.
1109/TEVC.2011.2180533

Nguyen T, Yao X (2013) Evolutionary optimization on continuous
dynamic constrained problems—an analysis. In: Yang S, Yao X
(eds) Evolutionary computation for dynamic optimization prob-
lems, studies in computational intelligence, vol 490. Springer,
Berlin, pp 193–217. doi:10.1007/978-3-642-38416-5_8

NguyenT,YangS,Branke J (2012)Evolutionary dynamic optimization:
a survey of the state of the art. Swarm Evol Comput 6:1–24

NguyenTT,YangS,Branke J,YaoX (2013) chapEvolutionary dynamic
optimization: methodologies. In: Evolutionary computation for
dynamic optimization problems. Springer, Berlin, pp 39–64

Pal K, Saha C, Das S (2013a) Differential evolution and offspring repair
method based dynamic constrained optimization. In: Panigrahi
B, Suganthan P, Das S, Dash S (eds) Swarm, evolutionary, and
memetic computing, Lecture notes in Computer Science, vol 8297.
Springer, Berlin, pp 298–309. doi:10.1007/978-3-319-03753-0_
27

Pal K, Saha C, Das S, Coello-Coello C (2013b) Dynamic constrained
optimization with offspring repair based gravitational search algo-
rithm. In: Evolutionary computation (CEC), 2013 IEEE congress
on, pp 2414–2421. doi:10.1109/CEC.2013.6557858

Pekdemir H, Topcuoglu HR (2016) Enhancing fireworks algorithms
for dynamic optimization problems. In: 2016 IEEE congress on
evolutionary computation (CEC), pp 4045–4052

123

http://dx.doi.org/10.1109/CEC.2014.6900629
http://dx.doi.org/10.1145/2739482.2768471
http://dx.doi.org/10.1145/2739480.2754786
http://dx.doi.org/10.1145/2739480.2754786
http://dx.doi.org/10.1007/978-3-642-30665-5_11
http://dx.doi.org/10.1007/s00500-015-1820-4
http://dx.doi.org/10.1007/s00500-015-1820-4
http://dx.doi.org/10.1007/978-3-642-18965-4_9
http://dx.doi.org/10.1007/978-3-642-18965-4_9
http://dx.doi.org/10.1109/TEVC.2016.2567644
http://dx.doi.org/10.1109/TEVC.2016.2567644
http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.1109/TCYB.2015.2510698
http://dx.doi.org/10.1109/CEC.2015.7257120
http://dx.doi.org/10.1109/ICEC.1995.487460
http://dx.doi.org/10.1109/CEC.2009.4983012
http://www.staff.livjm.ac.uk/enrtngu1/Papers/DCOPfulldata
http://www.staff.livjm.ac.uk/enrtngu1/Papers/DCOPfulldata
http://dx.doi.org/10.1109/TEVC.2011.2180533
http://dx.doi.org/10.1109/TEVC.2011.2180533
http://dx.doi.org/10.1007/978-3-642-38416-5_8
http://dx.doi.org/10.1007/978-3-319-03753-0_27
http://dx.doi.org/10.1007/978-3-319-03753-0_27
http://dx.doi.org/10.1109/CEC.2013.6557858

570 M.-Y. Ameca-Alducin et al.

Price K, Storn R, Lampinen J (2005) Differential evolution: a practi-
cal approach to global optimization (Natural Computing Series).
Springer, Secaucus

RadulescuA, López-IbáñezM, Stützle T (2013) Automatically improv-
ing the anytime behaviour of multiobjective evolutionary algo-
rithms. In: Purshouse R, Fleming P, Fonseca CM, Greco S, Shaw
J (eds) Evolutionary multi-criterion optimization, Lecture notes in
Computer Science, vol 7811. Springer, Berlin, pp 825–840. doi:10.
1007/978-3-642-37140-0_61

RashediE,NezamabadiH, Saryazdi S (2009)Gsa: a gravitational search
algorithm. Inf Sci 179(13):2232–2248

Richter H (2009a) Change detection in dynamic fitness landscapes: an
immunological approach. In: Nature biologically inspired comput-
ing, 2009. NaBIC 2009. World Congress on, pp 719–724. doi:10.
1109/NABIC.2009.5393482

Richter H (2009b) Detecting change in dynamic fitness landscapes. In:
Evolutionary computation. CEC ’09. IEEE congress on, pp 1613–
1620

Rohlfshagen P, Yao X (2013) chap Evolutionary dynamic optimiza-
tion: challenges and perspectives. In: Evolutionary computation
for dynamic optimization problems. Springer, Berlin, pp 65–84

SharmaA, SharmaD (2012a) chap ICHEA—a constraint guided search
for improving evolutionary algorithms. In: Neural information
processing: 19th international conference, ICONIP 2012, Doha,
Qatar, Proceedings. Part I. Springer, Berlin, pp 269–279

Sharma A, Sharma D (2012b) chap Solving dynamic constraint
optimization problems using ICHEA. In: Neural information
processing: 19th international conference, ICONIP 2012. Doha,
proceedings, Part III. Springer, Berlin, pp 434–444

Singh H, Isaacs A, Nguyen T, Ray T, Yao X (2009) Performance of
infeasibility driven evolutionary algorithm (IDEA) on constrained
dynamic single objective optimization problems. In: Evolutionary
computation, 2009. CEC ’09. IEEE Congress on, pp 3127–3134.
doi:10.1109/CEC.2009.4983339

Trojanowski K, Michalewicz Z (1999) Searching for optima in non-
stationary environments. In: Evolutionary computation, 1999.
CEC 99. Proceedings of the 1999 Congress on, vol 3, p 1850.
doi:10.1109/CEC.1999.785498

Umenai Y, Uwano F, Tajima Y, Nakata M, Sato H, Takadama K (2016)
A modified cuckoo search algorithm for dynamic optimization
problems. In: 2016 IEEE Congress on evolutionary computation
(CEC), pp 1757–1764

YuX,WuX (2016) Amulti-point local search algorithm for continuous
dynamic optimization. In: 2016 IEEE Congress on evolutionary
computation (CEC), pp 2736–2743

ZhangW, Yen GG,Wang X (2016) An immune inspired framework for
optimization in dynamic environment. In: 2016 IEEE congress on
evolutionary computation (CEC), pp 1800–1807

123

http://dx.doi.org/10.1007/978-3-642-37140-0_61
http://dx.doi.org/10.1007/978-3-642-37140-0_61
http://dx.doi.org/10.1109/NABIC.2009.5393482
http://dx.doi.org/10.1109/NABIC.2009.5393482
http://dx.doi.org/10.1109/CEC.2009.4983339
http://dx.doi.org/10.1109/CEC.1999.785498

	Dynamic differential evolution with combined variants and a repair method to solve dynamic constrained optimization problems: an empirical study
	Abstract
	1 Introduction
	2 Problem statement
	3 DDECV + Repair
	3.1 Differential evolution
	3.2 Differential evolution with combined variants (DECV)
	3.3 DDECV + Repair
	3.3.1 Change detection
	3.3.2 Exploration promotion
	3.3.3 The repair method
	3.3.4 The random immigrants

	4 Experiments and results
	4.1 Experimental design
	4.1.1 Performance measures
	4.1.2 Compared algorithms

	4.2 Results
	4.2.1 Experiment 1. DDECV + Repair element analysis
	4.2.2 Experiment 2: Change frequency and severity analysis
	4.2.3 Experiment 3: Change detection, recovery and diversity analysis
	4.2.4 Experiment 4: Dynamism in different parts of the problem and best-error-before-change analysis

	5 Conclusions and future work
	Acknowledgements
	References

