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Abstract As an important macroeconomic variable and
monetary policy tool, interest rate has been included in the
core of the economic analysis for a long time. Reasonable
interest rate is significant in the aspects of improving the
social credit level and playing the economic leverage role, so
the modeling approach of interest rate is our concern. This
paper proposes a new interest rate model on the basis of
exponential Ornstein–Uhlenbeck equation under the uncer-
tain environment.Basedon themodel, the pricing formulas of
the zero-coupon bond, interest rate ceiling and interest rate
floor are derived through the Yao–Chen formula. In addi-
tion, some numerical algorithms are designed to calculate
the prices of derivations according to the pricing formulas
above.

Keywords Uncertainty theory · Uncertain differential
equation · Interest rate model · Pricing formulas

1 Introduction

The root of Brownian motion to model the asset prices which
change over time may be dated back to 1900. The Brownian
motion made enormous contribution in the field of finance,
while it may take negative value which is impossible in the
reality. For this reason, geometric Brownian motion was
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introduced into the financial market after stochastic calcu-
lus was founded by Itô in 1944 and was widely applied to
financial market. In 1973, Black and Scholes (1973) as well
as Merton (1973) used the geometric Brownian motion to
construct an option pricing theory. From then on, the Black–
Scholes pricing formula broke through the limits in financial
engineering.

Later on, in order to study the price of the zero-coupon
bond in stochastic environment, stochastic process was
employed to price the interest rate. In 1973, Merton (1973)
firstly introduced an interest rate model, and then, Ho and
Lee (1986) proposed a no-arbitrage model which is an exten-
sion of Merton’s model. In addition, many other economists
have built plenty of equilibrium models, such as Hull and
White (1990), Vasicek (1977). The valuations of interest
rate ceiling and interest rate floor have been studied by
many scholars. For example, the pricing and hedging inter-
est rate options from ceiling–floor markets were discussed
by Gupta and Subrahmanyam (2005). Marcozzi (2009) con-
sidered the valuation of interest rate products with effected
cash flow under a multifactor Heath–Jarrow–Morton model
of the term structure of interest rates by hierarchical approx-
imation. Suarez-Taboada and Vazquez (2012) presented a
numerical method to investigate the ratchet caplets pricing
problems. The currency option was also studied in detail by
early researchers based on the stochastic processes.

As we can see, when we use probability or statistics to
build models, we need a large amount of historical data. In
most case, however, the sample size is not large enough for
us to estimate a probability distribution, which may lead to
counterintuitive results if we insist on considering the prob-
lem by using the probability theory. As the result, we have
to invite some domain experts to evaluate the chance that
each event will occur through their belief degree. This pro-
vided a motivation for Liu (2007) to found an uncertainty
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theory. Based on normality, duality, subadditivity and prod-
uct axioms, it has become a branch of axiomaticmathematics
to model human uncertain behavior. In order to describe
the uncertain variable, Liu (2007) employed the definitions
of uncertainty distribution, inverse uncertainty distribution,
expected value and variance. For the purpose of describing
dynamic uncertain systems, Liu (2008) introduced uncertain
process in 2008. Moreover, Liu (2009) presented canoni-
cal process which could be considered as a counterpart of
Brownian motion. On the basis of canonical process, Liu
introduced uncertain calculus Liu (2009) and uncertain dif-
ferential equations Liu (2008). In 2012, Ge and Zhu (2012)
presented a method to solve an uncertain delay differential
equation which is a type of functional differential equations
driven by canonical process. In 2015, Ji and Zhou (2015)
studied themulti-dimensional uncertain differential equation
and proved it has a unique solution provided that its coeffi-
cients satisfy the Lipschitz condition and the linear growth
condition.

In a complicated market, the changes which arise from
political policies, social events andmany other unknown fac-
tors will more or less affect the variation trend of interest
rate in the near future, and it is almost impossible to give
an exact estimation of consequence led by the parameters
and the probabilities. In this case, under the assumption that
stock price follows a geometric canonical process, uncer-
tain differential equations were first applied to finance to
monitor the market behavior by Liu (2009) in 2009. Fur-
thermore, Liu (2008) proposed an uncertain stock model
and derived a European option pricing formula. Chen (2011)
studied American option pricing formula for uncertain stock
market subsequently. In addition, Peng and Yao (2010) pro-
posed an uncertain mean-reverting stock model to describe
the fluctuation of the stock price in the long term. Con-
sidering the sudden drifts on the stock price, Ji and Zhou
(2015) proposed an uncertain stock model with both pos-
itive jumps and negative jumps in the form of uncertain
differential equation with jumps. Recently, Liu et al. (2015)
proposed an uncertain currencymodel and explored its math-
ematical properties. In 2013, Chen and Gao (2013) proposed
three different uncertain term structure models of interest
rate which are the counterparts of the Ho and Lee (1986)
model, Vasicek (1977) model and Cox–Ingersoll–Ross Cox
et al. (1985)model, respectively, and theypriced zero-coupon
bond by using one of the three models. In the year of 2015,
Zhu (2015) presented an uncertain interest rate model based
on the concept of uncertain fractional differential equation
and obtained the price of a zero-coupon bond. For exploring
the recent developments of uncertain finance, readers may
consult Liu (2010).

The exponential Ornstein–Uhlenbeck equation can pro-
vide a consistent stationary distribution for the volatility with
data Masoliver and Perello (2006) Cisana et al. (2007) Eisler

et al. (2007). It fairly reproduces the realized volatility which
has some degree of predictability in future return changes
Eisler et al. (2007). For these reasons, we propose a new
type of interest rate model in this paper based on the expo-
nential Ornstein–Uhlenbeck equation and discuss the pricing
problem of zero-coupon bond, interest rate ceiling and inter-
est rate floor within the framework of uncertainty theory. The
rest of the paper is organized as follows. In the next section,
we introduce some significant concepts as well as theorems
in uncertainty theory. In Sections 3, we introduce the new
interest rate model for the purpose of improving Chen and
Gao’s (2013) model. In Sects. 4–6, we derive the pricing for-
mulas of zero-coupon bond, interest rate ceiling and interest
rate floor for uncertain interest rate model and design some
numerical algorithms to calculate the prices of these deriva-
tions according to the pricing formulas above, respectively.
Finally, a brief conclusion is given in the last section.

2 Preliminary

In this section, we introduce some basic definitions and the-
orems about uncertainty variables and uncertain differential
equations.

2.1 Uncertain variable

Definition 1 (Liu 2007, Liu 2009) Let L be a σ -algebra on
a non-empty set �. A set function M: L → [0, 1] is called
an uncertain measure if it satisfies the following axioms:

Axiom 1: (Normality Axiom) M{�} = 1 for the univer-
sal set �.

Axiom 2: (Duality Axiom)M{�} +M{�c} = 1 for any
event �.

Axiom 3: (Subadditivity Axiom) For every countable
sequence of events �1,�2, . . ., we have

M

{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M{�i }.

Axiom 4: (Product Axiom) Let (�k,Lk,Mk) be uncer-
tainty spaces for k = 1, 2, . . .. The product uncertain
measure M is an uncertain measure satisfying

M

{ ∞∏
k=1

�k

}
=

∞∧
k=1

Mk{�k}

where �k are arbitrarily chosen events from Lk for k =
1, 2, . . ., respectively.
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Definition 2 (Liu 2007) An uncertain variable is a measur-
able function ξ from an uncertainty space (�,L,M) to the
set of real numbers. Therefore, for any Borel set B of real
numbers, the set

{ξ ∈ B} = {γ ∈ � | ξ(γ ) ∈ B}

is an event.

The uncertainty distribution�(x) of an uncertain variable
ξ is defined by �(x) = M{ξ ≤ x} for any real number x .
An uncertainty distribution �(x) is called regular if it is a
continuous and strictly increasing function with respect to x
at which 0 < �(x) < 1, and

lim
x→−∞ �(x) = 0, lim

x→+∞ �(x) = 1.

The inverse function �−1(α) of the regular uncertainty dis-
tribution �(x) is called the inverse uncertainty distribution
of the uncertain variable ξ . For example, the linear uncertain
variable L(a, b) has an uncertainty distribution

�(x) =
⎧⎨
⎩

0, if x < a
(x − a)/(b − a), if a ≤ x ≤ b

1, if x > b

and an inverse uncertainty distribution

�−1(α) = (1 − α)a + αb

where a and b are real numbers with a < b.

Definition 3 (Liu 2009) The uncertain variables ξ1, ξ2,

. . . , ξn are said to be independent if

M

{
n⋂

i=1

(ξi ∈ Bi )

}
=

n∧
i=1

M{ξi ∈ Bi }

for any Borel sets B1, B2, . . . , Bn of real numbers.

Theorem 1 (Liu 2010) Let ξ1, ξ2, . . . , ξn be independent
uncertain variables with regular uncertainty distributions
�1,�2, . . . , �n, respectively. If the function f (x1, x2, . . . ,
xn) is strictly increasing with respect to x1, x2, . . . , xm and
strictly decreasing with respect to xm+1, xm+2, . . . , xn, then

ξ = f (ξ1, ξ2, . . . , ξn)

is an uncertain variable with an inverse uncertainty distrib-
ution

	−1(α) = f (�−1
1 (α), . . . , �−1

m (α),�−1
m+1(1 − α),

. . . , �−1
n (1 − α)).

For example, let ξ1 and ξ2 be two independent uncertain
variables with regular uncertainty distributions �1 and �2,
respectively. Take f (x1, x2) = exp(x1) + exp(−x2), then
f (ξ1, ξ2) has an inverse uncertainty distribution

	−1(α) = exp
(
�−1

1 (α)
)

+ exp
(
−�−1

2 (1 − α)
)

.

Definition 4 (Liu 2007) The expected value of an uncertain
variable ξ is defined by

E[ξ ] =
∫ +∞

0
M {ξ ≥ x} dx −

∫ 0

−∞
M {ξ ≤ x} dx

provided that at least one of the two integrals exists.

Liu (2007) showed, for an uncertain variable ξ with an
uncertainty distribution �, if its expected value exists, then

E[ξ ] =
∫ +∞

0
(1 − �(x))dx −

∫ 0

−∞
�(x)dx .

Theorem 2 (Liu 2010) Assume the uncertain variable ξ has
a regular uncertainty distribution �. Then,

E[ξ ] =
∫ 1

0
�−1(α)dα.

2.2 Uncertain differential equation

In order to model the evolution of uncertain phenomena, Liu
(2008) put up the concept of uncertain process which is a
sequence of uncertain variables indexed by the time and gave
the concept of time integral which is an integral of uncertain
process with respect to the time.

Definition 5 (Liu 2008) Let Xt be an uncertain process. For
any partition of closed interval [a,b] with a = t1 < t2 <

. . . < tk+1 = b, the mesh is written as


 = max
1≤i≤k

|ti+1 − ti |.

Then, the time integral of Xt with respect to t is

∫ a

b
Xtdt = lim


→0

k∑
i=1

Xti · (ti+1 − ti )

provided that the limit exists almost surely and is finite. In this
case, the uncertain process Xt is said to be time integrable.

Definition 6 (Liu 2009) An uncertain process Ct is called a
canonical Liu process if

(i) C0 = 0 and almost all sample paths are Lipschitz con-
tinuous,
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(ii) Ct has stationary and independent increments,
(iii) every increment Cs+t − Cs is a normal uncertain vari-

able with an uncertainty distribution

�t (x) =
(
1 + exp

(−πx√
3t

))−1

.

Definition 7 (Liu 2009) Let Xt be an uncertain process and
Ct be a canonical Liu process. For any partition of closed
interval [a, b] with a = t1 < t2 < . . . < tk+1 = b, the mesh
is written as


 = max
1≤i≤k

|ti+1 − ti |.

Then, Liu integral of Xt with respect to Ct is defined by

∫ b

a
XtdCt = lim


→0

k∑
i=1

Xti · (
Cti+1 − Cti

)

provided that the limit exists almost surely and is finite.

Definition 8 (Liu 2008) Suppose that Ct is a canonical Liu
process, and f and g are continuous functions. Then,

dXt = f (t, Xt )dt + g(t, Xt )dCt (1)

is called an uncertain differential equation.

Theorem 3 (Chen and Liu 2010) Let u1t , u2t , v1t , v2t be
integrable uncertain processes. Then, the linear uncertain
differential equation

dXt = (u1t Xt + u2t )dt + (v1t Xt + v2t )dCt

has a solution

Xt = Ut · Vt

where

Ut = exp

( ∫ t

0
u1sds +

∫ t

0
v1sdCs

)
,

Vt =
(

X0 +
∫ t

0

u2s

Us
ds +

∫ t

0

v2s

Us
dCs

)
.

Definition 9 (Yao and Chen 2013) The α-path (0 < α < 1)
of an uncertain differential equation

dXt = f (t, Xt )dt + g(t, Xt )dCt

with an initial value X0 is a deterministic function Xα
t with

respect to t that solves the corresponding equation

dXα
t = f

(
t, Xα

t

)
dt + |g (

t, Xα
t

) |�−1(α)dt, Xα
0 = X0

where �−1(α) is the inverse uncertainty distribution of stan-
dard normal uncertain variable, i.e.,

�−1(α) =
√
3

π
ln

α

1 − α
, 0 < α < 1.

Theorem 4 Yao–Chen Formula (Yao and Chen 2013) Ass-
ume that Xt and Xα

t are the solution and α-path of the
uncertain differential equation

dXt = f (t, Xt )dt + g(t, Xt )dCt .

Then,

M
{

Xt ≤ Xα
t ,∀t

} = α,

M
{

Xt > Xα
t ,∀t

} = 1 − α.

Theorem 5 (Yao and Chen 2013) Let Xt and Xα
t be the

solution and α-path of the uncertain differential equation

dXt = f (t, Xt )dt + g(t, Xt )dCt .

Then, the solution Xt has an inverse uncertainty distribution

	−1
s (α) = Xα

t .

Theorem 6 (Yao 2013) Let Xt and Xα
t be the solution and

α-path of the uncertain differential equation

dXt = f (t, Xt )dt + g(t, Xt )dCt .

Then, for any time t > 0 and strictly increasing function
J (x), the time integral

∫ t

0
J (Xs)ds

has an α-path

Y α
t =

∫ t

0
J

(
Xα

s

)
ds.

Conversely, for any time t > 0 and strictly decreasing func-
tion H(x), the time integral

∫ t

0
H(Xs)ds

has an α-path

Y α
t =

∫ t

0
H

(
X1−α

s

)
ds.
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Theorem 7 (Yao 2015) Let X1t , X2t , . . . , Xnt be indepen-
dent uncertain processes with α-paths Xα

1t , Xα
2t , . . ., Xα

nt ,
respectively. If the function f (x1, x2, . . . , xn) is strictly
increasing with respect to x1, x2, . . . , xm and strictly decrea-
sing with respect to xm+1, xm+2, . . . , xn, then the uncertain
process

Xt = f (X1t , X2t , . . . , Xnt )

has an α-path

Xα
t = f

(
Xα
1t , . . . , Xα

mt , X1−α
m+1,t , . . . , X1−α

nt

)
.

3 Uncertain interest rate model

The uncertain differential equations play a significant role in
the financial market. In 2013, Chen and Gao (2013) assumed
that the interest rate rt follows uncertain differential equa-
tions and proposed an uncertain term structure model of
interest rate as below,

drt = a(t)dt + σdCt , (2)

which is the counterpart of the Ho and Lee (1986) model.
However, this model has a flaw: The interest rate rt may take
negative value.

In this section, we make some improvements referring
to Chen and Gao’s model (2) based on the exponential
Ornstein–Uhlenbeck equation which describes the velocity
of a massive Brownian particle under the influence of fric-
tion. Considering that the exponential Ornstein–Uhlenbeck
equation can ensure the volatility of datawhich follows a con-
sistent stationary distribution and can predict the future return
changes in some degree, we propose a new uncertain interest
rate model in the form of exponential Ornstein–Uhlenbeck
equation as below,

drt = μ (1 − c ln rt ) rtdt + σrtdCt , (3)

where rt denotes interest rate, μ, c, σ are some positive con-
stants and Ct is a canonical Liu process.

Theorem 8 Let μ, c, σ be some positive constants and Ct

be a canonical Liu process. Then, the uncertain differential
equation

drt = μ(1 − c ln rt )rtdt + σrtdCt

has a solution

rt = exp(ln r0 · exp(−cμt)) · exp
(
1

c
(1 − exp(−cμt))

)

· exp
(

σ

∫ t

0
exp(cμ(s − t))dCs

)
.

Proof Divide both sides of the equation by rt simultaneously,
then we have

d ln rt = μ(1 − c ln rt )dt + σdCt . (4)

Replacing ln rt with Xt , we could get

dXt = μ(1 − cXt )dt + σdCt . (5)

By Theorem 3, since

Ut = exp

(∫ t

0
−cμds +

∫ t

0
0dCs

)
= exp(−cμt),

Vt = X0 +
∫ t

0

μ

exp(−cμs)
ds +

∫ t

0

σ

exp(−cμs)
dCs

= X0 + 1

c
(exp(cμt) − 1) +

∫ t

0
σ · exp(cμs)dCs,

we have

Xt = Ut · Vt

= X0 · exp(−cμt) + 1

c
(1 − exp(−cμt))

+ σ

∫ t

0
exp(cμ(s − t))dCs .

Since Xt = ln rt , X0 = ln r0, we have

ln rt = ln r0 · exp(−cμt) + 1

c
(1 − exp(−cμt))

+σ

∫ t

0
exp(cμ(s − t))dCs,

which is equivalent to

rt = exp(ln r0 · exp(−cμt)) · exp
(
1

c
(1 − exp(−cμt))

)

· exp
(

σ

∫ t

0
exp(cμ(s − t))dCs

)
.

The proof is complete.

According to Yao–Chen Formula (Theorem 4), the α-path
of Xt in Equation (5) solves the ordinary differential equation

dXα
t = μ(1 − cXα

t )dt + σ�−1(α)dt (6)
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470 Y. Sun et al.

where

�−1(α) =
√
3

π
ln

α

1 − α
,

so we have

Xα
t = X0 · exp(−cμt) + (1 − exp(−cμt))

×
(
1

c
+

√
3σ

πμc
ln

α

1 − α

)
. (7)

As mentioned, Xα
t = ln rα

t and X0 = ln r0, we have

ln rα
t = ln r0 · exp(−cμt) + (1 − exp(−cμt))

×
(
1

c
+

√
3σ

πμc
ln

α

1 − α

)
. (8)

So the α-path of rt is

rα
t = exp (ln r0 · exp(−cμt) + (1 − exp(−cμt))

×
(
1

c
+

√
3σ

πμc
ln

α

1 − α

))
. (9)

4 Zero-coupon bond pricing formulas

A zero-coupon bond is a bond bought at a price lower than
its face value but repaid at the face value on the maturity
date. For simplicity, we assume the face value is always 1
dollar. According to Chen and Gao (2013), the price of a
zero-coupon bond with a maturity date t is

fz = E

[
exp

(
−

∫ t

0
rsds

)]
.

Theorem 9 Assume the uncertain interest rate rt follows the
exponential Ornstein–Uhlenbeck equation

drt = μ(1 − c ln rt )rtdt + σrtdCt ,

where μ, c, σ are some positive numbers, and Ct is a canon-
ical Liu process. Then, the price of a zero-coupon bond with
a maturity date t is

fz =
∫ 1

0
exp

(
−

∫ t

0
rα

s ds

)
dα,

where

rα
t = exp (ln r0 · exp(−cμt) + (1 − exp(−cμt))

×
(
1

c
+

√
3σ

πμc
ln

α

1 − α

))
.

Proof Let�−1
t (α)denote the inverse uncertainty distribution

of rt and rα
t denote the α-path of rt . Then, it follows from

Theorem 6 that the time integral

∫ t

0
rsds

has an inverse uncertainty distribution

	−1(α) =
∫ t

0
�−1

s (α)ds =
∫ t

0
rα

s ds.

Since exp(−x) is a strictly decreasing function, the uncertain
variable

exp

(
−

∫ t

0
rsds

)

has an inverse uncertainty distribution

ϒ−1(α) = exp(−	−1(1 − α)) = exp

(
−

∫ t

0
r1−α

s ds

)
.

Thus, the price for the zero-coupon bondwith amaturity date
t is

fz = E

[
exp

(
−

∫ t

0
rsds

)]
=

∫ 1

0
ϒ−1(α)dα

=
∫ 1

0
exp

(
−

∫ t

0
r1−α

s ds

)
dα

=
∫ 1

0
exp

(
−

∫ t

0
rα

s ds

)
dα

according to Theorem 2. 	

Based on Theorem 9, the algorithm to calculate the price

of the zero-coupon bond based on the interest rate model (3)
is designed as below:

Step 0: Choose two large numbers N and M according to
the desired precision degree. Set αi = i/N and
t j = j · t/M , i = 1, 2, . . . , N , j = 1, 2, . . . , M.

Step 1: Set i = 0.
Step 2: Set i ← i + 1.
Step 3: Set j = 0.
Step 4: Set j ← j + 1.
Step 5: Calculate the interest rate

rαi
t j

= exp
(
ln r0 · exp(−cμt j ) + (1 − exp(−cμt j ))

×
(
1

c
+

√
3σ

πμc
ln

αi

1 − αi

))
.

If j < M , return to Step 4.
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Fig. 1 Zero-coupon bond price
fz with respect to maturity date
t in Example 1
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Step 6: Calculate the discount rate

exp

(
−

∫ t

0
rαi

s ds

)
← exp

⎛
⎝− t

M

M∑
j=1

rαi
t j

⎞
⎠ .

If i < N − 1, return to Step 2.
Step 7: Calculate the price of zero-coupon bond price

fz ← 1

N − 1

N−1∑
i=1

exp

⎛
⎝− t

M

M∑
j=1

rαi
t j

⎞
⎠ .

Example 1 Assume the initial value of the interest rate is
r0 = 0.03, and other parameters of the interest rate are c =
0.1, μ = 0.05 and σ = 0.04. Then, the price of a zero-
coupon bond with a maturity date t = 5 is fz = 0.8359.
Figure 1 shows that the price fz is a decreasing function
with respect to the maturity date t when the other parameters
remain unchanged.

5 Interest rate ceiling pricing formula

An interest rate ceiling is a derivative contract which is an
agreement reached by the bank and the customer. Buying
the contract means the borrower will not need to pay any
more than a predetermined level of interest on his loan. For
simplicity, we assume the amount of loan is always 1 dollar.
According to Zhang et al. (2016), the price of the interest rate
ceiling with a maturity date t and a striking price K is

fc = 1 − E

[
exp

(
−

∫ t

0
(rs − K )+ds

)]
.

Theorem 10 Assume the uncertain interest rate rt follows
the exponential Ornstein–Uhlenbeck equation

drt = μ(1 − c ln rt )rtdt + σrtdCt ,

where μ, c, σ are some positive numbers, and Ct is a canon-
ical Liu process. Then, the price of the interest rate ceiling
with a maximum interest rate K and a maturity date t is

fc = 1 −
∫ 1

0
exp

(
−

∫ t

0
(rα

s − K )+ds

)
dα,

where

rα
t = exp (ln r0 · exp(−cμt) + (1 − exp(−cμt))

×
(
1

c
+

√
3σ

πμc
ln

α

1 − α

))
.

Proof Let�−1
t (α)denote the inverse uncertainty distribution

of rt and rα
t denote the α-path of rt . Since (rs − K )+ is a

strictly increasing function, it follows from Theorem 6 that
the time integral

∫ t

0
(rs − K )+ds

has an inverse uncertainty distribution

	−1(α) =
∫ t

0
(�−1

s (α) − K )+ds =
∫ t

0
(rα

s − K )+ds.

Since exp(−x) is a strictly decreasing function with respect
to x , the uncertain variable

exp

(
−

∫ t

0
(rs − K )+ds

)

has an inverse uncertainty distribution

ϒ−1(α) = exp(−	−1(1 − α))

= exp

(
−

∫ t

0
(r1−α

s − K )+ds

)
.
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Thus, the price for the interest rate ceiling with a maturity
date t and a striking price K is

fc = 1 − E

[
exp

(
−

∫ t

0
(rs − K )+ds

)]

= 1 −
∫ 1

0
ϒ−1(α)dα

= 1 −
∫ 1

0
exp

(
−

∫ t

0
(r1−α

s − K )+ds

)
dα

= 1 −
∫ 1

0
exp

(
−

∫ t

0
(rα

s − K )+ds

)
dα

according to Theorem 2. 	

Based on Theorem 10, the algorithm to calculate the price

of the interest rate ceiling based on the interest rate model
(3) is designed as below:

Step 0: Choose two large numbers N and M according to
the desired precision degree. Set αi = i/N and
t j = j · t/M , i = 1, 2, . . . , N , j = 1, 2, . . . , M.

Step 1: Set i = 0.
Step 2: Set i ← i + 1.
Step 3: Set j = 0.
Step 4: Set j ← j + 1.
Step 5: Calculate the interest rate

rαi
t j

= exp
(
ln r0 · exp(−cμt j ) + (1 − exp(−cμt j ))

×
(
1

c
+

√
3σ

πμc
ln

αi

1 − αi

))
.

Step 6: Calculate the the positive deviation between the
interest rate at time t j and the maximum interest
rate K(

rαi
t j

− K
)+ = max

(
0, rαi

t j
− K

)
.

If j < M , return to Step 4.
Step 7: Calculate

exp

(
−

∫ t

0

(
rαi

s − K
)+ ds

)

← exp

⎛
⎝− t

M

M∑
j=1

(
rαi

t j
− K

)+
⎞
⎠ .

If i < N − 1, return to Step 2.
Step 8: Calculate the price of interest rate ceiling

fc ← 1 − 1

N − 1

N−1∑
i=1

exp

⎛
⎝− t

M

M∑
j=1

(
rαi

t j
− K

)+
⎞
⎠ .

Example 2 Assume the initial value of the interest rate is
r0 = 0.03, and other parameters of the interest rate are c =
0.1, μ = 0.05 and σ = 0.04. Then, the price of an interest
rate ceiling with a striking price K = 0.02 and a maturity
date t = 5 is fc = 0.0762. Figure 2 shows that the price fc

is an increasing function with respect to the maturity date t
when the other parameters remain unchanged.

Example 3 Assume the initial value of the interest rate is
r0 = 0.03, and other parameters of the interest rate are c =
0.1, μ = 0.05 and σ = 0.04. Then, the price of an interest
rate ceiling with a striking price K = 0.02 and a maturity
date t = 2 is fc = 0.0240. Figure 3 shows that the price fc

is a decreasing function with respect to the striking price K
when the other parameters remain unchanged.

6 Interest rate floor pricing formula

An interest rate floor is a derivative contract which is an
agreement reached by the bank and the customer. Buying the
contract means the investor will not receive any less than a
predetermined level of interest on his investment. For sim-
plicity, we assume the amount of loan is always 1 dollar.
According to Zhang et al. (2016), the price of the interest
rate floor with a maturity date t and a striking price K is

fl = E

[
exp

(∫ t

0
(K − rs)

+ds

)]
− 1.

Theorem 11 Assume the uncertain interest rate rt follows
the exponential Ornstein–Uhlenbeck equation

drt = μ(1 − c ln rt )rtdt + σrtdCt ,

where μ, c, σ are some positive numbers, and Ct is a canon-
ical Liu process. Then, the price of the interest rate floor with
a minimum interest rate K and a maturity date t is

fl =
∫ 1

0
exp

(∫ t

0
(K − rα

s )+ds

)
dα − 1,

where

rα
t = exp (ln r0 · exp(−cμt) + (1 − exp(−cμt))

×
(
1

c
+

√
3σ

πμc
ln

α

1 − α

))
.

Proof Let�−1
t (α)denote the inverse uncertainty distribution

of rt and rα
t denote theα-path of rt . Since (K−x)+ is a strictly

decreasing function, it follows from Theorem 6 that the time
integral
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Fig. 2 Interest rate ceiling
price fc with respect to maturity
date t in Example 2
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Fig. 3 Interest rate ceiling
price fc with respect to striking
price K in Example 3
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∫ t

0
(K − rs)

+ds

has an inverse uncertainty distribution

	−1(α) =
∫ t

0
(K −�−1

s (1−α))+ds =
∫ t

0
(K − r1−α

s )+ds.

Since exp(x) is a strictly increasing function with respect to
x , the uncertain variable

exp

(∫ t

0
(K − rs)

+ds

)

has an inverse uncertainty distribution

ϒ−1(α) = exp(	−1(α)) = exp

(∫ t

0
(K − r1−α

s )+ds

)
.

Thus, the price for the interest rate floor with a maturity date
t and a striking price K is

fl = E

[
exp

(∫ t

0
(K −rs)

+ds

)]
− 1 =

∫ 1

0
ϒ−1(α)dα−1

=
∫ 1

0
exp

(∫ t

0
(K − r1−α

s )+ds

)
dα − 1

=
∫ 1

0
exp

(∫ t

0
(K − rα

s )+ds

)
dα − 1

according to Theorem 2.

Regarding interest rate floor of the interest rate model (3)
based on Theorem 10, the first five steps are the same as
interest rate ceiling, and the rest steps are as follows.

Step 6: Calculate the the positive deviation between the
interest rate at time t j and the minimum interest
rate K

(
K − rαi

t j

)+ = max
(
0, K − rαi

t j

)
.

If j < M , return to Step 4.
Step 7: Calculate

exp

(∫ t

0

(
K −rαi

s

)+ ds

)
←exp

⎛
⎝ t

M

M∑
j=1

(
K −rαi

t j

)+
⎞
⎠.

If i < N − 1, return to Step 2.
Step 8: Calculate the price of interest rate floor

fl ← 1

N − 1

N−1∑
i=1

exp

⎛
⎝ t

M

M∑
j=1

(
K − rαi

t j

)+
⎞
⎠ − 1.

Example 4 Assume the initial value of the interest rate is
r0 = 0.03, and other parameters of the interest rate are c =
0.1, μ = 0.05 and σ = 0.04. Then, the price of an interest
rate floor with a striking price K = 0.04 and a maturity date
t = 5 is fl = 0.0260. Figure 4 shows that the price fl is an
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Fig. 4 Interest rate floor price
fl with respect to maturity date t
in Example 4
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Fig. 5 Interest rate floor price
fl with respect to striking price
K in Example 5
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increasing function with respect to the maturity date t when
the other parameters remain unchanged.

Example 5 Assume the initial value of the interest rate is
r0 = 0.03, and other parameters of the interest rate are c =
0.1, μ = 0.05 and σ = 0.04. Then, the price of an interest
rate floor with a striking price K = 0.04 and an maturity
date t = 2 is fl = 0.0158. Figure 5 shows that the price fl
is an increasing function with respect to the striking price K
when the other parameters remain unchanged.

7 Conclusions

In this paper, we proposed an interest rate model referring the
exponential Ornstein–Uhlenbeck equation and employed it
to price the zero-coupon bond, interest rate ceiling and inter-
est rate floor under the uncertain environment. Subsequently,
some numerical methodswere designed to calculate the price
of the zero-coupon bond as well as the interest rate ceiling
and interest rate floor, and some numerical experiments were
performed. Future research could consider the currency pric-
ing problems using the interest rate model proposed in this
paper.
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