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Abstract This paper presents a study based on versatile
bio-inspired metaheuristic stud krill herd (SKH) algorithm
to tackle the optimal power flow (OPF) problems in a power
systemnetwork. SKHconsists of stud selection and crossover
operator that is incorporated into the original krill herd algo-
rithm to improve the quality of the solution and especially to
avoid being trapped in local optima. In order to investigate the
performance, the proposed algorithm is demonstrated on the
optimal power flow problems of IEEE 14-bus, IEEE 30-bus
and IEEE 57-bus systems. The different objective functions
considered areminimization of total production costwith and
without valve point loading effect, minimization of active
power loss, minimization of L-index and minimization of
emission pollution. The OPF results obtained with the pro-
posed approach are compared with the other evolutionary
algorithms recently reported in the literature.
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1 Introduction

The power system is a composite and sophisticated sys-
tem due to its various static/dynamic states, large scale and
complex interconnections between different components.
Controlling and managing such system is a major challeng-
ing issue for system operators. The power flow study can
be considered as one of the most significant operating and
computing function and hence plays a vital role in power sys-
tem planning, operation and control. The power flow study
is subjected to the various electrical and physical constraints
of the power system known as optimal power flow (OPF)
problem (Dommel and Tinney 1968). The goal of OPF is
to optimize the specific objective functions by adjusting the
set of control variables to satisfy the necessary constraints
related to the power system network, which include nonlin-
ear power flow equations, load buses voltage magnitudes,
the line flows, slack bus active power output and generators
reactive power limits. The control variables include genera-
tor buses, real power outputs and voltage magnitudes, shunt
capacitors and transformer taps connected between various
buses.Minimization of total production cost and active power
loss is most frequently considered objective functions. How-
ever, in some cases, it may be difficult to maintain voltages
of the load buses within their limits due to inefficient use of
reactive power sources, which may lead to voltage collapse.
In those cases, voltage stability enhancement is also consid-
ered as one of the objective function. Additionally, due to
increased concern regarding environmental protection, min-
imization of emission pollution is also considered as a part
of the OPF problem.

The literature on OPF is considerably large which can
be found in Al-Rashidi and El-Hawary (2009), Frank et al.
(2012). Many classical methods are used to solve these OPF
problems, such as nonlinear programming (Shoults and Sun
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1982), linear programming (LP) (Zehar and Sayah 2008),
quadratic programming (QP) (Reid andHasdorf 1973), New-
ton’s algorithm (Sun et al. 1984), interior point (IP) (Torres
andQuintana 1998),MATPOWER (Zimmerman et al. 2011),
etc. The main disadvantages of these methods include large
computational time and sometimes being trapped in local
optima. During the recent past, numerous evolutionary algo-
rithms have been introduced to alleviate the limitations of
classicalmethods and provide near globally optimal solution.
Lai et al. (1997) solved the optimal power flow problems of
IEEE 30-bus system using an improved genetic algorithm
(IGA). Vaisakh et al. (2013) developed genetic evolving and
direction particle swarm optimization (GEDPSO) by adding
ant colony search to classical PSO to enhance its global
search ability. Sayah and Zehar (2008) addressed modified
differential evolution (MDE) to handle the non-smooth cost
function of various test systems. Sinsuphan et al. (2013)
suggested improved harmony search algorithm (IHSA) to
solve the single-objective OPF problems. In IHSA, Taguchi
method is used to enhance the intervals of control variables to
attain better initialization and improve the convergence speed
of HSA. Ramesh and Premalatha (2015) introduced adaptive
real coded biogeography-based optimization (ARCBBO)
by adding Gaussian mutation operator into the classical
BBO to improve the population diversity. However, these
population-based approaches may undergo premature con-
vergence at different stages of search processing. Therefore,
efforts toward betterment of the existing optimization tech-
niques and innovation of new computational techniques are
needed to solve optimal power flowproblems, and the present
work is an attempt toward this direction.

The krill herd (KH) algorithm has been first developed by
Gandomi and Alavi (2012), and it is inspired by the increas-
ing densities of the krill individuals and reaching high areas
of food concentration after predation. The KH algorithm
mainly consists of three movements in an iterative process,
namely motion induced by the other krill individuals, forag-
ing motion and physical diffusion. Due to the flexibility and
efficient characteristics of KH algorithm, researchers have
used it fairly for solving different constrained optimization
problems (Gai-Ge et al. 2014a, b, c, d, e; Gandomi et al. 2013)
successfully. However, the main deficiency of the standard
KH algorithm’s local search mechanism is that the search
process is completely random in nature, and consequently,
it may not always find a global optimal solution particularly
for high-dimensional practical problems.

Therefore, several variants of KH algorithm are devel-
oped such as Gai-Ge et al. (2013, 2014a, b, c, d, e, 2015,
2016), Gaige et al. (2013), Junpeng et al. (2014), Lihong
et al. (2014) to improve the local search ability and for solv-
ing the optimization problems. Gai-Ge et al. (2014a, b, c, d, e)
incorporated a novel migration operator to the KH algo-
rithm for solving optimization problems effectively. Gai-Ge

et al. (2013) included concepts of chaotic method and a
mutation operator to KH algorithm, which results in improv-
ing the exploitation capability of the KH algorithm during
run process. To escape the KH from local minima and pro-
vide a global solution, Gai-Ge et al. 2014a, b, c, d, e utilized
opposition-based concept and Cauchy mutation scheme in
the KH algorithm. Gaige et al. (2013) integrated a Leavy
flight operator with the KH algorithm to improve the effi-
ciency and convergence speed of KH algorithm in the
evolution process.

In this paper, a new bio-inspired algorithm called stud
krill herd (SKH) (Gai-Ge et al. 2014a, b, c, d, e) algorithm is
proposed and implemented successfully for the first time to
solve the OPF problems. Here, krill herd (KH) algorithm
is hybridized with a stud genetic algorithm (SGA) (Khatib
and Fleming 1998) to reach near-global optimal solution. In
the present work, the performance of KH is enhanced by
adding an adaptive genetic reproduction mechanism called
stud selection and crossover (SSC) operator, which leads to
the development of the proposed SKH algorithm. In fact, in
SKH algorithm, the search space is explored by first applying
KH, and then, the SSC operator is used to take over only the
amended possibilities to obtain good solutions. Therefore,
the augmented KH algorithm is capable of searching com-
paratively larger space and extract good OPF solutions. The
performance of the algorithm is analyzed and tested on IEEE
14-bus, IEEE 30-bus and IEEE 57-bus systems by consider-
ing the different objective function models.

The rest of the paper is organized as follows: Section 2
exhibits the OPF problem formulation, Sect. 3 describes
the KH algorithm and proposed SKH algorithm. Solution
methodology of the proposed SKH for solving OPF prob-
lem is presented in Sect. 4. Section 5 reports the simulation
results and conclusions are given in Sect. 6.

2 Optimal power flow problem formulation

The primary function of the OPF problem is to optimize the
objective functions by adjusting the control variables while
satisfying the set of equality and inequality constraints. The
general OPF problem can be formulated as follows:

min f (x, u) (1)

subject to

{
g (x, u) = 0
h (x, u) ≤ 0

(2)

where f is an objective function to be minimized; x is the
vector of state (dependent) variables consisting of slack bus
real power generation, load bus voltage magnitudes, reactive
power generation at the generator buses and power flows in
transmission lines; and u consists of control (independent)
variables such as generated buses real power outputs except
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slack bus and voltage magnitudes, transformer tap settings
and shunt capacitors at the various buses.

2.1 Objective functions

Five different models are considered for different objective
functions and are given as follows:

2.1.1 M1 minimization of total production cost

The generation cost function is represented as follows
(Ramesh and Premalatha 2015):

f1 =
NG∑
k=1

(
ak + bk PGk + ck P

2
Gk

)
(3)

where NG represents number of generator buses; PGk is the
active power generation at kth generating unit; and ak, bk, ck
are the cost coefficients of kth generating unit.

2.1.2 M2 minimization of active power loss

Mathematically, the objective function for minimization of
active power loss is expressed as follows (Ramesh and Pre-
malatha 2015):

f2 =
nl∑
n=1

Gn

(
V 2
k + V 2

m − 2VkVm cos θkm

)
(4)

where nl represents number of transmission lines; Gn is the
conductance of the nth line connected between kth and mth
buses; Vk, Vm are the voltage magnitudes at kth and mth
buses, respectively; and θkm is the phase angle between kth
and mth buses.

2.1.3 M3 minimization of L-index

In a power system network, it is important to maintain the
voltages of all load buseswithin their acceptable limits. How-
ever, when the system is subjected to any disturbance, the
non-optimized control variables may lead to progressive and
large voltage drop leading to voltage collapse in the system.
L-index introduced in Kessel and Glavitsch (1986) is used to
assess voltage stability margin. Its value at a particular bus
indicates the level of closeness of the voltage collapse condi-
tion of that bus. Normally, L-index varies from 0 (no-load) to
1 (voltage collapse) condition. Mathematically, the objective
function of L-index may be expressed as follows:

f3 = min(max(Lk)) (5)

where Lk is the L-index of the kth load bus defined as (Kessel
and Glavitsch 1986) follows:

Lk =
∣∣∣∣∣1 −

∑NG
m=1 HkmVm

Vk

∣∣∣∣∣ where k = 1, 2, . . . ,LB;
(6)

Hkm = −[inv(Ykk)]∗[Ykm] (7)

where LB represents number of load buses; Ykk is the self-
admittance of kth bus; and Ykm is the mutual admittance
between kth and mth buses.

2.1.4 M4 minimization of emission pollution

Nowadays, society demands not only secure electricity, but
also the minimum level of emission pollution discharged by
thermal plants. Therefore, emission pollution (EP) is also
considered one of the objectives for OPF problem, and it can
be expressed as follows (Ramesh and Premalatha 2015):

f4 =
NG∑
k=1

(
αk + βk PGk + γk P

2
Gk + μk exp

(
ξk PGk

))
(8)

where αk, βk, γk, μk, ξk are the emission coefficients of kth
generating unit.

2.1.5 M5 minimization of total production cost with valve
point loading effect

Due to the presence of multiple valves, the large size steam
turbinewill havewire drawing effects when the steam admis-
sion valves start to open. Consequently, the heat rate rises
suddenly. This phenomenon is called the valve point loading
effect and is represented by adding sinusoidal components
to the quadratic total production cost function. Therefore,
a non-convex total production cost function is expressed as
follows (Vaisakh et al. 2013):

f5 =
NG∑
k=1

(
ak+bk PGk+ck P

2
Gk+

∣∣∣dk∗ sin
(
ek

∗ (
Pmin
Gk −PGk

))∣∣∣)

(9)

where dk, ek are the cost coefficients of additional sinusoidal
component of kth generating unit; and Pmin

Gk is the minimum
active power limit of kth generating unit.

2.2 Constraints

The equality constraints g(x, u) are the nonlinear power flow
equations, which are expressed as follows:
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PGk−PDk−Vk

NB∑
m=1

Vm

(
Gkm cos θ

km
+Bkm sin θ

km

)
= 0

(10)

QGk−QDk−Vk

N B∑
m=1

Vm

(
Gkm sin θ

km
−Bkm cos θ

km

)
= 0

(11)

where PGk, QGk are the active and reactive power genera-
tions at kth generating unit, respectively; PDk, QDk are the
active and reactive power loads at kth bus, respectively; and
Gkm, Bkm are the conductance and susceptance between kth
and mth buses, respectively.

The inequality constraints h(x, u) are the minimum and
maximum limits of independent and dependent variables,
which are given as follows:

⎧⎪⎨
⎪⎩

Pmin
Gk ≤ PGk ≤ Pmax

Gk

Vmin
Gk ≤ VGk ≤ Vmax

Gk

Qmin
Gk ≤ QGk ≤ Qmax

Gk

k = 1, 2, . . . ,NG (12)

tmin
k ≤ tk ≤ tmax

k k = 1, 2, . . . ,NT (13)

bmin
Ck ≤ bCk ≤ bmax

Ck k = 1, 2, . . . ,NC (14)

Vmin
Lk ≤ VLk ≤ Vmax

Lk k = 1, 2, . . . ,LB (15)

Slk ≤ Smax
lk k = 1, 2, . . . , nl (16)

where Pmin
Gk , Pmax

Gk are the minimum and maximum active
power limits of the kth generating unit, respectively; Vmin

Gk ,

Vmax
Gk are the minimum and maximum voltage limits of the

kth generator bus, respectively; VGk represents voltage at kth
generator bus; Qmin

Gk , Qmax
Gk are the minimum and maximum

reactive power limits of the kth generating unit, respec-
tively; QGk represents reactive power at kth generating unit;
tmin
k , tmax

k are the minimum and maximum tap settings of the
kth transformer tap, respectively; tk represents tap setting at
kth transformer tap; NT represents number of transformer
taps; bmin

Ck , bmax
Ck are theminimumandmaximumshunt admit-

tance limits of the kth shunt capacitor, respectively; bCk

represents shunt admittance value of kth shunt capacitor;
NC represents number of shunt capacitors; Vmin

Lk , Vmax
Lk are

the minimum and maximum voltage limits of the kth load
bus, respectively; VLk represents voltage at kth load bus; and
Smax
lk , Slk are themaximumMVA andMVAflow in kth trans-

mission line.

3 Proposed SKH algorithm

Before understanding the idea behind stud krill herd algo-
rithm, it is necessary to discuss the krill herd algorithm,which
is described below.

3.1 Krill herd algorithm

Krill herd (KH) algorithm is a population-based algorithm,
which is inspired from the process of increasing densities of
the krill individuals and reaching high areas of food concen-
tration after predation. The distance between the food source
and highest density of the krill swarm from each krill gives a
possible solution. The krill individual, which is closer to the
higher krill density and food concentration, represents the
best fitness value. Each krill rotates in a multi-dimensional
search space, and its positions are modified by three move-
ments in an iterative process namely motion induced by the
other krill individuals, foraging motion and physical diffu-
sion and are explained below.

3.1.1 Motion induced by other krill individuals

To reach the high krill density, krill individuals always move
in an n-dimensional search space with a certain velocity, and
its direction is influenced by the local effect provided by the
neighbor krill as well as target effect. Velocity for ith krill is
calculated as follows.

Nq
i = Nmax α

i
+ωnN

q−1
i (17)

where,

α
i

= αlocal
i + target

α
i

(18)

local
α
i

=
NN∑
j=1

F̂i j Ẑi j (19)

Ẑi j = Zi − Z j∥∥Zi − Z j
∥∥ + rand

(20)

F̂i j = Fi − Fj

Fworst − Fbest (21)

where Nq
i , Nq−1

i are the motion induced by other krill indi-
viduals to ith krill individual in qth and (q − 1)th iterations,
respectively; Nmax represents maximum induced speed; NN
represents number of neighbors to each krill individual; ωn

represents inertial weight; F̂i j represents normalized fitness
difference between ith and jth krill individuals; Ẑi j rep-
resents normalized position difference between ith and jth
krill individuals; Zi , Z j are the positions of ith and jth krill
individuals, respectively; Fi , Fj are the fitness values of ith
and jth krill individuals, respectively, and Fworst, Fbest are
the worst and best fitness values in all the krill individu-
als.

In order to find the number of neighbors to each krill
individual, sensing distance (ds) is calculated using Eq. (22)
given below. If the distance between any two krill individu-
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als is less than the sensing distance, they are considered as
neighbors.

ds,i = 1

5∗NK

⎛
⎝NK∑

j=1

∥∥Zi − Z j
∥∥
⎞
⎠ (22)

where NK represents number of krill individuals; ds,i repre-
sents sensing distance of ith krill individual.

target
α
i

= Gbest F̂i,best Ẑi,best (23)

Gbest = 2
(
rand + q

/
qmax

)
(24)

where Gbest represents effective coefficient; F̂i,best is the
normalized fitness difference between ith and best krill indi-
viduals; Ẑi,best represents normalized position difference
between ith and best krill individuals; and q, qmax are the
current iteration and maximum number of iterations, respec-
tively.

3.1.2 Foraging motion

It consists of two parts, the food location in the current and
previous iterations. Good food location is the combination
of food attraction, which is used to attract the krill individ-
uals toward the global optimal solution and local best food
location. Foraging motion for ith krill is calculated as given
below:

FMq
i = Vfβi + ωfFM

q−1
i (25)

where,

βi = βfood
i + βbest

i (26)

βfood
i = Gfood Ẑi,food F̂i,food (27)

Gfood = 2
(
1 − q

/
qmax

)
(28)

Z food =
∑NK

i=1
1
Fi
Zi∑NK

i=1
1
Fi

(29)

βbest
i = F̂i,best Ẑi,best (30)

where FMq
i ,FM

q−1
i are the motion induced by other krill

individuals to ith krill individual in qth and (q − 1)th
iterations, respectively; Vf represents foraging speed; ωf

represents inertia weight constant, between [0, 1];Gfood rep-
resents food coefficient; Z food represents center of food;
Ẑi,food is the normalized position difference between ith

krill and center of food; and F̂i,food is the normalized fitness
difference between ith krill and center of food.

3.1.3 Physical diffusion

When the krill individual moves toward a global optimal
solution, it requires less random direction. Therefore, physi-
cal diffusion is used in this strategy. It consists of maximum
diffusion speed (Dmax) and random direction vector (δ). δ

is used to decrease the random direction of the krill in the
iterative process. For ith krill, it is given as follows:

Dq
i = (1 − q/qmax) D

maxδ (31)

where Dq
i is the physical diffusion of ith krill individual in

qth iteration; Dmax representsmaximumdiffusion speed; and
δ represents random directional vector, between [−1, 1].

3.1.4 Update krill position

The position of each krill is updated as follows:

Zq+1
i = Zq

i + Ct

CV∑
k=1

(ULk − LLk)
(
Nq
i + FMq

i + Dq
i

)

(32)

where Zq+1
i , Zq

i are the positions of ith krill in (q + 1)th
and qth iterations, respectively; CV represents total number
of control variables;Ct represents a random number between
[0, 2]; and ULk,LLk are the upper and lower limits of the
kth control variable, respectively.

3.2 Stud krill herd algorithm

The KH algorithm is capable to explore the search space
globally, but it fails to select sometimes the global optimum
solution in the search space. In order to overcome the problem
of KH algorithm and to make this algorithm more efficient,
SKH algorithm is developed. In SKH, stud selection and
crossover (SSC) operator is used, which accepts the newly
generated better solutions only, rather than selecting all the
other possible solutions. The idea behind the SSC operator
arose from the stud genetic algorithm (SGA), because the
selection process in SGA is not completely random. SSC
operator mainly consists of two minor operators of SGA viz.
selection and crossover. In the selection process, the best krill
is selected as the first parent, the second parent is selected to
mate with best krill, and then a crossover operator is applied
to these two parents to generate a new child krill. There-
after, fitness value is calculated, and if the fitness value of
the child’s krill individual is better than the existing indi-
vidual krill, then it is accepted; otherwise, the krill position
is updated by Eq. (32) to be considered in the next gener-
ation. Therefore, in the proposed SKH algorithm, first KH
is applied to explore thoroughly the search space thereafter
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novel SSC operator is employed to take over only the newly
generated good solutions. The control scheme of the SSC
operator is explained in below mentioned algorithm 1.

Algorithm 1

Start
select the best krill (the stud) for mating
apply single point crossover to generate a new child krill '

iZ

evaluate its fitness value '
iF

if '
iF < q

iF

consider the newly generated '
iZ as 1q

iZ
+

Else
update the position of krill individual according to Eq. (32) as 1q

iZ
+

End
End

4 Proposed SKH algorithm for OPF problems

Stepwise detailed description of the proposed algorithm to
solve OPF problems is presented in the following procedure.

Step 1. A krill individual, which represents a complete solu-
tion for OPF problems, is randomly initialized. It
consists of control variables such as generator buses,
real power outputs except slack bus and voltage
magnitudes, tap settings of transformers connected
between various buses and shunt capacitors, which
are randomly generated within their limits. Thus, a
krill individual may be expressed as follows:

Zi = [
PGi,2, . . . , PGi,NG, VGi,1, . . . , VGi,NG,

ti,1, . . . , ti,NT, bCi,1, . . . , bCi,NC
]

(33)

The size of the krill matrix depends upon the number
of krill individuals in the population. Each krill in
a matrix produces a potential solution to the OPF
problems. The complete search space of the SKH
algorithm for all krill individuals (NK) is expressed
as follows:

Z =

⎡
⎢⎢⎢⎢⎢⎢⎣

Z1
...

Zi
...

ZNK

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

PG1,2, . . . , PG1,NG, VG1,1, . . . , VG1,NG, t1,1, . . . , t1,NT, bC1,1, . . . , bC1,NC
...

PGi,2, . . . , PGi,NG, VGi,1, . . . , VGi,NG, ti,1, . . . , ti,NT, bCi,1, . . . , bCi,NC
...

PGNK,2, . . . , PGNK,NG, VGNK,1, . . . , VGNK,NG, tNK,1, . . . , tNK,NT, bCNK,1, . . . , bCNK,NC

⎤
⎥⎥⎥⎥⎥⎥⎦

(34)

Step 2. The fitness function formulated as a penalty function
(Ramesh and Premalatha 2015) is expressed as

F = fk + wP

(∣∣∣PG1-PlimG1
∣∣∣)2

+wV

(∣∣∣VLk − V lim
Lk

∣∣∣)2+wQ

(∣∣∣QGk−Qlim
Gk

∣∣∣)2

+wS

(∣∣∣Slk − Slimlk

∣∣∣)2 (35)

where F represents fitness value, fk is the kth objec-
tive function for k = 1, 2, . . . , 5; PG1 represents
slack bus active power output; PlimG1 , V lim

Lk , Qlim
Gk , S

lim
lk

are the minimum or maximum values of the slack
bus real power output, load bus voltages, generator
reactive power outputs and line flows, respectively,
and wP, wV , wQ and wS are the penalty coefficients
of the respective constraints. In this work, the val-
ues of these coefficients are chosen high in order to
eliminate the infeasible krill individuals during the
iterative process.

Step 3. Sort all the krill individuals according to their fitness
value.

Step 4. Compute three motions namely motion induced
by the other kill individual, foraging motion and
physical diffusion using Eqs. (17), (25) and (31),
respectively, to each krill.

Step 5. Update the position of each krill using Algorithm 1.
Step 6. If any control variable xi is violated, then it is han-

dled as expressed below:

xi =
{
xmax, if xi > xmax

xmin, else if xi < xmin
(36)

Step 7. If themaximumnumber of iterations is reached, then
stop the procedure and print the optimum schedule,
otherwise go to Step 3.

The flowchart of the proposed method for solving OPF
problem is depicted in Fig. 1.
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Start

Create initial population (Z) randomly with in their limits
& set iteration(q)=1

Run load flow and find the dependent variables

If Fi
’<Fi

Consider Zi
’, as Zi

q+1 in the next
generation

Updated Zi ,using Eq. (32) as Zi
q+1

in the next generation

Print the best solution

Stop

If
Iteration> qmax

Yes No

Read input data ,initialize the SKH parameters such
as Nmax, ,Vf, ωf,Dmax, Pc& set qmax

Apply, stud selection and crossover operator on krill Zi, and generate new krill Zi
’

Run load flow and find the dependent variables

Sort all krill individuals, perform three motions on krill Zi using
Eqs. (17), (25) & (31)

Calculate fitness (Fi ) value using Eq. (35)

Calculate fitness (Fi
’ ) value using Eq. (35)

Iteration=iteration+1

Yes

No

Fig. 1 Flowchart of the proposed SKH algorithm

5 Simulation results

In order to examine the effectiveness of the proposed algo-
rithm, IEEE 14-bus, IEEE 30-bus and IEEE 57-bus systems
are considered for solving OPF problems with the same
objective functions as considered in Ramesh and Premalatha
(2016). The proposed simulation work was implemented on
a 2.2 GHz, i3 core processor withMATLAB 2009a. The pop-
ulation size has been taken as 60, and the maximum number
of iterations is set to 200 for these test systems.

5.1 IEEE 14-bus system (Test system 1)

To test the feasibility of the proposed SKH algorithm, ini-
tially, IEEE 14-bus system is considered which comprises

of 20 transmission lines and system real power demand is
259 MW. It has thirteen control variables, which include
four generators active powers, five generators voltages, three
transformer taps and one shunt capacitor. The minimum and
maximum voltages of all the buses lie between 0.94 and 1.06
p.u. The transformer taps are considered between 0.9 and 1.1
p.u., and shunt capacitors lie between 0 and 0.05 p.u.Detailed
information about IEEE 14-bus system and generator cost
coefficients are considered from Zimmerman et al. (2011);
emission coefficients are referred from Sarat and Sudhansu
(2015), and for fair comparison, the generator cost coeffi-
cients for model 5 (M5) are considered from Belgin and
Rengin (2013).
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Table 2 Comparison of
statistical results with other
methods for IEEE 14-bus system

Different models Method Minimum Average Worst SD ET(s)

M1 SKH 8080.7045 8081.4451 8083.0272 0.6697 8.56

KH 8081.9462 8083.8741 8086.5605 1.5938 7.84

MATPOWER
(Zimmerman et al.
2011)

8081.53 – – – –

M2 SKH 0.6037 0.6760 0.8165 0.0700 8.95

KH 0.6532 0.7846 1.1006 0.1238 8.02

M3 SKH 0.0750 0.0757 0.0775 0.0008 8.21

KH 0.0755 0.0769 0.0782 0.0009 7.43

M4 SKH 0.1612 0.1617 0.1624 0.0004 8.78

KH 0.1616 0.1623 0.1646 0.0008 7.93

M5 SKH 833.2036 833.5976 834.6479 0.4382 9.12

KH 834.1719 835.1492 836.2631 0.7001 8.43

PSO (Belgin and Rengin
2013)

833.57 – – – –

SFLA-SA (Belgin and
Rengin 2013)

834.36 – – – –

PSO (Celal and Serdar
2011)

836.45 – – – –

MSG-HS (Celal and
Serdar 2011)

896.68 – – – –

HGA (Belgin and
Rengin 2013)

905.54 – – – –

Shuffled frog leaping algorithm–simulated annealing (SFLA-SA); modified subgradient–harmony search
(MSG-HS); hybrid genetic algorithm (HGA).
(–) in above table represents that the results are not available in the literature

Table 3 Optimal control
variables for all models of IEEE
14-bus system

Control variables M1 M2 M3 M4 M5

PG1(MW) 194.4830 8.5648 10.9645 109.1501 199.6102

PG2(MW) 36.3859 21.8190 103.0485 48.1776 20.0009

PG3(MW) 29.7104 89.1289 96.4996 39.1971 21.3076

PG6(MW) 0.1031 40.0908 0.000 32.5855 16.0224

PG8(MW) 7.5717 100.0000 50.4486 34.2249 11.3568

VG1(p.u.) 1.0599 1.0600 1.0600 1.0484 1.0600

VG2(p.u.) 1.0392 1.0554 1.0600 1.0351 1.0438

VG3(p.u.) 1.0140 1.0532 1.0596 1.0105 1.0209

VG6(p.u.) 1.0253 1.0450 1.0600 1.0600 1.0184

VG8(p.u.) 1.0599 1.0600 1.0600 1.0415 1.0567

t4−7(p.u.) 1.0309 0.9956 0.9781 0.9000 1.0221

t4−9(p.u.) 0.9000 0.9237 0.9000 1.0304 0.9329

t5−6(p.u.) 1.0021 1.0014 0.9743 0.9504 1.0175

bC9(p.u.) 0.0497 0.0344 0.0500 0.0500 0.0210

TPC ($/h) 8080.7045 10094.15 10936.69 8517.473 833.2036

APL (MW) 9.2543 0.6037 1.9614 4.3355 9.2981

L-index 0.0803 0.0779 0.0750 0.0778 0.0827

EP (ton/h) 0.2364 0.3368 0.3205 0.1612 0.2375
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The values of the tuning parameters used in SKH algo-
rithm, namely maximum induced speed (Nmax), diffusion
speed (Dmax), foraging speed (Vf) and type of crossover
are required to be selected judiciously. For the tuning of
these parameters, twenty independent trials were run with
different values of Nmax, Dmax, Vf with single- and two-
point crossover operators for M1 and are mentioned in
Table 1. From this table, it is identified that the single-
point crossover gives better results compared to two-point
crossover. The optimal value of TPC 8080.704 ($/h) is
obtained with Nmax = 0.04, Dmax = 0.03 and Vf = 0.005
with single-point crossover. Hence, for further investiga-
tions of objective models Nmax = 0.04, Dmax = 0.03 and
Vf = 0.005 with single-point crossover are used. The inertia
weights are set to 0.9 initially and later decreased linearly up
to 0.1.

Both KH and the proposed SKH algorithms have been
applied to solve all the objective function models mentioned
in Sect. 2.1. With the selected SKH parameters, the mini-
mum, the average, the maximum objective function values,
along with standard deviation (SD) and execution time (ET)
of 200 generations over 20 trials are compared with the
other methods presented in the literature and are reported
in Table 2, from where it is inferred that the proposed SKH
algorithm provides better overall statistical results in reason-
able computational time. The best combination of control
parameters attained with SKH algorithm along with the total
production cost with and without valve point lading effect,
active power loss, L-index and emission pollution for all the
models are mentioned in Table 3. The minimum and maxi-
mum load voltages attained in all the models are depicted
in Fig. 2, which proves that the SKH algorithm is capa-
ble to handle all the voltage constraints within their limits.
The convergence characteristics obtained usingKHand SKH
algorithms are plotted in Fig. 3 for objective function M1
from where it is seen that both the algorithms are converg-
ing efficiently, but SKH algorithm quickly brings down the
objective function to optimal value as compared to KH algo-
rithm.
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M1 for IEEE 14-bus system

5.2 IEEE 30-bus system (Test system 2)

The test system consists of six generators, 41 branches, and
the system real power demand is 283.4 MW. It has 24 con-
trol variables, which include five unit active power outputs,
six generators voltage magnitudes, four transformer taps and
nine shunt branch capacitors. Voltage magnitudes of the gen-
erator buses are considered between [0.95, 1.1] p.u. The
transformer taps are considered in the range between [0.9,
1.1] p.u. The load buses voltage magnitudes are considered
in the range of [0.95, 1.05] p.u. The shunt capacitor values
are lie between [0, 0.05] p.u. The information about the bus
data, branch data and fuel cost coefficients have been taken
from Ramesh and Premalatha (2015).

To obtain the optimal combination of tuning parameters
for IEEE 30-bus system, the minimum total production cost
value over 20 independent trials with different combination
of Nmax, Dmax, Vf , for single- and two-point crossover oper-
ators are calculated and details are mentioned in Table 4.
From this table, it is identified that the single-point crossover
gives better results compared with two-point crossover, and
the optimal combination of these parameters to get the best
performance of the proposed algorithm is Nmax = 0.04,
Vf = 0.03, Dmax = 0.005 with single-point crossover. The
inertia weights ωn and ωf are set to 0.9 initially and later
decreased linearly up to 0.1.

The IEEE 30-bus system has been solved with both KH
and proposed SKH algorithms. With the selected SKH para-
meters, the minimum, the average, the worst values, the
standard deviation (SD) and the execution time (ET) for
the objective function models, M1 to M5 over 20 trials, are
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Table 5 Comparison of statistical results with other methods for IEEE 30-bus system

Different models Method Minimum Average Worst SD ET(s)

M1 SKH 800.5141 800.6299 800.8762 0.0944 18.23

KH 800.8013 800.9255 801.1915 0.1055 16.63

ARCBBO (Ramesh and Premalatha 2015) 800.5159 800.6412 800.9262 – –

ABC (Rezaei Adaryani and Karami 2013) 800.6600 800.8715 801.8674 – –

LDI-PSO (Rezaei Adaryani and Karami 2013) 800.7398 801.5576 803.8698 – –

IGA (Lai et al. 1997) 800.805 – – – –

RCBBO (Ramesh and Premalatha 2015) 800.8703 802.02 802.9431 – –

BBO (Ramesh and Premalatha 2015) 801.0562 801.7414 802.4174 – –

M2 SKH 3.0987 3.1116 3.1878 0.0181 18.89

KH 3.1100 3.1630 3.2413 0.0349 16.92

ARCBBO (Ramesh and Premalatha 2015) 3.1009 3.1156 3.1817 – –

ABC (Rezaei Adaryani and Karami 2013) 3.1078 – – – –

EGA (Sailaja Kunari and Maheswarapu 2010) 3.2008 – – – –

M3 SKH 0.1366 0.1372 0.1384 0.0006 19.01

KH 0.1368 0.1379 0.1391 0.0007 16.98

ARCBBO (Ramesh and Premalatha 2015) 0.1369 0.1375 0.1387 – –

ABC (Rezaei Adaryani and Karami 2013) 0.1379 0.1960 0.7201 – –

M4 SKH 0.2048 0.2049 0.2051 0.0000 18.02

KH 0.2049 0.2050 0.2054 0.0001 16.54

ARCBBO (Ramesh and Premalatha 2015) 0.2048 0.2054 0.2064 – –

ABC (Rezaei Adaryani and Karami 2013) 0.204826 – – – –

M5 SKH 930.6598 930.8719 931.2666 0.2041 19.56

KH 931.0440 931.4664 932.1483 0.3262 17.23

GEADPSO (Vaisakh et al. 2013) 930.7454 – – – –

MDE (Sayah et al. 2008) 930.7930 – – – –

Linearly decreasing inertia PSO (LDI-PSO); enhanced GA (EGA); modified DE (MDE).

reported in Table 5. From this table, it is observed that the
SKH algorithm obtained better optimal values compared to
the other methods considered in this work. The optimal con-
trol variables computed using SKH along with the minimum
total production cost (TPC) with and without valve point
loading effect, active power loss (APL), L-index and emis-
sion pollution (EP) obtained are shown in Table 6 for all
the objective models, M1 to M5 considered in this study.
The minimum and maximum load bus voltage magnitudes
obtained from all the objective function models shown in
Fig. 4 confirm the compliance of voltage inequality con-
straints at all the load buses. The L-index values computed
using SKH algorithm for objective models, M1 and M3, are
0.1382 and 0.1366, fromwhich it can be perceived that the L-
index value obtained for M3 lesser by 1.36% in comparison
with M1. Therefore, voltage stability is improved. Figure 5
illustrates the convergence characteristics attained using KH
and SKH algorithms, from where it is observed that the SKH
algorithm has fast convergence characteristics compared to
KH algorithm.

5.3 IEEE 57-bus system (Test system 3)

The test system comprises of seven generators, 80 branch
lines and 50 load buses. System real power demand is
1266.42 MW, and it has 33 control variables, in which six
generators active power outputs, seven generator buses volt-
age magnitudes, seventeen transformer taps within the range
of [0.9, 1.1] p.u., and three shut capacitors are lie between [0,
.3] p.u. The voltage magnitudes of all the buses are consid-
ered in the interval [0.94, 1.06] p.u. The bus data, fuel cost
coefficients and branch data are referred from Zimmerman
et al. (2011).

For IEEE 57-bus system, the minimum total production
cost value over 20 independent trials with different values of
Nmax, Dmax, Vf , for single- and two-point crossover aremen-
tioned inTable 7. It is observed that the single-point crossover
gives better results compared with two-point crossover, and
the optimal combination of these parameters to get the better
performance of the proposed algorithm are Nmax = 0.05,
Vf = 0.03, Dmax = 0.01 with single-point crossover. The
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Table 6 Optimal control
variables for all models of IEEE
30-bus system

Control variables M1 M2 M3 M4 M5

PG1(MW) 177.1421 51.4987 180.6225 64.0619 197.6693

PG2(MW) 48.6393 80.0000 44.8154 67.5706 52.0570

PG5(MW) 21.3132 49.9999 15.8477 49.9999 15.0000

PG8(MW) 21.2568 34.9999 10.2037 35.0000 10.0000

PG11(MW) 11.9684 30.0000 29.8161 30.0000 10.0000

PG13(MW) 12.0000 40.0000 12.0000 40.0000 12.0000

VG1(p.u.) 1.0844 1.0613 1.0752 1.0630 1.0421

VG2(p.u.) 1.0648 1.0572 1.0650 1.0569 1.0190

VG5(p.u.) 1.0332 1.0378 1.0686 1.0374 0.9659

VG8(p.u.) 1.0378 1.0441 1.0564 1.0439 1.0429

VG11(p.u.) 1.0818 1.0663 1.1000 1.0827 1.1000

VG13(p.u.) 1.0460 1.0537 1.0304 1.0527 1.1000

t6−9(p.u.) 1.0105 1.0439 1.0429 1.0252 1.0999

t6−10(p.u.) 0.9785 0.9308 0.9000 0.9510 1.1000

t4−12(p.u.) 0.9651 0.9919 0.9362 0.9880 1.0999

t28−27(p.u.) 0.9733 0.9761 0.9637 0.9758 1.0720

bC10(p.u.) 0.0375 0.0327 0.0087 0.0000 0.0499

bC12(p.u.) 0.0046 0.0238 0.0046 0.0129 0.0499

bC15(p.u.) 0.0388 0.0415 0.0480 0.0442 0.0500

bC17(p.u.) 0.0499 0.0499 0.0258 0.0499 0.0499

bC20(p.u.) 0.0404 0.0392 0.0000 0.0387 0.0500

bC21(p.u.) 0.0500 0.0500 0.0002 0.0500 0.0499

bC23(p.u.) 0.0288 0.0287 0.0095 0.0291 0.0499

bC24(p.u.) 0.0499 0.0499 0.0007 0.0500 0.0499

bC29(p.u.) 0.0236 0.0224 0.0000 0.0218 0.0235

TPC ($/h) 800.5141 967.6594 814.0100 944.3802 930.6598

APL (MW) 9.0282 3.0987 9.9056 3.2326 13.3263

L-index 0.1382 0.1385 0.1366 0.1384 0.1568

EP (ton/h) 0.3662 0.2072 0.3740 0.2048 0.4353

1.018 1.016 1.017 1.017

0.95

1.049 1.049 1.049 1.05 1.038

0.9

0.95

1

1.05

1.1
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.)

Different models
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Fig. 4 Minimum and maximum load bus voltages of various models
for IEEE 30-bus system

inertia weights ωn and ωf are set to 0.9 initially and later
decreased linearly up to 0.1.

The proposed SKH algorithm has been implemented for
solving different objective function models mentioned in
problem formulation. Table 8 shows the minimum, the aver-
age, the worst values, the SD and the ET obtained for the
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Fig. 5 Convergence characteristics with KH and SKH algorithms of
M1 for IEEE 30-bus system
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Table 8 Comparison of statistical results with other methods for IEEE 57-bus system

Different models Method Minimum Average Worst SD ET(s)

M1 SKH 41676.9152 41679.0443 41689.2076 3.6486 49.36

KH 41681.3521 41687.1537 41700.5925 4.6814 45.21

GABC (Jadhav and Bamane 2016) 41684.2011 41686.7298 41689.5730 1.5814 –

ARCBBO (Ramesh and Premalatha 2015) 41686 41718 41737 – –

TLBO (Jadhav and Bamane 2016) 41688.8512 41693.1552 41698.0085 – –

ABC (Rezaei Adaryani and Karami 2013) 41693.9589 – – – –

PSO (Jadhav and Bamane 2016) 41695.1483 41714.1392 41717.5173 12.99 –

CSO (Jadhav and Bamane 2016) 41696.1767 41708.3916 41718.945 13.68 –

ICA (Jadhav and Bamane 2016) 41709.7292 41712.6836 41715.6957 11.57 –

GA (Jadhav and Bamane 2016) 41711.9365 41719.604 41734.1638 18.15 –

MATPOWER (Zimmerman et al. 2011) 51,347.86 – – – –

M2 SKH 10.6877 11.1110 12.0016 0.4751 49.58

KH 11.2158 12.0275 13.5281 0.6360 45.01

M3 SKH 0.2721 0.2760 0.2879 0.0046 50.23

KH 0.2738 0.2803 0.2934 0.0065 46.48

M4 SKH 1.0800 1.0810 1.0835 0.0011 49.92

KH 1.0811 1.0825 1.0868 0.0015 46.01

G-best guided ABC (GABC); teaching learning based optimization (TLBO); cat swarm optimization (CSO); imperialist competitive algorithm
(ICA)

objective functions M1 to M4 over 20 independent trials;
from these results, it is observed that the proposed algo-
rithm outperforms all the other algorithms presented in the
literature. The optimal set of control variables obtained with
various models along with TPC, APL, L-index and EP val-
ues for M1 to M4 are furnished in Table 9. The minimum
and maximum load bus voltage magnitudes in all the mod-
els are depicted in Fig. 6, from where it is proved that
the proposed algorithm is capable of handling all the volt-
age constraints within their allowable limits. The variations
of the TPC over iterations for KH and SKH algorithms
are illustrated in Fig. 7. It is proved that the SKH algo-
rithm converged faster and achieved better optimal result
as compared to the KH algorithm. Figure 8 assesses the
percentage of TPC savings of the SKH algorithm in com-
parison with other methods reported in the literature, which
clearly indicates that the SKH algorithm provides high-
est cost savings compared with the other methods. All the
above-mentioned results reveal that the proposed algorithm
is superior and effective to solve all the single-objective OPF
problems.

5.4 Sensitivity analysis

Further, sensitivity analysis is also conducted using the
proposed SKH algorithm with the best tuning parameters
of objective function M1 for IEEE 14-bus, IEEE 30-bus
and IEEE 57-bus systems. After setting the perturbation

of ±20% in the tuning parameters giving better optimal
value, the minimum, average and worst TPC values over
20 trials are given in Table 10. It is observed for IEEE
14-bus system, the maximum variations attained from the
optimal TPC value 8080.7045 ($/h) are 0.0107, 0.0266
and 0.0441% of minimum, average and worst TPC val-
ues, respectively. Similarly, for the IEEE 30-bus system, the
maximum deviations achieved from the optimal TPC value
800.5141 ($/h) are 0.0125, 0.0301 and 0.0699% of mini-
mum, average and worst TPC values respectively. Moreover,
for IEEE 57-bus system, the maximum variations obtained
with respect to the optimal TPC value 41676.9152 ($/h) are
0.01, 0.0292 and 0.0488% of minimum, average and worst
TPC values, respectively. Hence, it can be identified that the
obtained results are not much sensitive to the parameters
variations.

6 Conclusion

Here, the new SKH algorithm is presented where the con-
cept of SSC operator is augmented with the KH algorithm
for improving the search process while solving the OPF
problems. The SKH algorithm has been able to solve the
OPF problems considering the minimization of total produc-
tion cost, active power loss, L-index and emission pollution
as objective functions. The most important privilege of the
proposed SKH algorithm is obtaining better optimal solu-
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Table 9 Optimal control variables for allmodels of IEEE57-bus system

Control
variables

M1 M2 M3 M4

PG1(MW) 142.8235 200.9220 118.4496 236.9403

PG2(MW) 90.4827 3.3270 99.9025 99.9999

PG3(MW) 45.1846 139.9317 129.8141 140.0000

PG6(MW) 71.8808 99.9470 83.1895 100.0000

PG8(MW) 459.2338 307.3602 352.8545 291.9522

PG9(MW) 96.1160 100.0000 99.9975 100.0000

PG12(MW) 360.1577 409.9996 379.9074 298.2316

VG1(p.u.) 1.0593 1.0023 1.0600 1.0520

VG2(p.u.) 1.0575 0.9957 1.0566 1.0499

VG3(p.u.) 1.0512 0.9987 1.0496 1.0406

VG6(p.u.) 1.0594 0.9983 1.0581 1.0309

VG8(p.u.) 1.0599 1.0012 1.0559 1.0293

VG9(p.u.) 1.0373 0.9795 1.0417 1.0081

VG12(p.u.) 1.0416 0.9855 1.0631 1.0106

t4−18(p.u.) 0.9062 0.9643 0.9322 0.9039

t4−18(p.u.) 1.0955 0.9004 1.0998 1.0093

t21−20(p.u.) 1.0106 1.0096 1.0983 1.0137

t24−25(p.u.) 0.9815 0.9759 1.0877 0.9668

t24−25(p.u.) 1.0782 1.0312 0.9066 1.0203

t24−26(p.u.) 1.0257 1.0021 0.9591 0.9999

t7−9(p.u.) 0.9895 0.9327 1.0028 0.9624

t34−32(p.u.) 0.9691 0.9493 0.9000 0.9529

t11−41(p.u.) 0.9008 0.9004 0.9003 0.9000

t15−45(p.u.) 0.9740 0.9176 0.9799 0.9584

t14−46(p.u.) 0.9591 0.9059 0.9629 0.9420

t10−51(p.u.) 0.9649 0.9172 0.9981 0.9430

t13−49(p.u.) 0.9310 0.9001 0.9051 0.9191

t11−43(p.u.) 0.9657 0.9026 0.9735 0.9360

t40−46(p.u.) 0.9937 1.0000 1.0993 1.0023

t39−57(p.u.) 0.9629 0.9776 1.0998 0.9624

t9−55(p.u.) 0.9846 0.9263 0.9865 0.9469

bC18(p.u.) 0.1580 0.0605 0.2529 0.0506

bC25(p.u.) 0.1563 0.1399 0.1127 0.1281

bC53(p.u.) 0.1380 0.1262 0.2627 0.1197

TPC ($/h) 41676.9152 45044.2407 43937.1058 45661.0588

APL (MW) 15.0795 10.6877 13.3154 16.3234

L-index 0.2807 0.2857 0.2721 0.2821

EP (ton/h) 1.9078 1.3937 1.2920 1.0800

tions in less number of iterations compared with the KH
algorithm. The effectiveness and robustness of the SKHalgo-
rithm have been tested on IEEE 14-bus, IEEE 30-bus and
IEEE 57-bus systems. The algorithm has been successful
in producing feasible and optimal solutions for the stan-
dard test systems. The results obtained with the proposed
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SKH algorithm confirmed the good quality of different OPF
solutions in comparison with the other algorithms in the lit-
erature.

123



A solution network based on stud krill herd algorithm for optimal power flow problems 175

Ta
bl
e
10

R
es
ul
ts
ob
ta
in
ed

w
ith

SK
H
pe
rt
ur
be
d
pa
ra
m
et
er
s
fo
r
IE
E
E
14
-b
us
,I
E
E
E
30
-b
us

an
d
IE
E
E
57
-b
us

sy
st
em

s

Te
st

Sy
st
em

B
es
t
Pa
ra
m
et
er

-
20

%
M
in
im

um
C
os
t(
$/
h)

A
ve
ra
ge

C
os
t(
$/
h)

W
or
st
C
os
t(
$/
h)

B
es
tP

ar
am

et
er
+

20
%

M
in
im

um
C
os
t(
$/
h)

A
ve
ra
ge

C
os
t(
$/
h)

W
or
st
C
os
t(
$/
h)

1
N

m
ax

80
81
.0
68
7
(0
.0
04
5
%
)

80
82
.2
22

(0
.0
18
7
%
)

80
83
.5
23
6
(0
.0
34
8
%
)

N
m
ax

80
80
.9
46
2
(0
.0
03

%
)

80
81
.9
91
4
(0
.0
15
9
%
)

80
83
.6
27
1
(0
.0
36
1
%
)

2
80
0.
52
68

(0
.0
01
5
%
)

80
0.
65
92

(0
.0
18
1
%
)

80
0.
94
41

(0
.0
53
7
%
)

80
0.
54
46

(0
.0
03
8
%
)

80
0.
67
04

(0
.0
19
5
%
)

80
0.
98
56

(0
.0
58
9
%
)

3
41
67
7.
67

(0
.0
02
5
%
)

41
68
7.
45

(0
.0
25
2
%
)

41
69
3.
92

(0
.0
40
8
%
)

41
67
9.
5
(0
.0
06
3
%
)

41
68
6.
7
(0
.0
23
4
%
)

41
69
2.
8
(0
.0
38
2
%
)

1
V
f

80
80
.9
87
6
(0
.0
03
5
%
)

80
81
.7
35
2
(0
.0
12
7
%
)

80
83
.7
07
9
(0
.0
37
1
%
)

V
f

80
81
.1
73
8
(0
.0
05
8
%
)

80
82
.2
56
4
(0
.0
19
2
%
)

80
83
.5
42
1
(0
.0
35
1
%
)

2
80
0.
58
5
(0
.0
08
8
%
)

80
0.
66
63

(0
.0
19
0
%
)

80
1.
02
3
(0
.0
63
6
%
)

80
0.
55
79

(0
.0
05
4
%
)

80
0.
65
15

(0
.0
18
1
%
)

80
0.
98
70

(0
.0
59
0
%
)

3
41
67
8.
75

(0
.0
04
3
%
)

41
68
6.
3
(0
.0
22
5
%
)

41
69
2.
03

(0
.0
36
2
%
)

41
67
8.
38

(0
.0
03
5
%
)

41
68
8.
37

(0
.0
27
4
%
)

41
69
6.
64

(0
.0
47
3
%
)

1
D

m
ax

80
81
.1
18
4
(0
.0
05
1
%
)

80
82
.2
42
9
(0
.0
19
0
%
)

80
83
.6
11
1
(0
.0
35
9
%
)

D
m
ax

80
81
.0
20
5
(0
.0
03
9
%
)

80
82
.0
83
1
(0
.0
17
0
%
)

80
83
.5
04
1
(0
.0
34
6
%
)

2
80
0.
53
26

(0
.0
02
3
%
)

80
0.
69
4
(0
.0
22
4
%
)

80
0.
91
22

(0
.0
49
7
%
)

80
0.
61
22

(0
.0
12
2
%
)

80
0.
75
61

(0
.0
30
2
%
)

80
0.
95
53

(0
.0
55
1
%
)

3
41
67
9.
2
(0
.0
05
4
%
)

41
68
9.
1
(0
.0
29
2
%
)

41
69
6.
16

(0
.0
46
1
%
)

41
67
7.
33

(0
.0
00
9
%
)

41
68
6.
45

(0
.0
22
8
%
)

41
69
5.
33

(0
.0
44
1
%
)

1
N

m
ax

,
V
f,
D

m
ax

(A
ll
do
w
n)

80
81
.3
00
4
(0
.0
07
85

%
)

80
82
.4
03
3
(0
.0
21
0
%
)

80
84
.1
05
7
(0
.0
42
0
%
)

N
m
ax

,
V
f,
D

m
ax

(A
ll
up
)

80
81
.5
70
6
(0
.0
10
7
%
)

80
82
.8
55
1
(0
.0
26
6
%
)

80
84
.2
59
5
(0
.0
44
1
%
)

2
80
0.
57
07

(0
.0
07
0
%
)

80
0.
67
34

(0
.0
19
9
%
)

80
1.
03
91

(0
.0
65
5
%
)

80
0.
61
49

(0
.0
12
5
%
)

80
0.
75
55

(0
.0
30
1
%
)

80
1.
07
4
(0
.0
69
9
%
)

3
41
67
9.
57

(0
.0
06
3
%
)

41
68
7.
64

(0
.0
25
7
%
)

41
69
5.
1
(0
.0
43
6
%
)

41
68
1.
12

(0
.0
10
0
%
)

41
68
8.
25

(0
.0
27
1
%
)

41
69
7.
29

(0
.0
48
8
%
) Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Animal andhumanrights All procedures performed in studies involv-
ing human participants were in accordance with the ethical standards
of the institutional and/or national research committee and with the
1964 Helsinki declaration and its later amendments or comparable eth-
ical standards. This chapter does not contain any studies with animals
performed by any of the authors.

Informed consent Informed consent was obtained from all individual
participants included in the study.

References

Al-Rashidi MR, El-Hawary ME (2009) Applications of computational
intelligence techniques for solving the revived optimal power flow
problem. Electr Power Syst Res 79(4):694–702

Belgin ET,Rengin IC (2013)Optimal power flow solution using particle
swarmoptimization algorithm, In: Proceedings of the 15th interna-
tional conference on computer as a tool (EUROCON-2013),Unska
3, Zagreb. doi:10.1109/EUROCON.2013.6625164

Celal Y, Serdar O (2011) A New hybrid approach for non-convex eco-
nomic dispatch problem with valve-point effect. Energy 36:5838–
5845

Dommel HW, Tinney WF (1968) Optimal power flow solutions. IEEE
Trans Power Appar Syst 87(10):1866–1876

Frank S, Steponavice I, Rebennack S (2012) Optimal power flow: a
bibliographic survey II, non-deterministic and hybrid methods.
Energy Syst 3(3):259–289

Gaige W, Lihong G, Amir HG, Lihua C, Amir HA, Hong D, Jiang L
(2013) Levy-flight krill herd algorithm. Math Prob Engg. doi:10.
1155/2013/682073

Gai-Ge W, Amir HG, Amir HA (2013) A chaotic particle-swarm krill
herd algorithm for global numerical optimization. Kybernetes
42(6):962–978

Gai-GeW,AmirHG,AmirHA(2014a)Aneffective krill herd algorithm
withmigration operator in biogeography-based optimization.Appl
Math Model 38:2454–2462

Gai-Ge W, Amir HG, Amir HA, Guo-Sheng H (2014b) Hybrid krill
herd algorithm with differential evolution for global numerical
optimization. Neural Comput Appl 25:297–308

Gai-Ge W, Gandomi AH, Alavi AH (2014c) Stud krill herd algorithm.
Neurocomput 128:363–370

Gai-Ge W, Guo L, Wang H, Duan H, Liu L, Li J (2014) Incor-
porating mutation scheme into krill herd algorithm for global
numerical optimization. Neural Comput Appl. doi:10.1007/
s00521-012-1304-8

Gai-GeW,LihongG,AmirHG,Guo-ShengH,HeqiW (2014e)Chaotic
krill herd algorithm. Inf Sci 274:17–34

Gai-GeW,Amir HG,Amir HA, SuashD (2015) A hybridmethod based
on krill herd and quantum-behaved particle swarm optimization.
Neural Cromput Appl 27(4):989–1006

Gai-Ge W, Suash D, Amir HG, Amir HA (2016) Opposition-based
krill herd algorithm with Cauchy mutation and position clamping.
Neurocomput 177:147–157

Gandomi AH, Talatahari S, Tadbiri F, Alavi AH (2013) Krill herd algo-
rithm for optimum design of truss structures. Int J Bio Inspired
Comput 5(5):281–288

Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired
optimization algorithm. Commun Nonlinear Sci Numer Simul
17(12):4831–4845

123

http://dx.doi.org/10.1109/EUROCON.2013.6625164
http://dx.doi.org/10.1155/2013/682073
http://dx.doi.org/10.1155/2013/682073
http://dx.doi.org/10.1007/s00521-012-1304-8
http://dx.doi.org/10.1007/s00521-012-1304-8


176 H. Pulluri et al.

Jadhav HT, Bamane PD (2016) Temperature dependent optimal power
flowusing g-best guided artificial bee colony algorithm. Int J Electr
Power Energy Syst 77:77–90

Junpeng L, Yinggan T, Changchun H, Xinping G (2014) An improved
krill herd algorithm: krill herd with linear decreasing step. Appl
Math Model 234:356–367

Kessel P, Glavitsch H (1986) Estimating the voltage stability of a power
system. IEEE Trans Power Deli PWRD-1. pp 346–354

Khatib W, Fleming P (1998) The stud GA: a mini revolution? 5th Inter-
national Conference on Parallel Problem Solving from Nature.
Springer, New York, pp 683–691

Lai LL, Ma JT, Yokoyama R, Zhao M (1997) Improved genetic algo-
rithms for optimal power flow under both normal and contingent
operation states. Int J Electr Power Energy Syst 19(5):287–292

Lihong G, Gai-Ge W, Amir HG, Amir HA, Hong D (2014) A new
improved krill herd algorithm for global numerical optimization.
Neurocomput 138:392–402

Ramesh KA, Premalatha L (2015) Optimal power flow for a deregu-
lated power system using adaptive real coded biogeography-based
optimization. Int J Electr Power Energy Syst 73:393–399

Reid GF, Hasdorf L (1973) Economic dispatch using quadratic pro-
gramming. IEEE Trans Power Appar Syst 92:2015–2023

Rezaei Adaryani M, Karami A (2013) Artificial bee colony algorithm
for solving multi-objective optimal power flow problem. Int J
Electr Power Energy Syst 53:219–230

Sailaja Kunari M, Maheswarapu S (2010) Enhanced genetic algorithm
based computation technique for multi-objective optimal power
flow. Int J Electr Power Energy Syst 32(6):736–742

Sarat KM, Sudhansu KM (2015) Multi-objective economic emission
dispatch solution using non-dominated sorting genetic algorithm-
II. Discovery 47(219):121–126

Sayah S, Zehar K (2008) Modified differential evolution algorithm for
optimal power flow with non-smooth cost functions. Energy Con-
vers Manage 49:3036–3042

Shoults RR, Sun DT (1982) Optimal power flow based on P–Q decom-
position. IEEE Trans Power Appar Syst 101:397–405

Sinsuphan N, Leeton U, Kulworawanichpong T (2013) Optimal power
flow solution using improved harmony search method. Appl Soft
Comput 13:2364–2374

Sun DI, Ashley B, Brewer B, Hughes A, Tinney WF (1984) Optimal
power flow by newton approach. IEEE Trans Power Appar Syst
103:2864–2880

Tian Hao, Yuan Xiaohui, Huang Yuehua, Xiaotao Wu (2015) An
improved gravitational search algorithm for solving short-term
economic/environmental hydrothermal scheduling. Soft Comput
19:2783–2797

Torres GL, Quintana VH (1998) An interior-point method for nonlinear
OPFusing voltage rectangular coordinates. IEEETransPowerSyst
13:1211–1218

Vaisakh K, Srinivas LR, Kala M (2013) Genetic evolving ant direction
particle swarmoptimization algorithm for optimal power flowwith
non-smooth cost functions and statistical analysis. Appl Soft Com-
put 13:4579–4593

Zehar K, Sayah S (2008) Optimal power flow with environmental
constraint using a fast successive linear programming algorithm:
application to theAlgerian power system. EnergyConversManage
49:3362–3366

Zimmerman RD, Murillo-Sanchez CE, Thomas RJ (2011) MAT-
POWER: steady-state operations, planning and analysis tools for
power systems research and education. IEEE Trans Power Syst
26:12–19

123


	A solution network based on stud krill herd algorithm for optimal power flow problems
	Abstract
	1 Introduction
	2 Optimal power flow problem formulation
	2.1 Objective functions
	2.1.1 M1 minimization of total production cost
	2.1.2 M2 minimization of active power loss
	2.1.3 M3 minimization of L-index
	2.1.4 M4 minimization of emission pollution
	2.1.5 M5 minimization of total production cost with valve point loading effect

	2.2 Constraints

	3 Proposed SKH algorithm
	3.1 Krill herd algorithm
	3.1.1 Motion induced by other krill individuals
	3.1.2 Foraging motion
	3.1.3 Physical diffusion
	3.1.4 Update krill position

	3.2 Stud krill herd algorithm

	4 Proposed SKH algorithm for OPF problems
	5 Simulation results
	5.1 IEEE 14-bus system (Test system 1)
	5.2 IEEE 30-bus system (Test system 2)
	5.3 IEEE 57-bus system (Test system 3)
	5.4 Sensitivity analysis

	6 Conclusion
	References




