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Abstract Although differential evolution (DE) algorithms
have been widely proposed for tackling various of problems,
the trade-off among population diversity, global and local
exploration ability, and convergence rate is hard to maintain
with the existing strategies. From this respective, this paper
presents some new mutation strategies of DE by applying
the clearing niche mechanism to the existing mutation strate-
gies. Insteading of using random, best or target individuals as
base vector, the niche individuals are utilized in these strate-
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gies. As the base vector is from a subpopulation, which is
made up of the best individuals in each niche, the base vector
can be guided by the global or local best ones. This mecha-
nism is beneficial to the balance among population diversity,
search capability, and convergence rate of DE, since it can
both enhance the population diversity and search capabil-
ity. Extensive experimental results indicate that the proposed
strategies based on clearing niche mechanism can effectively
enhance DE’s performance.
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1 Introduction

The differential evolution (DE) (Storn and Price 1995, 1996)
algorithm was proposed by Price and Storn in 1995 and
has been a very competitive form of evolutionary comput-
ing afterward. As a simple powerful search technique, DE
is always employed for solving complex continuous non-
linear functions. With a random population by initializing
solutions, the DE algorithm employs mutation and crossover
operators to generate new candidate solutions, and utilizes
a simple selection operator to determine whether the off-
spring should replace their parents in the next generation.
Compared with most other evolutionary algorithms (EAs),
DE is simpler and much easier to be implemented. More-
over, the gross performance of DE in terms of accuracy, fast
convergence speed and robustness makes it as an attractive
algorithm to be applied on various real-world optimization
problems. In addition, the number of control parameters in
DE is very few (mutation control parameter, also called scal-
ing factor , crossover control parameter, also called crossover
rate and population size in classical DE). Therefore, the DE
algorithm has gained much attention with successful appli-
cations in data mining (Zhu et al. 2012; Tvrdík and Křivý
2015), scheduling (Mokhtari and Salmasnia 2015), construc-
tion engineering (Ho-Huu et al. 2015), pattern recognition

(Secmen and Tasgetiren 2013), signal processing (Sheniha
2013), chemical engineering (Sharma and Rangaiah 2013),
power system (Zhang et al. 2015), image processing (Ali
et al. 2014), and in other domains (Al-Dabbagh et al. 2014;
Rakshit and Konar 2015; Das and Prasad 2015).

Nevertheless, the performance (Liu and Lampinen 2002)
of the DE algorithm is sensitive to the mutation strategy,
which exists many different DE trial vector generation strate-
gies and respective control parameters such as the population
size (NP), crossover rate (Cr ) and the scale factor (F). In
various search phases of the evolution process, these strate-
gies often possess different searching capabilities. And, the
best settings of the control parameters vary for different
optimization problems, and for different requirements on
consumption time and accuracy when the optimization prob-
lem is same. Therefore, it is necessary to find the most
appropriate strategy and its corresponding parameters. To
achieve this, however, a process of trial-and-error search is
needed to be performed, which definitely will suffer a high
computation cost. Computational costs may be induced by
the fact that the population of DE is evolved through different
regions in the search space, within which different strategies
and respective different parameter settings (Qin et al. 2009).
Recently, various offspring generation strategies and parame-
ter adaptation mechanisms have been developed to enhance
the reliability and robustness of DE. For example, Brest and
Mernik (2008) presented the jDE algorithm, which owned
self-adapting parameters and by encoding the parameters
into each individual and adapting them by means of evo-
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lution, and obtained the mutation strategy as DE/rand/1. Qin
and Suganthan (2005) presented a self-adaptive variant ofDE
(SaDE), where trial vector generation strategies were grad-
ually self-adapted by learning from their prior experiences
in generating promising solutions. Wang et al. (2011) pro-
posed a systematic framework for combining different trial
vector generation strategies, called compositeDE (CoDE), in
which three well-studied offspring generation strategies are
coupled with three-parameter settings randomly to generate
trial vectors in the following way. Mallipeddi et al. (2011)
proposed an ensemble of mutation strategies and parameter
values for DE (EPSDE). Mutation strategies from mutation
strategies pool can involve corresponding parameters from
control parameters’ values pool to produce their own off-
spring. Then, the optimized offspring can be obtained by
further competing. Zhang and Sanderson (2009) presented
JADE algorithm, which implemented a new mutation strat-
egy DE/target-to-pbest/1 and updated control parameters in
an adaptive manner. Based on JADE, Brown et al. (2015)
proposed a new DE with small population, namely μJADE.
In μJADE, a new mutation strategy DE/current-by-rand-
to-pbest/1 is introduced. Kundu et al. (2014) presented a
modified semi-adaptive DE, namely MSeDE. In MSeDE,
a new mutation scheme DE/current-to-constr_best/1 and a
new crossover scheme p-BCX are used. Yu et al. (2014)
presents an adaptive DE algorithm, namely ADE. In ADE,
a new mutation strategy DE/lbest/1 and a two-level adap-
tive parameter control scheme are used. The new strategy is
a variant of DE/best/1 strategy, which multiple locally best
individuals instead of one globally and the two-level adap-
tive parameter control scheme includes population-level and
individual-level parameter control. Mohamed (2015) pre-
sented an improved DE algorithm, namely IDE. In IDE, a
new triangular mutation strategy based on the convex com-
bination vector of the triplet, which is defined by three
randomly chosen vectors and the difference vector between
the best and the worst individuals among the three randomly
selected vectors is introduced. Liu et al. (2014) proposed
a random-based differential evolution with neighborhood
mutation, namely NRDE. In NRDE, two mutation schemes
are used. The mutation schemes are random-based mutation
scheme and neighborhood mutation scheme, the best vec-
tor of which will be replace the target vector. Han et al.
(2013) presented a differential evolution with local infor-
mation, namely DELI. In DELI, considering both global
information and local information, a new mutation opera-
tion is applied to generate a mutated individual. In order
to get an appropriate combination of strategies and con-
trol parameters for different problems, many other adaption
techniques have been developed (Tang et al. 2015; Wang
et al. 2014; Cai and Wang 2015; Mallipeddi and Lee 2015).
Although different partial adaptation schemes have been
proposed to overcome the trial-and-error procedure, many

strategies are hard tomaintain the balance between the global
exploration and the local exploitation. Here, we demonstrate
the superior performance of the proposed mutation strategy
with various DE algorithms based on niche on maintain-
ing he balance between the global exploration and the local
exploitation.

In the paper, the clearing niche method (Petrowski 1996)
is integrated with mutation strategies to enhance popula-
tion diversity, improve the search ability, and accelerate the
convergence rate of DE algorithms. The niche techniques
(Petrowski 1996; Mahfoud 1995; Yin and Germay 1993;
Petrowski and Genet 1999; Sareni and Krahenbuhl 1998)
are regarded as effective methods to maintain the balance
between both population diversity and the search domain.
They aim at gathering the individuals on several peaks of fit-
ness function in the population according to genetic likeness,
and then permit DE to investigate those peaks in parallel. The
individual with a high fitness in the niche is keeping its fit-
ness, while the others in the niche are changed to reduce
their fitness values sharply. Hence, the individuals in the
population may be dispersed into the whole search space.
Thus, some diversity can be maintained effectively during
the generations in the population. Several niche techniques
have been proposed, such as crowding methods (Mahfoud
1995), clustering-based methods (Yin and Germay 1993),
speciation tree methods (Petrowski and Genet 1999), fitness-
sharingmethods (Sareni and Krahenbuhl 1998), and clearing
methods (Petrowski 1996). Also, some niche-basedDE algo-
rithms have been presented. Thomsen (2004) presented a DE
algorithm based on crowding and fitness-sharing scheme to
tackle multimodal optimization, namely CrowdingDE and
SharingDE. Different from conventional DE, CrowdingDE
modifies the selection operation, in which the offspring
replaces the most similar individual among a (the crowding
factor) subset of the population. In the selection operation
of SharingDE, all parents and offsprings are added to the
population enlarging the population, and all the individuals
are rescaled using the sharing function, then the individu-
als are sorted with the new fitness and the worst half of the
population will be removed. Li (2005) extended DE with
the notion of speciation for solving multimodal optimization
problems, namely SDE. SDE locates multiple global optima
simultaneously through the adaptive formation of multiple
species. Each species is evolved by its own DE process,
which tries to successively improve itself. Epitropakis et al.
(2012) proposed two new DE mutation strategies, namely
DE/nrand/1 andDE/nrand/2. InDE/nrand/1 andDE/nrand/2,
the local information from the current population is incorpo-
rated into the mutation schemes, when each individual is
evolved by applying its nearest neighbor individual as a base
vector. Based on DE/nrand/1, Epitropakis et al. (2013) pro-
posed a new niching DE algorithm with dynamic archive to
overcome the population size influence and produce good
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performance almost independently of its population size,
namely dADE/nrand/1 algorithm, which involves in incor-
poration between a control parameter adaptation technique
and an external dynamic archive alongwith a re-initialization
mechanism. The control parameter adaptation technique,
proposed in the context of JADE algorithm (Zhang and
Sanderson 2009), is designed to efficiently adapt the con-
trol parameters of the algorithm. Meanwhile, the external
dynamic archive along with a re-initialization mechanism
aims to alleviate the problem, that is, have to tune the
population size and allow the algorithm to maintain good
performance regardless of the population size value. The con-
trol parameter adaptation technique incorporates a dynamic
archive proposed in Zhai and Li (2011), aiming to record
good solutions found along with a re-initialization proce-
dure to continue searching for additional good solutions
in unexplored regions of the search space. Biswas et al.
(2014) presents a DE variant with parent centric mutation
that makes use of normalized search neighborhood and inte-
grates with the proximity-based crowding technique, namely
PNPCDE. The PNPCDE does not make use of the problem-
dependent niching parameters (like niche radius), which are
hardly determined the values. The mutation operator helps
to maintain the population diversity at an optimum level by
using well-defined local neighborhoods. Zhang et al. (2015)
presented a DE with dynamic niche radius strategy, namely
DNRDE. In DNRDE, the niche radius is adjusted dynami-
cally to make the algorithm navigate from global exploration
to local exploitation by a new two-stage annealing sched-
ule. At first stage, exploration dominates the search process,
and the radius decrease dynamically. When the niche radius
reaches to a cutoff value, it will be stable. At second stage,
exploitation takes over to enhance the quality of the acquired
optima.

In this paper, the clearing nichemethod is used in themuta-
tion strategy. Compared with other niche techniques, such as
speciation tree and sharingfitnessmethods, the clearing niche
method may maintain the population diversity effectively
with a lower population size, and is also simpler to imple-
ment. However, in contrast to the speciation tree method, the
clearing niche method needs a problem-dependent parame-
ter, namely, the niche radius. In such case, the DE algorithm
will be sensitive to niche radius, since its performancewill be
altered by changing the setting of niche radius, this impact
of radius changes on algorithms will be demonstrated by
numerical experiment in this paper.

The paper is organized as follows. In Sect. 2, we introduce
the basic differential evolution and several well performance
DE variants. In Sect. 3, we describe the proposed mutation
strategy in details, and we introduce the change mutation
strategies in four state-of-the-art DE variants. In Sect. 4, the
paper lists the functions, and their corresponding simulated
diagrams. In Sect. 5, numerical experiments are presented.
In Sect. 6, the concluding remarks are contained.

2 Differential evolution algorithms

In this section, we describe the basic differential evolution
and several variants of DE.

2.1 Brief description of basic differential evolution

There are several strategies of DE that are proposed in the
literature (Zaharie 2009), one of whichDE/rand/1/bin is used
widely. Accordingly, we choose DE/rand/1/bin as example
to introduce DE. Just like other Evolution Algorithms (EAs),
DE uses mutation and crossover to generate new individu-
als. DE has four basic operations involving in initialization,
mutation, crossover, and selection. The whole flow chart of
DE is shown in Fig. 1. In DE-literature, a parent vector from
the current generation is called target vector, a mutant vec-
tor obtained through the differential mutation operation is
known as donor vector, and finally an offspring formed by
recombining the donor with the target vector is called trial
vector. The details of DE operations are described as follows.

(1) Coding. DE is a global optimization algorithm, and
individuals in population are encoded using real number.

(2) Individual. NP denotes size of the population in DE.
The i th individual at Gth generation is denoted by Xi,G =
[x1,i,G , x2,i,G , x3,i,G , . . . , xD,i,G ], where D is dimension.

(3) Initializing population. The initial population (at G =
0) should cover the entire search space as much as possi-
ble by uniformly randomizing individuals within the search
space constrained by the prescribedminimum andmaximum
bounds: x j,min ∈ Xmin = {x1,min, x2,min, . . . , xD,min} and
x j,max ∈ Xmax = {x1,max, x2,max, . . . , xD,max}. Hence the
j th component of the i th individual should be initialized as
x j,i,0 = x j,min + randi, j (0, 1) × (x j,max − x j,min).

(4) Mutation. Differential idea is embodied into mutation
operation. According to the strategy DE/rand/1/bin, the gen-

Initialization Mutation Crossover Selection OutputTermination?
Y

N

Fig. 1 Basic flowchart of DE
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eral process of mutation is expressed by Eq. (1):

Vi,G = Xr1,G + F × (
Xr2,G − Xr3,G

)
(1)

where i is the i th individual vector of current generation.
Xr1,G , Xr2,G and Xr3,G are other three individuals, which
are from current generation, where i �= r1 �= r2 �= r3. Vk,G
is donor vector. F ∈ [0, 1] is mutation control parameter.

There are usually following differential evolution strate-
gies when crossover operation is bin:

DE/rand/1/bin: Vi,G = Xr1,G + F × (Xr2,G − Xr3,G)

DE/best/1/bin: Vi,G = Xbest,G + F × (Xr1,G − Xr2,G)

DE/target-to-best/1/bin: Vi,G = Xi,G + F × (Xbest,G −
Xi,G) + F × (Xr1,G − Xr2,G)

DE/best/2/bin: Vi,G = Xbest,G + F × (Xr1,G − Xr2,G)+
F × (Xr3,G − Xr4,G)

DE/rand/2/bin: Vi,G = Xr1,G + F × (Xr2,G − Xr3,G) +
F × (Xr4,G − Xr5,G)

where Xbest,G means the best individual in the Gth gener-
ation. Xi,G means the i th individual in the Gth generation.
Xr1,G , Xr2,G , Xr3,G , Xr4,G , and Xr5,G are other five indi-
viduals, which are from current generation, where i �= r1 �=
r2 �= r3 �= r4 �= r5.

(5) Crossover. Crossover probability is Cr ∈ [0, 1].
Crossover means to swap the dimensions between the donor
vector and the target vector controlled by crossover parame-
terCr . Binomial crossover and exponential crossover are two
different crossover strategies. Mahfoud (1995) analyzed the
influence of crossover on the behavior of DE. The numerical
experiments illustrate that main difference between them is
the different distributions of the number of mutated com-
ponents. Theoretical analysis shows that the behavior of
exponential crossover variants is more sensitive to the prob-
lem dimension than binomial crossover variants’. Usually
the binomial crossover is accepted, which is described as Eq.
(2):

u j,i,G =
{

v j,i,G , if
(
randi, j (0, 1) ≤ Cr or j = jrand

)

x j,i,G , otherwise

(2)

where j is dimension, i is individual, G is generation. v j,i,G

is coming from donor vector Vk,G , x j,i,G is coming from tar-
get vector Xk,G . jrand ∈ [1, 2, . . . , D] is a randomly chosen
index.

(6) Selection. The offspring or trial vector Xi,G+1 can be
obtained through comparing the fitness value of trial vector
Ui,G and target vector Xi,G according to Eqs. (3) and (4).

Xi,G+1 = Ui,G i f f
(
Ui,G

) ≤ f
(
Xi,G

)
(3)

Xi,G+1 = Xi,G i f f
(
Ui,G

)
> f

(
Xi,G

)
(4)

2.2 Some variants of DE

(1) The jDE algorithm

Brest and Mernik (2008) proposed the jDE algorithm, in
which the control parameters F and Cr are encoded into the
individual Xi,G = 〈�xi,G , Fi,G ,Cri,G〉 and adjusted by two
new arguments τ1 and τ2. They are calculated independently,
as shown in Eqs. (5), (6)

Fi,G+1 =
{
Fl,G + rand1 × Fu,G , if rand2 < τ1
Fi,G , otherwise

(5)

Cri,G+1 =
{
rand3, if rand4 < τ2
Cri,G , otherwise

(6)

where randk , k ∈ {1, 2, 3, 4} are uniformly distributed ran-
dom values belonging to the range [0, 1]; τ1 and τ2 are
constant values that represent the probabilities of parameters
being adjusted; Fu,G and Fl,G are also constant values, which
denote the upper and lower bounds of the parameters, respec-
tively. The newly generated Fi,G+1 andCri,G+1 are procured
before the mutation is implemented. Thus, the scheme influ-
ences the mutation, crossover and selection operations of the
new vector.

(2) The JADE algorithm

Zhang and Sanderson (2009) proposed the JADE algorithm,
in which a novel mutation strategy and an optional exter-
nal archive are utilized to provide information of progress
direction. This DE/target-to-best strategy uses multiple best
solutions to balance the greediness of the mutation and the
diversity of the population, which is generated using Eq. (7):

Vi,G = Xi,G + Fi,G ×
(
X p
best,G − Xi,G

)

+Fi,G ×
(
Xr1,G − X̃r2,G

)
(7)

where X p
best,G is the individual that is randomly selected

from the top 100p% of the current population, with p ∈
(0, 1]. Xi,G , X

p
best,G and Xr1,G are chosen from the current

population P . X̃r2,G is randomly selected from the union,
P ∪ A, while A, an archive, is employed to store the recently
explored inferior solutions. The archive operation is made
very simplely to avoid significant computation overhead. The
archive is initiated to be empty. Then, after each generation,
the parent solutions that fail in the selection process are added
to the archive. If the archive size exceeds a certain threshold,
say NP, then some solutions are randomly removed from
the archive to keep the archive size at NP. Fi,G denotes the
scaling factor andCri,G denotes the crossover rate associated
with the i th individual and they are updated dynamically in
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each generation, as shown in Eqs. (8), (9).

Fi,G = randci (uF , 0.1) (8)

Cri,G = randni (uCr , 0.1) (9)

Fi,G and Cri,G are generated according to a Normal distrib-
ution and a Cauchy distribution with associated mean values
uF anduCr . Theproposed two locationparameters are initial-
ized to be 0.5 and then updated at the end of each generation
according to Eqs. (10), (11).

uF = (1 − c) × uF + c × meanL (SF ) (10)

uCr = (1 − c) × uCr + c × meanA (SCr ) (11)

where c is a positive constant in the range(0,1); SF and
SCr denote the set of all successful mutation/crossover rates;
meanA(·) indicates the usual arithmetic mean and meanL(·)
returns the Lehmer mean shown as Eq. (12).

meanL (SF ) =
∑|SF |

i=1 F2
i

∑|SF |
i=1 Fi

(12)

How to get archive A, SF and SCr .
In the selection process, A, SF and SCr will be got.

If f (Xi,G) ≤ f (Ui,G) Xi,G+1 = Xi,G

Else Xi,G+1 = Ui,G; Xi,G → A;Cri → SCr , Fi → SF

(3) The SaDE algorithm

Qin and Suganthan (2005) presented the SaDE, where one
trial vector generation strategy was chosen from the candi-
date pool(“DE/rand/1”, “DE/rand/2”,“DE/target-to-best/2”
and “DE/target-to-rand/1”), according to the probability
learned from its success rate in generating promising solu-
tions within a certain number of previous generations, called
the learning period(LP). More specifically, these probabili-
ties are initially equal and then gradually self-adapted upon
Eq. (13)

Pk,G = Sk,G
∑K

k=1 Sk,G
(13)

where Pk,G , k = 1, 2, . . . , K , denotes the probability of
applying the kth strategy.Here K is the total number of strate-
gies contained in the pool. Sk,G is the success rate of the trial
vector, which is generated by the kth strategy and success-
fully enters the next generation according to Eq. (14):

Sk,G =
∑G−1

g=G−LP nsk,g
∑G−1

g=G−LP nsk,g +∑G−1
g=G−LP n fk,g

+ ε (14)

where nsk,g and n fk,g record the number of trial vectors gen-
erated by the kth strategy that are retained or discarded in
the selection operation in the last LP generations. The small
constant value ε = 0.01 is used to avoid the possible null suc-
cess rates. At each generation, for each solution in the current
population, the parameters Fi,k and Cri,k are independently
calculated upon Eqs. (15), (16).

Fi,k = randni (0.5, 0.3) (15)

Cri,k = randni (Crmk, 0.1) (16)

where coefficients are respectively generated for each indi-
vidual by sampling their values from a normal distribution.
Nevertheless, the mean value ofCr (Crmk) is gradually self-
adapted on the basis of a success rule.

(4) The EPSDE algorithm

Mallipeddi et al. (2011) provided the EPSDE involving a
pool of mutation strategies along with various combinations
of parameters, which are employed for competing in order to
produce successful offspring population. More concretely,
the pool of strategies is formed with three schemes with
diverse characteristics. The pool of Cr values is taken in
the range [0.1, 0.9] in steps of 0.1, and the pool of F values
is assigned in the range [0.4, 0.9] in steps of 0.1 as follows:

Apool ofmutation strategies includesDE/best/2,DE/rand/1
and DE/target-to-rand/1;

A pool of F values includes F = [0.4, 0.5, 0.6, 0.7, 0.8,
0.9]
A pool ofCr values includesCr = [0.1, 0.2, 0.3, 0.4, 0.
5, 0.6, 0.7, 0.8, 0.9].

In EPSDE, each individual of the initial population is
randomly adopted with a mutation strategy and associated
parameter values taken from the respective pools. When the
trial vector performs better than the target vector, the com-
bination of the mutation strategy and parameter values can
be survived in the next generation. And the combination is
also stored. Afterward, the target vector should be randomly
reinitializedwith a newmutation strategy from the respective
pools or from the successful combinations stored with equal
probability when the trial vector performs poorer.

3 Differential evolution algorithm based on niche

In this section, we propose some new mutation strategies
which are based on clearing niche mechanism. It will be
explained in the following sections.
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3.1 The niche operation based on clearing mechanism

Themain idea of the niche algorithmbased on clearingmech-
anism is that the population is divided into a number of
niches. And each subpopulation contains a dominant indi-
vidual: the one that has the best fitness. If the dissimilarity
between an individual and the dominant one in a given sub-
population is less than a threshold δ: the clearing radius, this
individual, then, belongs to this subpopulation. The basic
clearing algorithm preserves the fitness of the dominant indi-
vidual, but resets the fitness of all the other individuals of the
same subpopulation. Consequently, the clearing procedure
makes the whole resource of a niche belong to a single indi-
vidual: the winner. The winner takes all rather than sharing
resources with the other individuals of the same niche, and
other individuals as loserswill take a punishmentmechanism,
this mechanism differs from the fitness-sharingmethods. It is
also possible to generalize the clearing algorithm by accept-
ing several winners in each niche. The capacity of a niche is
defined as the maximum number of winners that this niche
can accept. We assume that the population size is NP, the
individuals which perform better in each niche are winners,
in contrast, perform worse are loser. Finally, process of flow
is shown in Fig. 2.

3.2 Mutation strategies based on clearing niche

We all know that the mutation strategies play an important
role in the search capability and convergence rate of DE.
However, many mutation strategies are hard to maintain a
balance among a good population diversity, a good global
exploration ability, a good local exploitation ability, and a
fast convergence rate. Clearly, from the equation of the basic
mutation strategyDE/rand/1/bin, it can be seen that three vec-
tors are randomly chosen, one of which is the base vector.
As a result, DE/rand/1/bin is able to maintain the population
diversity and the global search ability, but it cannot guarantee
the local search ability and the convergence rate. From the
equation of the basic mutation strategy DE/best/1/bin, it can
be observed that the base vector is the globally best vector and
the other two vectors are randomly chosen. In this way, all the
vectors are guided by the best vector. Such greedy strategy is
helpful for the local search ability and the convergence rate.
However, the greedy strategy may lose its population diver-
sity and global search ability. In order to maintain a balance
among the population diversity, the global exploration abil-
ity, the local exploitation ability, and the convergence rate,
we present some new mutation strategies, which combine
with the clearing niche mechanism.

In the proposed strategies, the population is divided into
some niches according to the sort of the fitness values. Each
niche contains several winnerswhose fitness values are better
than others. And all the winners will make up a new subpop-

ulation. Note that the number of niches may be change and
the number of winners in each niche will be kept unchanged
during the evolution of algorithms. As aforementioned, the
mutation strategy DE/best/1 obtains a best vector as the base
vector. In the new mutation strategies, the base vector is
selected from the group which the subpopulation instead of
the entire population. Therefore, all the vectors are guided
by the subpopulation which is made of several locally best
vectors rather than the randomly vector or the single glob-
ally best vector. At the same time, the difference vectors
involved in themutation strategies are selected from the entire
population. In such way can maintain a balance among the
population diversity, the global exploration ability, the local
exploitation ability, and the convergence rate.

Differing from the existing clearing niche mechanisms,
we adopt a new idea of dealing with the distance. Here, it
calculates the distances from the best individual and other
individuals in current status respectively by using Euclidean
distance. Moreover, a different normalization method is pro-
posed to calculate the relative distance based on maximum
and minimum distances for each niche. In addition, different
niches vary maximum distance and minimum distance. Con-
sequently, the clearing radius is the same whereas the ranges
of niches are different. Hence, the number of each niche is
not only related to individual density but also related to the
maximum distance and minimum distance.

For example, if the population size is set as 50, the dimen-
sion is set as 2, the clearing radius is set as 0.3. And the
fitness is the minimum value of sum of squares. We can get
the two-dimensional drawing of population. Then, we can
see the range of each niche in Fig. 3. The figure can be found
that the range of each niche is different.

When we combine the clearing niche mechanism with
several classical mutation strategies, we set a changed solu-
tion. In the changed solution, the target individual will have
priority, and the best individual will be considered next. At
last, if the mutation strategy do not contain the target or
best individual, the rand individual will be changed which
does not multiply the scaling factor F . After modifying, the
usual differential evolution strategies DE/rand/1, DE/best/1,
DE/target-to-best/1, DE/best/2, and DE/rand/2 can be seen
in the following.
DE/rand/1/bin:

Vi,G = Xr1,G + F × (
Xr2,G − Xr3,G

)
(17)

DE/best/1/bin:

Vi,G = Xbest,G + F × (
Xr2,G − Xr3,G

)
(18)

DE/rand/1 based on clearing niche mechanism, we name it
DE/clear niche/1. And DE/best/1 based on clearing niche
mechanism, we also name it DE/ clear niche /1. As illustrated
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Initialization

Sort the individuals according to fitness from 
the best to the worst, and number as S1 to SNP , 

i=1

Put Si in Winner, j=i+1

i=i+1

j=j+1

Sj have been punished?Calculate the distance 
between Sj and Si

The distance<the clearing radius

Si have been punished?

Punish Sj , put  Sj in 
Loser 

j=NP

i=NP

Output

N

Y

Y

Y

N

N

N Y

N

Y

Fig. 2 Flowchart of the clearing niche mechanism

in Fig. 4, in DE/clear niche/1, a mutation vector is generated
in the following manner:

Vi,G = Xc,G + F × (
Xr2,G − Xr3,G

)
(19)

where Xc,G is randomly chosen individual from subpopu-
lation which preserves the dominant individual by clearing
nichemechanism. Xbest,G is the best individual in the current
generation. Xr1,G Xr2,G , and Xr3,G are randomly cho-
sen three individuals from the current generation, where
r1 �= r2 �= r3 �= i . G is the current generation. Vi,G is
the i th donor vector. F is the scaling factor.
DE/target-to-rand/1/bin:

Vi,G = Xi,G+F × (
Xr3,G−Xi,G

)+F × (
Xr1,G − Xr2,G

)

(20)

DE/target-to-best/1 based on clearing niche mechanism, we
name it DE/ clear niche -to-best/1. In DE/ clear niche-
to-best/1, a mutation vector is generated in the following
manner:

Vi,G = Xc,G + F × (
Xr3,G − Xc,G + Xr1,G − Xr2,G

)

(21)

where Xc,G is randomly chosen individual from subpopu-
lation which preserves the dominant individual by clearing
niche mechanism. Xr1,G Xr2,G , and Xr3,G are randomly
chosen three individuals from the current generation, where
r1 �= r2 �= r3 �= i . G is the current generation. Vi,G is the
i th donor vector. F is the scaling factor.
DE/best/2/bin:

Vi,G

= Xbest,G+F × (
Xr1,G − Xr2,G

)+F × (
Xr3,G−Xr4,G

)

(22)

DE/rand/2/bin:

Vi,G = Xr1,G+F×(Xr2,G − Xr3,G
)+F×(Xr4,G − Xr5,G

)

(23)
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Fig. 3 The range of niches. Note: a–j are the process which a pop-
ulation is divided into several niches based on the clearing niche
mechanism. Blue “*” denotes the individuals that have not been divided
into niches; Green “*” denotes the individuals that have been divided

into niches; Red “+*” denotes the best individual in each niche; Red
circle denotes the current niche; Blue circle denotes the existing niches
(color figure online)
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DE/best/2 based on clearing niche mechanism, we name it
DE/ clear niche /2. And DE/rand/2 based on clearing niche
mechanism, we also name it DE/ clear niche /2. In DE/ clear
niche /2, a mutation vector is generated in the following
manner:

Vi,G = Xc,G + F × (
Xr1,G − Xr2,G + Xr3,G − Xr4,G

)

(24)

where Xc,G is randomly chosen individual from subpopu-
lation which preserves the dominant individual by clearing
nichemechanism. Xbest,G is the best individual in the current
generation. Xr1,G , Xr2,G , Xr3,G , Xr4,G , and Xr5,G are ran-
domly chosen five individuals from the current generation,
where r1 �= r2 �= r3 �= r4 �= r5 �= i . G is the current gen-
eration. Vi,G is the i th donor vector. F is the scaling factor.

We can see the flowchart of the new DE combined with
clearing niche mechanism in Fig. 5 when the mutation strat-
egy is DE/rand/1.

3.3 DE variants based on clearing niche

We can see the flowchart of DE with the new mutation strat-
egy based on clearing niche mechanism in Fig. 5. And when
the new mutation strategy based on clearing niche mecha-
nism is applied to variants of DE, the correspondingmutation
strategy of DE will change. It can be seen in the following
section.

(1) The jDE algorithm

In jDE algorithm, themutation strategy is DE/rand/1.We can
see change of the mutation strategy as following.

The initial mutation strategy:

Vi,G = Xr1,G + F × (
Xr2,G − Xr3,G

)
(17)

The mutation strategy based on clearing niche mechanism:

Vi,G = Xc,G + F × (
Xr1,G − Xr2,G

)
(19)

(2) The JADE algorithm

In JADE algorithm, the mutation strategy is DE/target-to-
pbest/1. We can see change of the mutation strategy as
following.

The initial mutation strategy:

Vi,G = Xi,G + F ×
(
X p
best,G − Xi,G + Xr1,G − X̃r2,G

)

(25)

The mutation strategy based on clearing niche mechanism:

Vi,G = Xc,G + F ×
(
X p
best,G − Xc,G + Xr1,G − X̃r2,G

)

(26)

(3) The SaDE algorithm

In SaDE algorithm, the mutation strategies are DE/rand/1,
DE/rand/2, DE/target-to-best/2, DE/target-to-rand/1.We can
see change of the mutation strategy as following.

The initial mutation strategy:

Vi,G = Xr1,G + F × (
Xr2,G − Xr3,G

)
(17)

Vi,G = Xr1,G + F × (
Xr2,G − Xr3,G + Xr4,G + Xr5,G

)

(23)
Vi,G = Xi,G + F × (

Xbest,G − Xi,G

+Xr1,G − Xr2,G + Xr3,G − Xr4,G
)

(27)

Vi,G = Xi,G + F × (
Xr3,G − Xi,G + Xr1,G − Xr2,G

)

(20)

The mutation strategy based on clearing niche mechanism:

Vi,G = Xc,G + F × (
Xr1,G − Xr2,G

)
(19)

Vi,G = Xc,G + F × (
Xr2,G − Xr3,G + Xr4,G + Xr5,G

)

(24)

Vi,G = Xi,G + F × (
Xc,G − Xi,G + Xr1,G

−Xr2,G + Xr3,G − Xr4,G
)

(28)

Vi,G = Xc,G + F × (
Xr3,G − Xc,G + Xr1,G − Xr2,G

)

(21)

(4) The EPSDE algorithm

In EPSDE algorithm, the mutation strategies are DE/rand
/1, DE/best/2, DE/target-to-rand/1. We can see changes of
the mutation strategy as following.

The initial mutation strategy:

Vi,G = Xr1,G + F × (
Xr2,G − Xr3,G

)
(17)

Vi,G = Xbest,G + F × (
Xr1,G − Xr2,G + Xr3,G − Xr4,G

)

(22)

Vi,G = Xi,G + F × (
Xr3,G − Xi,G + Xr1,G − Xr2,G

)

(27)

Themutation strategybasedon clearingnichemechanism:

Vi,G = Xc,G + F × (
Xr1,G − Xr2,G

)
(19)
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Fig. 4 Illustrations of the new and basic mutation strategies in two-
dimensional parametric space. Green “*” denotes the individuals in
the population; Red “*” denotes the best individual in each niche; Red
“�” denotes the mutation vector, and they are based on different muta-
tion strategies, such as DE/rand/1, DE/best/1, and DE/clear niche/1. For

example,we know the generatedmanner of themutation vector based on
DE/clear niche/1, it likes that” Vi,G = Xc,G + F× (Xr2,G − Xr3,G)”.
The blue linesmean the vector Xc,G and the vector F×(Xr2,G − Xr3,G

)
,

adding two vectors, the red line is got which represents the mutation
vector (color figure online)

Vi,G = Xc,G + F × (
Xr1,G − Xr2,G + Xr3,G − Xr4,G

)

(24)

Vi,G = Xc,G + F × (
Xr3,G − Xc,G + Xr1,G − Xr2,G

)

(28)

4 Test functions

4.1 Minimization optimization benchmark functions

This section lists the global minimization benchmark func-
tions which are used to evaluate the performance of DE
variants. In the section, 17 global minimization benchmark
functions are chosen as test functions. The 17 test functions
( f1 − f17) are dimension-wise scalable (Liang et al. 2005).

(1) Shifted Sphere function, defined as

f1(x) =
D∑

i=1

z2i , z = x − o (29)

With o = (o1, o2, . . . , oD) is the shifted global optimum,
global optimum is x∗ = o and f (x∗) = 0 for −100 ≤ xi ≤
100. Three-dimensional graph corresponding to this function
is shown in Fig. 6.

(2) Shifted Schwefel’s Problem 1.2, defined as

f2(x) =
D∑

i=1

⎛

⎝
i∑

j=1

z j

⎞

⎠

2

, z = x − o (30)

With o = (o1, o2, . . . , oD) is the shifted global optimum,
global optimum is x∗ = o and f (x∗) = 0 for −100 ≤ xi ≤

100. Three-dimensional graph corresponding to this function
is shown in Fig. 6.

(3) Shifted Rotated High Conditioned Elliptic function,
defined as

f3(x) =
D∑

i=1

(
106
) i−1

D−1
z2i , z = (x − o) ∗ M (31)

With o = (o1, o2, . . . , oD) is the shifted global optimum, M
is a orthogonal rotation matrix, global optimum is x∗ = o
and f (x∗) = 0 for −100 ≤ xi ≤ 100. Three-dimensional
graph corresponding to this function is shown in Fig. 6.

(4) Shifted Schwefel’s Problem 1.2 with Noise in Fitness,
defined as

f4(x)=
⎛

⎜
⎝

D∑

i=1

⎛

⎝
i∑

j=1

z j

⎞

⎠

2
⎞

⎟
⎠∗(1 + 0.4 ∗ |N (0, 1)|) , z = x−o

(32)

With o = (o1, o2, . . . , oD) is the shifted global optimum,
global optimum is x∗ = o and f (x∗) = 0 for −100 ≤ xi ≤
100. Three-dimensional graph corresponding to this function
is shown in Fig. 6.

(5) Shifted Rosenbrock’s Function, defined as

f5(x) =
D−1∑

i=1

(
100 ∗

(
z2i − zi+1

)2 + (zi − 1)2
)

, z = x−o

(33)
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Fig. 5 Flowchart of DE
combined with clearing niche
mechanism

With o = (o1, o2, . . . , oD) is the shifted global optimum,
global optimum is x∗ = o and f (x∗) = 0 for −100 ≤ xi ≤
100. Three-dimensional graph corresponding to this function
is shown in Fig. 6.

(6) Shifted Rotated Griewank’s Function without Bounds,
defined as

f6(x) =
D∑

i=1

z2i
4000

−
D∏

i=1

cos

(
zi√
i

)
+ 1, z = (x − o) ∗ M

(34)

With o = (o1, o2, . . . , oD) is the shifted global optimum, M
is a orthogonal rotation matrix, global optimum is x∗ = o
and f (x∗) = 0 for 0 ≤ xi ≤ 600. Three-dimensional graph
corresponding to this function is shown in Fig. 6.

(7) Shifted Rotated Ackley’s Function with Global Opti-
mum on Bounds, defined as

f7(x) = −20 ∗ exp

(

−0.2 ∗
√

1

D

∑D

i=1
z2i

)

−exp

(
1

D

D∑

i=1

cos (2 ∗ π ∗ zi )

)

+ 20 + e,

z = (x − o) ∗ M (35)

With o = (o1, o2, . . . , oD) is the shifted global optimum, M
is a orthogonal rotation matrix, global optimum is x∗ = o
and f (x∗) = 0 for −32 ≤ xi ≤ 32. Three-dimensional
graph corresponding to this function is shown in Fig. 6.

(8) Shifted Rastrigin’s Function, defined as

f8(x) =
D∑

i=1

(
z2i − 10 ∗ cos (2 ∗ π ∗ zi ) + 10

)
, z = x−o

(36)
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f1 f3f2 f4

f6 f8f7f5

f11f9 f12f10

f17

f14 f16f13 f15

Fig. 6 Three-dimensional graph of 17 benchmark functions

With o = (o1, o2, . . . , oD) is the shifted global optimum,
global optimum is x∗ = o and f (x∗) = 0 for −5 ≤ xi ≤ 5.
Three-dimensional graph corresponding to this function is
shown in Fig. 6.

(9) Schwefel’s Problem2.13, defined as

f9 =
D∑

i=1

(Ai − Bi (x))
2

Ai =
D∑

j=1

(
ai j sin α j + bi j cosα j

)
, (37)

Bi (x) =
D∑

j=1

(
ai j sin x j + bi j cos x j

)

With α = [α1, α2, . . . , αD], α j ∈ [−π, π ]; With global
optimum x∗ = α and f (x∗) = 0 for −π ≤ xi ≤ π . Three-
dimensional graph corresponding to this function is shown
in Fig. 6.

(10) Shifted Expanded Griewank’s plus Rosenbrock’s
Function, defined as

f10(x) = f7 ( f2 (z1, z2)) + f7 ( f2 (z2, z3)) + · · ·
+ f7 ( f2 (zD−1, zD)) + f7 ( f2 (zD, z1))

z = x − o + 1 (38)

With o = (o1, o2, . . . , oD) is the shifted global optimum,
global optimum is x∗ = o and f (x∗) = 0 for −3 ≤ xi ≤ 1.
Three-dimensional graph corresponding to this function is
shown in Fig. 6.

(11) Shifted Rotated Expanded Scaffer’s F6 Function,
defined as

F (x, y) = 0.5 +
(
sin2

(√
x2 + y2

)
− 0.5

)

(
1 + 0.001 × (

x2 + y2
))2 (39)

f11 = F (z1, z2) + F (z2, z3) + · · · + F (zD−1, zD)

+ F (zD, z1) , z = (x − o) ∗ M (40)
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Table 1 Global optimum and initialization ranges for the benchmark
functions

Functions Dimension Global optimum f (x∗) Initialization range

f1 30 o 0 [−100, 100]D

f2 o 0 [−100, 100]D

f3 o 0 [−100, 100]D

f4 o 0 [−100, 100]D

f5 o 0 [−100, 100]D

f6 o 0 [0, 600]D

f7 o 0 [−32, 32]D

f8 o 0 [−5, 5]D

f9 α 0 [−π, π ]D

f10 o 0 [−3, 1]D

f11 o 0 [−100, 100]D

f12 ol 0 [−5, 5]D

f13 ol 0 [−5, 5]D

f14 ol 0 [−5, 5]D

f15 ol 0 [−5, 5]D

f16 ol 0 [−5, 5]D

f17 ol 0 [2, 5]D

o is the shifted vector. ol is the shifted vector for the first basic function
in the composition function

With o = (o1, o2, . . . , oD) is the shifted global optimum,
global optimum is x∗ = o and f (x∗) = 0 for −100 ≤ xi ≤
100. Three-dimensional graph corresponding to this function
is shown in Fig. 6.

(12) Hybrid Composition Function, defined as
The functions f12 (CF1), f13 (CF7), f14 (CF8), f15 (CF9),
f16 (CF10) and f17 (CF11) are composed by using 10 differ-
ent functions respectively. Their global optimums are easy to
findonce the global basins are found.Thedetails of construct-
ing such functions are presented in Liang et al. (2005). And
three-dimensional graph corresponding to these six functions
is shown in Fig. 6.

Among the above 17 benchmark problems, functions f1−
f4 are unimodal and functions f5 − f9 are basic multimodal
functions, f10 and f11 are expanded multimodal functions,
and f12− f17 are hybrid composition functions. The optimum
value, position of the global optima, and initialization ranges
for these 17 benchmark problems are provided in Table 1.

4.2 Multimodal optimization benchmark functions

This section lists the multimodal optimization functions
which are used to evaluate the performance of DE variants.
In the section, 8 multimodal optimization functions are cho-
sen as test functions. The eight test functions (F1 − F8) has
diverse characteristics, and the functions used in the exper-

iment are presented in Simionescu (2014), Surjanovic and
Bingham (2015).

(1) Beale function, defined as

F1 = (1.5 − x1 + x1x2)
2 +

(
2.25 − x1 + x1x

2
2

)2

+
(
2.625 − x1 + x1x

3
2

)2
(41)

With global optimum is x∗ = (3, 0.5) and F (x∗) = 0 for
−4.5 ≤ xi ≤ 4.5 (i = 1, 2). Three-dimensional graph cor-
responding to this function is shown in Fig. 7.

(2) Goldstein-price function, defined as

F2 = [
1 + (x1 + x2 + 1)2

(
19 − 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22

)]

× [30 + (2x1 − 3x2)
2 (18 − 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22

)]

(42)

With global optimum is x∗ = (0,−1) and F (x∗) = 3 for
−2 ≤ xi ≤ 2 (i = 1, 2). Three-dimensional graph corre-
sponding to this function is shown in Fig. 7.

(3) Matyas function, defined as

F3 = 0.26
(
x21 + x22

)
− 0.48x1x2 (43)

With global optimum is x∗ = (0, 0) and F (x∗) = 0 for
−10 ≤ xi ≤ 10 (i = 1, 2). Three-dimensional graph corre-
sponding to this function is shown in Fig. 7.

(4) Cross-in-tray function, defined as

F4 = −0.0001

⎛

⎝

∣
∣∣
∣∣
∣
sin (x1) sin (x2) exp

⎛

⎝

∣
∣∣
∣∣
∣
100 −

√
x21 + x22

π

∣
∣∣
∣∣
∣

⎞

⎠

∣
∣∣
∣∣
∣
+ 1

⎞

⎠

0.1

(44)

With global optimum is x∗ = (1.3491,−1.3491) ,

(−1.3491,−1.3491) , (−1.3491, 1.3491) , (1.3491, 1.3491)
and F (x∗) = −2.06261 for −10 ≤ xi ≤ 10 (i = 1, 2).
Three-dimensional graph corresponding to this function is
shown in Fig. 7.

(5) Eggholder function, defined as

F5 = − (x2 + 47) sin

(√∣
∣∣x2 + x1

2
+ 47

∣
∣∣
)

− x1

sin
(√|x1 − (x2 + 47)|

)
(45)
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With global optimum is x∗ = (512, 404.2319)and F (x∗) =
−959.6407 for −512 ≤ xi ≤ 512 (i = 1, 2). Three-
dimensional graph corresponding to this function is shown
in Fig. 7.

(6) Simionescu function, defined as

F6 = 0.1x1x2

subjected to: x21 + x22

≤
(
rT + rS cos

(
n tan−1

(
x1
x2

)))2

(46)

With global optimum is x∗ = (−0.85586, 0.85586) ,

(0.85586, 0.85586) , (0.85586,−0.85586) , (−0.85586,
−0.85586) and F (x∗) = −0.072625 for −1.25 ≤ xi ≤
1.25 (i = 1, 2). Three-dimensional graph corresponding to
this function is shown in Fig. 7.

(7) Holder Table function, defined as

F7 = −
∣∣
∣∣∣∣
sin (x1) cos (x2) exp

⎛

⎝

∣∣
∣∣∣∣
1 −

√
x21 + x22

π

∣∣
∣∣∣∣

⎞

⎠

∣∣
∣∣∣∣

(47)

With global optimum is x∗ = (8.05502,−9.66459) ,

(−8.05502,−9.66459), (−8.05502, 9.66459), (8.05502,
9.66459) and F (x∗) = −19.2085 for −10 ≤ xi ≤
10 (i = 1, 2). Three-dimensional graph corresponding to this
function is shown in Fig. 7.

(8) Shubert function, defined as

F8 =
(

5∑

i=1

i cos ((i + 1) x1 + i)

)

×
(

5∑

i=1

i cos ((i + 1) x2 + i)

)

(48)

With global optimum is x∗ = (−7.0835,−1.4250) ,

(−7.0835, 4.8580) , (−7.0835,−7.7082) , (−7.7082,
5.4829) , (−7.7082,−0.8003) , (−7.7082,−7.0835) ,

(5.4829,−1.4250) , (5.4829, 4.8580) , (5.4829,−7.7082) ,

(4.8580,−0.8003), (4.8580, 5.4829) , (4.8580,−7.0835) ,

(−0.8003,−1.4250) , (−0.8003, 4.8580) , (−0.8003,
−7.7082) , (−1.4250,−0.8003) , (−1.4250, 5.4829) ,

(−1.4250,−7.0835) and F (x∗) = −186.7309 for−5.12 ≤
xi ≤ 5.12 (i = 1, 2). Three-dimensional graph correspond-
ing to this function is shown in Fig. 7.

5 Experimental studies

In this section, comprehensive experiments are carried out to
evaluate the effectiveness of newmutation strategies, includ-
ing two basic DE algorithms and four advanced DE variants.
It includes three studies, one of which is the accuracy study,
one is the multimodal study, and another is a multiobjective
problem study.

5.1 Accuracy study

In this section, 17 benchmark functions are selected as the
test functions, which are from the CEC 2005 special session.
The objective is to minimize values of the functions. Here,
the experimental setup is shown first. Then, the comparisons
between DE changed with new mutation strategies and the
corresponding DE algorithms are proposed.

5.1.1 Experimental setup

To make a fair comparison, the parameters for all the DE
algorithms are set as follows unless a change is mentioned.

(1) Dimension of the functions (D): 30.
(2) Population size (N P): 50.
(3) Maximal number of fitness function evaluations: 10000.
(4) Number of runs: 25.
(5) Scaling Factor (F) and Crossover Control Parameter

(Cr): For two basic DE algorithms, F and Cr are (0.5,
0.9) and (0.5, 0.3), respectively. For four advanced DE
variants, F and Cr are set as mentioned in Brest and
Mernik (2008), Qin and Suganthan (2005), Mallipeddi
et al. (2011), Zhang and Sanderson (2009).

In the experiments, comparisons between two basic DE
algorithms whose mutation strategies are set as DE/rand/1,
DE/best/1 and their corresponding DE algorithms with new
mutation strategies are made first. Then, the performance
of several advanced DE variants with the corresponding
DE variants with new mutation strategies are compared,
including jDE (Brest and Mernik 2008), JADE (Zhang and
Sanderson 2009), SaDE (Qin and Suganthan 2005), and
EPSDE (Mallipeddi et al. 2011). All the parameters of these
DE variants are set as their basic papers. Due to space lim-
itation, only mean and standard deviation of the best error
values obtained by algorithms are shown in this paper.

5.1.2 Comparison with basic DE algorithms

In this section, the DE algorithms with new mutation strate-
gies (call DE-Niche for short) are compared with two
basic DE algorithms whose mutation strategies are set as
DE/rand/1 and DE/best/1 to test the effectiveness of new
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F1 F3F2

F4 F5 F6

F7 F8

Fig. 7 Three-dimensional graph of 8 multimodal functions

mutation strategies when whose F and Cr respectively are
0.5, 0.9 and 0.5, 0.3. As the changed rule which is described
in Sect. 3.2, the new mutation strategies of DE/rand/1 and
DE/best/1 are same. The results for the functions at 30D are
shown in Table 2. Wilcoxon’s rank sum test at a 0.05 sig-
nificance is performed between DE-Niche and two basic DE
algorithms with different control parameters.

From Table 2, we can find that the DE-Niche significantly
outperforms the corresponding DE algorithm with respect
to the overall performance. Specifically, when F = 0.5 and
Cr = 0.9, DE-Niche significantly improves the performance
of DE/best/1 on 15 out of 17 functions and loses on only one
functions. For F = 0.5 and Cr = 0.3, DE-Niche improves
the performance of DE/rand/1 on 7 out of 17 functions, with-
out losing on any functions. Table 3 presents the result of
comparison of DE-Niche with two basic DE algorithms. It
is clear that on average the proposed DE-Niche algorithm
performs better than the two basic DE algorithms.

From the comparison between DE-Niche and two basic
DE algorithms, it can be shown that the advantages of DE-
Niche are obviously and the solution quality of DE-Niche

is better than DE/rand/1 and DE/best/1. The improvements
from DE-Niche may be contributed by the fact that the new
mutation strategies are combined with the clearing niche
method can balance the population diversity and exploration
capability.

5.1.3 Comparison with advanced DE variants

In order to further evaluate the effectiveness of the newmuta-
tion strategies, the clearing niche method is incorporated
into several advanced DE variants, namely, jDE (Brest and
Mernik 2008), JADE (Zhang and Sanderson 2009), SaDE
(Qin and Suganthan 2005), and EPSDE (Mallipeddi et al.
2011) including jDE-Niche, JADE-Niche, SaDE-Niche and
EPSDE-Niche. The comparisons between DE variants with
new mutation strategies and the corresponding DE variants
are made on 17 functions at 30D. The results are shown in
Table 4. Wilcoxon’s rank sum test at a 0.05 significance is
performed between jDE- Niche, JADE- Niche, SaDE- Niche
and EPSDE- Niche and their corresponding DE variants.
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Table 2 Comparison results between the basic DE algorithms and their corresponding DE variants

Function F = 0.5,Cr = 0.9 F = 0.5,Cr = 0.3

DE/rand/1 DE/best/1 DE-Niche DE/rand/1 DE/best/1 DE-Niche

Unimodal f1 Mean 2.31E−28− 1.56E+04+ 9.09E−12 0.00E+00≈ 1.78E−28+ 0.00E+00

SD 1.77E−28 4.77E+03 1.70E−11 0.00E+00 1.69E−28 0.00E+00

f2 Mean 7.46E−23− 2.33E+04+ 4.02E−11 3.65E+02+ 4.44E−10− 2.96E+00

SD 1.65E−22 7.23E+03 2.52E−11 9.84E+01 1.05E−09 5.56E+00

f3 Mean 1.03E+05+ 7.86E+07+ 1.89E+04 4.92E+07+ 1.08E+07− 3.57E+07

SD 5.76E+04 5.97E+07 1.22E+04 7.48E+07 4.94E+06 8.82E+06

f4 Mean 6.17E−09+ 4.18E+03+ 6.25E−14 1.47E+03+ 9.98E−03− 2.43E+02

SD 2.97E−08 3.16E+03 2.67E−13 4.00E+02 1.51E−02 1.85E+02

Basic multimodal f5 Mean 1.89E+01+ 2.82E+09+ 1.27E+00 2.59E+01≈ 2.10E+01≈ 2.05E+01

SD 1.48E+01 1.27E+09 1.89E+00 1.67E+01 2.10E+01 2.69E+00

f6 Mean 4.69E+03≈ 7.26E+03+ 4.69E+03 4.69E+03≈ 4.70E+03≈ 4.69E+03

SD 8.50E−13 4.78E+02 1.77E−12 1.36E−12 2.12E−12 3.23E−12

f7 Mean 2.09E+01≈ 2.09E+01≈ 2.09E+01 2.09E+01≈ 2.09E+01≈ 2.09E+01

SD 4.50E−02 5.47E−02 5.34E−02 5.62E−02 6.32E−02 6.02E−02

f8 Mean 1.37E+01≈ 1.62E+02+ 1.44E+01 1.26E+00≈ 1.65E+01+ 6.36E−01

SD 3.11E+00 3.41E+01 4.03E+00 3.74E+00 4.10E+00 8.06E−01

f9 Mean 4.93E+03+ 2.73E+05+ 1.84E+03 1.00E+05+ 9.87E+03− 6.94E+04

SD 6.46E+03 1.57E+05 2.32E+03 2.41E+04 7.20E+03 2.65E+04

Expanded multimodal f10 Mean 2.81E+00+ 1.73E+01+ 2.21E+00 7.48E+00≈ 5.60E+00− 7.59E+00

SD 7.24E−01 7.30E+00 5.38E−01 5.42E−01 6.66E−01 5.35E−01

f11 Mean 1.28E+01≈ 1.24E+01− 1.27E+01 1.32E+01≈ 1.29E+01≈ 1.32E+01

SD 3.19E−01 5.01E−01 2.40E−01 1.56E−01 3.52E−01 1.48E−01

Hybrid composition f12 Mean 4.00E+02≈ 6.71E+02+ 3.76E+02 2.72E+02+ 2.99E+02+ 2.42E+02

SD 8.17E+01 1.16E+02 8.23E+01 4.51E+01 1.06E+02 5.63E+01

f13 Mean 5.12E+02≈ 1.22E+03+ 5.00E+02 5.00E+02≈ 5.67E+02+ 5.00E+02

SD 6.00E+01 6.25E+01 1.82E−10 1.16E−13 1.67E+02 1.70E−13

f14 Mean 8.74E+02≈ 1.11E+03+ 8.71E+02 9.01E+02+ 8.97E+02≈ 8.91E+02

SD 1.81E+01 6.93E+01 1.73E+01 1.27E+01 1.60E+01 1.37E+01

f15 Mean 5.34E+02≈ 1.23E+03+ 5.40E+02 5.34E+02+ 6.16E+02+ 5.34E+02

SD 2.31E+00 3.90E+01 1.61E+01 2.51E−04 1.80E+02 7.83E−03

f16 Mean 2.00E+02≈ 1.26E+03+ 2.00E+02 2.00E+02≈ 2.12E+02≈ 2.00E+02

SD 2.90E−14 5.05E+01 2.90E−14 2.90E−14 6.00E+01 6.20E−13

f17 Mean 1.62E+03≈ 1.74E+03+ 1.62E+03 1.63E+03≈ 1.63E+03≈ 1.62E+03

SD 5.25E+00 2.89E+01 3.77E+00 3.52E+00 5.36E+00 2.65E+00

“+”,“−”, and “≈” denote that the performance of the DE-Niche algorithm is better than, worse than, and similar to that of two basic DE algorithm,
respectively. “Mean” and “SD” indicate the average and standard deviation of the function error values obtained in 25 runs, respectively. Wilcoxon’s
rank sum test at a 0.05 significance is performed between DE-Niche and two basic DE algorithms

From the results of functions in Table 4, it is clear that
the new mutation strategies with clearing niche mechanism
outperform most of the DE variants. For jDE, jDE-Niche
is significantly better on 8 out of 17 functions and is outper-
formed by jDE on only one function. For JADE, JADE-Niche
improves the performance of DE/rand/1 on 9 functions and
loses on 2 functions. For SaDE, SaDE-Niche can signif-
icantly outperform SaDE on 10 functions, without being
outperformed on any functions. For EPSDE, EPSDE-Niche

is better on 6 functions and is worse on 3 functions. Table 5
presents the result of comparison of jDE, JADE, SaDE, and
EPSDE algorithms with their corresponding DE variants. It
is clear that on average the DE variants with new mutation
strategies perform better than their corresponding DE algo-
rithms.

From the comparison between jDE, JADE, SaDE, and
EPSDE and their corresponding DE variants jDE-Niche,
JADE-Niche, SaDE-Niche, and EPSDE-Niche, it can be

123



5956 Y. Li et al.

Table 3 Comparison of
DE-Niche with two basic DE
algorithms

DE-Niche F = 0.5,Cr = 0.9 F = 0.5,Cr = 0.3

DE/rand/1 DE/best/1 DE/rand/1 DE/best/1

DE-Niche better 5 15 7 5

DE-Niche worse 2 1 0 5

DE-Niche equal 10 1 10 7

Success Rate 88.23% 94.11% 100% 70.58%

“DE-Niche better” means the value of DE-Niche is better than other algorithm, “DE-Niche worse” means
the value of DE-Niche is worse than other algorithm, “DE-Niche equal” means the value of DE-Niche is
equal than other algorithm, and “Success Rate” means the successful rate of DE-Niche (include the better
and equal ones)

shown that the solution quality of DE whose mutation strat-
egy is based on the clearing niche mechanism is the best.
Therefore, the new mutation strategies can improve the per-
formance of most DE variants studied.

5.1.4 Discussion about the choices the clearing radius for
DE algorithms with new mutation strategies

As mentioned in Sect. 3.1, the clearing radius threshold δ

is used to determine the size of the niches. If the value of
δ is large, most individuals would belong to one niche. On
the contrary, if the value of δ is small, the number of niches
would be large. In order to determine the setup of δ for DE
algorithms with newmutation strategies, namely, DE-Niche,
jDE-Niche, JADE-Niche, SaDE-Niche and EPSDE-Niche,
the comparisons of DE variants with different δ are made.
The δ value is set as 0.1, 0.2, 0.3 0.4, 0.5, 0.6, 0.7, 0.8, and
0.9, respectively. Due to space limitation, only highly distinct
functions are shown in this paper. In general, if the value for
δ obtains a poor performance we will give it up, if the value
for δ obtains a good performance we will give priority to it,
if the value for δ obtains a mild performance, at the same
times, other values obtain both a good and poor performance
for different functions, we will choose a mild value for δ,
and if the performance of all values are close, we can also
consider the convergence of functions.

In Fig. 8 and Table 6, the comparisons of DE-Niche with
different δ are shown when F = 0.5,Cr = 0.9. It is clear
that too big δ will affect the performance of DE-Niche. For
function f1, f2, f4, f6, f8, f10, f13, f15 and f16, 0.8 and
0.9 for δ are the worst values, while the best one is 0.8 for
function f5 and f17 and the second is 0.9 for function f11.
Similarly, for function f1, f2, f4, f5, f10, f12, f14, and f16,
0.7 for δ are the worst value, while 0.7 is best for function f11
and the second best for function f7, f9, and f17. Likewise, 0.6
for δ are the best value for function f7, f9, f10, and f16, the
second and third best for function f3, f5, f12, and f16, while
0.6 for δ are the second and third worst value for function f8,
f15, and f17. We can also analyze the results when the δ is
set as 0.1, 0.2, 0.3 0.4, and 0.5. Apparently, 0.2 for δ are the

best one for function f14, the second and third best value for
function f1, f2, f5, f6, f9, f10, f13, f15, and f17, while 0.2
for δ are the third worst value for function f12. For function
f1, f2, f3, f4, f6, f8, f10, f12, and f16, 0.3 for δ are the
first, second or third best value, while 0.3 for δ is the first,
second or third worst value for function f9, f11, and f17. In
general, considering all functions, δ = 0.2 can most enhance
the performance of DE-Niche when F = 0.5,Cr = 0.9.
And the result can be seen in Table 12.

In Fig. 9 and Table 7, the comparisons of DE-Niche with
different δ are shown when F = 0.5,Cr = 0.3. It is clear
that too small δ will affect the performance of DE-Niche and
mild values just showmedium performance. For function f1,
f6, f8, f10, f13, f15, and f16, DE-Niche obtains the similar
performance for all values of δ. 0.9 for δ obtains the best value
for function f2, f4, and f9, and the second best value for
function f11, while the worst value for function for function
f13. For function f2, f3, f4, f5, f11, and f17, 0.8 for δ obtains
the first or second best value, while for function f9, f12, and
f14, 0.8 for δ performs worse. For function f2, f4, f5, f7,
f12, and f17, 0.7 for δ obtains the second or third best value.
In the same way, we can analyze the other values of δ and
it can be found that the other values of δ cannot obtain a
better result than 0.9, 0.8, or 0.7. In general, considering all
functions, δ = 0.7 canmost enhance the performance of DE-
Niche when F = 0.5,Cr = 0.3. And the result can be seen
in Table 12.

In Fig. 10 and Table 8, the comparisons of jDE-Nichewith
different δ are shown. The results indicate that a mild value
of δ for unimodal and basic multimodal functions is better,
and a small value of δ for expanded multimodal and hybrid
composition functions is better. For function f7, 0.9 for δ

is best value, 0.1 for δ is worst value, and the other values
for δ is medium. However, when we consider from f1 to f9
in Table 8, it can be found 0.5 for δ is the better choice for
unimodal and basic multimodal functions. For function f11,
the best value for δ is 0.8, the worst value for δ is 0.7, and the
other values for δ are close. For function f12, f14 and f15,
0.1 for δ is the best value and the other values are close. For
function f15, the
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Table 5 Comparison of the
jDE, JADE, SaDE and EPSDE
algorithms with their
corresponding DE variants

jDE JADE SaDE EPSDE

Corresponding algorithm better 8 9 10 6

Corresponding algorithm worse 1 2 0 3

Corresponding algorithm equal 8 6 7 8

Success rate 94.11% 88.23% 100% 82.35%

Fig. 8 DE-Niche with different clearing radius when F = 0.5,Cr = 0.9
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Table 6 Results on DE-Niche
with different clearing radius
when F and Cr are set as 0.5
and 0.9

Rank f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17

Best

1 0.1 0.1 0.5 0.1 0.8 0.3 0.6 0.3 0.6 0.6 0.7 0.3 0.4 0.2 0.1 0.6 0.8

2 0.2 0.2 0.6 0.5 0.6 0.4 0.7 0.1 0.7 0.2 0.9 0.4 0.2 0.6 0.5 0.3 0.7

3 0.3 0.3 0.3 0.3 0.2 0.2 0.4 0.4 0.2 0.3 0.4 0.6 0.1 0.1 0.2 0.4 0.2

Worst

1 0.9 0.9 0.9 0.7 0.9 0.9 0.5 0.9 0.9 0.9 0.1 0.7 0.9 0.9 0.9 0.9 0.3

2 0.8 0.8 0.1 0.9 0.1 0.8 0.1 0.8 0.5 0.7 0.3 0.5 0.8 0.5 0.6 0.8 0.6

3 0.7 0.7 0.4 0.8 0.7 0.1 0.9 0.6 0.3 0.8 0.8 0.2 0.5 0.7 0.8 0.7 0.4

“Best” means that for each function the DE algorithm obtains the best performance when δ is set as the
corresponding value, and here we give out the value of δ which are in the top three; similarly, “Worst”
means for each function the DE algorithm obtains the worst performance when δ is set as the corresponding
value, and here we give out the value of δ which are in the last three. For example, the corresponding value
of δ is 0.1 in the second row and the third column, it means 0.1 for δ obtains the best performance for
function f1; the corresponding value of δ is 0.9 in the fifth row and the third column, it means 0.9 for δ

obtains the worst performance for function f1

In Fig. 11 and Table 9, the comparisons of JADE-Niche
with different δ are shown. It is clear that too small or too
large value for δ shows an unstable performance on different
functions. For function f4, the worst and second worst value
for δ is 0.2 and 0.8, the other values are close, the convergence
of 0.4 for δ performs best. For function f7, 0.8 and 0.9 for
δ are signally better than other values and other values for
δ are close, however, 0.8 and 0.9 for δ are signally worse
than other values for functions f12, f14 and f17. For function
f11, 0.3 for δ are signally better than other values and other
values for δ are close, however, 0.3 for δ are signally worse
than other values for functions f7. For functions f14 and f17,
all the values for δ are close, but 0.4 for δ performs better
than other values. It is shown in Table 9, synthesizing each
kind of situation, for JADE-Niche, the value of δ is set as 0.4
from f1 to f17. 0.4 for δ can most enhance the performance
of JADE-Niche. And the result is shown in Table 12.

In Fig. 12 and Table 10, the comparisons of SaDE-Niche
with different δ are shown. We can see that 0.5, 0.6, 0.8, and
0.9 show an unstable performance on different functions. For
function f4, the worst value for δ is 0.5, the other values are
close, and the convergence of 0.9 and 0.1 for δ perform better.
For function f7, 0.6 and 0.3 for δ are signally better than other
values, the third best value for δ is 0.2, and the worst and
second worst values for δ is 0.9 and 0.8 while 0.9 and 0.8
for δ perform unstable for functions f11, f12. For function
f11, all the values for δ are close, 0.9 for δ performs best, 0.2
performs worst, while 0.8 performs third worst. For function
f12, 0.8 for δ performs signally best than other values. For
function f15 we canfind that 0.5 for δ performs signallyworse
than other values, the other values perform similar, and the
convergence of 0.2 for δ perform better. For function f17, 0.2
for δ performs signally best than other values. Considering
both performance and convergence in Table 10, 0.2 for δ

performs better on functions f1, f2, f7, f9, f13, f14, f15, and

f17. Therefore, for SaDE-Niche, the value of δ is set as 0.2.
And the result is shownin Table 12.

In Fig. 13 and Table 11, the comparisons of EPSDE-Niche
with different δ are shown. It can be seen that most values
for δ perform unstably on different functions. 0.1 for δ per-
forms better on functions f4 and f7, while it performs worse
on functions f1, f2, f3, f6, f8, f10, f11 and f16. 0.2 for δ

performs better on functions f8, f10, and f17, while it per-
forms worse on functions f2, f9, f11, f14, f15, and f16. 0.3
for δ performs better on functions f1, f2, f4, f5, f7, f11, f13,
f15,and f17 while it performs worse on functions f6 and f12.
0.4 for δ performs better on functions f3, f5, f6, f12, f13,
and f14, while it performs worse on functions f2, f7, f8, f9
and f15. 0.5 for δ performs better on functions f1, f2, f3,
f10, f12, and f16, while it performs worse on functions f4,
f5, f7, f9 and f14. 0.6 for δ performs better on functions f1,
f9, f11, and f15, while it performs worse on functions f4,
f5, f7, f10, f12, f13, and f16. 0.7 for δ performs better on
functions f4, f5, f6, f8, f14 and f18, while it performs worse
on functions f3, f12, f13 and f17. 0.8 for δ performs better
on functions f3, f7, f12 and f16, while it performs worse on
functions f1, f5, f6, f8, f10, f11, f13, f14, and f16. 0.9 for
δ performs better on functions f2, f6, f8, f9, f10, f11, f13,
f14, and f16, while it performs worse on functions f1, f4,
f15, and f17. Comprehensively considered with every factor,
it can be found that the value for δ should be set as 0.3 for
EPSDE-Niche. And the result is shown in Table 12.

We all know that the bigger F or the smaller Cr is, the
higher exploration capability ofDE is. Regarding to the clear-
ing nichemechanism, the smaller the value of clearing radius
δ is, the higher exploration capability of DE is. And the
larger the value of clearing radius δ is, the higher exploita-
tion capability of DE is. The recommendation of cleaing
radiuses is 0.2 when F = 0.5,Cr = 0.9, while δ is 0.7
when F = 0.5,Cr = 0.3. It shows that when the values
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Fig. 9 DE-Niche with different clearing radius when F = 0.5,Cr = 0.3

Table 7 Results on DE-Niche
with different clearing radius
when F and Cr are set as 0.5
and 0.3

Rank f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17

Best

1 0.4 0.9 0.2 0.9 0.8 0.9 0.6 0.6 0.9 0.5 0.8 0.2 0.3 0.6 0.2 0.9 0.8

2 0.2 0.8 0.8 0.8 0.7 0.4 0.3 0.5 0.6 0.1 0.9 0.7 0.1 0.1 0.3 0.8 0.7

3 0.5 0.7 0.1 0.7 0.6 0.5 0.7 0.2 0.2 0.3 0.1 0.9 0.5 0.4 0.6 0.7 0.2

Worst

1 0.7 0.3 0.9 0.2 0.2 0.1 0.5 0.9 0.8 0.6 0.5 0.6 0.8 0.5 0.9 0.5 0.3

2 0.9 0.4 0.6 0.1 0.5 0.7 0.2 0.7 0.4 0.8 0.4 0.4 0.9 0.3 0.5 0.2 0.6

3 0.3 0.2 0.4 0.3 0.3 0.6 0.1 0.8 0.1 0.7 0.2 0.8 0.7 0.8 0.8 0.1 0.5
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Fig. 10 jDE-Niche with different clearing radius

Table 8 Results on jDE-Niche
with different clearing radius

Rank f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17

Best

1 0.9 0.1 0.7 0.3 0.8 0.4 0.9 0.6 0.7 0.8 0.8 0.1 0.2 0.1 0.1 0.2 0.3

2 0.8 0.6 0.5 0.1 0.6 0.5 0.3 0.1 0.6 0.7 0.9 0.2 0.1 0.3 0.5 0.1 0.1

3 0.3 0.3 0.6 0.8 0.7 0.3 0.6 0.2 0.1 0.6 0.6 0.7 0.3 0.2 0.4 0.3 0.2

Worst

1 0.2 0.8 0.1 0.9 0.3 0.7 0.1 0.9 0.8 0.2 0.7 0.4 0.8 0.9 0.7 0.4 0.9

2 0.5 0.9 0.2 0.4 0.4 0.8 0.7 0.5 0.9 0.9 0.1 0.9 0.7 0.6 0.6 0.8 0.6

3 0.1 0.5 0.3 0.6 0.5 0.9 0.5 0.7 0.2 0.1 0.5 0.5 0.9 0.8 0.9 0.6 0.8
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Fig. 11 JADE-Niche with different clearing radius
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Table 9 Results on
JADE-Niche with different
clearing radius

Rank f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17

Best

1 0.3 0.1 0.1 0.4 0.2 0.9 0.8 0.2 0.3 0.6 0.3 0.7 0.3 0.4 0.1 0.1 0.4

2 0.6 0.4 0.4 0.3 0.3 0.2 0.9 0.6 0.4 0.1 0.8 0.4 0.1 0.3 0.2 0.5 0.8

3 0.1 0.3 0.9 0.1 0.5 0.8 0.1 0.7 0.5 0.4 0.5 0.6 0.8 0.2 0.7 0.8 0.5

Worst

1 0.2 0.8 0.5 0.2 0.8 0.5 0.3 0.1 0.9 0.9 0.7 0.9 0.6 0.8 0.9 0.6 0.1

2 0.9 0.2 0.8 0.8 0.6 0.7 0.5 0.3 0.6 0.3 0.2 0.8 0.9 0.5 0.6 0.7 0.9

3 0.5 0.7 0.7 0.6 0.7 0.3 0.4 0.8 0.7 0.7 0.9 0.1 0.4 0.1 0.8 0.3 0.3

of F is equal, the smaller the value of Cr is, the bigger the
value of clearing radius δ is. Therefore, it maintains a bal-
ance between the exploitation capability and the exploration
capability. Since jDE-Niche, JADE-Niche, SaDE-Niche and
EPSEDE-Niche are self-adaptive algorithms, it is hard to
analyze the relationship between F , Cr and clearing radius
δ. Thus, we do not know how it maintains a balance between
the exploitation capability and the exploration capability.

In addition, do a longitudinal analysis, it is also hard to
distinguish which value of clearing radius δ suits which func-
tion for different algorithms own different value of clearing
radius δ when the function is same. So the values of clear-
ing radius δ are not only based on the functions but also the
algorithms.

5.2 Multimodal study

In this section, eight multimodal functions are selected as
the test functions. The study focuses on finding all the global
optimal solutions. Here, the experimental setup is shown
first. Then, the comparisons between DE changed with new
mutation strategies and the corresponding DE algorithms are
made.

5.2.1 Experimental setup

To make a fair comparison, the parameters for all the DE
algorithms are set as follows unless a change is mentioned.

(1) Dimension of the functions (D): 2.
(2) Population size (N P): 50.
(3) Maximal number of fitness function evaluations: 10000.
(4) Number of runs: 25.
(5) Scaling Factor (F) and Crossover Control Parameter

(Cr): For two basic DE algorithms, F and Cr are (0.5,
0.9) and (0.5, 0.3), respectively. For four advanced DE
variants, F and Cr are set as mentioned in Brest and
Mernik (2008), Qin and Suganthan (2005), Mallipeddi
et al. (2011), Zhang and Sanderson (2009).

(6) Clearing radius (δ): The clearing radiuses for the algo-
rithms are shown in Table 12. And, for F1, F2, F3, and
F5, the clearing radiuses for jDE-Niche is set as 0.5,
while for F4, F6, F7, and F8, the clearing radiuses for
jDE-Niche is set as 0.1.

(7) Level of accuracy (ε): For functions F1, F2, F3 and F7,
the level of accuracy is set as {1.0E-03, 1.0E-04, 1.0E-05,
1.0E-06}. For function F4, the level of accuracy is set as
{1.0E-01, 1.0E-02, 1.0E-03, 1.0E-04}. For functions F5,
and F8, the level of accuracy is set as {1.0E-02, 1.0E-03,
1.0E-04, 1.0E-05}. For function F6, the level of accuracy
is set as {5.0E-01, 3.0E-01, 1.0E-01, 1.0E-02}.

5.2.2 Evaluation criterions

The performance of all multimodal algorithms is measured
by the following two criterions:

(1) Peak Ratio (PR): the average percentage of all known
global optima found over multiple runs. The high peak ratio
indicates the versatility of the algorithm against variety of
the functional landscapes.

PR =
∑N R

i=1 N PFi
NK P ∗ N R

(49)

where N PFi denotes the number of global optima found in
the end of the i th run, NK P denotes the number of known
global optima, and NR the number of runs.

(2) Success Rate (SR): the percentage of successful runs
(a successful run is defined as a run where all known global
optimal solutions are found) out of all runs. The high val-
ues of success rate indicate the fine search performed by the
algorithms as well as the tendency to preserve the detected
peaks against the drifting forces.

SR = NSR

N R
(50)

where NSR denotes the number of successful runs.
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Fig. 12 SaDE-Niche with different clearing radius
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Table 10 Results on
SaDE-Niche with different
clearing radius

Rank f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17

Best

1 0.2 0.6 0.7 0.1 0.3 0.8 0.6 0.3 0.4 0.7 0.9 0.8 0.4 0.2 0.3 0.1 0.2

2 0.5 0.5 0.5 0.9 0.7 0.7 0.3 0.1 0.2 0.4 0.5 0.9 0.7 0.3 0.2 0.7 0.4

3 0.8 0.2 0.6 0.4 0.6 0.5 0.2 0.6 0.8 0.9 0.4 0.5 0.2 0.1 0.9 0.6 0.9

Worst

1 0.4 0.9 0.4 0.5 0.4 0.2 0.9 0.8 0.1 0.3 0.2 0.7 0.1 0.9 0.5 0.8 0.6

2 0.1 0.1 0.3 0.7 0.8 0.1 0.8 0.9 0.6 0.1 0.6 0.4 0.8 0.6 0.8 0.3 0.3

3 0.9 0.3 0.9 0.6 0.9 0.4 0.4 0.5 0.3 0.8 0.8 0.2 0.6 0.4 0.1 0.9 0.7

5.2.3 Result and analysis

In this section, DE-Niche, jDE-Niche, JADE-Niche, SaDE-
Niche, and EPSDE-Niche comparing with DE, jDE, JADE,
SaDE, and EPSDE are evaluated when they are used for
handling multimodal optimization problems. To verify the
effectiveness of the newmutation strategies, we employ eight
classic multimodal benchmark functions.

In Tables 13, 14, and 15, the success rate and peak ratio of
10 algorithms are reported respectively. The high values of
success rate indicate the fine searches are performed by the
algorithms, aswell as the tendency is observed to preserve the
detected peaks against the drifting forces. The high peak ratio
indicates the versatility of the algorithm against variety of the
functional landscapes. Here, wemark the results that exhibits
better performance measured by SR or PR with bold-face in
Tables 13, 14 and 15. Based on the experimental results, for
the majority of the considered functions, the DE algorithms
with the new mutation strategies based on clearing niche
method show better or similar performances measured by
both SR and PR, compared with the DE algorithms with
common mutation strategies. Specifically, in the first three
functions, all algorithms behave similarly, exhibiting best
performance independently of the accuracy level, except the
basicDEwithDE/best/1 strategy performsworse on function
F1. This behavior changes in the next functions,where theDE
algorithmswith the newmutation strategies based on clearing
niche method clearly outperform the DE algorithms with the
commonmutation strategies on both PR and SRmeasures for
functions F4, F6, F7, and F8, but underperform for functions
F5. It is worth noting that the DE algorithms with the new
mutation strategies based on clearing niche method exhibits
significantly great performance gains for the majority of the
functions aforementioned for almost all accuracy levels.

In Table 16, it can be observed that DE-Niche achieves the
best total rank of 57.5 in SR and 52 in PRwhen F andCr are
0.5, 0.9. It achieves the best total rank of 58 in SR and 53 in
PR when F and Cr are 0.5 and 0.3, respectively. jDE-Niche
achieves the best total rank of 46.5 in SR and 43.5 in PR.
SaDE-Niche achieves the best total rank of 46.5 in SR and
46 in PR. EPSDE-Niche achieves the best total rank of 46.5 in

SR and 43.5 in PR. However, JADE-Niche achieves the best
total rank of 47.5 in SR, while JADE achieves the best total
rank of 47 in PR. Overall the DE algorithms with the new
mutation strategies based on clearing niche method perform
better than the DE algorithms with the common mutation
strategies when it maintains both PR and SR measure.

5.3 Study for EED problem

In this section, the present formulation treats economic
environmental dispatch (EED) problem as a multi-objective
mathematical programming problem is selected to test the
performance of the new strategies. Here, the introduction of
the multiobjective problem is given first. Then, the experi-
mental setup is shown. Lastly, the experimental result and
analysis are made.

5.3.1 Problem formulation

The EED problem attempts to optimize both cost and
emission simultaneously, while satisfying both equality and
inequality constraints. The following objectives and con-
straints are taken into account in the formulation of EED
problem.

5.3.1.1 Objectives

(1) Cost
The fuel cost function of each fossil fuel-fired generator, con-
sidering the valve-point effect (Walters and Sheble 1993), is
expressed as the sum of a quadratic and a sinusoidal function.

The total fuel cost in terms of real power output can be
expressed as Eq. (51).

F =
N∑

i=1

[
ai + bi Pi + ci P

2
i +

∣∣∣di sin
{
ei
(
Pmin
i − Pi

)}∣∣∣
]

(51)

where Pi is the power output of i th unit, Pmin
i is the lower

generation limits for i th unit. ai , bi , ci , di , and ei are the cost
coefficients of i th unit. N is the number of generating units.
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Fig. 13 EPSDE-Niche with different clearing radius

123



New mutation strategies of differential evolution based on clearing niche mechanism 5967

Table 11 Results on
EPSDE-Niche with different
clearing radius

Rank f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17

Best

1 0.5 0.9 0.4 0.7 0.7 0.4 0.1 0.2 0.1 0.2 0.6 0.8 0.4 0.9 0.6 0.5 0.3

2 0.3 0.5 0.8 0.1 0.3 0.9 0.3 0.9 0.9 0.9 0.9 0.5 0.9 0.4 0.7 0.9 0.1

3 0.6 0.3 0.5 0.3 0.4 0.7 0.8 0.7 0.6 0.5 0.3 0.4 0.3 0.7 0.3 0.8 0.2

Worst

1 0.9 0.1 0.7 0.6 0.5 0.1 0.4 0.8 0.2 0.1 0.8 0.3 0.8 0.5 0.9 0.1 0.9

2 0.8 0.2 0.1 0.5 0.6 0.3 0.5 0.1 0.4 0.6 0.2 0.6 0.6 0.8 0.2 0.6 0.7

3 0.1 0.4 0.6 0.9 0.8 0.8 0.6 0.4 0.5 0.8 0.1 0.7 0.7 0.2 0.4 0.2 0.8

Table 12 Recommended
clearing radiuses for the
algorithms

Algorithms Function Parameters δ

DE-Niche f1 − f17 F = 0.5, Cr = 0.9 0.2

F = 0.5, Cr = 0.3 0.7

jDE-Niche f1 − f9 Self-adaptive 0.5

f10 − f17 Self-adaptive 0.1

JADE-Niche f1 − f17 Self-adaptive 0.4

SaDE-Niche f1 − f17 Self-adaptive 0.2

EPSDE-Niche f1 − f17 Self-adaptive 0.3

(2) Emission
The atmospheric pollutants such as sulfur oxides (SOx),
nitrogen oxides (NOx) and carbon dioxide (CO2) caused by
fossil fuel-fired generator can be modeled separately. How-
ever, for comparison purposes, the total emission of these
pollutants which is the sum of a quadratic and an exponen-
tial function (Basu 2011) can be expressed as Eq. (52).

E =
N∑

i=1

[
αi + βi Pi + γi P

2
i + ηi exp (δi Pi )

]
(52)

where Pi is the power output of i th unit. αi , βi , γi , ηi , and δi
are the emission coefficients of ith unit. N is the number of
generating units.

5.3.1.2 Constraints

(1) Real power balance constraint
The total real power generation must balance the predicted
power demand plus the real power losses in the transmission
lines.

N∑

i=1

Pi − PD − PL = 0 (53)

where PD is the load demand. PL is calculated by using B
coefficients (the transmission loss coefficient) which can be
expressed in the quadratic form as follows:

PL =
N∑

i=1

N∑

j=1

Pi Bi j Pj (54)

(2) Real power operating limits

Pmin
i ≤ Pi ≤ Pmax

i , i ∈ N

where Pmin
i and Pmax

i are the lower and upper generation
limits for i th unit.

5.3.2 Experimental setup

To make a fair comparison, the parameters for all the DE
algorithms are set as follows unless a change is mentioned.

(1) Dimension of the functions (D): 10.
(2) Population size (N P): 50.
(3) Maximal number of fitness function evaluations: 1000.
(4) Scaling Factor (F) and Crossover Control Parameter

(Cr): For two basic DE algorithms, F and Cr are (0.5,
0.9) and (0.5, 0.3), respectively. For four advanced DE
variants, F and Cr are set as mentioned in Brest and
Mernik (2008), Qin and Suganthan (2005), Mallipeddi
et al. (2011), Zhang and Sanderson (2009).

(5) Clearing radius (δ): The clearing radiuses for the algo-
rithms are shown in Table 12. And, the clearing radiuses
for jDE-Niche is set as 0.5.

(6) Load demand: PD = 2000MW.
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Table 16 Total ranks for all
algorithms

Algorithms SR PR Algorithms SR PR

DE F = 0.5,Cr = 0.9 DE/rand/1 60 60.5 jDE-Niche 46.5 43.5

DE/best/1 70.5 77.5 JADE 48.5 47

DE-Niche 57.5 52 JADE- Niche 47.5 49

DE F = 0.5,Cr = 0.3 DE/rand/1 59.5 61 SaDE 49.5 49

DE/best/1 72.5 78 SaDE-Niche 46.5 46

DE-Niche 58 53 EPSDE 49.5 52.5

jDE 49.5 52.5 EPSDE-Niche 46.5 43.5

Table 17 Power output, cost, and emission of ten-unit system by the basic DE algorithms and DE-Niche algorithm

Power output
of i th unit

F = 0.5,Cr = 0.9 F = 0.5,Cr = 0.3

DE/rand/1 DE/best/1 DE-Niche DE/rand/1 DE/best/1 DE-Niche

Economic
dispatch

Emission
dispatch

EED EED EED EED EED EED

P1 55 55 54.72209 54.90951 54.69379 54.98127 54.9912 54.85888

P2 80 80 79.80728 78.93928 79.0844 79.52119 79.48729 79.40966

P3 106.9396 81.13417 87.3326 94.38051 89.80176 90.84672 80.02748 84.61223

P4 100.5743 81.36374 84.69496 92.84528 85.10693 87.09652 81.7519 83.85574

P5 81.50925 160 114.2762 120.2293 116.2629 128.4365 131.7568 140.3557

P6 83.01569 240 151.5787 146.4247 149.0805 162.3995 162.948 150.034

P7 300 294.4851 295.0466 289.299 298.6134 295.0677 295.6985 298.1719

P8 340 297.2701 329.8471 322.306 326.337 304.5769 292.6717 307.7047

P9 470 396.7657 451.7851 439.9297 445.6074 437.2558 451.9699 445.3863

P10 470 395.5763 435.7389 445.3095 440.2065 444.0994 453.5933 440.1272

Cost(10ˆ5$) 1.11497 1.16412 1.12622 1.12621 1.12606 1.13084 1.13132 1.13075

Emission (lb) 4612.18 3972.24 4264.56 4267.28 4263.24 4200.36 4205.82 4197.79

5.3.3 Result and analysis

This system consists of ten generating units with non-smooth
fuel cost and emission level functions. Unit data and loss
coefficients are given in “Appendix”.

Solutions by using basic DE and DE-Niche on EED prob-
lem are shown in Table 17. During cost minimization, fuel
cost is 1.11497 × 105$ and emission is 4612.18 lb. But
cost increases to 1.16412 × 105$ and emission decreases
to 3972.24 lb in case of emission minimization. Results
obtained from DE/rand/1, DE/best/1, and DE-Niche, are
summarized in Table 17. In case of EED by using DE-Niche
when F = 0.5 and Cr = 0.9, fuel cost is 1.12606 × 105$
which is more than 1.11497× 105$ and less than 1.16412×
105$ , and emission is 4263.24 lb which is less than 4612.18
lb and more than 3972.24 lb. By using DE/rand/1, fuel cost
is 1.12622 × 105$ which is more than 1.12606 × 105$ and
emission is 4264.56 lb which is more than 4263.24 lb. By
using DE/best/1, fuel cost is 1.12621 × 105$ which is more
than 1.12606 × 105$ and emission is 4267.28 lb which is

more than 4263.24 lb. It can be found that, the values of both
fuel cost and emission by using DE-Niche are less than the
values by using DE/rand/1 and DE/best/1. Likewise, it can
be found that the conclusion is applicable to the results when
F = 0.5 and Cr = 0.3.

Solutions by using jDE, JADE, SaDE, EPSDE, jDE-
Niche, JADE-Niche, SaDE- Niche, and EPSDE-Niche on
EED problem are shown in Table 18. In case of EED by using
jDE, fuel cost is 1.12612 × 105$, and emission is 4263.96
lb. When by using jDE-Niche, fuel cost is 1.12625 × 105$
which is more than 1.12612× 105$, but emission is 4262.36
lb which is less than 4263.96 lb. These two solutions do
not dominate each other. Similarly, the solutions by using
JADE and JADE-Niche do not dominate each other. At the
same time, in case of EED by using SaDE, fuel cost is
1.13763× 105$, and emission is 4291.64 lb. When by using
SaDE-Niche, fuel cost is 1.13543 × 105$ which is less than
1.13763 × 105$, and emission is 4198.39 lb which is less
than 4291.64 lb. It shows that, the values of both fuel cost
and emission by using SaDE-Niche are less than the val-
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Table 18 Power output, cost, and emission of ten-unit system by jDE, JADE, SaDE, and EPSDE algorithms and their corresponding DE variants
with new mutation strategies

Power output
of i th unit

jDE jDE_Niche JADE JADE_Niche SaDE SaDE_Niche EPSDE EPSDE_Niche

EED EED EED EED EED EED EED EED

P1 54.84462 54.94983 54.97065 54.95015 29.40508 46.1734 36.17975 46.85479

P2 78.99054 79.24224 79.82228 79.48305 72.79229 71.09816 59.6031 71.79953

P3 83.60589 96.30204 85.04759 83.97245 102.2589 85.7957 93.19733 105.1295

P4 83.75415 87.41277 81.56497 85.5831 77.95818 80.60412 114.4035 83.52687

P5 124.5532 127.1113 120.6808 128.4333 158.7933 125.385 135.8526 133.1242

P6 143.7592 139.2127 148.6987 136.4341 151.0108 181.0122 193.5948 201.308

P7 294.4362 298.132 294.7467 297.2601 271.6371 295.5609 261.4637 269.4317

P8 324.6998 318.79 322.2707 325.436 339.3171 325.5314 286.1742 296.2601

P9 432.7897 446.5679 444.229 454.0236 425.3794 446.4012 448.4764 454.4499

P10 463.724 436.895 453.0648 439.4411 455.6692 426.5131 454.6876 421.4889

Cost(10ˆ5$) 1.12612 1.12625 1.12628 1.12580 1.13763 1.13543 1.14286 1.14283

Emission (lb) 4263.96 4262.36 4257.48 4265.05 4291.64 4198.39 4290.01 4173.79

ues by using SaDE. Similarly, fuel cost and emission by
using EPSDE are both less than fuel cost and emission by
using.

From the comparison of solutions between jDE, JADE,
SaDE, and EPSDE and their corresponding DE variants
jDE-Niche, JADE-Niche, SaDE-Niche, and EPSDE-Niche,
it shows that the solutions of DE whose mutation strategy is
based on the clearing niche mechanism are better as a whole.
Therefore, the new mutation strategies can improve the per-
formance of most DE variants on solving EED.

6 Conclusion

In this work, the clearing niche mechanism has been incor-
porated into several mutation strategies, which are used on
two basic DE algorithms, and four improved DE variants.
Through evaluating and comparing the effectiveness of DE
variants with new mutation strategies with basic DE algo-
rithms, four improved DE variants, it can confirmed that new
mutation strategies based on the clearing niche mechanism
can improve the performance ofmost DE algorithms studied.
In addition, through the discussion of adjusting the clearing
radius threshold, the exploitation capability and the explo-
ration capability are maintained.

In the future, the present work could be extended in mul-
tiple directions. First of all, an adaptive clearing radius can
be used in the algorithms. Secondly, other strategies based
on the clearing niche mechanism will guide the search of
DE. Thirdly, more niche mechanisms will be introduced
to study the mutation strategies. Lastly, the DE variants
with new strategies will be used to solve real-world prob-

lems. For instance, it can be applied to petroleum reservoir
identification, location problem, feature selection and rule
extraction.
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Table 19 Ten-unit generator characteristics

Unit Pmax
i

(MW)
Pmin
i

(MW)
ai ($/h) bi

($/MWh)
ci ($/
(MW)2h)

di
($/h)

ei (rad/
MW)

αi (lb/
h)

βi (lb/
MWh)

γi (lb/
(MW)2h)

ηi (lb/
h)

δi (l/
MW)

1 55 10 1000.403 40.5407 0.12951 33 0.0174 360.0012 −3.9864 0.04702 0.25475 0.01234

2 80 20 950.606 39.5804 0.10908 25 0.0178 350.0056 −3.9524 0.04652 0.25475 0.01234

3 120 47 900.705 36.5104 0.12511 32 0.0162 330.0056 −3.9023 0.04652 0.25163 0.01215

4 130 20 800.705 39.5104 0.12111 30 0.0168 330.0056 −3.9023 0.04652 0.25163 0.01215

5 160 50 756.799 38.5390 0.15247 30 0.0148 13.8593 0.3277 0.00420 0.24970 0.01200

6 240 70 451.325 46.1592 0.10587 20 0.0163 13.8593 0.3277 0.00420 0.24970 0.01200

7 300 60 1243.531 38.3055 0.03546 20 0.0152 40.2669 −0.5455 0.00680 0.24800 0.01290

8 340 70 1049.998 40.3965 0.02803 30 0.0128 40.2669 −0.5455 0.00680 0.24990 0.01203

9 470 135 1658.569 36.3278 0.02111 60 0.0136 42.8955 −0.5112 0.00460 0.25470 0.01234

10 470 150 1356.659 38.27041 0.01799 40 0.0141 42.8955 −0.5112 0.00460 0.25470 0.01234

The transmission loss formula coefficients of ten-unit
system are:

B =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

0.000049 0.000014 0.000015 0.000015 0.000016 0.000017 0.000017 0.000018 0.000019 0.000020
0.000014 0.000045 0.000016 0.000016 0.000017 0.000015 0.000015 0.000016 0.000018 0.000018
0.000015 0.000016 0.000039 0.000010 0.000012 0.000012 0.000014 0.000014 0.000016 0.000016
0.000015 0.000016 0.000010 0.000040 0.000014 0.000010 0.000011 0.000012 0.000014 0.000015
0.000016 0.000017 0.000012 0.000014 0.000035 0.000011 0.000013 0.000013 0.000015 0.000016
0.000017 0.000015 0.000012 0.000010 0.000011 0.000036 0.000012 0.000012 0.000014 0.000015
0.000017 0.000015 0.000014 0.000011 0.000013 0.000012 0.000038 0.000016 0.000016 0.000018
0.000018 0.000016 0.000014 0.000012 0.000013 0.000012 0.000016 0.000040 0.000015 0.000016
0.000019 0.000018 0.000016 0.000014 0.000015 0.000014 0.000016 0.000015 0.000042 0.000019
0.000020 0.000018 0.000016 0.000015 0.000016 0.000015 0.000018 0.000016 0.000019 0.000044

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦
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