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Abstract Case-based reasoning (CBR) is an artificial intel-
ligent approach to learning and problem-solving, which
solves a target problem by relating past similar solved prob-
lems. But it faces the challenge of weights assignment to
features to measure similarity between cases. There are many
methods to overcome this feature weighting problem of CBR.
However, neural network’s pruning is one of the powerful and
useful methods to overcome this feature weighting problem,
which extracts feature weights from trained neural network
without losing the generality of training set by four popular
mechanisms: sensitivity, activity, saliency and relevance. It
is habitually assumed that the training sets used for learning
are balanced. However, this hypothesis is not always true in
real-world applications, and hence, the tendency is to yield
classification models that are biased toward the overrepre-
sented class. Therefore, a hybrid CBR system is proposed
in this paper to overcome this problem, which adopts a
cost-sensitive back-propagation neural network (BPNN) in
network pruning to find feature weights. These weights are
used in CBR. A single cost parameter is used by the cost-
sensitive BPNN to distinguish the importance of class errors.
A balanced decision boundary is generated by the cost para-
meter using prior information. Thus, the class imbalance
problem of network pruning is overcome to improve the
accuracy of the hybrid CBR. From the empirical results, it is
observed that the performance of the proposed hybrid CBR
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system is better than the hybrid CBR by standard neural net-
work. The performance of the proposed hybrid system is
validated with seven datasets.
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1 Introduction

CBR is an intelligent technique to learning and problem-
solving, which solves problems based on past experi-
ences stored in case base and also captures new knowl-
edge/experiences, making it immediately available for solv-
ing next problems. These experiences encode relevant fea-
tures/attributes, courses of action that were taken and solu-
tions that are ensued. This base of experience forms the
memory for the CBR system. CBR is also a variety of rea-
soning by analogy (Aamodt and Plaza 1994; Leake 1996).
Aamodt and Plaza (1994) have described CBR typically as a
cyclical process comprising the four REs:

• Retrieval retrieves one or more similar cases from case
base that can be used to solve a new problem.

• Reuse is responsible for proposing solution to the new
problem from retrieved cases.

• Revise is responsible to evaluate the proposed solution.
If the proposed solution is fit for the new problem, then
it is possible to learn about the success; otherwise, the
solution is repaired/adapted using some problem domain-
specific knowledge or any other ways.

• Retain consists of a process of integrating the useful infor-
mation about the new problem’s resolution in case base,
if it is a case whose solution is not readily available in
case base.
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It is observed that the core of CBR methodology is the
retrieval of similar cases stored in case base. Therefore, a sim-
ilarity measure is required to calculate the similarity between
the stored cases and a new case, and hence, similarity mea-
sure becomes the key element in obtaining a reliable solution
for new situations (Nunez et al. 2004; Buta 1994). The task of
defining similarity measures for real-world problems is one
of the greatest challenges of research in this area as assess-
ing the similarity between cases is a key aspect of CBR. The
k-nearest neighbor (k-NN) is one of the most popular similar-
ity measures in CBR, which uses a distance function to find
similarity between cases. However, the biggest problem with
k-NN is to determine the weight of features because several
studies have shown that k-NN’s performance is highly sen-
sitive to the definition of its distance function (Watson and
Marir 1994; Wettschereck et al. 1997). Many k-NN variants
have been proposed to reduce this sensitivity by parameteriz-
ing the distance function with feature weights (Wettschereck
et al. 1997).

The k-NN considers that each query, q (new case) is repre-
sented by b features which are numeric or discrete. The sim-
ilarity of q with each stored case, c = {c1, c2, c3, . . ., cb, oc}
in a set C is calculated where c1 to cb are attribute values or
problem description of the case c and oc is c’s class value. The
k-NN then retrieves k most similar (least distance) cases and
predicts their weighted majority class or majority class only
as the class of q. The distance can be calculated by Eq. (1)
given below.

Distance (c, q) =
√
√
√
√

b
∑

i=1

wi · diff (ci , qi )2 (1)

where wi is the parameterized weight value assigned to fea-
ture i and

diff (ci , qi ) =
⎛

⎝

|ci − qi | if feature i is numeric
0 if feature i is discrete and ci = qi
1 Otherwise

⎞

⎠

(2)

The distance given in Eq. (1) is weighted Euclidean distance
but can also be weighted absolute or city block distance1. City
block distance examines the absolute differences between
co-ordinates of a pair of objects. The detail of Eqs. (1) and
(2) could be found in Wettschereck et al. (1997). The con-
cept of equal weights handicaps k-NN as it allows redundant
and irrelevant features to have as much impact on distance
computations as others. For the cases belonging to the same

1 The distance is always greater than or equal to zero. The measurement
would be zero for identical points and high for points that show little
similarity. It is also known as Manhattan distance or Boxcar distance or
absolute value distance

class, some features may often have the same value, while
others vary their values in most of the cases in that class.
Therefore, the features will always have different degrees of
impact in similarity measure. Accordingly, different feature
weights should be provided to avoid incorrectness in similar-
ity measure. If all of the features are regarded as being equally
important, i.e., all the features have the same weight value,
then CBR allows redundant or irrelevant features to influence
the final solution as well as similarity measure. Therefore, it
is very important to solve the feature weighting problem of
CBR to work properly where similarity measure is k-NN.

Many methods have been proposed to sort out the feature
weighting problem. For example, Daelemans et al. (1994)
and Wettschereck and Dietterich (1995) used mutual infor-
mation to compute coefficients on numeric attributes. Many
other feature weighting methods and their analysis could be
found in Wettschereck et al. (1997).

Although many feature weighting methods for k-NN
have been reported for classification or prediction task,
feature weighting methods which can capture generality
and domain-specific knowledge together are rare. Artifi-
cial neural network (ANN) is a method which captures
generality and domain-intensive knowledge to estimate the
relative importance of each feature. Therefore, many net-
work pruning tasks are attempted and implemented (Shin
and Park 1999; Shin et al. 2000; Im and Park 2007; Park
et al. 2004; Ha 2008; Zeng and Martinez 2004; Yang and
Jin 2010; Peng and Zhuang 2007; Sarwar et al. 2010; Park
et al. 2006) to find feature weights. Sensitivity, activity
saliency and relevance mechanisms are used in Shin and
Park (1999), Shin et al. (2000), Im and Park (2007) and Park
et al. (2004) to find symbolic feature weights from back-
propagation neural network (BPNN). They have assumed
that the training sets used for learning are balanced in those
works. However, this hypothesis is not habitually true in real-
world applications. Traditional learning algorithms applied
to complex and highly imbalanced training sets do not give
satisfactory results when distinguishing between examples
of classes. The tendency is to yield classification model that
is biased toward the overrepresented (majority) class (Braga
and Castro 2013). This paper attempts to overcome the class
imbalance problem for sensitivity, activity, saliency and rele-
vance mechanisms, which improves the performance of these
feature weighting mechanisms.

Many solutions are proposed to resolve the class imbal-
ance problem both at the data and at the algorithmic levels.
The common practice for dealing with imbalanced data at the
data level includes different sampling techniques like over-
sampling the minority class, or under sampling the majority
class, until the classes become balanced. However, while
implementing these sampling techniques, some known draw-
backs are associated with them. The implementation of under
sampling tends to discard the potentially useful data (Gan-
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ganwar 2012). Oversampling the minority class leads to
increase the number of training examples and hence-over
fits the dataset and also increases the learning time as the
dataset is rebalanced artificially by using sampling methods.

The solutions at the algorithmic level include various
mechanisms. Adjusting the costs of various classes is one
of the significant solutions at the algorithmic level to
reduce the class imbalance. This is what the core concept
of cost-sensitive learning approach (Ganganwar 2012). A
cost-sensitive learning approach takes cost, such as misclas-
sification cost, into consideration during model construction
and supports to build a classifier that has the minimum cost
(Nguyen et al. 2009). The cost-sensitive learning assumes
higher misclassification cost with samples in the minority
class and hence affords to minimize high cost errors (López
et al. 2012). Consequently, this approach reduces the bias
toward the majority class in an efficient way while keeping
the original dataset size intact. Therefore, the paper proposes
a hybrid CBR model, which overcomes the class imbalance
problem for sensitivity, activity, saliency and relevance fea-
ture weighting mechanisms by cost-sensitive BPNN (Braga
and Castro 2013).

The paper is organized as follows: Sect. 2 depicts cost-
sensitive BPNN, while Sect. 3 describes weight learning
mechanisms from trained neural network and outlines some
previous works. Section 4 describes the framework of the
proposed hybrid CBR system. Section 5 discusses the results
of seven datasets, and finally some conclusions are drawn in
Sect. 6.

2 Cost-sensitive BPNN

The dataset, D, of the binary classification task can be writ-
ten as D = {D1 ∪ D2}, where D1 = {(x(p), y(p))|p =
1, . . . , N1}; the vector x(p) is the pth case of the positive
class and y(p) = +1,∀x(p) ∈ D1. The number of positive
cases is represented by N1. Analogous definitions hold for
D2, for negative class. In order to achieve solutions that are
sensitive to the importance of each class, a cost function for
the parameter estimation of BPNN is used. The cost function
is defined in Eq. (3) as the weighted sum of functionals J1

and J2 which correspond to the sum of squared errors for D1

and D2, respectively

J = λJ1 + (1 − λ) J2 (3)

where, J1 and J2 are described by the following equations:

J1 =
N1∑

p=1

e2 (p) ∀x (p) ∈ D1 (4)

J2 =
N2∑

r=1

e2 (r) ∀x (r) ∈ D2 (5)

The vector x(r ) is the r th case of the negative class; e(p) and
e(r) denote errors for pth and r th case of D1 and D2, respec-
tively. N = N1+N2 and the parameter, λ(0 < λ < 1) is used
to weight the contribution of J1 and J2 in the composition
of J . The parameter λ modifies the standard formulation of
learning by assigning unequal costs to the errors of each class.
λ influences the location of the decision boundary obtained
from training, compensates the class imbalance and obtains
a balanced decision boundary. Thus, if N2 is greater than N1,
this parameter can be used to compensate the class imbalance
problem (Braga and Castro 2013).

3 Weight learning by neural network

Neural networks are helpful in adjusting the connection
weights among the nodes of the network due to their
input–output mapping, robustness and adaptive capabilities.
Therefore, ANN model can be used to resolve the problem
of feature weighting. BPNN model can be used to process
the case feature values by two stages: First is learning stage,
which also means to build BPNN model and using this model,
and samples are taught to get the desired result. Second is the
exchanging weight stage, which transfers the nodes value
into the desired result to the case feature values. Knowledge
exploited by ANNs from the training dataset is stored as
connected links of trained neural network nodes. Knowl-
edge extraction from trained neural network is one of the
main interests for a long time (Shin and Park 1999). Several
methodologies have been attempted for using the connec-
tionist approach (ANN) in CBR system design (Becker and
Jazayeri, 1989; Thrift 1989). The work of hybrid CBR with
ANN architecture is reinforced to solve complicated prob-
lem in Shin and Park (1999), which calculates a set of feature
weights from a trained BPNN that plays the core role in find-
ing the most similar cases from case base for prediction or
classification.

The four feature weighting mechanisms are proposed: sen-
sitivity, activity, saliency and relevance to obtain a vector of
feature weights {w1, w2, . . ., wd} from a trained BPNN in
Shin and Park (1999), Shin et al. (2000), Im and Park (2007)
and Park et al. (2004), where d is the number of input fea-
tures. Each of the feature weighting mechanisms is briefly
described below.

Consider a neural network given in Fig. 1 with a sin-
gle hidden layer, which consists of d inputs (xi , where
i = 1, 2, . . . , d), m number of hidden neurons (zh , where
h = 1, 2, . . .,m) and one output, y j . Here whi denotes the
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Fig. 1 A neural network

weight connecting from xi to zh and w jh is the connecting
weight between zh to y j .

(i) Sensitivity The sensitivity of an input node is calcu-
lated by removing the input node from the trained neural
network. Sensitivity measure of an input feature is the
difference in prediction value between when the feature
is removed and when it is left in place. The sensitivity,
Si , of an input feature, i, is defined by Eq. (6):

Si =

[
∑

L

∣
∣Po−Pi

∣
∣

Po

]

n
(6)

where Po is the normal prediction value for each train-
ing instance after training, Pi is the modified prediction
value when the input feature i is removed, L is the set
of training data and n is the number of training data.

(ii) Activity The activity of a node is measured by the
variance of the activation level in training data. The
activation of a hidden node, zh , is defined by Eq. (7):

Ah = [

w jh
]2 · var

[

g

(
d

∑

i=1

whi xi

)]

(7)

where var () is the variance function, w jh is the weight
between output node j and hidden node h, whi is the
weight between hidden node h and input node i. The
activity of an input node, xi , is defined by Eq. (8):

Ai =
m

∑

h=1

[

(whi )
2 · Ah

]

(8)

(iii) Saliency The saliency of a weight is measured by esti-
mating the second derivative of the error with respect to
the weight. The saliency of an input node, i, is defined
by Eq. (9):

Saliencyi =
m

∑

h=1

[

(whi )
2 · (

w jh
)2

]

(9)

(iv) RelevanceThe variance of weights into a node is a good
predictor of the node’s relevance, and the relevance of a
node is a good predictor of the increase in error expected
when the node’s largest weight is deleted. The relevance
of a hidden node, zh is defined by Eq. (10):

Rh = (

w jh
)2 · var (whi ) (10)

And the overall relevance of an input node, xi , is defined
by Eq. (11):

Ri =
m

∑

h=1

(whi )
2 · R (11)

Shin and Park (1999) have combined MBR and ANN by
integrating the calculated feature weights. This hybrid
method is also compared with some other machine
learning methods. Shin et al. (2000) have used the
same concept of weight extraction as Shin and Park
(1999) and have built the same hybrid CBR system
except decision-making process. The developed hybrid
system is validated by high dimensional and dynamic
systems like odd parity problem, decision making in
sinusoidal task, Wisconsin diagnostic breast cancer
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(WDBC) problem, credit card application, classifica-
tion of sonar signals and auto-mpg regression problem.
Im and Park (2007) have also used the same concept
of weight extraction and building of hybrid CBR sys-
tem. They have added the concept of value difference
metric (VDM) when feature attributes are non-numeric
and the hybrid system is applied to build an expert sys-
tem for personalization. Ha (2008) has used the same
concept of hybrid CBR and also applied in same appli-
cation as Im and Park (2007), but has reported changes
in performance. Sensitivity, activity, saliency and rel-
evance feature weighting mechanisms are used in all
those works.

4 The proposed hybrid CBR model

The cost-sensitive BPNN Braga and Castro (2013) is inte-
grated into CBR during the retrieval process that retrieves a
set of k-nearest neighbors to a target case. The cost-sensitive
BPNN is initially trained, which takes care about class imbal-
ance problem and finds feature weights. The symbolic feature
weights are calculated from the trained BPNN using sensi-
tivity, activity, saliency, and relevance mechanisms. When a
query (new/target) case is encountered in case retrieval mod-
ule, k similar cases are retrieved from the case base using
k-NN similarity measure where pre-calculated symbolic fea-
ture weights are used to measure similarity between cases.
Then, case reuse and revision module are used to propose
a solution, which is sent to the query (new/target) case that
demands a solution. The framework of the proposed hybrid
CBR model is shown in Fig. 2. The discussion of the stages
of the hybrid CBR model is given below.

New 
Case 

Case Retrieval Module 

Case Base 

Cost-sensitive 
BPNN 

Case Reuse & 
Revision 

Weight 

Training 

k- most similar 

Proposed 
solution 

Retrieval of k-NN 

Fig. 2 Framework of hybrid CBR

4.1 STAGE 1: case representation

A case is a piece of knowledge in a particular context that
represents an experience. A case stored in case base consists
of problem specification and known solution. Case repre-
sentation is very important in CBR because proper case
representation enhances the acceptance of proposed solu-
tion. Each case is defined by problem specification having
assignment of values a = (a1, a2, a3, . . . , ag) to a set of
features f = ( f1, . . . , fg), and solution as one of s possi-
ble classes, o1, . . . , os to the class label o. In binary case
classification tasks, the applicable classes to the class label
are o1 = 0 and o2 = 1. The learning of a classifier is
inherently determined by the feature values of the cases. In
this paper, each case stored in the case base consists of the
values of the feature vector representing the problem speci-
fication, together with its associated solution or class in the
form of ‘1’ or ‘0’ representing either of two classes. Further-
more, a query (new/target) case refers to a problem requiring
solution, which is obtained through prediction. Suppose t
is the number of attributes that form the problem descrip-
tion of a case. Then, Q (q1, q2,. . ., qt ) is the query case and
C(c1, c2, . . ., ct , c(t+1)) is any stored case, where c(t+1) is
solution description of the stored case.

4.2 STAGE 2: case selection/retrieval of k-NN

Retrieval of most similar cases is very critical to the success
of a CBR system. The top most similar cases are selected
by k-NN, which are presented in the system to measure the
performance of the hybrid model. Selection of cases is done
by performing the following steps:

• RETRIEVE multi-attribute-based information of past
cases by cost-sensitive BPNN in terms of symbolic
weights.

• MATCH past cases with the query (new) case by Eq.
(1) where weights are calculated from the trained cost-
sensitive BPNN by feature weighting mechanisms, i.e,
sensitivity, activity, saliency and relevance.

• COMPARE the past cases with each other by dissimilar-
ity score.

• SELECT the past cases having least values of dissimilar-
ity score.

4.3 STAGE 3: case reuse and revision

Top k most retrieved similar cases are taken into consid-
eration to produce the predicted result by observing the
frequency of occurrence of similar solutions, i.e., based on
the majority of voting of top most similar cases. The top most
similar case is initially reused as the proposed solution for the
query (new) case, and then, the performance of the model is
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measured. Subsequently, the measured performance is com-
pared with the performances of the model when number of
similar cases (k) is changed (k = 2, 3, . . ., 20). If k is too
large, prediction result would taper off because of the inclu-
sion of an increasing number of decreasingly similar cases.
Therefore, the value of k is restricted up to 20. The value of
k, which produces highest accuracy of the proposed hybrid
CBR model, can be adopted as optimal k. Therefore, when a
query (new) case arrives, the solution of the query (new) case
is determined by majority of voting of the optimal k nearest
neighbors.

4.4 STAGE 4: retention

Retention is not adopted based on the requirement of the
proposed model but that can be adopted by setting a threshold
value in similarity score. If the similarity score is less than the
threshold value, then the query (new) case may be considered
as totally a new case in the case base. The encountered new
case with solution given by domain expert can be retained in
the case base for future use.

5 Results and discussion

5.1 Dataset collection

The experimentation of the proposed model is done by MAT-
LAB 7.12.0.635 (R2011a) in Windows environment. The
following binary classification tasks which are obtained from
the UCI machine learning repository are incorporated into the
paper. In addition, Swine flu data are gathered from physi-
cians in several hospitals and from the Internet. With the
aid of internet and consulting local medical practitioners, the
symptoms of Swine flu are categorized (indexed) and ranged,
and accordingly the cases are generated and validated by
medical institutions. All the experiments of the paper use
three experimental setups to find out the accuracy of the pro-
posed hybrid CBR model: (i) 80 % cases of a case base as
training set and 20 % cases of the case base as test set, which is
termed as 80:20 split, (ii) 70 % cases of a case base as training
set and 30 % cases of the case base as test set, which is termed
as 70:30 split, and (iii) five-folded validation as five indepen-
dent runs are executed to validate the comparison results by
using Wilcoxon rank-sum nonparametric statistical test. The
concise description of the datasets is given below:

5.1.1 Blood transfusion

There are total 748 instances and 5 attributes. One of the 5
attributes is used as solution (decision). The classification
task involves in determining whether someone has donated
blood or not. 1 stands for donating blood and 0 stands for

not donating blood. The attributes are given below with brief
description:

• Recency (R)—months since last donation
• Frequency (F)—total number of donation
• Monetary (M)—total blood donated in c.c.
• Time (T)—months since first donation and
• A binary variable representing whether he/she donated

blood in March 2007.

5.1.2 Diabetes mellitus

The database contains 8 attributes and 768 cases. Prediction
task involves in determining either presence or absence of
diabetes. The attributes are given below:

• Number of times pregnant
• Plasma glucose concentration a 2 h in an oral glucose

tolerance test
• Diastolic blood pressure (mm Hg)
• Triceps skin fold thickness (mm)
• 2-h serum insulin (mu U/ml)
• Body mass index (weight in kg/(height in m2))
• Diabetes pedigree function
• Age (years)

5.1.3 Heart disease

The database contains 13 attributes and 270 cases. Prediction
task involves in determining either presence or absence of
heart disease. The attributes are given below:

• age
• sex
• chest pain type (4 values)
• resting blood pressure
• serum cholesterol in mg/dl
• fasting blood sugar > 120 mg/dl
• resting electrocardiographic results (values 0, 1, 2)
• maximum heart rate achieved
• exercise-induced angina
• old peak = ST depression induced by exercise relative to

rest
• the slope of the peak exercise ST segment
• number of major vessels (0–3) colored by fluoroscopy
• thal: 3 = normal; 6 = fixed defect; 7 = reversible defect

5.1.4 Liver disorder

There are total 345 cases and 7 attributes. One of the attributes
is used to determine the classification. The classification
problem involves in determining either presence or absence
of liver disorder. The attributes are given below:
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Table 1 Indexing of attributes based on their ranges

Attribute Ranges and their index values

Fast breathing None Mild Moderate Severe

0 1 2 3

Sore throat None Mild Moderate Severe

0 1 2 3

Temperature ≤98.4 98.5–100.4 100.5–102.4 >102.4

0 1 2 3

Runny nose or
stuffy nose

None Mild Moderate Severe

0 1 2 3

Cough None Mild Moderate Severe

0 1 2 3

Fatigue None Mild Moderate Severe

0 1 2 3

Body aches None Mild Moderate Severe

0 1 2 3

Headache None Mild Moderate Severe

0 1 2 3

Chills None Mild Moderate Severe

0 1 2 3

Nausea None Mild Moderate Severe

0 1 2 3

• mcv: mean corpuscular volume
• alkphos: alkaline phosphatase
• sgpt: alanine aminotransferase
• sgot :aspartate aminotransferase
• gammagt: gamma-glutamyl transpeptidase
• drinks: number of half-pint equivalents of alcoholic bev-

erages drunk per day

5.1.5 Swine flu

Swine flu prediction is a problem that involves in determining
whether an individual has Swine flu or not. Ten prominent
attributes are used as the problem description of a Swine flu
case, and class of the case is a decision that is either yes (1)
or no (0). This database contains 250 cases. Each attribute of
a case is indexed, as given in Table 1 as per their ranges.

5.1.6 Sonar Signals

The database contains 60 attributes and 208 cases. Classifi-
cation task involves in discriminating between sonar signals
bounced off a metal cylinder at various angles and under var-
ious conditions as ‘Mine’ and those bounced off a roughly
cylindrical rock under similar conditions as ‘Rock.’

5.1.7 Ionosphere

This database contains 34 attributes and 351 cases and
describes about the radar returns from the ionosphere. The
classification task involves in determining either good or bad
where ‘good’ radar returns are those showing evidence of
some type of structure in the ionosphere and ‘bad’ returns are
those that do not; their signals pass through the ionosphere.

5.2 Results

Tables 2, 3, 4, 5, 6, 7 and 8 show the experimental results of
heart, diabetes, blood transfusion, liver disorder, Swine flu,
sonar and ionosphere datasets, respectively, for two splits
of each dataset: 80:20 and 70:30. The experimental results
of Tables 2, 3, 4, 5, 6, 7 and 8 show the performance
of the hybrid CBR model with standard BPNN and with
cost-sensitive BPNN for sensitivity, activity, saliency and rel-
evance. The performance (accuracy) is shown in percentage
in all the tables. The value of k represents the number of sim-
ilar case(s) taken into consideration to find the performance
of the hybrid model. The value of k out of 20, which pro-
duces the highest accuracy, is considered as optimal k and
is indicated by boldface for each feature weighting mecha-
nism in Tables 2, 3, 4, 5, 6, 7 and 8. The highest accuracy
is assumed as system performance. It is observed that the
performance of the hybrid CBR model with cost-sensitive
BPNN is better than the hybrid CBR model with standard
BPNN in all the datasets for both splits. The proposed model
achieves 90.74 %, 87.03 %, 85.18 % and, 74.07 % accuracy
for sensitivity, activity, saliency and relevance, respectively,
in heart disease dataset for 80:20 split where the hybrid CBR
with standard BPNN achieves 85.18 %, 83.33 %, 83.33 %
and, 68.51 % accuracy for the same. It is observed from
Tables 2, 3, 4, 5, 6, 7 and 8 that the similar comparison and
improvement hold true in all datasets for both the splits. The
performance of the hybrid CBR model is represented by red
and black colors for 80:20 and 70:30 splits, respectively, in
Tables 2, 3, 4, 5, 6, 7 and 8.

Two statistical measures are also used: mean and mean
absolute percentage error (MAPE) to show the improvement
of the proposed model for both the splits. It is observed
from Table 2 that mean performances for sensitivity, activity,
saliency and relevance of the proposed model are 83.98 %,
83.15 %, 82.40 % and 69.26 %, respectively, in heart dis-
ease dataset for the 80:20 split, whereas mean performances
for sensitivity, activity, saliency and relevance of the hybrid
CBR with standard BPNN are 81.39 %, 81.39 %, 81.48 %
and 57.87 %, respectively, for the same. Similar improve-
ment is also observed for 70:30 split. For all other datasets,
similar improvement by the proposed model is also observed
as given in Tables 2, 3, 4, 5, 6, 7 and 8. It is also observed
from Table 2 that MAPEs for sensitivity, activity, saliency
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Table 2 (color online) Heart

Value
s of k

Sensitivity Activity Saliency Relevance

Standard 
BPNN 

Cost-
sensitive 
BPNN 

Standard 
BPNN 

Cost-
sensitive 
BPNN 

Standard 
BPNN 

Cost-
sensitive 
BPNN 

Standard 
BPNN 

Cost-
sensitive 
BPNN 

80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 
1 79.62 74.1 90.74 71.6 81.48 74.1 83.33 72.8 81.48 74.1 83.33 72.8 42.59 63.0 66.66 69.1 
2 79.62 74.1 90.74 71.6 81.48 74.1 83.33 72.8 81.48 74.1 83.33 72.8 42.59 63.0 66.66 69.1 
3 85.18 79.0 87.03 75.3 79.62 76.5 83.33 72.8 81.48 76.5 85.18 74.1 51.85 60.5 62.96 69.1 
4 81.48 80.2 87.03 77.8 79.62 77.8 85.18 76.5 79.62 79.0 83.33 76.5 50 63.0 61.11 69.1
5 83.33 80.2 83.33 79.0 79.62 81.5 81.48 77.8 83.33 79.0 81.48 77.8 53.70 64.2 68.51 66.7 
6 79.62 77.8 83.33 77.8 77.77 80.2 81.48 77.8 79.62 76.5 81.48 76.5 53.70 67.9 66.66 67.9 
7 81.48 77.8 81.48 79.0 81.48 77.8 81.48 77.8 79.62 77.8 81.48 77.8 62.96 67.9 66.66 66.7 
8 79.62 76.5 83.33 79.0 81.48 77.8 83.33 77.8 81.48 77.8 83.33 77.8 62.96 65.4 68.51 69.1 
9 83.33 77.8 81.48 81.5 81.48 77.8 83.33 79.0 79.62 77.8 83.33 79.0 68.51 64.2 68.51 66.7 

10 81.48 77.8 83.33 79.0 79.62 77.8 83.33 77.8 79.62 79.0 81.48 77.8 61.11 63.0 70.37 66.7 
11 81.48 80.2 83.33 77.8 81.48 80.2 81.48 79.0 81.48 79.0 77.77 80.2 61.11 65.4 70.37 66.7
12 81.48 77.8 83.33 79.0 83.33 80.2 83.33 80.2 81.48 77.8 79.62 80.2 57.40 61.7 72.22 67.9 
13 83.33 79.0 83.33 79.0 83.33 80.2 81.48 80.2 81.48 80.2 81.48 80.2 59.25 65.4 72.22 69.1 
14 81.48 77.8 83.33 79.0 81.48 81.5 85.18 80.2 83.33 82.7 83.33 80.2 59.25 63.0 70.37 70.4 
15 81.48 77.8 81.48 79.0 83.33 81.5 87.03 79.0 83.33 81.5 83.33 79.0 62.96 67.9 74.07 69.1 
16 81.48 76.5 83.33 77.8 81.48 81.5 83.33 79.0 81.48 81.5 81.48 79.0 62.96 64.2 70.37 71.6
17 81.48 77.8 81.48 77.8 83.33 81.5 85.18 80.2 83.33 80.2 83.33 80.2 64.81 65.4 72.22 69.1 
18 77.77 76.5 83.33 77.8 81.48 82.7 81.48 81.5 81.48 81.5 81.48 81.5 61.11 63.0 72.22 70.4
19 81.48 77.8 81.48 79.0 81.48 80.2 83.33 84.0 81.48 81.5 83.33 84.0 61.11 64.2 72.22 69.1 
20 81.48 77.8 83.33 80.2 83.33 81.5 81.48 82.7 83.33 81.5 85.18 82.7 57.40 64.2 72.22 70.4 

Mean 81.3 77.7 83.9 77.9 81.3 79.3 83.1 78.4 81.4 78.9 82.4 78.5 57.8 64.3 69.2 68.7
MAPE 23 29 19 28 23 26 20 28 23 27 21 28 76 56 45 46 

Table 3 (color online) Diabetes

Values 
of k

Sensitivity Activity Saliency Relevance

Standard 
BPNN 

Cost-
sensitive 
BPNN 

Standard 
BPNN 

Cost-
sensitive 
BPNN 

Standard 
BPNN 

Cost-
sensitive 
BPNN 

Standard 
BPNN 

Cost-
sensitive 
BPNN 

80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 
1 59.74 65.7 58.44 66.1 65.58 65.2 64.93 65.2 65.58 65.7 64.28 65.2 57.79 61.3 61.03 64.3 
2 59.74 65.7 58.44 66.1 65.58 65.2 64.93 65.2 65.58 65.7 64.28 65.2 57.79 61.3 61.03 64.3
3 62.98 71.7 61.68 70.9 67.53 72.2 66.88 72.6 65.58 72.6 67.53 72.2 58.44 59.1 59.09 61.3 
4 62.98 71.7 62.98 70.0 67.53 71.7 67.53 71.7 67.53 71.7 66.23 70.9 59.74 61.7 59.09 64.3 
5 63.63 70.0 66.23 69.6 70.77 71.3 67.53 71.7 68.18 72.2 66.23 72.6 62.33 65.2 62.33 64.8 
6 63.63 69.6 62.98 70.4 69.48 73.0 67.53 73.5 68.18 72.2 67.53 73.0 62.98 63.5 64.28 67.4 
7 65.58 66.5 65.58 71.3 70.77 72.2 68.18 71.7 68.83 72.6 69.48 72.2 62.98 64.3 61.68 67.0
8 65.58 67.4 62.98 72.6 69.48 70.9 70.77 72.2 68.18 71.3 69.48 72.2 62.33 66.1 61.03 65.2 
9 61.68 66.1 64.28 70.9 70.77 70.9 71.42 71.7 71.42 70.9 70.77 70.9 62.98 64.3 61.68 67.0

10 63.63 66.5 61.68 71.7 69.48 71.3 72.72 70.0 70.77 70.9 70.77 70.0 62.33 66.5 61.03 67.8 
11 61.03 67.4 60.38 71.7 70.12 70.4 70.12 70.0 72.07 69.1 70.77 69.1 61.68 64.3 60.38 63.9 
12 63.63 65.7 61.68 70.9 69.48 69.6 73.37 69.6 71.42 70.4 74.02 69.1 61.68 66.1 58.44 64.3 
13 62.98 65.2 60.38 70.9 69.48 69.6 70.77 70.4 70.77 70.9 70.12 70.4 61.03 64.8 57.14 65.7 
14 62.98 66.1 62.33 71.7 66.88 70.0 70.12 69.1 70.12 70.0 68.83 70.0 59.09 64.8 55.19 66.1
15 63.63 67.0 62.98 71.7 68.18 70.0 66.23 70.0 69.48 70.0 65.58 69.6 60.38 65.7 58.44 67.0 
16 62.98 66.5 62.33 73.5 65.58 68.7 65.58 69.1 68.83 69.1 65.58 68.3 61.68 67.4 57.79 65.7
17 63.63 67.0 63.63 70.9 67.53 70.9 64.28 71.3 68.18 70.9 65.58 70.4 62.98 64.8 55.84 67.4 
18 64.28 67.4 63.63 70.0 66.23 70.4 64.28 71.3 67.53 71.7 64.93 70.4 62.98 63.9 57.14 65.7 
19 63.63 67.8 62.98 68.3 66.23 71.7 64.28 71.3 67.53 71.7 64.93 71.3 62.98 64.8 57.79 67.8
20 64.28 68.3 62.98 70.0 65.58 71.3 66.88 71.3 67.53 72.2 66.88 72.2 62.33 65.2 59.09 66.5 

Mean 63.1 67.4 62.4 70.4 68.1 70.3 67.9 70.4 68.6 70.5 67.6 70.2 61.3 64.2 59.4 65.6
MAPE 59 48 60 42 47 42 47 42 46 42 48 42 63 56 68 52 

and relevance of the proposed model are 19 %, 20 %, 21 %
and, 45 %, respectively, in heart disease dataset for the 80:20
split, whereas MAPEs for sensitivity, activity, saliency and
relevance of the hybrid CBR with standard BPNN are 23 %,

23 %, 23 % and, 76 %, respectively, for the same. Similar
improvement is also observed for 70:30 split. For all other
datasets, similar improvement by the proposed model is also
observed as given in Tables 2, 3, 4, 5, 6, 7 and 8. Hence, the
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Table 4 (color online) Blood transfusion

Values Sensitivity Activity Saliency Relevance 
of k Standard 

BPNN 
Cost-

sensitive 
BPNN 

Standard 
BPNN

Cost-
sensitive 
BPNN

Standard 
BPNN

Cost-
sensitive 
BPNN

Standard 
BPNN

Cost-
sensitive 
BPNN

80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 

1 78 55.80 76.66 52.67 79.3 55.4 80 55.3 79.3 55.8 80 55.4 72.66 53.1 77.33 54.5 
2 72.66 55.80 72 52.67 74.6 55.4 75.3 55.3 72.6 55.8 76 55.4 65.33 53.1 71.33 54.5 
3 88 54.46 88 54.91 89 53.6 90 52.6 88.6 55.4 90 52.7 78 54.9 80 56.3 
4 86 57.14 88 55.80 85.3 55.4 87.3 54.4 86 56.3 88 54.0 74.66 54.0 73.33 56.3 
5 89 61.16 89.33 59.82 88.6 62.1 88.6 62.9 89.3 62.5 88.66 62.9 81.33 60.3 82 62.9
6 88.66 62.95 87.33 59.37 87.3 62.5 87.3 62.9 87.3 62.5 86.66 62.5 77.33 62.1 78.66 61.6 
7 89 60.71 89.33 61.16 89.3 59.8 89.3 63.8 89.3 63.8 89.33 63.8 84 63.4 86 62.1 
8 88 63.84 89.33 62.94 89.3 63.4 88.6 61.6 88 62.1 88.66 61.6 79.33 62.5 80.66 63.8 
9 89.33 62.05 89.33 62.05 89.3 61.6 89.3 62.9 89.3 65.6 89.33 62.9 85.33 62.5 88 64.7 

10 89.33 64.73 88.66 61.60 89.3 61.6 89.3 64.7 89.3 66.5 89.33 66.1 84.66 62.9 84.66 64.3 
11 89.33 61.61 90 62.5 89.3 61.2 90.6 68.3 89.3 65.6 90.66 67.4 87.33 63.4 88 63.4 
12 89.33 62.95 90 62.94 89 61.2 90 68.3 89 64.7 90 68.3 85.33 62.5 88 62.9
13 89.33 62.95 90.66 64.73 89 62.5 90 66.9 89.3 66.5 90 67.4 88 63.4 89.33 62.9 
14 89.33 63.84 90.66 66.07 89 62.1 90 66.0 89 67.4 90 65.6 86 63.4 89.33 62.9 
15 89.33 62.05 90.66 65.62 89.3 63.4 90.6 66.0 89.3 66.5 90.66 65.6 88.66 63.8 90 62.9 
16 89.33 63.39 90.66 66.07 89.3 62.5 90.6 64.7 89.3 67.0 90.66 64.7 88.66 63.4 88.66 62.9 
17 89.33 62.50 90.66 67.41 89.3 63.4 90.6 65.1 89.3 67.0 90.66 65.2 88.66 63.8 90 62.9 
18 89.33 62.95 90.66 66.07 89.3 63.4 90.6 65.1 89.3 67.0 90.66 65.2 88 62.9 89.33 62.5 
19 89.33 62.50 90.66 64.73 89.3 63.8 90.6 68.3 89.3 67.0 90.66 67.4 88.66 62.9 89.33 62.5 
20 89.33 62.95 90.66 63.83 89.3 63.8 90.6 66.5 89.3 67.0 90.66 66.1 88.66 62.9 89.33 62.5 

Mean 87.5 61.3 88.1 61.6 87.6 60.9 88.4 63.0 87.5 63.6 88.5 63.0 83.0 61.0 84.6 61.4 
MAPE 15 63 14 63 14 65 13 60 14 58 13 60 21 64 19 63 

Table 5 (color online) Liver disorder

Values 
of k

Sensitivity Activity Saliency Relevance 
Standard 
BPNN 

Cost-
sensitive 
BPNN 

Standard 
BPNN

Cost-
sensitive 
BPNN

Standard 
BPNN

Cost-
sensitive 
BPNN

Standard 
BPNN

Cost-
sensitive 
BPNN

80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 
1 47.82 56.3 53.62 53.4 55.07 60.2 57.97 58.3 50.72 59.2 59.42 59.2 53.62 45.6 49.27 47.6 
2 47.82 56.3 53.62 53.4 55.07 60.2 57.97 58.3 50.72 59.2 59.42 59.2 53.62 45.6 49.27 47.6 
3 56.52 62.1 62.31 62.1 57.97 61.2 59.42 61.2 55.07 59.2 57.97 60.2 44.92 47.6 47.82 55.3 
4 55.07 62.1 56.52 61.2 55.07 62.1 62.31 61.2 52.17 61.2 62.31 61.2 49.27 47.6 47.82 53.4 
5 57.97 54.4 56.52 54.4 62.31 59.2 57.97 61.2 53.62 59.2 60.86 59.2 50.72 52.4 47.82 55.3
6 55.07 54.4 55.07 54.4 59.42 56.3 57.97 61.2 56.52 55.3 56.52 58.3 49.27 50.5 50.72 50.5 
7 55.07 56.3 55.07 57.3 59.42 57.3 59.42 65.0 59.42 58.3 57.97 64.1 52.17 56.3 50.72 54.4 
8 50.72 58.3 56.52 54.4 62.31 59.2 57.97 62.1 62.31 59.2 60.86 62.1 53.62 53.4 57.97 49.5 
9 53.62 58.3 55.07 55.3 52.17 61.2 60.86 66.0 63.76 61.2 59.42 63.1 50.72 61.2 49.27 58.3 

10 53.62 56.3 56.52 59.2 57.97 58.3 62.31 65.0 60.86 55.3 65.21 62.1 53.62 56.3 52.17 54.4 
11 53.62 53.4 62.31 58.3 57.97 59.2 59.42 64.1 59.42 57.3 59.42 64.1 52.17 60.2 50.72 56.3 
12 50.72 58.3 56.52 59.2 57.97 56.3 60.86 65.0 56.52 55.3 63.76 63.1 53.62 57.3 52.17 55.3
13 52.17 56.3 57.97 60.2 60.86 56.3 57.97 62.1 63.76 55.3 59.42 62.1 50.72 59.2 49.27 62.1 
14 47.82 58.3 57.97 58.3 52.17 56.3 63.76 63.1 57.97 58.3 63.76 62.1 55.07 56.3 53.62 56.3 
15 53.62 61.2 56.52 60.2 59.42 57.3 62.31 60.2 57.97 59.2 65.21 62.1 53.62 56.3 53.62 55.3 
16 50.72 58.3 53.62 56.3 53.62 57.3 63.76 59.2 59.42 58.3 62.31 60.2 53.62 56.3 53.62 55.3 
17 53.62 58.3 55.07 58.3 57.97 58.3 63.76 60.2 59.42 59.2 60.86 58.3 52.17 54.4 50.72 54.4
18 50.72 60.2 55.07 54.4 55.07 59.2 63.76 60.2 53.62 61.2 62.31 61.2 52.17 54.4 52.17 51.5 
19 52.17 62.1 55.07 58.3 60.86 59.2 60.86 61.2 60.86 58.3 63.76 62.1 55.07 53.4 50.72 52.4 
20 49.27 59.2 55.07 59.2 60.86 64.1 63.76 61.2 56.52 62.1 62.31 63.1 52.17 53.4 52.17 51.5 

Mean 52.3 58.0 56.3 57.3 57.6 58.9 60.7 61.8 57.5 58.5 61.1 61.3 52.1 53.8 51.0 53.8 
MAPE 91 73 78 75 74 70 65 62 75 71 64 63 92 87 96 87

superiority of the proposed model statistically holds true in
all the datasets for both the splits.

The performance graphs of the hybrid CBR with cost-
sensitive BPNN and with standard BPNN of sensitivity, activ-

ity, saliency and relevance are shown in Figs. 3, 4, 5, 6, 7, 8
and 9 for heart, diabetes, blood transfusion, liver disorder,
Swine flu, sonar and ionosphere datasets, respectively, for
easy comparison between cost-sensitive BPNN and stan-
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Table 6 (color online) Swine flu

Values 
of k

Standard 
BPNN 

Cost-
sensitive 
BPNN 

Standard 
BPNN

Cost-
sensitive 
BPNN

Standard 
BPNN

Cost-
sensitive 
BPNN

Standard 
BPNN

Cost-
sensitive 
BPNN

80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 

1 88 90.7 88 90.7 88 90.7 90 90.7 90 90.7 90 88.0 50 56.0 52 60.0 
2 88 90.7 88 90.7 88 90.7 90 90.7 90 90.7 90 88.0 50 56.0 52 60.0 
3 88 88.0 90 90.7 90 92.0 90 92.0 90 92.0 90 92.0 56 58.7 62 65.3 
4 90 89.3 90 90.7 90 89.3 92 90.7 90 92.0 92 90.7 56 58.7 60 65.3 
5 88 88.0 94 89.3 90 90.7 92 93.3 90 92.0 92 90.7 62 61.3 70 68.0 
6 88 88.0 92 90.7 88 90.7 92 92.0 88 92.0 92 90.7 54 61.3 56 70.7
7 88 89.3 92 89.3 88 90.7 92 93.3 90 93.3 92 92.0 64 62.7 64 76.0 
8 88 88.0 92 89.3 88 90.7 92 90.7 88 92.0 92 90.7 56 60.0 58 72.0 
9 88 89.3 92 89.3 88 90.7 90 93.3 90 93.3 90 93.3 66 66.7 62 72.0 
10 88 89.3 92 89.3 88 90.7 90 93.3 88 92.0 90 93.3 64 66.7 60 72.0 
11 88 89.3 92 89.3 88 90.7 90 93.3 88 93.3 90 93.3 64 68.0 60 76.0 
12 88 89.3 92 89.3 88 90.7 90 93.3 88 93.3 90 93.3 60 69.3 64 74.7 
13 88 89.3 92 89.3 88 90.7 90 92.0 88 92.0 90 90.7 64 70.7 66 72.0 
14 88 89.3 92 89.3 88 90.7 90 92.0 88 92.0 92 92.0 64 69.3 64 70.7 
15 88 89.3 92 89.3 88 90.7 92 92.0 88 92.0 92 92.0 62 73.3 64 73.3 
16 88 89.3 92 89.3 88 90.7 90 93.3 88 90.7 94 93.3 60 69.3 60 76.0 
17 88 89.3 92 89.3 88 89.3 92 92.0 88 90.7 92 92.0 64 72.0 58 76.0 
18 88 89.3 92 89.3 88 90.7 90 90.7 88 92.0 94 90.7 60 72.0 60 73.3 
19 88 89.3 92 89.3 88 89.3 90 90.7 88 89.3 92 88.0 62 74.7 58 73.3 
20 88 89.3 92 89.3 88 89.3 90 90.7 88 90.7 88 90.7 58 70.7 64 72.0 

Mean 88.1 89.1 91.5 89.6 88.3 90.4 90.7 92.0 88.7 91.8 91.2 91.2 59.8 65.8 60.7 70.9 
MAPE 14 12 09 12 13 11 10 09 13 09 10 10 68 53 66 42

Sensitivity Activity Saliency Relevance 

Table 7 (color online) Sonar

Value
s of k

Sensitivity Activity Saliency Relevance 
Standard 
BPNN 

Cost-
sensitive 
BPNN 

Standard 
BPNN

Cost-
sensitive 
BPNN

Standard 
BPNN

Cost-
sensitive 
BPNN

Standard 
BPNN

Cost-
sensitive 
BPNN

80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 

1 56.09 58.1 58.53 58.1 60.97 56.5 63.41 56.5 60.97 56.5 63.41 56.5 48.78 46.8 63.41 53.2 

2 56.09 58.1 58.53 58.1 60.97 56.5 63.41 56.5 60.97 56.5 63.41 56.5 48.78 46.8 63.41 53.2 

3 48.78 58.1 53.65 58.1 41.46 48.4 46.34 50.0 43.90 48.4 46.34 48.4 58.53 53.2 68.29 62.9 

4 56.09 58.1 58.53 54.8 56.09 53.2 51.21 50.0 48.78 51.6 53.65 51.6 56.09 50.0 68.29 61.3 

5 56.09 53.2 53.65 54.8 51.21 50.0 48.78 46.8 48.78 50.0 46.34 50.0 53.65 54.8 65.85 61.3 

6 51.21 56.5 53.65 56.5 48.78 56.5 56.09 51.6 48.78 56.5 56.09 56.5 53.65 53.2 63.41 58.1 

7 43.90 58.1 51.21 51.6 48.78 51.6 51.21 50.0 48.78 51.6 51.21 51.6 48.78 53.2 60.97 62.9 

8 48.78 58.1 53.65 58.1 51.21 51.6 56.09 54.8 48.78 53.2 53.65 53.2 56.09 54.8 63.41 61.3 

9 41.46 53.2 46.34 56.5 48.78 53.2 51.21 53.2 51.21 51.6 48.78 51.6 56.09 50.0 58.53 58.1 

10 53.65 54.8 56.09 56.5 56.09 56.5 48.78 56.5 46.34 53.2 48.78 53.2 60.97 50.0 60.97 53.2 

11 43.90 56.5 46.34 56.5 48.78 53.2 51.21 59.7 51.21 54.8 51.21 54.8 56.09 50.0 53.65 56.5 

12 51.21 58.1 51.21 61.3 56.09 53.2 56.09 56.5 53.65 51.6 53.65 53.2 53.65 53.2 63.41 54.8 

13 39.02 56.5 36.58 59.7 43.90 48.4 43.90 51.6 46.34 46.8 41.46 46.8 51.21 54.8 63.41 54.8 

14 46.34 59.7 46.34 61.3 51.21 51.6 46.34 56.5 48.78 51.6 51.21 51.6 58.53 51.6 65.85 51.6 

15 39.02 53.2 41.46 53.2 41.46 48.4 41.46 51.6 36.58 48.4 41.46 48.4 58.53 50.0 65.85 51.6 

16 46.34 56.5 48.78 58.1 46.34 53.2 48.78 53.2 43.90 54.8 48.78 54.8 58.53 51.6 60.97 53.2 

17 39.02 48.4 39.02 50.0 41.46 45.2 41.46 45.2 41.46 45.2 41.46 45.2 60.97 58.1 58.53 46.8 

18 56.09 58.1 53.65 56.5 46.34 45.2 48.78 48.4 48.78 46.8 46.34 46.8 58.53 54.8 58.53 45.2 

19 48.78 51.6 51.21 51.6 46.34 43.5 41.46 45.2 46.34 45.2 43.90 45.2 63.41 58.1 58.53 51.6 

20 56.09 56.5 53.65 53.2 43.90 46.8 43.90 50.0 43.90 46.8 46.34 46.8 63.41 54.8 60.97 51.6 

Mean 48.9 56.0 50.6 56.2 49.5 51.1 50.0 52.1 48.4 51.0 49.8 51.1 56.2 52.4 62.3 55.1
MAPE 108 79 101 78 105 97 103 93 109 97 103 97 79 91 61 83 
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Table 8 (color online) Ionosphere

Value
s of k

Sensitivity Activity Saliency Relevance
Standard 
BPNN 

Cost-
sensitive 
BPNN 

Standard 
BPNN

Cost-
sensitive 
BPNN

Standard 
BPNN

Cost-
sensitive 
BPNN

Standard 
BPNN

Cost-
sensitive 
BPNN

80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 80:20 70:30 

1 74.28 81.9 75.71 84.8 74.28 78.1 75.71 78.1 72.85 80.0 75.71 80.0 58.57 54.3 60 56.2
2 74.28 81.9 75.71 84.8 74.28 78.1 75.71 78.1 72.85 80.0 75.71 80.0 58.57 54.3 60 56.2 
3 72.85 80.0 77.14 81.0 74.28 77.1 74.28 77.1 70 79.0 74.28 79.0 58.57 58.1 65.71 58.1 
4 72.85 79.0 74.28 79.0 74.28 77.1 71.42 77.1 71.42 77.1 71.42 77.1 55.71 58.1 62.85 59.0
5 74.28 78.1 74.28 78.1 71.42 76.2 72.85 76.2 72.85 76.2 72.85 77.1 52.85 60.0 61.42 58.1 
6 72.85 78.1 75.71 79.0 70 74.3 71.42 75.2 71.42 76.2 71.42 76.2 55.71 60.0 62.85 61.0
7 72.85 76.2 74.28 78.1 71.42 76.2 72.85 75.2 71.42 73.3 72.85 73.3 54.28 60.0 65.71 60.0 
8 71.42 74.3 72.85 78.1 71.42 72.4 72.85 72.4 71.42 73.3 72.85 72.4 55.71 60.0 61.42 61.0
9 71.42 75.2 72.85 74.3 72.85 69.5 74.28 69.5 72.85 68.6 74.28 68.6 55.71 58.1 62.85 60.0 
10 71.42 74.3 72.85 76.2 71.42 71.4 74.28 72.4 72.85 71.4 72.85 71.4 54.28 56.2 61.42 60.0 
11 72.85 73.3 72.85 75.2 71.42 70.5 75.71 70.5 74.28 70.5 75.71 70.5 57.14 56.2 62.85 61.0
12 72.85 72.4 72.85 76.2 71.42 68.6 72.85 68.6 72.85 67.6 72.85 67.6 55.71 56.2 62.85 60.0 
13 72.85 70.5 72.85 74.3 71.42 65.7 74.28 65.7 74.28 64.8 74.28 64.8 55.71 58.1 62.85 60.0
14 72.85 71.4 72.85 76.2 70 68.6 72.85 68.6 74.28 67.6 72.85 67.6 55.71 56.2 61.42 61.9 
15 72.85 68.6 74.28 68.6 72.85 62.9 74.28 62.9 72.85 61.9 72.85 61.9 60 59.0 61.42 61.0 
16 72.85 71.4 72.85 68.6 70 63.8 72.85 62.9 71.42 62.9 72.85 62.9 58.57 56.2 61.42 60.0 
17 72.85 62.9 72.85 66.7 70 61.0 72.85 61.0 71.42 61.0 72.85 61.0 61.42 57.1 61.42 61.0 
18 72.85 62.9 72.85 67.6 70 61.0 72.85 61.0 71.42 61.9 72.85 61.9 54.28 56.2 61.42 60.0
19 72.85 60.0 72.85 64.8 65.71 58.1 71.42 58.1 70 59.0 71.42 59.0 55.71 57.1 62.85 60.0 
20 70 60.0 71.42 64.8 68.57 58.1 70 58.1 71.42 59.0 72.85 59.0 55.71 57.1 62.85 60.0

Mean 72.7 72.6 73.7 74.8 71.3 69.4 73.2 69.4 72.2 69.5 73.2 69.5 56.5 57.4 62.2 59.7 
MAPE 38 39 36 35 40 45 37 45 39 45 37 45 77 74 61 68 

70

75

80

85

90

1 3 5 7 9 11 13 15 17 19
40
45
50
55
60
65
70
75

1 3 5 7 9 11 13 15 17 19
(a) (b)

70

75

80

85

90

1 3 5 7 9 11 13 15 17 19
70

75

80

85

90

95

1 3 5 7 9 11 13 15 17 19

(d) (c) 

Fig. 3 Solid line is for cost-sensitive and dotted line is for standard BPNN, red color is for 80:20 split and black color is for 70:30, a activity, b
relevance, c saliency and d sensitivity for heart (color figure online)

dard BPNN in imbalanced datasets for both the splits. The
red lines and black lines represent the performance of the
hybrid CBR models for 80:20 and 70:30 splits, respectively,
in all the performance graphs. Dotted line represents stan-
dard BPNN, and solid line represents cost-sensitive BPNN.
The X axis stands for the value of k from 1 to 20, and the
Y axis stands for accuracy in percentage for each of the k
values in Figs. 3, 4, 5, 6, 7, 8 and 9. Graphs for average
performances (means) of cost-sensitive BPNN and standard

BPNN are shown in Fig. 10. Solid fill is for cost-sensitive
BPNN, and pattern fill is for standard BPNN, and brown
color is for 80:20 split and green color is for 70:30 split. Per-
formance graphs and tables are showing the same analysis
of the results. Performance graphs are used to improve the
clarity and easy understanding of the comparisons.

Table 9 shows the optimal BPNN architectures, and
Tables 10 and 11 show the λ values of the corresponding
datasets for 80:20 and 70:30 splits, respectively.
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Fig. 4 Solid line is for cost-sensitive and dotted line is for standard BPNN, red color is for 80:20 split and black color is for 70:30, a activity, b
relevance, c saliency and d sensitivity for diabetes (color figure online)
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Fig. 5 Solid line is for cost-sensitive and dotted line is for standard BPNN, red color is for 80:20 split and black color is for 70:30, a activity, b
relevance, c saliency and d sensitivity for blood transfusion (color figure online)

Five independent runs (five-folded validation) are exe-
cuted to validate the comparison results by using Wilcoxon
rank-sum nonparametric statistical test. The Wilcoxon rank
sum is a nonparametric test which tests whether two indepen-
dent samples come from identical continuous distributions
with equal medians (μ1 = μ2), against the alternatives,
(μ1 > μ2) or (μ1 < μ2) or (μ1! = μ2). μ1 is the
median for first sample and μ2 is the median for second
sample. This test is based on the ranks of all N (=n1 + n2)

observations after the two samples are combined, and the
observations are ordered from smallest to largest. Table 12

shows the performance of the hybrid CBR model with cost-
sensitive and with standard BPNN for five independent
runs in Swine flu dataset by relevance mechanism. Com-
bined performances and their rank are also shown in the
table.

H0: represents null hypothesis; H1: represents alternative
hypothesis

For a fixed level α (0.95) test, the test rejects Ho (null
hypothesis), where z-statistic = 1.671145,
Upper value (z∗) = −1.64485 andP value (1-NORMSDIST
(z)) = 0.047346.
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Fig. 6 Solid line is for cost-sensitive and dotted line is for standard BPNN, red color is for 80:20 split and black color is for 70:30, a activity, b
relevance, c saliency and d sensitivity for liver disorder (color figure online)
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Fig. 7 Solid line is for cost-sensitive and dotted line is for standard BPNN, red color is for 80:20 split and black color is for 70:30, a activity, b
relevance, c saliency and d sensitivity for Swine flu (color figure online)

The test result shows that at 95 % confidence level, z-
statistic is greater than upper critical value as well as P value
is <0.05.

Hence, H1: case retrieval (performance) using cost-
sensitive BPNN is better than standard BPNN (i.e., μ1 >μ2).

Table 13 shows the performance of the hybrid CBR
model with cost-sensitive and with standard BPNN for
five independent runs in ionosphere dataset by activity
mechanism.

For ionosphere dataset at a fixed level α (0.95), z-statistic
= 1.775592, upper value (z∗) = −1.64485 and P value (1-
NORMSDIST (z)) = 0.0379. Z-statistic is greater than upper
critical value as well as P value is <0.05. Hence, H0 (null
hypothesis) is rejected and H1 hypothesis (case retrieval (per-

formance) using cost-sensitive BPNN is better than standard
BPNN (i.e., μ1 > μ2)) is satisfied.

Similarly, for all the other datasets H1 hypothesis is satis-
fied at 95 % confidence level.

5.3 Discussion

It is observed from Tables 2, 3, 4, 5, 6, 7 and 8 and graphs in
Figs. 3, 4, 5, 6, 7, 8 and 9 that sensitivity, activity, saliency
and relevance from the cost-sensitive BPNN have performed
better in retrieving most similar cases than Shin and Park
(1999), Shin et al. (2000) and Im and Park (2007) in all the

cases. It has also enhanced the performance of the case
retrieval mechanism as compared to the weights in Shin and
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Fig. 8 Solid line is for cost-sensitive and dotted line is for standard BPNN, red color is for 80:20 split and black color is for 70:30, a activity, b
relevance, c saliency and d sensitivity for sonar (color figure online)
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Fig. 9 Solid line is for cost-sensitive and dotted line is for standard BPNN, red color is for 80:20 split and black color is for 70:30, a activity, b
relevance, c saliency and d sensitivity for ionosphere (color figure online)

Park (1999), Shin et al. (2000) and Im and Park (2007). It is
because Shin and Park (1999), Shin et al. (2000) and Im and
Park (2007) used standard BPNN and CBR to retrieve similar
cases. Standard BPNN assumes that all the datasets (classes)
are balanced and therefore has a tendency to get biased toward
the majority class. As a result, the accuracy of the retrieved
cases by Shin and Park (1999), Shin et al. (2000) and Im
and Park (2007) gets affected. To cope with this problem, the
proposed hybrid model uses a cost-sensitive BPNN, which
uses a cost parameter to identify the importance of each class.
Comparison of the proposed model is done only with Shin

and Park (1999), Shin et al. (2000) and Im and Park (2007)
as models in Shin and Park (1999), Shin et al. (2000) and
Im and Park (2007) have been already compared with other
methods of case-based reasoning, and they outperformed
all other previously existing case-based reasoning methods.
The highest accuracy achieved by the proposed hybrid CBR
model is made boldface in Tables 2, 3, 4, 5, 6, 7 and 8 for all
the datasets and both the splits. For example, the proposed
model produces 90.74, 87.03, 85.18 and 74.07 % accuracy
for sensitivity, activity, saliency and relevance, respectively,
in heart disease dataset for 80:20 split. A good model desires
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Fig. 10 Comparison of mean values of 20 nearest neighbors for differ-
ent datasets. Solid fill is for cost-sensitive and pattern fill is for standard
BPNN, and brown color is for 80:20 split and green color is for 70:30.

a Heart dataset, b diabetes dataset, c blood transfusion dataset, d liver
disorder dataset, e Swine flu dataset, f sonar dataset and g ionosphere
dataset (color figure online)

higher mean and lower MAPE (mean absolute percentage
error). Tables 2, 3, 4, 5, 6, 7 and 8 and Fig. 10 show that
the proposed model produces better mean and MAPE than

Shin and Park (1999), Shin et al. (2000) and Im and Park
(2007) in most of the cases. For 70-30 split, it is observed
from Tables 2, 3, 4, 5, 6, 7 and 8 and Fig. 10 that the aver-
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Table 9 Optimal architecture

Dataset Optimal architecture

Blood transfusion 4-6-1

Diabetes 8-14-1

Heart 13-24-1

Liver disorder 6-9-1

Swine flu 10-18-1

Sonar 60-90-1

Ionosphere 33-55-1

Table 10 λ Value of different datasets for 80:20 split

Dataset Value of λ

Blood transfusion 0.73

Diabetes 0.57

Heart 0.61

Liver disorder 0.62

Swine flu 0.55

Sonar 0.54

Ionosphere 0.71

Table 11 λ Value of different datasets for 70:30 split

Dataset Value of λ

Blood transfusion 0.81

Diabetes 0.67

Heart 0.6

Liver disorder 0.59

Swine flu 0.52

Sonar 0.57

Ionosphere 0.7

age performance of the proposed model is better in all the
cases except saliency of heart, diabetes, blood transfusion and
Swine flu datasets, and activity of heart dataset. Similarly for
80–20 split, the average performance of the proposed model
is better in all the cases except sensitivity, activity, saliency

and relevance of diabetes dataset, and relevance of liver dis-
order dataset. From Tables 2, 3, 4, 5, 6, 7 and 8, it is also
observed that for some datasets, the accuracy obtained is less
(such as <60 %) and for some datasets accuracy obtained is
more (such as more than 90 %). This is because of high or
low nonlinearity of the datasets. The datasets producing
less accuracy are highly nonlinear. By applying the pro-
posed model with cost-sensitive BPNN, the accuracies for
the highly nonlinear datasets are significantly increased. And
those datasets producing better accuracy are less nonlinear
but after applying the proposed model, significant improve-
ment is also observed. So, it can be said that the proposed
model retrieves k most similar cases more accurately. The
revision of CBR cycle is implemented by frequency of occur-
rence of top most similar cases and the value of k, which
produces highest accuracy, is only considered to measure the
performance of the hybrid model. If more than one k produces
highest accuracy, then the first k of them is taken as optimal k.

In order to obtain weights from trained neural network, it
is essential to find out the optimal architecture of the network
to be trained. A BPNN is used whose architecture is formed
with one hidden layer because single hidden layer neural net-
works are superior to networks with more than one hidden
layer with the same level of complexity mainly due to the fact
that the later are more prone to fall into poor local minima (de
Villiers Barnard 1993). The gradient descent learning algo-
rithm is used, and the learning rate taken is 0.01. The number
of input nodes to the network architecture is equal to the num-
ber of features of a pattern in a dataset, and there is one output
node. The number of hidden nodes in the hidden layer is var-
ied between (i+1) to (2i) to determine the number of hidden
nodes where i is the number of input nodes. Mean square
error (MSE) is measured for each of the architectures, and
the one which produces minimum MSE is selected for fur-
ther experimentation and is called optimal architecture of the
network. The network architectures that give the highest per-
formance are given in Table 9 with respective datasets. The
λ values that give the highest accuracy are given in Tables 10
and 11 with respective datasets. It should be noted that the
value of λ is experimental.

Table 12 (color online) Wilcoxon rank-sum table for Swine flu (relevance)

Cost sensitive 
Standard back 
propagation

Combined Rank 

78 76 66 1 
84 76 70 2.5
78 74 70 2.5 
76 70 74 4
70 66 76 6 

 76 6
  76 6 
  78 8.5 
 78 8.5
  84 10 
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Table 13 (color online) Wilcoxon rank-sum table for ionosphere (activity)

Cost-sensitive 
BPNN 

Standard BPNN Combined Rank 

80.66 74.28 72.22 1
75.71 74.28 74.28 3.5 
75.71 74.28 74.28 3.5 
75.71 75.71 74.28 3.5
74.28 72.22 74.28 3.5 

75.71 7.5
75.71 7.5 
75.71 7.5 
75.71 7.5 
80.66 10 

6 Conclusions

Feature weighting mechanisms: sensitivity, activity, saliency
and relevance, from a trained cost-sensitive BPNN are inves-
tigated in this paper. It is found that feature weighting
mechanisms: sensitivity, activity, saliency and relevance,
from a trained cost-sensitive BPNN perform better than fea-
ture weighting mechanisms: sensitivity, activity, saliency and
relevance, from a trained standard BPNN. This is because the
majority of machine learning techniques habitually assume
that the training sets used for learning are balanced; however,
this hypothesis is not always true in real-world applications.
The tendency is to yield a classification model that is biased
toward the overrepresented (majority) class.

The use of ANN to provide weights to k-NN module and
identification of more exact nearest neighbors to a query case
adds more intelligence to the hybrid CBR system. The effi-
ciency of the proposed hybrid CBR model is reflected in
obtaining proper retrieval of cases which produces better
accuracy.

The proposed model can be used in any binary classifica-
tion tasks such as diagnosis, prediction and many others. The
feature weighting mechanisms with the cost-sensitive BPNN
can be used to sort out feature weighting problem of CBR
without any hitch. This work can be augmented by introduc-
ing the concept of local weighting mechanism. The proposed
model is only for binary classification tasks but can also be
augmented to multi-classification tasks.
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