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Abstract Terrestrial plants have evolved remarkable adapt-
ability that enables them to sense environmental stimuli
and use this information as a basis for governing their
growth orientation and root system development. In this
paper, we explain the foraging behaviors of plant root and
develop simulation models based on the principles of adap-
tation processes that view root growing as optimization.
This provides us with new methods for global optimization.
Accordingly a novel bioinspired optimizer, namely the root
system growth algorithm (RSGA), is proposed, which adopts
the root foraging, memory and communication and auxin-
regulated mechanism of the root system. Then RSGA is
benchmarked against several state-of-the-art reference algo-
rithms on a suit of CEC2014 functions. Experimental results
show that RSGA can obtain satisfactory performances on
several benchmarks in terms of accuracy, robustness and con-
vergence speed. Moreover, a comprehensive simulation is
conducted to investigate the explicit adaptability of root sys-
tem in RSGA. That is, in order to be able to climb noisy
gradients in nutrients in soil, the foraging behaviors of root
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system are social and cooperative that is analogous to animal
foraging behaviors.
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1 Introduction

The success of a species in evolution mainly depends on its
foraging strategy, namely the ability to effectively search for
resources, such as food and water, in a given environment.
Accordingly, natural selection optimizes the foraging strate-
gies, since species that have poor foraging performance do
not survive. As a result, when we observed within the nat-
ural world, different species develop a variety of foraging
strategies depending on their physiological characteristics,
the environment and the resources available to them. In each
of these foraging processes, the foraging individual or group
make optimal decisions so as to search for and obtain nutri-
ents in a way that maximizes the ratio E/T (where E is the
energy obtained and T is the time spent foraging) or max-
imizes the long-term average rate of energy intake (Pyke
1984; Catania 2012).

Logically, such optimal foraging principles have led sci-
entists in the field of optimization theory to exploit the
analogy between searching a given problem space for an
optimal solution and the natural search process of forag-
ing for food (El-Abd 2012). In recent years a considerable
amount of natural foraging strategies has inspired natural
computing paradigms in optimization area, prominent exam-
ples being ant colony system (ACS) (Socha andDorigo 2008;
Twomey et al. 2010), particle swarm optimization (PSO)
(Shi and Eberhart 1998; Kennedy and Mendes 2002) and
artificial bee colony algorithm (ABC) (Akay and Karaboga
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2012). Accordingly, these state-of-the-art bioinspired para-
digms have been widely investigated and developed (Valdez
et al. 2011; David et al. 2013; Alexandru-Ciprian et al. 2013;
Savio et al. 2014). For instances, a novel hybrid approach
to PSO, namely FPSO + FGA (Valdez et al. 2011), utilizes
fuzzy logic to integrate the advantages of both PSO and GA
algorithms. A new GSA variant is developed by incorpo-
rating the fuzzy control systems with a reduced parametric
sensitivity (David et al. 2013). A successful multi-objective
variant based on NSGA-II and based on artificial neural net-
works (ANNs) is designed (Alexandru-Ciprian et al. 2013),
which can effectively reduce computational load in themulti-
objective optimization process. In these optimizationmodels,
communication strategies are also applied for cooperatively
foraging in groups of animals.

Although foraging behavior is typically considered as
a feature of animals, this definition does not exclude the
responses of other organisms, including plants (McNickle
et al. 2009). However, Because of their specific lifestyle, the
areas where plants can access to forage for resources are con-
fined to those which can be explored by growth (Kroon and
Mommer 2006). This is the major difference between plant
growth and animal foraging. Obviously, efficient searching
of the soil for the nutrients and water is principal to the sur-
vival of each plant species in the earth. Therefore, plant roots
have evolved the ability to both sense myriad factors in their
local environment and use this information to drive changes
in growth direction and root system development (Falik et al.
2005; Gilroy and Masson 2008).

Plant root growth is marked by a diversity of adaptation to
continuous changes in environment, including increased lat-
eral branching, root biomass, root length and uptake capacity.
Particularly, all these developmental events require correct
auxin transport and signaling (Karban 2008). Plants also
adjust root demography and the length per unit mass of roots
in response to heterogeneity (McNickle et al. 2009). Many
studies have implied that plants are optima foragers, but there
is little experimental evidence built on this assumption and
only a handful of studies that explicitly develop optimality
models for plant foraging (Kembel and Cahill 2005; Kembel
et al. 2008).

The objective of this paper is to present a new optimiza-
tion algorithm based on principles from plant root growth
and foraging behaviors, which will be called the root system
growth algorithm (RSGA). We utilize the optimal foraging
theory perspective in formulating ourRSGAmodel for global
numerical optimization. The proposed algorithm is presented
by modeling of the root foraging, memory and communica-
tion and auxin-regulated mechanisms of the root system. In
the proposed algorithm emulating the distributed optimiza-
tion process represented by the activity of plant root growth,
several efficient ways to search for space optimization prob-
lems are proposed. The local search and global search using

root branching and elongation (tropism) both controlled by
auxin concentration during the foraging process are imple-
mented. The random walk of lateral roots and root tip death
mechanisms are also developed to keep the diversity and effi-
ciency of the algorithm.

We examined the proposed algorithm in the shifted and
rotated benchmarks. The empirical results obtained from
implementing the proposed algorithm with the benchmark
functions indicated that the speed of convergence and the
quality of solutions are better than the CMA-ES, PSO, ABC
and GA algorithms in terms of accuracy, robustness and con-
vergence speed. Moreover, in order to illustrate the inherent
adaptive mechanism in the proposed model of root system
growing, the root tropic growth, auxin-controlled population
dynamic and root system structure formulation are simu-
lated based on RSGA model in this paper. The simulation
results capture some important aspects of the dynamics of
root growth that some plant biologists believe takes place in
nature.

The rest of this paper is organized as follows. Section 2
presents the basic aspects and the characteristics of the
root foraging behavior, including root growth responds to
nutrition gradient, root memory and communication and
auxin-regulated root system development. In Sect. 3, we
introduce the proposed RSGA. Section 4 presents the empir-
ical results on several benchmark functions and further
analyze the evolution dynamics of the RSGA model. Then
RSGA is applied to solve the TSP in Sect. 5. The last section
includes conclusions and future work.

2 Root foraging behaviors

2.1 Root growth responds to nutrition gradient in soil

In keeping with their functions as the main nutrients foraging
organ of plant, roots are highly sensitive to the availability
of essential resources in the soil. Indeed, plant roots from
different species are able to sense multiple environmental
nutrition gradients and exert different responses by adjusting
their growth direction to promote exploration of nutrition-
rich areas. This directional growth response is called tropism
(Rubio et al. 2002). Plant roots display different tropisms,
namely gravitropism, phototropism, hydrotropism, ther-
motropism, electrotropism, magnetotropism and chemotro-
pism, in response to the gradient of environmental gravity,
light, water (moisture gradient), touch (mechanical stimuli),
temperature, electric fields, magnetic fields and chemicals,
respectively (Rubio et al. 2002; Eapen et al. 2005; Leitner
et al. 2010). Among these important tropisms and move-
ments, gravitropism and hydrotropism are regarded as the
major influences in the directional growth of roots.
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In order to maximize the resource acquisition from soil,
the root system of plants has evolved a self-adaptive grow-
ing ability to control primary root growth and lateral root
branching dynamically. That is, the primary roots from dif-
ferent species usually show the same orthogravitropism (i.e.,
growing down to exploration), while the lateral roots always
take on the diagravitropism or plagiotropism (i.e., growing
sideways to exploitation) (Dupuy et al. 2010).

2.2 Root memory and communication

Compared with animal foraging, plant behaviors have been
considered simpler due to its specific lifestyle (Banks et al.
2009; Bradbury and Vehrencamp 1998). However, recent
studies of microorganisms have revealed that past experience
also greatly influences plant growth by means of condition-
ing (Karban 2008; Karban et al. 2000, 2006). Although they
lack central nervous systems, plants still displaymemory and
communication behaviors via specific growth approaches.
For example, plants alter their behaviors depending on their
memory, namely previous experiences or the experiences of
their parents. In nature, the growth of a clover branch depends
upon its current neighbors and also upon the neighbors that
it encountered over the past year (Banks et al. 2009). Plants
communicate with other plants, herbivores and mutualists
(Heil et al. 2001; Heil 2004; Hodge 2009). Plant competi-
tors in the soil with uniform nutrient distribution exhibit
obvious reduction in root system breadth and spatial segrega-
tion, while plant competitors in the soil with heterogeneous
nutrient distribution reduce their root growth modestly, indi-
cating that plants integrate information about both neighbor
and resource distribution in determining their root foraging
behaviors.

2.3 Auxin-regulated root system development

The different stages of root development are mainly con-
trolled and regulated by correct auxin transport and signaling
(Leyser 2006). In particular, auxin plays a major role in lat-
eral root initiation and development. For example, auxin local
accumulation in Arabidopsis root pericycle cells adjacent to
xylem vessels triggers lateral root initiation by re-specifying
these cells into lateral root founder cells (Dubrovsky et al.
2008). Furthermore, it also influences the growth and orga-
nization of lateral root primordia and emergence from the
parent root (Laskowski et al. 2006). Additionally, overex-
pression of the DFL1/GH3-6 or the IAMT1 genes, which
encode enzymes modulating free IAA levels, results in a
reduction in lateral root formation (Qin et al. 2005).

Root branching is a significant growth behavior, which
flexibly adjusts the overall surface of the root system.

Accordingly, plants have evolved efficient auxin-based
regulation mechanism. Auxin transport into the regions

Main root 
Growthing

Root death

Poison
area

Nutrition
area

Main root 
branching

Lateral root 
random walk

Fig. 1 The plant root foraging behavior

where lateral root initiates also seems crucial for the regula-
tion of root branching, including when and where to start lat-
eral root formation, and duringwhich the development of pri-
mordia can be arrested for a certain time (Hodge et al. 2009).

Then we model the foraging behaviors of a plant root
system (Fig. 1) by making the following assumptions:

1. Root tips move throughout the soil through the main root
growth and branching, lateral root random walk and root
tip death. For each root tip, the branching and death are
governed by its auxin concentration state.

2. The growth of amain root tip is a sequence of straight-line
trajectories joined by instantaneous turns.

3. When a main root grows, its choice of a new direction is
governed by two major tropisms, namely hydrotropism
and gravitropism.

4. When amain root branches lateral root tips, the branching
number is governed by the current root system scale and
the angle between lateral and main root tips is governed
by a probability distribution.

5. When there is a lateral root random walk, the angle
between two successive trajectories and root elongation
length are both governed by different probability distri-
butions.

6. All root tips with less auxin values will die and will be
simply eliminated from the root group.

These assumptions yield an optimization model that can be
described by the algorithm presented in Sect. 3.
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3 Root system growth for optimization (RSGO)

Based on the principles of root foraging behaviors described
in Sect. 2, a novel optimization model and its algorithm,
namely the root system growth model for optimization
(RSGO) and root system growth algorithm (RSGA), are
developed in this section in detail.

3.1 Auxin concentration

Assume that the primary objective is to search the minimum
of f (x), x ∈ RD . f (x) can be viewed as the nutrient dis-
tribution in soil. That is, f (x) > 0, f (x) = 0, f (x) < 0
represent the presence of nutrients, a neutral medium and the
presence of noxious substances, respectively.

In RSGO, plant root system is made up of a collection of
root tips, which is defined as:

PRS = {
r ti

∣
∣i = 1, 2, . . . , St ; t = 1, 2, . . . , T

}
(1)

where

r ti = 〈
xti , f ti , nt

t
i , an

t
i , φ

t
i

〉
(2)

is a single root tip; St is the root tips’ number at time t; T is the
final time of the root system growing process; r ti has its own
position xti , fitness f ti , nutrient nt

t
i and the auxin anti which

depends on f ti and nt ti that control this root tip to elongate,
branch or die at time t. If it is foraging, the root tip moves
with an orientation φt

i as an angle formed by the root axis.
At the initial stage t = 0, a population of S0 root tips are

initialized randomly in the D-dimensional space. The posi-
tion and heading angle of the i th root tip are represented
as xi = (xi1, xi2, . . . xiD) and φi = (φi1, φi2, . . . φi(D−1)),
respectively, where xid ∈ [ld , ud ], d ∈ [1, D] , ld , ud are
the lower and upper bounds for the dth dimension, respec-
tively. In each growth step t , the root tip i will grow to absorb
nutrient and its nutrient nt ti can be updated by:

nt t+1
i =

{
nt ti + 1 if f t+1

i < f ti
nt ti − 1 else

(3)

In initialization phase, nutrients of all root tips are zero.
During the development of root system, if the position of
the new root tip is better than the last one, this root tip will
absorb nutrient from the soil and the nutrient is added by one.
Otherwise, the root tip’s nutrient is reduced by one.

Then the auxin concentration anti , combining the health
and energy information of the i th root tip, is calculated by
the following equations:

healthti = f ti − f tworst
f tbest − f tworst

(4)

energyti = nt ti − nt tworst
nt tbest − nt tworst

(5)

αt ti = ω
healthti∑St
j=1 health

t
j

+ (1 − ω)
energyti∑St
j=1 energy

t
j

, ω ⊂ [0, 1] (6)

where f tworst
/
f tbest and nt tworst

/
nt tbest are the current worst/

best fitness and nutrient of the whole root system at time t ,
and ω is a uniform random quantity varying from 0 to 1.

In each cycle of roots growth process, all root taps are
sorted by auxin concentration values defined above. That is,
the strong root tips prefer to be chosen as main roots for
branching. The number of main roots is calculated as:

Stm = St × Sr (7)

where Stm is the number of selected main root, St is the size
of root population, and Sr is the selection probability. The
rest Stl = St − Stm root tips are selected as lateral roots. In
our research, the Sr can be empirically pre-set to 0.5.

3.2 Root branching

Then a threshold Tbranch is used to determinewhether it per-
forms branching via comparing with the auxin concentration
value of each main root:

{
branching if αt ti > Tbranch
nobranching other else

(8)

Note that the Tbranch can be empirically set to 5 in our
research. If r ti is selected asmain root and its auxin concentra-
tion is enough to conduct branching, the branching number
wi of r ti is determined by:

Sti = ⌈
R1αt

t
i (Smax − Smin) + Smin

⌉
(9)

where Smax and Smin are defined as the maximum and min-
imum of the new growing tips, respectively, and R1 is a
randomdistribution coefficient. Based on growth direction of
r ti as reference angle, the searching space of its all branches
is divided into Smax subzones; the angle of new growing tips
(i.e., the new root branches of r ti ) is randomly falling within
one of these subzones. Then these new branching tips will
grow as the following equations:

The fitness f is the sum of the result of applying the fol-
lowing function to consecutive groups of three components
each:

φt+1
j = φt

i + λ jφmax/Smax (10)
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xt+1
j = xti + R2lmaxH

(
φt+1
j

)
(11)

where j ⊆ [
Smin, Sti

]
is the root branch index of root tip

r ti , λ j ⊆ [1, Smax], is the selecting subzone number of the
root branch xt+1

j , φmax, is the maximum growing turning
angle, which is limited to π , R2 is random value between
0 and 1, lmax is the maximum of root elongation length, and

H
(
φt+1
j

)
=

(
ht+1
j1 , ht+1

j2 , . . . , ht+1
j D

)
∈ RD is a polar to

Cartesian coordinates transform function, which can be cal-
culated as:

ht+1
j1 =

D−1∏

p=1

cos
(
φt+1
j p

)

ht+1
jk = sin

(
φt+1
j (k−1)

) D−1∏

p= j

cos
(
φt+1
j p

)

ht+1
j D = sin

(
φt+1
j (D−1)

)

(12)

3.3 Tropisms

As described in Sect. 2, the spatial development of root sys-
tem is significantly influenced by various tropisms. InRSGO,
two major tropisms, namely hydrotropism and gravitropism,
are considered and modeled. Firstly, the effect of gravit-
ropism depends on the communication mechanism in root
system. That is, a half of main roots will grow toward the
best position with most moisture among the root system,
given by:

xt+1
i = xti + R3

(
xtbest − xti

)
(13)

where i ⊆ [1, Stm/2], R3 is random value in the range (0, 1),
and xtbest is the best position in the root tip group.

Considering the hydrotropism gravitropism depends on
the root memory, the rest of main roots will grow along their
original directions as:

xt+1
i = xti + R4lmaxH

(
φt
i

)
if x ti > xt−1

i (14)

where i ⊆ [Stm/2, Stm], lmax, is the maximum of root
elongation length, R4 is a normally distributed random
number with mean 0 and standard deviation 1; H

(
φt
i

)

is a D-dimensional growth direction of the main root i ;

φt
i =

(
φ
t,
i1φ

t
i2, . . . , φ

t
i(D−1)

)
∈ RD−1 is a D-1-dimensional

growth angle, given by:

r t+1
i = r ti + R5 ∗ ωmax,0 < ωmax < π (15)

where R5 ∈ RD−1 is a uniformly distributed random
sequence in the range (0, 1);ωmax is themaximumof growing
angle, which is limited to π .

3.4 Random walk of lateral roots

During each foraging bout, all the lateral root tips will per-
form randomwalk, which are thought to be the most efficient
foraging strategy for randomly distributed nutrition (Banks
et al. 2009). At the t th iteration, each lateral root tip generates
a random head angle and a random elongation length, given
by:

φt+1
i = φt

i + R5φmax (16)

xt+1
i = xti + R6φmaxH

(
φt+1
i

)
(17)

where i ⊆ [0, Stl ], R5 and R6 are random values in the range
(0, 1), φmax is the maximum growing turning angle, and lmax

is the maximum of root elongation length.

3.5 Root tip death

Lower auxin concentration represents that a root tip did not
get asmanynutrients during its lifetimeof foraging andhence
is not as active and thus unlikely to continue to grow. Then
in each cycle of roots growth process, all root tips with auxin
values less than zero die and will be simply eliminated from
the root group.

3.6 RSGA

Accordingly, based on above definitions, the RSGA instan-
tiated from RSGO can be given, and the flowchart and
pseudo-code of theRSGAare presented in Fig. 2 and Table 1,
respectively. The corresponding variables of RSGA are sum-
marized in Table 2.

4 Test and simulation

4.1 Test functions

4.1.1 Test benchmarks

Instead of the easy benchmarks, a set of 15 shifted and rotated
benchmarks from CEC 2014 test beds ( f1 ∼ f15) on real
parameter optimization are employed (Ma et al. 2015; Liang
et al. 2013; Karaboga and Basturk 2007). The dimensions,
initialization ranges, global optimum of each function are
listed in Table 3.

4.1.2 Traveling salesman problem (TSP)

TSP can be abstracted as a task to find the shortest closed tour
that visits each city exactly once (Noon 1988). Concretely, a
traveling salesman is required to travel through n cities for
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Fig. 2 The flowchart of RSGA
RANDOMLY GENERATE AND EVALUATE INITIAL ROOT TIPS

CALCULATE AUXIN CONCENTRATION FOR EACH TIP

CHOOSE BRANCHING TIPS

DECIDE BRANCH NUMBER FOR EACH BRANCHING TIP

GENERATE NEW ROOT BRANCHES

SORT MAIN ROOT SUBGROUPS BY AUXIN

THE FIRST HALF MAIN ROOT TIPS PERFORM HYDROTROPIC OPERATION

THE LAST HALF MAIN ROOT TIPS PERFORM GEOTROPIC OPERATION

LATERAL ROOT TIPS PERFORM RANDOM WALKING

ROOT BRANCHING PHASE

MAIN ROOT GROWING PHASE

LATERAL ROOT GROWING PHASE

DIVIDE THE POPULATION INTO MAIN & LATERAL ROOT SUBGROUPS

CHOOSE AND ELIMINATE THE DYING ROOT TIPS 

ROOT DEATH PHASESORT ALL ROOT TIPS BY AUXIN

sale promotion and arrive at the destination city that is same to
the beginning point, and the distance between any two notes
(represented by city i and city j) is di j (i, j = 1, 2. . .n). Let
G = (N , V ), where N donates a set of n cities or nodes, V
donates a set of arcs, and V = di j donates the distance or cost
matrix D ( which can be either symmetric or asymmetric)

associated with each arc (i, j) ∈ V . The initial motivation
of TSP is to search for a shortest closed tour visiting each
of the n = |N | nodes of G exactly once. In particular, in the
symmetric TSP case, the distance di j between any city i and
city j is independent of the direction of traversing the arcs,
that is, di j = d ji for every pair of cities.
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Table 1 Pseudo-code of RSGA

RSGA  algorithm 

Step 1: 

Set Iteration k=0; 

Initialize population positions Xi and evaluate the fitness fi , nutrient ni of the population by Eq. (3); 

Step 2:  

While(the termination conditions are not met) 

For (each root member in populaiton) 

Auxin concentration calculation: Calculate auxin concentration t
i of each individual by Eq. (6); 

Divide the root tip group into main roots subgroup and lateral roots subgroup 

according to Eq.(8); 

Root branching:              Determine whether a main root perform branching according to Eq.(9); 

Calculate the branch number of each branching root tip by Eq. (10); 

Main roots growing:          Sort the main root subgroup in order of ascending accumulated auxin concentration; 

The first half main roots perform hydrotropic operation by Eq. (14); 

The last main roots perform geotropic operation by Eq. (15); 

Lateral roots random walking:  All the lateral root tips perform random walk operation by Eq. (18); 

Dead roots eliminating:        Remove the dead root tips (auxin concentration<=0) from the root tip group; 

End For 

Memorize the best solution achieved so far 

k= k +1; 

End While 

Step 3: Output the best solution achieved.

α

Table 2 Parameters of the
RSGA S0 The initial size of root tip group

Tbranch The threshold to determine whether a root perform branching

Smin The minimum branches of each branching root

Smax The maximum branches of each branching root

φmax The maximum turning angle of each growing tip

lmax The maximum elongation length of each growing tip

Objective functions:

Z = min
∑

i

∑

j

di j xi j (18)

S.T.

xi j =
{
1, if the arc(i, j)is in the tour,
0, otherwise,

(19)

n∑

i=1

xi j = 1, j = 1, 2, . . . , n, (20)

n∑

j=1

xi j = 1, i = 1, 2, . . . , n, (21)

where Eq. (18) gives the total cost to be minimized, and
Eqs. (19–21) are constraints’ condition. Constraint Eq. (20)
ensures that each position is occupied by only one city, while
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Table 3 Parameters of test
functions (x* is the optimal
solution; f(x*) is the best values
of function; Oi is the shifted
global optimum defined in
“shift_data_x.txt,” which is
randomly distributed in
[−100, 100]D)

f Functions Dimensions Initial range x∗ f (x∗)

f1 Rotated high
conditioned elliptic
function

30 [−100, 100]D O1 100

f2 Rotated bent cigar
function

30 [−100, 100]D O2 200

f3 Shifted and rotated
Rosenbrock’s function

30 [−100, 100]D O3 400

f4 Shifted and rotated
Ackley’s function

30 [−100, 100]D O4 500

f5 Shifted and rotated
Weierstrass function

30 [−100, 100]D O5 600

f6 Shifted and rotated
Griewank’s function

30 [−100, 100]D O6 700

f7 Shifted Rastrigin’s
function

30 [−100, 100]D O7 800

f8 Hybrid function 1 30 [−100, 100]D O8 1700

f9 Hybrid function 2 30 [−100, 100]D O9 1800

f10 Hybrid function 3 30 [−100, 100]D O10 1900

f11 Hybrid function 4 30 [−100, 100]D O11 2000

f12 Composition function 1 30 [−100, 100]D O12 2300

f13 Composition function 2 30 [−100, 100]D O13 2400

f14 Composition function 3 30 [−100, 100]D O14 2500

f15 Composition function 4 30 [−100, 100]D O15 2600

constraint Eq. (21) guarantees that each city is assigned to
one exact position.

4.2 Parameter settings

In this experiment, four successful algorithms are employed
for comparison with RSGA, namely PSO (Shi and Eberhart
1998; Kennedy 2007), ABC (Karaboga and Basturk 2007),
CMA-ES (Kämpf and Robinson 2009) and GA (Sumathi
et al. 2008). The number of function evaluations (FEs) is used
as a measure criterion. All algorithms are terminated after
100,000 FEs. The parameter settings for the proposed RSGA
are summarized in Table 4. The parameter configurations of
other tested algorithms are all based on the suggestions in
the corresponding references. Details are given as follows:

PSO Settings: This traditional PSO is the standard one
(i.e., the global version with inertia weight). The para-
meters are given as following (Shi and Eberhart 1998):
c1 = c2 = 2.0, ω starts at 0.9 and ends at 0.4.

ABC Settings: The canonical ABC follows the same
parameter settings given inKaraboga andBasturk (2007):
SN = 50, Limit = 200.
CMA-ES Settings: For CMA-ES, we take σF = 0.2,
λ = 10, μ = 5, which is the standard set for these
three parameters. The rest parameters setting follows the
default values recommended in Kämpf and Robinson
(2009).
GA Settings: The parameters setting of the standard GA
can be given as follows (Sumathi et al. 2008): stochas-
tic uniform sampling technique is the chosen selection
method, single-point crossover is used and its rate is 0.95,
and mutation rate is 0.1.

Figure 3 shows the scheme procedure of all involved
algorithms to generate solutions for selected test problems.
Each bioinspired algorithm including the proposed RSGA is
implemented, respectively, and repeatedly evolving on each
test function for 30 runs (all algorithms are terminated after
100,000 function evaluations). Then the comparative results
among the five algorithms are shown in the next subsection.

Table 4 The parameter settings
for RSGA

Parameter S0 Cr Tbranch Smin Smax φmax lmax

Settings 2 0.5 5 1 3 π

√
D∑

d=1
(Ud − ld )2
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Initialization
Initialize the decision variable population

Program RSGA
Solve each selected CEC2014 function

Program CMA-ES
Solve each selected CEC2014 

function

Program PSO
Solve each selected CEC2014 function

Program GA
Solve each selected CEC2014 

function

Program ABC
Solve each selected CEC2014 function

Whether termination
condition is met?

Comparison of all involved algorithms 

No

Yes

Fig. 3 The scheme procedure for all algorithms tested on test functions

4.3 Experimental results

4.3.1 Computation results on benchmarks

In this section,we compare the performanceofRSGA,CMA-
ES, PSO, GA and ABC on the test suite withD = 30 and 100,
respectively. Tables 5 and 6 present the average and standard
deviation values in 30 runs of the above five algorithms for
all benchmark functions with D = 30 and 100, respectively.
Here all algorithms are terminated after 100,000 function
evaluations in each run and the best results among the five
algorithms are shown in bold.

From Table 5, it can be observed that RSGA obtains best
solutions on f3, f8, f9, f11, f12 and f14, six of all fifteen
benchmarks. PSO also achieves satisfactory results, perform-
ing best on f4, f5, f13 and f15, while CMA-ES obtains
best performances on 6 functions, f1, f2, f4, f6 and f10.
For majority of test functions, RSGA and CMA-ES exhibit
almost the same performance. Compared to ABC and GA,
RSGAobtains significantly better results on all test functions
except for f5 and f7.

It should be noted that although some algorithms gener-
ated good results on relatively low-dimensional (D ≤ 30)
benchmark problems, they do not perform satisfactorily for
some large-scale problems (Wang and Ni 2008). Therefore,
in order to assess the high-dimensional optimization perfor-
mance of RSGA, the test benchmarks are extended to 100
dimensions and used in our experimental studies as high-
dimensional benchmark functions. The results (D = 100) are
presented in Table 6.

When the dimension increases to 100, RSGA main-
tains powerful performance, while others deteriorate obvi-
ously. PSO and CMA-ES also obtain satisfactory results
on some functions. For example, PSO can perform best
f4, f10, f12 and f14.However, RSGA outperforms the other
algorithms on most of test benchmarks, all functions except
for f4, f5, f10, f12 and f14. In particular, for shifted and
rotated functions f6, f7 and f15, only RSGA performs well
on all of them, while other algorithms fall into local minima.

From the distinct difference between D = 20 and 100
results, we can clearly see that most evolutionary and swarm
intelligence algorithms only work well on low-dimensional
problems, while as dimensionality increases, the proposed
foraging-based algorithm, RSGA, shows its persistence and
generates better performances. This achieved improvement
of RSGA is due to the dynamical exploration and exploita-
tion balance ability of the introduced main and lateral root
foraging strategies.

In order to measure the efficiency of algorithm on high-
dimensional problems, Fig. 4 gives the average convergence
results of 100D benchmarks with 30 runs. Owing to its
dynamically control to root tip’s branching and death by
auxin concentration, it can be observed that RSGA is able
to evolve in a very efficient manner. In particular, for
high-dimensional problems, convergence rates of RSGA are
strikingly higher than those of other algorithms. RSGA also
demonstrates reasonable robustness by its consistent perfor-
mances in all 30 runs. That is, across all of the randomly
initialized runs on each benchmark function, RSGA is always
given out similar evolution speed and converged to the same
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Table 5 Performances of all
algorithms on 30-dimensional
test functions

Func. RSGA PSO ABC CMA_ES GA

f1 Mean 1.1121E+02 9.0934E+03+ 1.6034E+03+ 1.000E+02∼ 1.0833E+07+

Std 3.6257E+01 1.4333E+02+ 2.7634E+01− 1.0783E+01− 5.0471E+06+

f2 Mean 2.2242E+02 6.0762E+04+ 1.5643E+03+ 2.0001E+02∼ 3.4093E+06+

Std 1.4377E+01 5.6894E+03+ 1.8323E+03+ 1.3423E−01− 1.0934E+03+

f3 Mean 4.4551E+02 4.4843E+02+ 4.5875E+02+ 4.6723E+02+ 6.1009E+02+

Std 1.6242 6.0945+ 2.8304E+01+ 3.7132E+01+ 2.5423+

f4 Mean 5.7840E+02 5.2001E+02− 5.2121E+02+ 5.2001E+02− 5.2314E+02+

Std 3.3240E−01 1.7983E−02− 3.1834E−02− 4.3425E−06− 1.2380E−01+

f5 Mean 7.1229E+02 6.1740E+02− 6.1743E+02− 6.2342E+02+ 6.5098E+02+

Std 7.1177E+01 4.1080− 1.6034− 2.7982− 4.0934−

f6 Mean 7.0848E+02 7.3083E+02+ 7.0012E+02∼ 7.0000E+02∼ 8.0091E+02+

Std 4.3246E−03 4.6613E−01+ 8.2204E−02+ 2.1325E−04− 7.9986+

f7 Mean 1.0438E+03 8.8530E+03+ 8.0000E+02− 8.0834E+02+ 1.1400E+03+

Std 2.3714E+01 1.0364E+01+ 2.2112E−04− 1.8343− 2.3252E+01+

f8 Mean 3.9394E+03 1.1210E+05+ 4.9889E+06+ 4.0355E+05+ 5.6734E+06+

Std 5.7965E+02 7.3482E+04+ 2.6343E+06+ 2.2744E+05+ 5.7528E+05+

f9 Mean 2.5433E+03 5.0356E+03+ 1.5192E+04+ 4.9422E+03+ 1.2238E+05+

Std 1.6717E+02 5.2676E+02+ 8.8000E+03+ 5.4423E+03+ 2.7623E+04+

f10 Mean 2.1325E+03 2.1386E+03+ 2.1564E+03+ 2.1032E+03− 2.4230E+03+

Std 1.2343E+03 1.1983E+03− 4.8934E+03+ 2.3291E+03+ 2.7093E+03+

Std 1.7420E+00 2.3616E+01+ 2.1563E+01+ 9.8475E−01− 9.5803E+01

f11 Mean 3.0530E+03 1.2003E+04+ 9.3221E+03+ 3.9702E+03+ 3.1783E+04+

Std 4.8286E+02 9.7856E+02+ 4.4502E+03+ 2.8612E+03+ 6.6653E+04+

f12 Mean 2.6070E+03 2.9984E+03+ 2.7201E+03+ 2.7308E+03+ 3.2011E+03+

Std 9.4256E−13 7.0934E−01+ 3.5634E−01+ 6.6934E−03+ 5.0934E+01+

f13 Mean 2.6486E+03 2.6303E+03− 2.6380E+03− 2.6304E+03− 3.0122E+03+

Std 2.6198E+01 2.8945− 3.8433− 3.2112− 4.0945E+01−

f14 Mean 2.6041E+03 2.7984E+03+ 2.7256E+03+ 2.7201E+03+ 2.8001E+03+

Std 5.6461E−01 7.0003+ 1.9045+ 9.9812+ 1.0353E+01+

f15 Mean 2.7143E+03 2.7111E+03+ 2.7768E+03+ 2.7398E+03+ 2.8500E+03+

Std 1.4050E+01 8.1003E−02− 4.6989E+01+ 4.6776E+01+ 4.0076E+01+

In bold are the best results

point or a small region, whereas for ABC, PSO and GA,
they sometimes had diverse behaviors that resulted from the
random initialization.

4.3.2 Computation results on TSP

In this section, simulation experiments are conducted in TSP
with an instance of eil51 from TSPLIB (the coordinate loca-
tions of nodes in this problemare given inFig. 5).Meanwhile,
comparison of performance between RSGA and GA algo-
rithm in solving TSP is carried out (Turkington et al. 1991).
The parameters of GA follow those of Sect. 4.2. The max-
imum iterations can be set to 4000. Each experiment the
simulation runs 30 times, and the experimental results in
terms of average length, best length, worst length, consuming
time and the convergence counts obtained by RSGA and GA

are given in Table 7. The optimal solution obtained by RSGA
is (31-28-3-36-35-20-29-21-50-9-49-38-11-5-15-45-33-39-
10-30-34-16-2-22-1-32-27-51-46-12-47-18-4-17-37-44-42-
19-40-41-13-25-14-24-43-7-23-6-48-8-26), and the length
of the shortest tour is 441.62. The panoramas of the shortest
tour by RSGA and GA are given in Figs. 6, and 7, respec-
tively. Besides, the convergence performance comparison
between RSGA and GA is also shown in Fig. 8.

Table 7 demonstrates that our proposed RSGA is effective
in solving the 51-cities TSP problem. In particular, RSGA
exhibits significant superiority to the compared algorithm in
terms of accuracies of best solution, average solution and
worst solution. As can be seen from Table 2 and Fig. 8,
the computation efficiency (i.e., consuming time) and con-
vergence performance are better than GA. In other words,
RSGA searches out optimal solution quickly in a relatively
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Table 6 Performances of all
algorithms on 100-dimensional
test functions

Func. RSGA ABC PSO CMA_ES GA

f 11 Mean 2.6834E+05 1.1698E+08+ 1.0923E+08+ 2.2839E+08+ 3.8846E+08+

Std 2.3437E+03 1.5147E+07+ 3.0014E+07+ 4.6426E+06+ 1.2093E+08+

f2 Mean 2.2242E+02 1.0346E+05+ 3.5621E+09+ 2.2382E+08+ 7.0573E+10+

Std 7.1417E-14 1.0384E+05+ 2.0953E+07+ 3.0018E+08+ 8.0093E+09+

f3 Mean 4.5596E+02 6.6475E+02+ 9.8731E+02+ 1.0545E+03+ 1.9903E+03+

Std 1.1659E+01 3.2020E+01+ 2.3347E+02+ 2.8321E+02+ 1.3425E+02+

f4 Mean 5.7875E+02 5.8393E+02+ 5.7590E+02− 5.7799E+02− 5.8202E+02+

Std 7.1274E−01 3.8678E−02− 3.0967E−01− 1.8498E−02− 2.9843E−02+

f5 Mean 8.2334E+02 8.1934E+02− 8.3301E+02+ 8.0418E+02− 8.6000E+02+

Std 1.2320E+01 6.3625− 5.6473− 6.7461− 2.0372−

f6 Mean 7.1847E+02 7.8484E+02+ 8.8105E+02+ 7.9027E+02+ 2.8209E+03+

Std 5.4982E−03 3.0036E−02+ 6.0934E+01+ 4.5115E+00+ 4.1243E+02+

f7 Mean 8.0050E+02 2.6080E+03+ 1.2305E+03+ 1.0578E+03+ 2.8342E+03+

Std 2.0806E+00 1.8669E+02+ 2.3431E+01+ 2.6057E+01+ 1.1054E+02+

f8 Mean 3.2843E+05 5.1142E+07+ 2.0934E+07+ 1.5337E+08+ 2.9016E+08+

Std 1.5942E+05 1.2375E+07+ 7.5462E+06+ 6.7157E+07+ 1.4420E+07+

f9 Mean 4.7367E+03 5.7612E+05+ 5.0000E+07+ 7.7563E+09+ 3.0062E+09+

Std 3.7461E+02 3.8183E+05+ 3.0943E+06+ 3.9744E+09+ 1.0000E+09+

f10 Mean 2.4472E+03 6.5815E+03+ 2.4000E+03+ 2.5048E+03+ 3.1034E+03+

Std 3.0939E+01 1.3981E+03+ 2.1001E+01+ 2.0689E+02+ 1.2335E+01−

f11 Mean 5.8595E+05 1.3025E+05− 4.0034E+04− 9.7528E+03− 2.4061E+05−

Std 4.0620E+05 2.0352E+04− 1.4542E+04− 1.4011E+05− 2.0050E+04−

f12 Mean 3.0924E+03 2.9745E+03− 2.9740E+03− 2.9742E+03− 4.3661E+03+

Std 9.0602E−01 4.3082E+00+ 2.7835E+01+ 1.4906E+00+ 1.0034E+02+

f13 Mean 3.2171E+03 3.1031E+03+ 3.3520E+03+ 3.2970E+03+ 4.3221E+03+

Std 4.3687E−20 2.2299E+00+ 2.1113E+01+ 7.5518E+00+ 2.6165E+02+

f14 Mean 3.3396E+03 3.1002E+03− 3.1002E+03− 3.1665E+03− 3.4000E+03+

Std 4.4693E−01 6.1159E+00+ 1.0225E+01+ 1.8233E+01+ 1.0934E+02+

f15 Mean 2.7212E+03 3.1301E+03+ 3.2237E+03+ 3.1402E+03+ 3.5063E+03+

Std 3.7846E+01 4.4132E+01+ 2.7883E+01− 2.2955E−01− 4.2034E+01+

In bold are the best results

smaller consuming cost, with performance better than GA.
However, we must also realize the shortest path obtained by
our proposed algorithm (432.11) is still slightly worse than
the optimal solution of eil51 (426), and there is great potential
to improve the applications of RSGA.

In addition, our proposed RSGA is compared with some
existing results in the literature. The compared algorithms
involve GA and ACO (Administrator 2015) on Berlin52,
EiI76 and A280. GA and ACO are both efficient in handling
these instances of the TSP where the search space is com-
plex and no prior mathematical analysis is given. Table 8
gives the experimental results. The three algorithms show
satisfactory performance over the TSP instances. The GA
andACO perform excellently on the small-size andmedium-
size instances. The RSGA obtains better results in large-size
instances regarding error rate, and time computation,with the
help of local search technique based on root growth behav-

iors, and it ensures finding better solutions than other two
algorithms.

4.4 The simulation of root growth behaviors

In this section, the root growth behaviors and social foraging
of RSGA are simulated, which shows a connection between
social foraging strategies developed over millennia within
the natural world and distributed nongradient optimization
algorithms design for global search over noise space. Specif-
ically, simulations at three different scales are carried out
and compared to observations on real plant species. At the
individual level, only one tip is initialized as main root and
grows virtually in order to examine its tropism that response
to environmental constraints. Then the population-level sim-
ulation is performed that focuses on the dynamic of the auxin
regulation underlying root tip branching and death. Finally, a
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Fig. 4 The median convergence results on each test functions. a–o correspond to 100-dimensional f1 − f15, respectively
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Fig. 5 The coordinate locations of nodes in eil51

Table 7 Comparison results of RSGA and GA

Algorithms/testing comments RSGA GA

Average length 437.21 541.21

Best 432.11 536.76

Worst 441.34 553.46

Convergence counts 890 1320

Consuming time (s) 22.53 34.53

number of emerging characteristics concerning root architec-
ture formation can be observed through the simulation on the
developmental processes of the root system in RSGAmodel.

4.4.1 Root tropic growth: tropism

Plant roots have evolved the most important property that
their foraging is social in order to be able to climb nutrient
gradients in soil. The directional growth of plant roots relative
to the direction of environmental stimuli is a tropism. Among
the important tropisms, gravitropism is considered to exert
a major influence in the directional growth of roots. That is,
main roots usually grow down (i.e., orthogravitropism), and
lateral roots always grow sideways (i.e., diagravitropism).
The other important root tropism is hydrotropism, which
is the ability to sense environmental moisture gradient for
governing root growth orientation. Both gravitropism and
hydrotropism have been relatively well studied.

Different from previous root growth models, we focus
on social and optimal foraging ability of root system and
use them as the basis for implementing gravitropism and
hydrotropism. As described in Sect. 3.2, an easy way to
implement gravitropism is to calculate all root tips’ fitness
and pick out the best one that leads to a dominant move-
ment of the root tip group toward the best position with most
moisture, while the hydrotropism is implemented as that each
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Fig. 6 The optimal solution obtained by RSGA for eil51
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Fig. 7 The optimal solution obtained by GA for eil51
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Fig. 8 The convergence comparison between RSGA and GA on eil51

root tip in RSGA is able to find and climb the environmental
nutrient gradient.

We simulated the directional root growth behaviors,
namely the hydrotropism and gravitropism of RSGA model,
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Table 8 Overview of simulation results

Instance RSGA GA ACO

Name Optimal tour Best Error rate% Time seconds Best Error rate% Time seconds Best Error rate% Time seconds

Berlin52 7542 7542 0.00 6.11 7542 0.0 3.67 7575 0.43 17.72

Eil76 538 542 1.11 8.65 570 5.95 13.52 551 2.42 32.12

A280 2579 2718 5.30 15.21 2902 12.5 24.78 2899 12.4 17.32
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Fig. 9 Simulation on 2-dimensional Sphere considering: a gravitropism; b hydrotropism; c hydrotropism and gravitropism
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Fig. 10 Simulation on 2-dimensional Griewank considering:: a gravitropism; b hydrotropism; c hydrotropism and gravitropism

on 2D Sphere and Griewank’s landscapes, respectively (as
shown in Figs. 9, 10). In both cases, the simulations were
carried out on three independent scenarios, namely the
hydrotropic response without gravitational force, the grav-
itational force without hydrotropic response and both tropic
responses exist. In each simulation, only one tip is initial-
ized at (−3,−3) as main root (represented as the red lines
in the figures), which is the unique one that can branch lat-
eral roots (represented as the green lines in the figures) in
its whole life cycle. The growth trajectories, which only con-
sider hydrotropic response inRSGAmodel, in 2DSphere and
Griewank’s landscapes are shown in Figs. 9a and 10a, respec-
tively. From Figs. 9a, 10a, we can observe that underlying
hydrotropic rule in RSGA, the root tips climb the moisture
gradients through increasing the number of branches and
elongation of roots. It can be obviously observed that the

hydrotropic rule in RSGA is a typical local search strategy
that is well documented by empirical studies in both plants
and animals: when there are multiple types of a resource with
different costs and benefits, organisms are expected to select
among these resources in a way that maximizes benefits and
minimizes costs.

From the growth trajectories in Figs. 9b and 10b, we can
observe that the root tips move throughout both the uni-
modal and multimodal landscapes (defined by Sphere and
Griewank, respectively) through the gravitational force in
RSGA model. That is, the gravitational force designed in
RSGA is the global search strategy that makes each tip a
social forager to maximize the performance of the root sys-
tem as awhole, rather than their own individual performance.

Figures 9c and 10c illustrate the root growth trajectories
under the influence of both tropisms. As we can see, in this

123



Root system growth biomimicry for global optimization models and emergent behaviors 7499

Fig. 11 The spatial and
temporal branching process
based on RSGA on
Rosenbrock’s environment
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Fig. 12 The population size evolution process on Rosenbrock’s envi-
ronment

simulation, gravitropism interfereswith hydrotropism,which
provides an understanding of how roots sense multiple envi-
ronmental cues and exhibit different tropic responses. That is,
the hydrotropic rule in RSGA encourages exploitation abil-
ity, while the gravitational force designed in RSGA improves
exploration ability.

This shared and divergent mechanism that mediating the
two tropisms is important because it permits the root system
to refine its foraging behavior adaptively. At the beginning
of the simulation, the root tips start exploring the search
space. In that manner, the main root does not waste much
time before finding the promising region that contains the
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Fig. 13 Auxin concentration distribution on Sphere

global optimum, because the gravitational force designed in
RSGA improves exploration ability. On the other hand, by
the hydrotropic rule in RSGA, themain root slows down near
the optimum and increases the number of branches in order
to pursue the more and more precise solutions.

4.4.2 Auxin-controlled population dynamic

This section focuses on the dynamic of the auxin regulation
underlying root tip branching and death in RSGA model.
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Fig. 14 Auxin concentration distribution on Rosenbrock

In this experiment, the population size of RSGA is adjusted
dynamically during the optimization, and this phenomenon
can be monitored through our simulation experiment as
shown in Fig. 11. Figure 11 shows the spatial and temporal
branching process based onRSGAonRosenbrock’s environ-
ment. The corresponding population size evolution process
of the root tips alongwith the generations is shown in Fig. 12.
The population size variation of root tips as shown in Figs.
11 and 12 can be divided into three phases, namely branch,

decay and death, which are consistent with the life cycle of
all types of plant roots in nature.

The underlying auxin regulation mechanism is simulated
in Figs. 13, 14, which illustrates the dynamic of auxin con-
centration in each root tips along the root growth process.
From these cases, we can observe that if the root tips
enter the areas near the local or global optima, these root
tips generate higher auxin level to multiplying the num-
ber of roots; while entering in the plateaus areas, these
root tips cease to branch and could decay when their auxin
level reaches zero. That is, from a plant resource alloca-
tion view, if root systems exhibit plasticity in producing
new roots in favorable soil zones, they should also be able
to shed these roots when resource uptake is no longer
efficient.

4.4.3 Root system structure formulation

Modeling of root architecture is helpful in linking knowl-
edge gained at the level of the individual root to that of
the entire root system. Conceptually, root system architec-
ture can be modeled in different ways, depending on the
goals, actual knowledge and parameterization of the different
processes available. Here, the root system is represented by
the developmental processes of the root system. This results
in a three-dimensional set of connected branching points,
representing the roots and their tips, each characterized by

Fig. 15 Root system
architecture formulation by
interacting with the environment
defined by: a 2-dimensional
Rosenbrock; b 2-dimensional
Rastrigin; c 3-dimensional
Rosenbrock; d 3-dimensional
Rastrigin
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properties such as age, root type, angle, length and foraging
ability that defined in RSGA model.

We simulated the root–soil interactions and the dynam-
ics of rhizosphere in RSGA model, on 2-dimensional/3-
dimensional Rosenbrock’s and Rastrigin’s landscapes, res-
pectively (as shown in Fig. 15). From the simulation results,
we can observe that root system architecture is flexible and
can alter as a result of prevailing soil conditions. This flex-
ibility arises due to the modular structure of roots which
enables root deployment in zones or patches rich in moisture
or nutrients. Although the relationship between root forag-
ing precision and scale remains elusive, it can be clearly
observed that the root systems allocated more of their new
root growth into the nutrient-rich zones, while less of their
new root growth into the nutrient-poor zones in all simulation
cases.

5 Conclusions

In this paper, we adopt the optimal foraging theory perspec-
tive in formulating our simulation model for root foraging
behaviors. The optimal root foraging behaviors and root
growth controlling by auxin are combined in our model.
Next, the proposed model is instantiated as an optimization
algorithm called RSGA that emulates the distributed opti-
mization process represented by the activity of plant root
growth.

The proposed optimization method can be classified as
natural computing paradigms for global optimization. While
the previously proposedGA, PSO andABC can solve similar
optimization problems, their structure and operation are quite
different. To illustrate their difference, we validate the mod-
els on several widely used benchmark functions and briefly
discuss the principle of a number of emerging characteristics,
namely the root tropic growth, auxin-controlled population
dynamic and root system structure formulation, which are
valid for bothmodel and plant root system. Finally, theRSGA
is applied to solve TSP.

Based on this comprehensive analysis of RSGA perfor-
mance, there may be benefits over existing optimization
methods, and we believe RSGA has a great potential of being
applied to a variety of complex real-world problems. Indeed,
there is ongoing research that is studying this now.
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