Soft Comput (2017) 21:7363-7379
DOI 10.1007/s00500-016-2280-1

@ CrossMark

METHODOLOGIES AND APPLICATION

Evolutionary induction of a decision tree for large-scale data:

a GPU-based approach

Krzysztof Jurczuk! . Marcin Czajkowski! - Marek Kretowski!

Published online: 22 August 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Evolutionary induction of decision trees is an
emerging alternative to greedy top-down approaches. Its
growing popularity results from good prediction perfor-
mance and less complex output trees. However, one of the
major drawbacks associated with the application of evo-
lutionary algorithms is the tree induction time, especially
for large-scale data. In the paper, we design and imple-
ment a graphics processing unit (GPU)-based parallelization
of evolutionary induction of decision trees. We apply a
Compute Unified Device Architecture programming model,
which supports general-purpose computation on a GPU
(GPGPU). The selection and genetic operators are performed
sequentially on a CPU, while the evaluation process for the
individuals in the population is parallelized. The data-parallel
approach is applied, and thus, the parts of a dataset are spread
over GPU cores. Each core processes the assigned chunk of
the data. Finally, the results from all GPU cores are merged
and the sought tree metrics are sent to the CPU. Compu-
tational performance of the proposed approach is validated
experimentally on artificial and real-life datasets. A compari-
son with the traditional CPU version shows that evolutionary
induction of decision trees supported by GPGPU can be
accelerated significantly (even up to 800 times) and allows
for processing of much larger datasets.

Communicated by V. Loia.

B Krzysztof Jurczuk
k.jurczuk @pb.edu.pl

Faculty of Computer Science, Bialystok University
of Technology, Wiejska 45A, 15-351 Biatystok, Poland

Keywords Evolutionary algorithms - Decision trees -
Parallel computing - Graphics processing unit (GPU) -
Large-scale data

1 Introduction

Decision trees (DTs) (Kotsiantis 2013; Rokach and Maimon
2008) are one of the most famous classification methods
in data mining (Fayyad et al. 1996). Traditionally, DTs are
induced with greedy top-down algorithms; however, in the
recent past, an evolutionary approach for tree induction has
attracted a great deal of interest. Application of evolution-
ary algorithms (EAs) (Michalewicz 1996) in DT induction
results in simpler but still accurate trees in comparison with
greedy strategies (Barros et al. 2012; Czajkowski and Kre-
towski 2014). The main downside of this approach is that
EAs entail relatively high computational costs as they gener-
ally evaluate all candidate solutions in a population for every
generation. Currently, data mining systems are faced with
increasingly larger datasets (Bacardit and Llora 2013), and
the issue of fast processing and analyzing often becomes cru-
cial. The survey (Barros et al. 2012) of evolutionary induction
of DTs stands at the fore of future trends the need of speeding
up the tree-building process.

Fortunately, EAs are naturally prone to parallelism and
the process of artificial evolution can be implemented in var-
ious ways (Chitty 2012). There are three main strategies that
have been studied for the parallelization and/or distribution
of computation effort in EAs:

— master—slave paradigm (Cantu-Paz 2000)—simple paral-
lelization of the most time-consuming operations in each
evolutionary loop; the master spreads usually indepen-
dent tasks or chunks of data over the slaves and, finally,
gathers and merges the results;

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-016-2280-1&domain=pdf

7364

K. Jurczuk et al.

— island (coarse-grained) model (Bull et al. 2007)—
grouping individuals into subpopulations that are distrib-
uted between islands and can evolve independently; some
policies are also defined for the migration of individuals
between islands each other;

— cellular (fine-grained) algorithm (Llora 2002)—redistri-
bution of single individuals that can communicate only
with the nearest individuals for selection and reproduc-
tion based on the defined neighborhood topology.

This manuscript concerns massive parallelization of evo-
lutionary induction using graphics processing units (GPUs)
(Tsutsui and Collet 2013). The GPUs of modern graphics
cards are equipped with hundreds or even thousands of small,
energy-efficient computing units (GPU cores) for handling
multiple tasks in parallel and managing workloads efficiently.
Moreover, they have an unmatched price/performance ratio
and enable scale-up on a single workstation, which is simply
not achievable using only multi-core CPUs. Thus, not only
graphics applications but also general-purpose computation
on GPUs (GPGPU) have gained in popularity (Yuen et al.
2013).

In this paper, a GPU-based parallelization of evolution-
ary induction of DTs is proposed. We focus on one of the
most common data mining applications—classification. In
particular, we concentrate on evolutionary-induced univari-
ate classification trees (Kretowski and Grzes 2005). To the
best of our knowledge, a study on speeding up the evolution-
ary induction of DTs using GPGPU, perhaps surprisingly, has
not yet been attempted in the literature. Although the GPU
computational model differs from the conventional CPU one,
the strategy that we apply is similar to the master—slave par-
adigm. The CPU (master) executes EA steps and assigns
computationally demanded tasks to a GPU. The GPU exe-
cutes the tasks in parallel on its cores that could be considered
as slaves. This way, so-called global parallelism (Alba and
Tomassini 2002) is preserved and the original sequential
algorithm does not change.

The proposed approach is applied to a system called
global decision tree (GDT). Its framework can be used
for the evolutionary induction of classification (Kretowski
and Grze$ 2007) and regression (Czajkowski and Kretowski
2014) trees, and the GDT solution concept can be applied in
many real-life applications, such as finance (Czajkowski et al.
2015) and medicine (Grzes and Kretowski 2007). The main
objectives of this work are to accelerate the GDT system and
to enable efficient evolutionary induction of DTs on large-
scale data. For these purposes, the proposed parallelization
manages to exploit the potential of modern GPUs to handle
computing intensive jobs like fitness calculation and leaves
the evolutionary flow control and communication tasks to the
CPU. This parallel computing model is an alternative to pre-
vious attempts to parallelize the GDT solution (Czajkowski

@ Springer

et al. 2015), which were based on a hybrid MPI+OpenMP
approach.

This paper is organized as follows: Section 2 provides
a brief background on DTs, the GPGPU computing model,
and most recent related works. Section 3 describes in detail
our approach for parallel implementation of evolutionary tree
induction. Section 4 presents experimental validation of the
proposed solution on artificial and real-life datasets. In the
last section, the paper is concluded and possible future work
is outlined.

2 Background

Data mining (Fayyad et al. 1996) can reveal important and
insightful information hidden in data. However, to effectively
identify correlations and patterns within the data, appropriate
tools and algorithms are required.

2.1 Decision trees

Decision trees (DTs) (Kotsiantis 2013; Rokach and Maimon
2008) represent one of the main techniques for discriminant
analysis in data mining. They have a knowledge represen-
tation structure that is built of nodes and branches, where
each internal node holds a test on one or more attributes;
each branch represents the outcome of a test; and each leaf
(terminal node) is designed by a class label. Most tree induc-
ing algorithms partition the feature space with axis-parallel
hyper-planes. These types of trees are called univariate deci-
sion trees as the split at each non-terminal node involves a
single feature.

The success of tree-based approaches can be explained by
their ease of application, fast operation, and effectiveness.
Furthermore, the hierarchical tree structure, where appropri-
ate tests from consecutive nodes are sequentially applied,
closely resembles the human way of making decisions. All
this makes DTs natural and easy to understand, even for an
inexperienced analyst. Despite 50 years of research on DTs,
some open issues still remain (Loh 2014).

Inducing an optimal DT is known to be NP-complete
(Hyafil and Rivest 1976). Consequently, practical decision-
tree learning algorithms must be heuristically enhanced. The
most popular type of tree induction is based on a top-down
greedy search (Rokach and Maimon 2005). It starts from the
root node, where the locally optimal split (test) is searched
according to the given optimality measure. Next, the training
instances are redirected to the newly created nodes, and this
process is repeated for each node until a stopping condition
is met. Additionally, post-pruning (Esposito et al. 1997) is
usually applied after the induction to avoid the problem of
over-fitting the training data and to improve the generaliza-
tion power of the predictive model. Some of the most popular

Evolutionary induction of a decision tree for large-scale data: a GPU-based approach 7365

representatives of top-down-induced decision trees are the
solution proposed by Breiman et al. (1984) called Classifica-
tion And Regression Tree (CART), the C4.5 system proposed
by Quinlan (1992), and the C H AI D algorithm proposed by
Kass (1980).

Inducing the DT through a greedy strategy is fast and
generally efficient in many practical problems, but it usually
produces locally optimal solutions. To mitigate some of the
negative effects of locally optimal decisions, EAs were intro-
duced for DT induction (Barros et al. 2012). The strength of
such an approach lies in a global search for the tree structure
and the tests in the internal nodes. This global induction is
obviously much more computationally complex; however, it
can reveal hidden regularities that are often undetectable by
greedy methods.

2.2 GPGPU and CUDA

Recently, research on parallelization of various evolution-
ary computation methods (Bacardit and Llora 2013; Chitty
2012) has seemed to focus on GPUs as the implementation
platform. The popularity of GPUs results from their high
computational power at a relatively low cost. A single work-
station equipped with a top-end GPU is more often able to
provide a lower price/performance factor than a traditional
computer cluster. Moreover, computer clusters are not always
accessible and demand more maintenance.

The use of graphics hardware for generic problems has
become known as general-purpose computation on GPUs
(GPGPU). One of the first and most popular frameworks to
facilitate GPGPU is a Compute Unified Device Architecture
(CUDA) (Wilt 2013) created by the NVIDIA Corporation. In
the CUDA programming model, a GPU (device) is consid-
ered as a co-processor that can execute thousands of threads
in parallel to handle the tasks traditionally performed by the
CPU (host) (see Fig. 1). The GPU engine is a scalable array
of streaming multiprocessors (SMs). Each SM consists of
a collection of simple streaming processors (called CUDA
cores).

The CUDA GPU memory also has a hierarchical struc-
ture (NVIDIA 2015). Several types of memories are provided
with different scopes, lifetimes, and caching behaviors. They
can be grouped into two classes: small, fast on-chip memory
(cache, resisters, etc.) and global memory with a larger capac-
ity but much higher latency access. All SMs have access to
the whole global memory. As regards on-chip memory, all
CUDA cores inside the same SM share some memory space
as well as having their own local memory.

CUDA employs a single-instruction multiple-data paral-
lelism (Grama et al. 2003). From a programming perspective,
when the CPU delegates a job to the GPU, it calls a kernel
that is a function run on the device. Then, a grid of (threads)
blocks is created and each thread executes the same ker-

CUDA core
with a local memory

CPU core

| multiprocessor N

| multiprocessor 2

multiprocessor 1
shared memory

global memory

CPU (host) GPU (device)

Fig. 1 CUDA hardware model. A GPU is considered as a co-processor
to a CPU. The CPU delegates some jobs to the GPU and receives
results. The GPU is equipped with two types of memory—small, fast
on-chip memory and global memory with larger capacity but much
higher latency access. Computational resources are grouped into multi-
ple streaming processors (SMs) consisting of a collection of streaming
processors (SPs) (called CUDA cores)

nel code in parallel. Each thread has an ID that allows an
assigned part of the data to be computed and/or to make
control decisions. Each block of threads is mapped to one
of the SMs, and the threads inside the block are mapped
to CUDA cores. Blocks can be organized into one- or two-
dimensional grids, while threads can be organized into one-,
two-, or three-dimensional blocks. The dimension and size
in each dimension of grids and blocks are both important
factors, and they should be set based on GPU specifications
as well as parallelization granularity.

2.3 Parallelization of EA

GPGPU has widely been used to reduce the CPU load and
boost the performance of different kinds of computational
intelligence methods such as fuzzy systems (Anderson et al.
2008) and neural networks (Oh and Jung 2014). In the field
of evolutionary computation (Tsutsui and Collet 2013), GPU
parallelization has been applied to many computing tech-
niques, such as ant colony optimization (Cano et al. 2013),
evolutionary strategies (Zhu 2011), and differential evolution
(Fabris and Krohling 2012; Veronese and Krohling 2010).
EAs, due to their parallel nature, have been parallelized in
many ways using various techniques (Langdon 2011; Oiso
et al. 2011). Application of GPUs in EAs usually focuses
on speeding up the evolutionary process (Chitty 2016; Cano
et al. 2012) that is relatively slow due to high computational
complexity or/and performing large-scale data mining (Bac-
ardit and Llora 2013; Langdon 2013). GPUs have already
been successfully applied in machine learning, specifically
in speeding up the evaluation process for classification rules

@ Springer

7366

K. Jurczuk et al.

(Cano et al. 2014, 2015) and evolutionary-mined association
rules (Cano et al. 2013).

Various proposals have been made with regard to the
design and implementation of EAs (Alba and Tomassini
2002). In this paper, we focus on a typical EA framework
with a single, unstructured population. Two main decompo-
sition techniques are used to parallelize EAs (Chitty 2012;
Freitas 2002): a control approach (also known as a popula-
tion approach) and a data approach. In the first approach,
individuals from the population are evaluated at the same
time on different processors. One of the main drawbacks of
this approach is the weak scalability to very large datasets. In
order to achieve a sufficient parallelization effect, the pop-
ulation size is often much larger than generally employed
and can exceed even tens of thousands of individuals (Maitre
etal. 2012; Oiso et al. 2011). Moreover, shared-memory sys-
tems (like multi-core architectures) can suffer from memory
access contention and the number of available processors if
often insufficient (Grama et al. 2003). On the other hand,
distributed-memory systems (like computer clusters) may
have problems with high inter-processor data traffic as well
as with storing a copy of large datasets for each processing
unit.

The second decomposition technique for parallelizing
EAs (applied in this paper) focuses on distributing the dataset
across the processors of the parallel system. In the data
approach, the objects are evaluated by the individuals in
parallel. This technique is considerably much more scalable
with respect to the size of the dataset than is the population
approach as the entire dataset can be gradually distributed
among the local memories of all processors. However, issues
with high inter-processor data traffic can still remain. The
data parallelization approach for EAs became more popu-
lar with the success of GPGPU, which may eliminate or at
least hide the communication overhead. The literature on
GPGPU in EAs contains algorithms that apply both decom-
position techniques (Chitty 2016). In addition, the current
research on parallelization of EAs goes even further and pro-
poses additional dimensions of parallelization. In a genetic
programming system (Cano and Ventura 2014), the popula-
tion and data approaches were extended with a GPU-parallel
interpreter. A new technique for decomposition focuses on
concurrent evaluation of individual’s subtrees.

GPGPU has also been used in systems with other struc-
tures for EA populations. In Luong et al. (2010), the authors
proposed schemes for the island model on GPU archi-
tectures in which the islands and the individuals within
the islands were run in parallel. The coarse-grained strat-
egy was applied in an evolutionary learning system called
BioHEL (Franco et al. 2010), where the authors proposed
two-dimensional parallelization that compared all the rules
and the instances in the training set in parallel. In the litera-
ture, there is also a cellular EA framework on GPUs (Soca

@ Springer

et al. 2010) that focuses on a control approach parallelization
technique. Another study Franco and Bacardit (2016) pro-
posed three-dimensional parallelization for the fine-grained
parallelization strategy. The GPGPU parallelization not only
covered the individuals and the instances, but also performed
calculations for the attributes within each dataset instance in
parallel.

2.4 Related work

Despite the fact that there is a strong need for parallelizing
the EA tree-building process (Barros et al. 2012), the topic
has not yet been adequately explored. In fact, it has hardly
been studied in the literature. One of the reasons is that the
straightforward application of GPGPU to EA may be insuf-
ficient. In order to achieve high speedup and exploit the full
potential of GPGPU parallelization, there is a need to incor-
porate knowledge about DT specificity and its evolutionary
induction.

In one of the few papers that cover parallelization of evolu-
tionary induced DT, a hybrid MPI4-OpenMP approach (Cza-
jkowski et al. 2015) was investigated. The algorithm used the
master—slave paradigm, and the most time-consuming oper-
ations, such as fitness evaluation and genetic operators, were
executed in parallel on slaves. The authors applied the control
parallelization approach in which the population was evenly
distributed to the available nodes and cores. The experimen-
tal validation, performed on artificial datasets with different
sizes (from 10,000 to 1,000,000 instances, and from 2 to 10
attributes), showed that the hybrid parallelization approach
for evolutionary-induced decision trees managed to achieve
a speedup of up to x 15 with 64 CPU cores.

So far in the literature, two types of DT systems using
GPU-based parallelization have been investigated. In the
first one, GPU-based parallelization of the greedy induc-
tion of DTs was examined. One of the propositions was a
CUDT system (Lo et al. 2014) that parallelized the top-down
induction process of a single tree. The GPGPU was used to
perform a parallel search through the attributes in each inter-
nal node in order to find the best locally optimal splits. The
authors showed experimentally that their approach managed
to reduce the induction time of a typical decision tree from
5 to 55 times when compared with the traditional CPU ver-
sion. This approach was later extended with a new dataset
decomposition strategy (Nasridonov et al. (2014)) as well as
processing multiple tree nodes simultaneously (Strnad and
Nerat 2016); however, the registered speedups remained sim-
ilar.

The second type of DT systems covers the paralleliza-
tion of ensembles of trees, such as random forests. The
most straightforward idea was proposed in a CudaRF system
(Grahn et al. 2011) that used one CUDA thread to build one
tree in the forest. However, such implementation works only

Evolutionary induction of a decision tree for large-scale data: a GPU-based approach 7367

with a large number of trees. Experimental results showed
that the induction time of the CudaRF trees was between
30 and 50 times faster than other systems with the assump-
tion that the number of trees is 128 or higher. Another level
of parallelization was proposed in the GPU random forests
designed for data streams (Marron et al. 2014). The authors
used a GPU approach for parallelization of the calculations
the majority class in the leaves and the splits in the internal
nodes.

However, it should be noted that all the aforementioned
systems used the GPGPU approach for parallelization trees
that were built with a greedy strategy through a process that
is known as recursive partitioning. To the best of our knowl-
edge, there are as yet no studies in the literature about the
parallelization of evolutionary induced DTs using the GPU-
based approach.

3 Globally induced decision trees

This section briefly recalls the GDT system whose gen-
eral structure follows a typical EA framework (Michalewicz
1996) with an unstructured population and a generational
selection. We have limited the GDT system description to a
univariate binary classification tree version as this type of the
tree is parallelized with the proposed GPU-based approach.

3.1 Representation

The type of EA may be identified by the way the individu-
als in the populations are represented. A genetic algorithm
is typically considered when solutions are encoded in a
fixed-length linear string. The tree-encoding schemes usu-
ally imply genetic programming (GP), where the solution
encodes data and functions (Woodward 2003); however, the
border between different types of EAs is vague and debat-
able.

DTs are complex tree structures in which the number of
nodes, the type of tests, and even the number of test out-
comes are not known in advance for a given dataset. This
is why the tree representation may be more suitable, espe-
cially if the entire tree is searched in one EA run. Therefore,
in the GDT system, DTs are not specially encoded and are
represented in their actual form as typical univariate classifi-
cation trees. Each test in a non-terminal node concerns only
one continuous-valued attribute. Typical inequality tests with
two outcomes are applied, but only precalculated candidate
thresholds (Fayyad et al. 1996) are considered as potential
splits. A candidate threshold for the given attribute is defined
as the midpoint between such a successive pair of examples
in the sequence sorted by the increasing value of the attribute,
in which the examples are characterized by different classes.
The GDT systems also allow univariate tests based on nom-

inal attributes or multivariate (oblique) splits in the internal
nodes; however, those variants are not considered in our solu-
tion.

Additionally, in every node, information about training
instances associated with the node is stored. This enables the
algorithm to more efficiently perform local structure and test
modifications during applications of genetic operators.

3.2 Initialization, selection, and terminal condition

In general, an initial population (default size equals 64 indi-
viduals) should be randomly generated and cover the entire
range of possible solutions (Crepinsek et al. 2013) to provide
enough diversity of individuals. Due to the large search space,
the application of greedy heuristics in the initialization phase
is often considered to improve the EA computation time. The
downside of this strategy is the possibility to trap EA in the
local optima. Therefore, while creating the initial population,
a good trade-off between a high degree of heterogeneity and
a relatively low computation time is usually desired.

In the GDT system, the initial individuals are created by
applying a simple top-down algorithm based on the dipolar
principle (Kretowski 2004) to randomly chosen subsamples
of the original training data (default: 10 % of data, but not
more than 500 instances). Among instances located in the
considered node, two objects from different classes are ran-
domly chosen. An effective test that separates these two
objects into subtrees is randomly created, taking into account
only attributes with different feature values. Recursive parti-
tions are repeated until the stopping criterion is met. Finally,
the resulting tree is post-pruned based on the fitness function.

Ranking linear selection (Michalewicz 1996) is used as a
selection mechanism. Additionally, in each iteration, a sin-
gle individual with the highest value of fitness function in
the current population is copied to the next one (elitist strat-
egy). Evolution terminates when the maximum number of
generations (default value: 1000) is reached.

3.3 Genetic operators

To maintain genetic diversity, the GDT system applies two
specialized genetic meta-operators corresponding to clas-
sical mutation and crossover. Both operators influence the
tree structure and the tests in non-terminal nodes. They are
applied with a given probability to a tree (default value is 0.8
for mutation and 0.2 for crossover). Successful application
of any operator results in the necessity for relocation of the
learning instances between tree parts rooted in the modified
nodes.

Each crossover begins by randomly selecting two indi-
viduals that will be affected. The next step is choosing the
positions in both individuals. Depending on the recombina-
tion variant, randomly selected nodes may:

@ Springer

7368

K. Jurczuk et al.

exchange subtrees (if they exist) randomly or based on

the mixed dipole principle (Kretowski and Grzes 2007);

— exchange tests associated with the nodes (only when non-
terminal nodes are chosen and the numbers of outcomes
are equal) randomly or based on the mixed dipole prin-
ciple;

— exchange branches in random order, which starts from
the selected nodes (only when non-terminal nodes are
chosen and the numbers of outcomes are equal);

— transfer subtrees asymmetrically where the subtree of the

first/second individual is replaced by a new one that was

duplicated from the second/first individual. The replaced
subtree starts in the node denoted as a receiver, and the
duplicated subtree starts in the node denoted as a donor.

In contrast to the symmetric crossovers, two nodes in

each individual are modified as both trees. It is pre-

ferred that the receiver node has a high classification error
because it is replaced by the donor node that should have

a small value of classification error as it is duplicated.

The application of this variant is more likely to improve

the affected individuals because with higher probability,

the good nodes are duplicated and they replace the weak
nodes.

The mutation operator begins by randomly choosing the
node type (equal probability of selecting a leaf node or an
internal node). Next, the ranked list of nodes of the selected
type is created, and a mechanism analogous to the rank-
ing linear selection is applied to decide which node will be
affected. Depending on the type of node, the ranking takes
into account:

— location (level) of the internal node in the tree—it is evi-
dent that modification of the test in the root node affects
the entire tree and has a large impact, whereas the muta-
tion of an internal node in the lower parts of the tree has
only alocal impact. Therefore, internal nodes in the lower
parts of the tree are mutated with a higher probability.

— number of misclassified objects—nodes with a higher
error per instance are more likely to be mutated. In addi-
tion, pure nodes (nodes with all instances from one class)
are not mutated.

Modifications performed by the mutation operator depend
on the node type (i.e., if the considered node is a leaf node
or an internal node) and cover different variants:

— shift the thresholds of the tests in the internal nodes;

— replace the test in the internal node with a new one based
on the dipole principle;

— prune the internal nodes or expand the leaves that contain
objects from different classes.

@ Springer

3.4 Fitness function

The evolutionary search process is very sensitive to proper
definition of the fitness function, which drives the evolution-
ary search process by measuring how good a single individual
is in terms of meeting the problem objective. In the con-
text of DTs, a direct minimization of the reclassification
quality measured on the learning dataset usually leads to an
over-fitting problem and poor performance on unseen, test-
ing observations because the trees are overgrown. In typical
top-down induction of DTs (Rokach and Maimon 2005), this
problem is partially mitigated by defining a stopping condi-
tion and by applying post-pruning (Esposito et al. 1997). In
the case of evolutionary induced DTs, this problem may be
mitigated by a complexity term incorporated into the fitness
function. In the GDT system, the fitness function is maxi-
mized and has the following form:

Fitness (T) = OReclass(T) — « - (Comp (T) — 1.0), (1)

where OReclass(7) is the reclassification quality of the tree
T and « is the relative importance of the classifier complexity
(default value is 0.001). The tree complexity term Comp (7")
can be viewed as a penalty for over-parametrization. It equals
the tree size, which is usually considered to be the number of
nodes. The penalty associated with the classifier complexity
increases proportionally with the tree size and prevents over-
fitting. Subtracting the value 1.0 eliminates the penalty when
the tree is composed of only one leaf. A similar idea is used
in cost complexity pruning in the CART system (Breiman
et al. 1984).

4 GPU-based approach for GDT

The proposed parallelization of the DT evolutionary inducer
is based on the sequential GDT algorithm for univariate clas-
sification trees. The general flowchart of our GPU-based
approach is illustrated in Fig. 2 and in Listing 1. It can be seen
that the evolutionary induction is run in a sequential manner
on a CPU, and the most time-consuming operations (evalu-
ation of the individuals) are performed in parallel on a GPU.
This way, the parallelization does not affect the behavior of
the original EA.

The initialization phase (see Fig. 2) begins by sending
the whole dataset to the GPU and saving it in the allocated
space in the global memory. This CPU to GPU data transfer
is performed only once, and the data are kept on the GPU
till evolutionary induction stops. This way, data transfer is
substantially reduced, especially for large datasets, and each
GPU thread has access to these data. Next, the creating an
initial population, as well as selection, is performed on the
CPU. This step is not parallelized as it is performed only once,

Evolutionary induction of a decision tree for large-scale data: a GPU-based approach 7369

GPU
= ¥
send dataset allocate memory
- to GPU receive data
8 v
8 | create init population |
=
:§ | evaluate population |<:>| evaluate invdividuals |
| selection |
i }
| crossover |<:>| evaluate invdividuals |
o
2
=] - —
§ | mutation |<:>| evaluate invdividuals |
’ 1
| selection |
[else] l
L [stopping condition is met]

in more
detail

in more
detail

v

——

apply genetic operator *

allocate memory
receive data

send individual
to GPU

3
=
3 1callin kernel1
5 —g | find leaf for each object |
£
g data reduction
> 3 calling kernel2 and calculation the
o - .
&, class distribution,
errors and choosing
< object for dipoles
% L
| update individual |
in more —l
detail 1

Fig. 2 Flowchart for the GPU-based approach of the evolutionary-induced DT algorithm (* genetic operator is not applied for the evaluation of

the initial population)

and the population is created on a small fraction of the dataset.
Only the evaluation of initial individuals (fitness calculation)
is delegated to the GPU. In the evolutionary loop, genetic
operators (without individual evaluation) and selection also
run on the CPU as these operations are relatively fast.

In the GDT system, the evaluation (fitness calculation) of
the individuals in the population is the most time-consuming
operation, which is typical in EAs. In the case of DTs, all
objects in the training dataset need to be passed through the
tree starting from the root node to an appropriate leaf. There-
fore, when there is a need to evaluate an individual after
successive crossover or mutation, the GPU is called to per-
form the calculations. At first, the affected individual is sent
to the GPU. Then, the CPU asks the GPU to take on some
of its work. Two kernel functions are called. The first kernel
(kernell in Fig. 2) is called to propagate objects from the tree
root to the leaves. The dataset is spread into smaller parts,
first between different GPU blocks and then further between
the threads.

Next, the second kernel function (kernel2 in Fig. 2) merges
information about the objects’ location in the leaves. Then,
the class distributions and classification errors are calculated
and propagated from the leaves toward the tree root. In addi-
tion, the second kernel function stores in each tree node two
randomly selected objects from each class that may take a part

in the genetic operators (e.g., as a dipole) that will run in the
next evolutionary loop. Both the tree statistics (class distribu-
tion, errors) and the selected objects are sent back to the CPU
that uses them to update the affected individual. The follow-
ing sections describe in greater detail the data decomposition
and merge strategies (Sect. 4.1) and additional optimizations
that shorten the evaluation time of the individuals on the GPU
(Sect. 4.2).

4.1 Data decomposition and merge strategy

The first kernel function (see Fig. 2) uses the data decomposi-
tion strategy illustrated in Fig. 3. The dataset is decomposed
at two levels. At first, the whole dataset is spread into smaller
parts that are processed by different GPU blocks. Next, in
each block, the objects from the fraction of the dataset are
spread further over the threads.

In Fig. 4, which illustrates the GPU-based individual eval-
uation, we see that all blocks of threads process the same tree
but with different data chunks. The role of each GPU block
is to counter for each leaf the objects of each class from the
assigned part of the data that reach the leaves. Every GPU
block has a copy of the individual, which is loaded into shared
memory, and the threads within the block count objects from
different parts of the data in parallel [step (1)]. In addition,

@ Springer

7370

K. Jurczuk et al.

Listing 1 Pseudo code of the main procedures of the GPU-based
approach for the evolutionary induced DTs.

1 __global___
2 procedure kernell (classDist, dipoles, indivTab)
3 index=0;

4
5 for i=1 to nObjectsToCheck do
6 node=indivTab[index] ;
7 while true do

8 if node is leaf then

9 //increment class counter

10 temp=index*N_CLASSES+dataset[i].classId;
11 atomicAdd (classDist[temp], 1);

12

13 //save objects for dipoles

14 setDipoles (dipoles, dataset[i]);

15 break;

16 else

17 if dataset[i] [node.attr] > node.value then
18 index = index*2+1; //left child

19 else

20 index = index*2+2; //right child

21 end if

22 end if

23 end while

24 end for

25 end

26

27 __global___

28 procedure kernel2 (classDist, dipoles, results)
29 _ shared__ classDistSum[N_NODE*N_CLASSES];

30 _ shared__ dipolesRandom[N_NODE*N_CLASSES*N_DIPOLES] ;
31

32 //merge data collected in kernell
33 for i=1 to N_NODES*N_CLASSES do

34 atomicAdd(classDistSum[i], classDist[i]);
35 end for
36

37 //merge data collected in kernell
38 for i=1 to N_NODES*N_CLASSES*N_DIPOLES do

39 if dipoles[i]!=0 then

40 atomicCAS (dipolesRandom([i], false, dipoles[i]);
41 end if

42 end for

43

44 if threadIdx.x==0 then

45 //calculate errors in the leafs

46 for i=N_NODES to 1 do

47 index=1*N_CLASSES;

48 if classDistSum[index]>classDistSum[index+1] then
49 results[index]=classDistSum[index];

50 results[index+l]=classDistSum[index+1];

51 else

52 results[index]=classDistSum[index+1];

53 results[index+1]=classDistSum[index];

54 end if

55 end for

56

two objects of each class are randomly selected in each tree
leaf [step (2)].

The role of the second kernel function is to merge infor-
mation from multiple copies of the individual allocated in
each GPU block. In Fig. 4, one can see that after the merge
operation, there is only one single tree that gathered infor-
mation for the whole dataset. The total number of objects of
each class in each tree leaf is a sum of counters from copies
of the individual [step (3)]. In addition, in each tree leaf, two

@ Springer

57 //propagate errors to the tree root

58 for i=N_NODES to 1 do

59 index = 1*N_CLASSES

60 if i\%2 then

61 results[i-2]+=classDistSum[index 1];
62 results[i-1]+=classDistSum[index+1];
63 else

64 results[i-1]+=classDistSum[index];
65 results[i]+=classDistSum[index+1];
66 end if

67 end for

68

69 //propagate class distribution to the tree root
70 //in analogy

71 C.

72 //propagate dipoles to the tree root
73 //in analogy

74 c.

75 end if

76 end

77

78 procedure evaluateIndividual (indiv)

79 copyTreeToTable (indiv, indivTab, indiv.getRoot());
80 allocateMemoryAtGPU (indivTab) ;

81 sendDataToGPU (indivTab) ;

82

83 kernell<<N_BLOCKS, N_THREADS>> (classDist, dipoles,
indivTab) ;

84

85 cudaDeviceSynchronize () ;

86

87 kernel2<<N_INDIV, N_BLOCKS>>(classDist, dipoles,

88 results) ;

89 cudaDeviceSynchronize () ;

90

91 updateIndividual (indiv, results); //show in Listing 2

92 deallocateMemoryAtGPU (indivTab) ;

93 end

94

95 procedure main()

96 allocateMemoryAtGPU (dataset) ;
97 sendDataToGPU (dataset) ;

98 createInitPopulation();

99 evaluatePopulation() ;

100 selection();

101

102 while !stopCondition do

103 for all indiv in individuals do
104 mutation (indiv) ;

105 evaluateIndividualAtGPU (indiv) ;
106 crossover (indiv) ;

107 evaluateIndividualAtGPU (indiv) ;
108 end for

109 selection()

110 end while

111

112 deallocateMemoryAtCPU (dataset) ;
113 end

objects of each class are randomly selected from the objects
provided by the first kernel function [step (4)].

Finally, we calculate reclassification errors in each leaf
[step (5)] and propagate all gathered information: class dis-
tribution, stored objects, and errors from the leaves toward
the root node [step (6)]. The reason why the two objects
from different classes are stored in each tree node is because
the CPU does not have access to the objects that fall in par-
ticular nodes of the tree. Although the CPU does not need

Evolutionary induction of a decision tree for large-scale data: a GPU-based approach 7371

4 A 4 N
] 1 —_— thread 1,
- block 1
- r-""""""- - ny _— 5 thread P,
dataset part 1
I __ n; i1 —/d* ni.i+1 : thread 1,
spreading dataset ~ ~ T[S 7T T T 7T -~ . dSI;reat mi
over blocks B i _block i dataset pa
over threads
i - n —_— s 5 thread P
U
dataset part i
N E - N1+ —_— thread 1y,
T block M
N N —_— 5 thread Py
dataset dataset part M
J - J
CPU GPU

Fig. 3 Data decomposition strategy. The dataset is spread into smaller parts. Each part is processed by different GPU blocks. Objects inside the

dataset parts are spread further over block threads

access to all objects from the dataset, pure and mixed (object)
dipoles are required for some variants of genetic operators
(Kretowski 2004). With two objects from different classes,
the CPU can quickly and easily constitute such dipoles. When
the CPU receives objects stor