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Abstract In welding processes, desired weld quality is
highly dependent on the selection of optimal process con-
ditions. In this work, the influence of input parameters of
friction stir welding process is studied using Taguchi method
and full factorial design of experiment. The experimental
data set is used to develop multilayer feed-forward artifi-
cial neural network (ANN) models using back-propagation
training algorithm. These models are used to predict weld
qualities as a function of eight process parameters. The
weld qualities of the welded joint, such as ultimate tensile
strength, yield stress, percentage elongation, bending angle
and hardness, are considered. In order to offline optimize
these quality characteristics, four evolutionary algorithms,
namely binary-coded genetic algorithm, real-coded genetic
algorithm, differential evolution and particle swarm opti-
mization, are coupled with the developed ANN models.
The optimized quality characteristics obtained from these
proposed techniques are compared and verified with experi-
mental results.
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1 Introduction

Friction stir welding (FSW) is a solid-state joining process
which was introduced in 1991 by Thomas et al. (1991). It is
usually used for welding soft metals like aluminum, copper.
The advantage of FSW process is that the welding is per-
formedbelow themelting temperature,whichdoes not lead to
crack formation, solute redistribution and porosity, right after
joining (Neto and Neto 2013; Mishra and Mahoney 2007).
The FSW process uses a cylindrical tool with a profiled pin
at the end. The tool is rotated and moved with a constant
speed along the joint line. This movement causes plastic
deformation and material mixing of the workpiece along the
weld line which may lead to excellent welded joint (Neto
and Neto 2013). The weld quality is usually evaluated by
many characteristics like tensile strength, yield stress, elon-
gation, hardness. These quality characteristics are controlled
by a number of process parameters like plunging depth, tool
rotation speed, tool geometry, shoulder diameter, pin diame-
ter, tool pin length, dwell time. To obtain high weld quality,
it is important to select optimal process parameter setting.
This selection is not easy, because the number of parame-
ters involved is large and the relationships between them and
the output parameters are nonlinear and complex. Hard com-
puting techniques require precise analytical model and lot
of computation time. This makes it difficult to implement,
especially when it is coupled with optimization techniques.
Therefore, it is more preferable to implement soft computing
techniques for the optimization of FSW process.

Recent studies attempted to model FSW process using
artificial neural networks (ANNs). Boldsaikhan et al. (2011)
studied wormhole defect in FSW process. They used back-
propagation algorithm to train ANN model for classification
of the feedback forces frequency patterns as indicators for
wormhole defect. Lakshminarayanan and Balasubramanian
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(2009) focused on estimation of ultimate tensile strength in
FSW of Al alloy. They found that ANN modeling was more
accurate compared to response surface methodology. Buffa
et al. (2012) combined ANN model with a finite element
model (FEM) for FSWof Ti–6Al–4V alloy. Themodel could
predict the microhardness as well as the microstructure of
the welded joints. Okuyucu et al. (2007) used ANN model
to predict the mechanical properties of FSWed joints by con-
sidering only two input parameters (welding speed and tool
rotation speed). Fratini et al. (2009) developed ANN model
coupledwith FEMmodel for estimation of average grain size
of FSWed joints. Ghetiyaa and Patel (2014) developed ANN
model for the prediction of tensile strength of Al alloy in
FSW process. From the literature, it is found that researchers
have successfully used ANN models to correlate the input
and output relationship in FSW process.

Evolutionary algorithms simulate Darwin’s principle of
evolution to construct powerful search andoptimization algo-
rithms. Genetic algorithms (GAs) have been used as an
optimization tool in various problem domains (Deb 2001).
Kennedy andEberhart (1995) proposed an optimization algo-
rithm to simulate the behavior of flocks with particle swarm
optimization (PSO). Storn and Price (1997) proposed differ-
ential evolution (DE) algorithm which is a fast and efficient
population-based optimization algorithm.

Few attempts were made to apply evolutionary algo-
rithms for optimization of the FSW process. Shojaeefard
et al. (2013) utilized back-propagation training algorithm to
develop ANN model for FSW process and multi-objective
particle swarm optimization to optimize the mechanical
properties. For the optimization problem, they considered
only two inputs, namely rotational speed and welding speed,
and two weld qualities, namely tensile strength and hardness
of the welded joint. Tutum andHattel (2010) were concerned
about multi-objective optimization of residual stresses and
production efficiency in FSW process. They developed ther-
momechanicalmodel and appliedNSGA-II for optimization.
Shojaeefard et al. (2014) developed ANN model for FSW of
AA5083 Al alloy by using back-propagation training algo-
rithm. They used NSGA-II for optimization of two input
parameters with three outputs. From the literature, it can be
seen that number of inputs and outputs parameters considered
for optimization of FSW process are less. But for effective
application of FSW, it is important to consider all significant

input and output parameters in the optimization process to
ensure best weld quality.

In this work back-propagation training algorithm is uti-
lized to develop ANN models to correlate the input–output
parameters of FSW process. Four optimization techniques,
namely binary-coded GA, real-coded GA, DE and PSO, are
applied on the ANN models to obtain the optimum input
parameters’ settings offline. The results obtained from those
algorithms are compared to determine the best optimization
algorithm. Two cases are considered; the first one is maxi-
mization of mechanical properties of the welded joint, and
the other is the optimization of desired weld quality para-
meters. Experiments are conducted to confirm the predicted
results.

2 Experimental details

2.1 Experimental approach and results

In this work commercially available 6-mm-thick aluminum
plates are used for experimentation purpose. The plates are
cut and machined to rectangular pieces of 200 × 100 mm
for joining purpose. But joints are prepared by FSW process.
The chemical composition and mechanical properties of the
plates are given in Table 1. The selection of appropriate tool
material for carrying out FSW is an important issue. The
FSW tool should withstand the vertical pressure and torque
applied to it and should not wear out easily. Stainless steel
(SS-310) is used as tool material because of its excellent
properties at high temperature. A vertical milling machine is
used to carry out the welding process with the specifications
of spindle speed: 12 steps (50–1500 rpm), table feed: 8 steps
(22–555 mm/min), main motor power: 5.5 kW, table motor
power: 0.75 kW.

Initially, a list of all possible process parameters is
prepared. Depending on the machine flexibility and setup
limitations, the number is narrowed down to eight. The para-
meters considered in the present work are plunge depth (PD),
tool rotational speed (RPM),welding speed (WS), tool geom-
etry (TG), shoulder diameter (SD), pin diameter (PnD), tool
pin length (TPL) and dwell time (DT). Four different tool
geometries are used: straight cylindrical (SC), tapered cylin-
drical (TC), square (SQ) and threaded (THRD).

Table 1 Chemical composition
and mechanical properties of the
base material

Chemical composition (wt%) Cu Si Fe Al

0.05 0.2 0.1 Balance

Mechanical properties Ultimate tensile
strength (MPa)

Yield strength
(MPa)

% Elongation

153.05 84.93 33.04
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For the present investigation 59 experiments have been
conducted, as shown in “Appendix, Table 11.”Out of these 59
experiments the first 32 experiments are based on Taguchi’s
L32 orthogonal array (OA) design of experiment. In L32 OA
design, plunge depth is varied in two levels and other seven
parameters are varied in four levels. Initial trial runs show
that the working range of PD is less due to which it has been
varied in two levels. The next 27 experimental data sets are
based on full factorial experimental design in which three
process parameters (TG, RPM and PnD) are varied in three
levels.

The plates to be joined are clamped in such a way that
the plate movement is completely restricted under vertical as
well as translational forces exerted by the tool. The tool rota-
tion speed and traverse speed of the bed are set before each
run of welding. Forty-one numbers of tools having different
shapes and dimensions are fabricated in house to conduct the
experiments. The welded plates are cut as per the diagram
shown in Fig. 1a. Then the tensile specimens are prepared as
per the American Society for Testing of Materials (ASTM
E8) guidelines. The tensile, bending and hardness specimens
are shown in Fig. 1b–d, respectively. Tensile tests are car-
ried out in a digitally controlled closed loop servo hydraulic
dynamic testing machine (Make: INSTRON, Model: 8801).
The measured weld quality values of each welding condi-
tion corresponding to the parameter settings mentioned in
Table 11 are given in “Appendix, Table 12.” Two types of
bend tests are carried out, namely root and face bend test to
achieve accurate bending angle. Hardness values are mea-
sured at three different layers across the material thickness
direction at 1, 2.5 and 4 mm distance from the top surface
of the weld, respectively. Total 15 points are considered for
nugget zone hardness, and their average value is considered
for analysis. The various weld quality characteristics consid-
ered for optimization are ultimate tensile strength (UTS in
MPa), yield strength (YS in MPa), ductility (% Elng.), bend-
ing angle (BA in degree) and nugget zone hardness (HRD in
HV).

2.2 Contribution of process parameters on the weld
qualities

Analysis of variance (ANOVA) is applied to identify the
effects of individual input parameter on the weld qualities.
The contribution of each process parameter on the different
weld quality parameters is calculated and is shown in Table 2.
From the ANOVA results (Table 2), it is found that measured
weld qualities are mostly influenced by RPM, TG and PnD.
The most contributing parameter is RPM for UTS having the
contribution of 29.67%. This is because RPM is responsi-
ble of overall material mixing in both the surface level and
along the thickness direction of theworkpiece. The nextmost

Fig. 1 Schematic diagrams of a position of extraction of tensile, bend-
ing and hardness specimens, b tensile, c bending, d microhardness
specimen dimensions (all the above-mentioned dimensions are in mm)

Table 2 Percentage contribution of each input parameter on the differ-
ent weld qualities

Percentage contribution (%)

UTS YS % Elong. BA HRD

Input parameters

PD 0.09 0.09 0.28 4.53 6.13

RPM 29.67 26.34 16.33 15.89 6.82

WS 1.29 3.28 2.23 5.04 9.88

TG 21.85 19.26 20.89 12.18 23.58

SD 1.75 6.34 3.56 11.04 4.78

PnD 21.07 16.63 38.65 28.63 3.64

TPL 2.40 5.10 2.88 2.86 11.09

DT 6.15 7.88 1.20 1.26 10.08

influencing parameters are TG and PnD having 21.85 and
21.07% contributions, respectively. These two parameters
are responsible for thematerial mixing along the thickness of
the workpiece. Similarly for YS the contribution of the above
three parameters are 26.34, 19.26 and 16.63%, respectively.
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For bending test, all the good joints are bent up to 140◦
without any visible defect (or crack formation). The PnD
is found to be the most important factor for bending angle
as well as % elongation having contribution of 28.63 and
38.65%, respectively. RPM and TG are found to be the next
influencing factors. It is also found that RPM, TG and PnD
parameters have the most significant effect on the considered
weld qualities, whereas other considered parameters do not
have significant effect on the weld qualities.

3 Modeling of weld quality characteristics using
ANN

ANN approach of modeling can be performed using exper-
imental data without making any simplifying assumptions.
A detailed description of the operating principles of ANN
can be referred to the relevant technical book (Haykin 2003).
A schematic representation of a fully connected multilayer
neural network (MLNN) architecture is shown in Fig. 2.
The network consists of three layers, namely input layer
containing different input neurons/parameters, hidden layer
containinghiddenneurons andoutput layer containingoutput
neuron(s)/parameter(s). The information is received by the
input layer from an external source, which is then multiplied
by the interconnection weights between it and the adjacent
hidden layer. The products are summed up and thenmodified
by an activation function. In this case log-sigmoid function
is chosen as the activation function for both the layers. These
modified values become the outputs from the hidden layer
and input signals for the next layer and finally reach to the

output layer. Then, the procedure is terminated at the external
receptor node(s).

In the present work, a C code for a multi-neurons, single
hidden layer ANNmodel is developed for mapping the FSW
process parameters to theweld quality parameters. Thedevel-
oped model is trained in a supervised manner using batch
mode of training with error back-propagation algorithm. The
model is trained on randomly selected data set of 40 input–
output data pairs. Initial weight values are chosen randomly
between ±0.9, and the bias value at the input layer is taken
as zero and those for hidden and output layers as one. All the
input and output variables are normalized between 0.1 and
0.9. The training objective is the mean square error (MSE)
minimization by updating the network parameters through
the gradient descent method.

MSE(n) = 1

2PNO

P∑

p=1

NO∑

k=1

(
Op

Ok (n) − T p
k

)2
(1)

where MSE(n) is the MSE at the nth iteration, P is the total
number of training patterns, NO is the number of neurons in
the output layer,Op

Ok(n) is the output of the kth output neuron
for the pth pattern at thenth iteration and T p

k is the desired kth
output for the pth pattern. Theperformanceof neural network
depends on number of hidden neurons (NHN), learning rate
(η) andmomentumcoefficient (α). Therefore, several combi-
nations should be tried out to choose an optimal combination.
To develop optimal ANNmodels for UTS, YS,%Elong., BA
and HRD, the NHN, η and α values are varied within a range
of 5–30 and 0.05–0.95, respectively. This process is carried

Fig. 2 Architecture of
multilayer neural network (L
and M are number of input and
hidden neurons, respectively)
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out separately for each output. After training the developed
model, the remaining nineteen data sets are used to test the
network performance. The ANN predicted values and per-
centage errors in prediction are shown in Table 3. From the
predicted values, it is found that the average errors in pre-
diction of joint properties are within 10% deviation. So the
developed model can be used effectively for prediction of
weld quality in FSW process.

4 Optimization procedures

4.1 Genetic algorithms

GAs are search and optimization procedures that are moti-
vated by the principles of natural evolution. In binary GA,
the input parameters of the optimization problem are repre-
sented by binary strings (Deb 2001). In other words, initially
a population of random strings of bits is created. To make
sure that the population satisfies the problem bounds, Eq. (2)
is applied

xi = xmin
i + xmax

i − xmin
i

2li − 1
DV (si ) (2)

where li the string length is used to code the i th parameter and
DV(si ) is the decoded value of the string si . li can be obtained
from the following relation with desired accuracy (ε):

li = log2

(
xmax
i − xmin

i + 1

ε

)
(3)

In order to decide the survival of each individual, the next
necessary procedure is fitness evaluation, by means of the
objective function and constraints. If there is absence of con-
straints, the fitness is made equal to the objective function
value.

The objective function that is used in this work is created
by using weighted sum method. The weighted sum method
converts the set of objectives into one single objective by the
multiplication of each objective with a specific weight which
depends on the importance of the objective. The objective
function considered in this work is defined as:

fi = 0.25UTSi + 0.25YSi

+ 0.2Elongi + 0.15BAi + 0.15HRDi (4)

where fi is the objective function value or the fitness of the
i th individual in the population; UTSi ,YSi ,Elongi ,BAi and
HRDi are the ultimate tensile strength, yield stress, % elon-
gation, bending angle and hardness values corresponding to
the i th individual in the population. The flowchart of the
neuro-GA model is shown in Fig. 3.

Fig. 3 Flowchart of neuro-GA

GAs are dependent on three main parameters; these are
selection, crossover and mutation (Deb 2001). In this work
tournament selection method is used with size of 5. After
selection of good individuals, crossover and mutation opera-
tions are performed. Crossover gives the GA its exploration
ability, whereas mutation gives exploitation ability. In this
work uniform crossover and global mutation are applied.

In real-coded GA instead of binary strings, real values
are used directly. Similar operators to that in binary-coded
GAcan be used. In this work tournament selection, simulated
binary crossover (SBX) and randommutation are performed.

4.2 Differential evolution

DE is a very simple population-based optimization technique
(Storn and Price 1997). The population is composed of a set
of random vectors. The basic concept of DE relies on select-
ing two random vectors from the population and finding the
difference between them. This difference is then multiplied
with a certain weight and added to a third random vector.
This operation is called mutation. For all the target vectors
xi , the mutant vector vi is calculated by using Eq. (5)

vi = xr1 + F
(
xr2 − xr3

)
(5)

where xr1 , xr2 and xr3 are randomly chosen vectors and F is
a constant factor ∈ [0, 2].

Another way to create the mutant vector is to replace xr1
by xbest which is the best vector obtained so far during the
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Fig. 4 Flowchart of neuro-differential evolution

evolution. And to increase diversity, two difference vectors
are used in this work as it is shown in Eq. (6)

vi = xbest + F
(
xr1 − xr2 + xr3 − xr4

)
(6)

where xr1 , xr2 , xr3 and xr4 are randomly chosen vectors.
To perform crossover, DE generates trial vectors (ui j,G+1)

and mixes them with the original target vectors. This process
is shown in Eq. (7)

ui j,G+1 =
{
ui j,G+1 if r ≤ pc or j = δ

xi j,G if r > pc or j �= δ
(7)

where r is a random number ∈ [01], δ ∈ {1, 2, . . . , n}
randomly chosen index of any vector, G is the generation
number, and pc is the crossover probability.

The last operator in DE is Greedy selection. If the trial
vector ui,G+1 results in better objective function value than
the target vector xi,G , then xi,G+1 is set to ui,G+1, otherwise,
the old vector xi,G is retained. The flowchart of DE is shown
in Fig. 4.

4.3 Particle swarm optimization

PSO is a population-basedoptimization algorithm.Thepopu-
lation is constructed by random solutions named as particles.
These particles move through the problem search space by
utilizing some current optimal particles. In every iteration,
each particle is updated by two other best particles, namely
p-best which is the best performance of the corresponding

Fig. 5 Neuro-PSO flowchart

particle so far and the other is g-best which is the best value
obtained from the whole population. After finding the two
best values, the particle updates its velocity and positions
until reaching the best solution. The position and velocity of
particle are updated using following equations. The flowchart
of PSO is shown in Fig. 5.

par(t+1)
i = par(t)i + v

(t+1)
i (8)

v
(t+1)
i = wiv

(t)
i + c1r1(pbest

(t) − par(t)i )

+c2r2(gbest
(t) − par(t)i ) (9)

where parti is the i th particle at the t th iteration, v
(t)
i is the

velocity of the i th particle at the t th iteration,wi is the inertia
added to the i th particle, c1 & c2 are acceleration coefficients,
and r1 & r2 are random numbers ∈ [0 1].

5 Results and discussion

5.1 Determination of optimal input parameters for
maximization of weld qualities

Initial population of solutions is created randomly and nor-
malized between [0.1 0.9] and fed to the pretrained ANN
models. The response characteristics are computed inside
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Table 4 Bounds and number of
bits used in binary-coded GA

Parameter Lower bound Upper bound String length

Plunging depth (mm) 0.09 0.15 11

Tool rotation speed (rpm) 600 1500 5

Welding speed (mm/s) 63 200 18

Tool geometry 1 4 2

Shoulder diameter (mm) 20 35 14

Pin diameter (mm) 5 8 12

Tool pin length (mm) 5.2 5.8 11

Dwell time (s) 10 25 14

Table 5 Parameters of binary-coded GA computations

Operator

Population size 50–500 in steps of 50

Selection process Tournament selection

Crossover Uniform crossover with
probability between 0.1
and 0.95 in a step of 0.1

Mutation Global mutation with
probability between 0 and
0.95 in a step of 0.05

the ANN models, denormalized and fed to the four evolu-
tionary algorithms mentioned in Sect. 4. The objective of
these optimization algorithms is to find out the optimal input
parameter settings for higher weld quality characteristics and
to compare the performance of each of them.

In binary GA, 2 bits are chosen to represent four tool
geometries (SC, TC, SQ and THRD) and 5-bit string for
the tool rotation speed. The number of bits in each string
of the input parameters with accuracy ε = 0.001 and the
bounds of the input parameters are shown in Table 4. The
parameters of binary-coded GA computations are shown in
Table 5.

In GA, the performance of the algorithm is influenced by
the population size, crossover and mutation probability. A
large population size allows better exploration of the search
space and reduces the chances of sticking in local optima.
Large crossover and small mutation rates are better to main-
tain good convergence of the algorithm. The variations of
the maximum objective function values with population size,
crossover and mutation rates are shown in Fig. 6a–c. From
the figures it is obvious that population size more than 200,
crossover rate above 0.5 and mutation rate between 0.1 and
0.25 have the best objective function values. The convergence
of the objective function value to the optimal solution with
200 population size, 0.9 crossover rate and 0.2 mutation rate
is shown in Fig. 6d.

Similar analysis is done in the case of real-coded GA.
The parameters of real-coded GA computations are shown in

Table 6. The variations of the maximum objective function
values with population sizes, crossover rates and mutation
probabilities are shown in Fig. 7a–c. It can be seen that pop-
ulation size with 300 individuals and more, crossover rates
higher than 0.8 and mutation rates between 0.15 and 0.3 are
giving the best objective function values. The convergence of
the objective function value to the optimal solution with 400
population size, 0.95 crossover rate and 0.2 mutation rate is
shown in Fig. 7d.

In PSO, the performance of the algorithm is influenced by
the population size, inertia component w and acceleration
coefficients c1 and c2. A population size with more than
150 particles, inertia component less than 1.5, acceleration
coefficient c1 more than 1 and c2 between 0.5 and 3.5 are
found to give the best objective function values as it is shown
in Fig. 8a–c. By running the algorithm with w equals to 0.9,
2 for c1 and c2, 150 population size and 200 iterations, the
convergence of the objective function value to the optimal
solution is shown in Fig. 8e.

In order to check the performance of DE algorithm, pop-
ulation size, F factor and crossover rate are varied. Form
Fig. 9a–c, it can be seen that population size more than 150,
F between 0.5 and 1.7, crossover rate more than 0.5 give
the best objective function values. The convergence of DE
algorithm with crossover rate of 0.5, F factor of 1.5 and
population size of 150 is shown in Fig. 9d.

The comparative results of all the techniques used in this
study are shown in Table 7. From the tabulated result it is
found that real-codedGA,PSOandDEalgorithmsgive better
weld characteristics than binary-coded GA. Moreover, PSO
gives the near optimal solution with a relatively low popula-
tion size and iteration number.Approximately sameoptimum
parameter settings are obtained from real-coded GA, DE and
PSO. It is clear from Table 7 that low values of PD,WS, PnD
and DT with large values of rotation speed, SD, TPL and
THRD tool give the best weld quality. The reason can be
explained by the excellent material mixing along the surface
and thickness level of the weld joint and also the suitable heat
characteristics which may produce high-quality joints after
cooling. One confirmation experiment is conducted to con-
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Fig. 6 Variation of maximum
objective function value with: a
population size, b crossover rate,
c mutation rate in binary-coded
GA, d the convergence of
binary-coded GA algorithm

Table 6 Parameters of
real-coded GA computations

Operator

Population size 50–1000 in steps of 50

Selection process Tournament selection

Crossover SBX crossover with probability between 0.1 and 0.95 in a step of 0.1

Mutation Random mutation with probability between 0 and 0.95 in a step of 0.05

Fig. 7 Variation of maximum
objective function value with: a
population size, b crossover rate,
c mutation rate in real-coded
GA, d the convergence of
real-coded GA algorithm
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Fig. 8 Variation of maximum objective function value with: a population size, b inertia component, c coefficient c1 and d coefficient c2 using
PSO, e the convergence PSO algorithm

Fig. 9 Variation of maximum
objective function value with: a
population size, b factor F and c
crossover rate in DE, d the
convergence of DE algorithm

firm the best model predicted outputs. The optimum process
parameters settings are rounded to near possible parameters
in the FSW machine. The measured weld quality values are
145.38 MPa, 99.25 MPa, 19.98, 140◦ and 64.1 HV for UTS,

YS, % Elong., BA and HRD, respectively. Mean absolute
percentage error is 9.85 %. Even though the error is rela-
tively high, the experiment has given good confirmation of
the model predicted values.
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Table 7 Results obtained from
maximization of weld quality
parameters

Parameter Binary-coded GA Real-coded GA DE PSO

Optimum input parameters

Plunging depth 0.09 0.09 0.09 0.09

RPM 1035 1500 1500 1500

Welding speed 89.20 65.91 65.97 65.91

Toll geometry SQR THRD THRD THRD

Shoulder diameter 20.36 35 35 35

Pin diameter 7.53 5 5 5

Toll pin length 5.78 5.8 5.8 5.8

Dwell time 17 12 12 12

Model predicted outputs

UTS 151.31 158.84 158.84 158.85

Yield stress 105.10 110.37 110.37 110.35

Elongation 15.34 24.68 24.68 24.69

Bending angle 152.14 153.70 153.70 153.70

Hardness 59.70 62.75 62.75 62.74

Objective function value 98.9458 104.703 104.703 104.703

Fig. 10 Objective function
value versus the iteration
number for a binary-coded GA
b real-coded GA, c DE and d
PSO

Table 8 Desired weld quality parameters

Desired quality parameters

Parameter UTS (MPa) YS (MPa) Elong. (%) BA (◦) HRD

Target values 130 100 20 140 50

5.2 Determination of optimum input parameters setting
for desired weld quality parameters

In the previous case (discussed in the Sect. 5.1) optimum
process parameters settings have been determined for maxi-
mum weld quality characteristics. Other than maximization
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Table 9 Optimized parameter
settings with model predicted
weld quality for the target value

Parameter Binary-coded GA Real-coded GA DE PSO

Optimum input parameters

Plunging depth 0.10 0.10 0.10 0.10

RPM 832 601 600 600

Welding speed 82 63 63 63

Toll geometry THRD SQR SQR SQR

Shoulder diameter 25.9 20.4 20.1 20.0

Pin diameter 5.14 7.28 7.01 7.03

Toll pin length 5.51 5.80 5.80 5.80

Dwell time 14 23 23 23

Model predicted outputs

UTS 132.82 133.95 129.90 130.46

Yield stress 94.67 98.41 100.58 100.55

Elongation 18.26 19.73 19.86 19.99

Bending angle 130 140 139 139

Hardness 57 51 51 51

Objective function value 0.006 2.76E−04 1.35E−04 1.22E−04

of weld quality parameters sometime desired weld quality
values are also required. Therefore, for finding the optimum
process parameters setting for desired (target) weld quality
characteristics, following objective function is considered.

O f (i) = w1

(
UTSt − UTS(i)

UTSt

)2

+ w2

(
YSt − YS(i)

YSt

)2

+w3

(
%Elongt − %Elong(i)

%Elongt

)2

+w4

(
BAt − BA(i)

BAt

)2

+w5

(
HRDt − HRD(i)

HRDt

)2

10 (10)

where O f (i) is the value of the objective function of the
i th individual in the population; UTSt is the target (desired)
value for the joint tensile strength; UTS(i) is the value of
tensile strength of the i th individual; YSt is the target value
for the yield stress; YS(i) is the value of yield stress of the
i th individual; %Elongt is the target value for elongation;
%Elong(i) is the % elongation value of the i th individual;
BAt is the target value for the bending angle; BA(i) is the
bending angle value of the i th individual; HRDt is the target
value for the nugget zone hardness,HRD(i) is the experimen-
tal value for the nugget zone hardness of the i th individual
in the population; w1, w2, w3, w4 and w5 are weights that
give different status or importance to each response. The
responses evaluated in this work do not have equal impor-
tance. The most important response is the UTS, followed by
the yield stress, elongation, bending angle and hardness. The
weights are 0.25 for UTS and yield stress, 0.2 for elongation
and 0.15 for bending angle and nugget zone hardness.

In this case, one arbitrary target value is considered. These
desiredweld quality parameters are shown inTable 8. Similar
procedure to that performed for the first objective function
(i.e., maximization of quality parameters) is performed to
obtain best parameters for each proposed algorithm. The
objective function (Eq. 10) value versus the iteration number
for the four optimization techniques is shown in Fig. 10a–d.
The optimum input parameter settings and model predicted
outputs corresponding to the target value are shown in
Table 9. It is clear that real GA, DE and PSO are able to
find approximately the same near optimum weld character-
istics which are better than binary GA. Nevertheless, PSO
has the maximum convergence speed among the other algo-
rithms which makes it the most preferable algorithm.

5.3 Confirmation results

To check the accuracy of the modeling and optimization pro-
cedure, two confirmation experiments are conducted. The
input parameters are taken from Table 9 and rounded to
the near possible parameters in the FSW machine. The first
experiment is performed for checking the optimal solution
of binary-coded GA for the target value. The second one is
for checking the value obtained from real-coded GA, DE and
PSO. Experimental weld characteristics with corresponding
model predicted outputs and percentage errors are shown in
Table 9. Experimental results for the target value in Table 10
show that the errors in both the experiments are less than
10% which is acceptable. The model predicted weld quality
parameters are also well close to the corresponding experi-
mental results. Moreover, the second experiment gives better
results (6.6% error) which leads to the conclusion that results
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Table 10 Comparison between experimental and model predicted weld characteristics

Cases Optimization techniques UTS YS % Elong. BA (◦) HRD Mean
absolute
errors (%)

Target value Binary GA Desirable values 130 100 20 140 50 8.5

Experimental values 130.38 93.02 17.16 140 60.5

Percentage error (%) +0.29 −6.98 −14.2 0 +21

RGA, DE and PSO Desirable values 130 100 20 140 50 6.6

Experimental values 121.71 92.38 16.5 140 50.7

Percentage error (%) −6.38 −7.62 −17.5 0 +1.4

obtained from real-coded GA, PSO and DE are more accu-
rate.

From the aforementioned case studies, it can be recom-
mended that PSO is more suitable for optimization of FSW
process. This is mainly because it has showed the ability to
find the optimal solutions for both the objective functions
with less number of iterations (Figs. 9, 10) comparing to
other three algorithms.

6 Conclusions

In the present work, the contribution of each FSW process
parameter on weld qualities has been studied. ANOVA has
showed that the most significant parameters on UTS, YS,
ductility and BA are RPM, TG and PnD, whereas TG, TPL
and DT are the most significant on HRD.Modeling and opti-
mization of FSW process using ANN and four evolutionary
algorithms have been also investigated. The search for the
optimum is based on two cases. The first case is the maxi-
mization of an objective function, which takes into account
the joint strength, yield stress, percentage elongation, bend-
ing angle and nugget zone hardness. The second case is

the determination of optimum input parameter settings for
desired weld quality values. For both the cases, it is found
that the neuro-EA approach can be a powerful tool in weld-
ing process optimization with a relatively small experimental
data set. PSO and DE are more suitable algorithms to apply
because they are able to find the optimumvalues of the objec-
tive functions. Moreover, since PSO has given the optimum
solution with less number of iterations, we can say that PSO
is relatively the best optimization method for FSW process.

Acknowledgements The authors gratefully acknowledge the financial
support provided by SERB (Science & Engineering Research Board),
India (Grant No. SERB/F/2767/2012-13), to carry out this research
work.

Compliance with ethical standards

Conflict of interest The authors declare that there is no conflict of
interests regarding the publication of this paper.

Appendix

See Tables 11 and 12.

Table 11 Design matrix of
experimental run

Exp. no. PD RPM WS TG SD PnD TPL DT

1 0.09 600 63 1 20 5 5.2 10

2 0.09 600 98 2 25 6 5.4 15

3 0.09 600 132 4 30 7 5.6 20

4 0.09 600 200 3 35 8 5.8 25

5 0.09 815 63 1 25 6 5.6 20

6 0.09 815 98 2 20 5 5.8 25

7 0.09 815 132 4 35 8 5.2 10

8 0.09 815 200 3 30 7 5.4 15

9 0.09 1100 63 2 30 8 5.2 15

10 0.09 1100 98 1 35 7 5.4 10

11 0.09 1100 132 3 20 6 5.6 25

12 0.09 1100 200 4 25 5 5.8 20

13 0.09 1500 63 2 35 7 5.6 25
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Table 11 continued
Exp. no. PD RPM WS TG SD PnD TPL DT

14 0.09 1500 98 1 30 8 5.8 20

15 0.09 1500 132 3 25 5 5.2 15

16 0.09 1500 200 4 20 6 5.4 10

17 0.15 600 63 3 20 8 5.4 20

18 0.15 600 98 4 25 7 5.2 25

19 0.15 600 132 2 30 6 5.8 10

20 0.15 600 200 1 35 5 5.6 15

21 0.15 815 63 3 25 7 5.8 10

22 0.15 815 98 4 20 8 5.6 15

23 0.15 815 132 2 35 5 5.4 20

24 0.15 815 200 1 30 6 5.2 25

25 0.15 1100 63 4 30 5 5.4 25

26 0.15 1100 98 3 35 6 5.2 20

27 0.15 1100 132 1 20 7 5.8 15

28 0.15 1100 200 2 25 8 5.6 10

29 0.15 1500 63 4 35 6 5.8 15

30 0.15 1500 98 3 30 5 5.6 10

31 0.15 1500 132 1 25 8 5.4 25

32 0.15 1500 200 2 20 7 5.2 20

33 0.09 600 98 1 25 5 5.7 15

34 0.09 1100 98 1 25 5 5.7 15

35 0.09 1100 98 3 25 6 5.7 15

36 0.09 600 98 3 25 5 5.7 15

37 0.09 1100 98 1 25 6 5.7 15

38 0.09 1100 98 1 25 7 5.7 15

39 0.09 600 98 2 25 6 5.7 15

40 0.09 815 98 1 25 7 5.7 15

41 0.09 815 98 2 25 7 5.7 15

42 0.09 600 98 1 25 6 5.7 15

43 0.09 815 98 2 25 5 5.7 15

44 0.09 1100 98 2 25 5 5.7 15

45 0.09 600 98 1 25 7 5.7 15

46 0.09 815 98 2 25 6 5.7 15

47 0.09 815 98 1 25 5 5.7 15

48 0.09 600 98 2 25 7 5.7 15

49 0.09 815 98 1 25 6 5.7 15

50 0.09 1100 98 2 25 7 5.7 15

51 0.09 600 98 2 25 5 5.7 15

52 0.09 815 98 3 25 5 5.7 15

53 0.09 1100 98 3 25 5 5.7 15

54 0.09 600 98 3 25 6 5.7 15

55 0.09 815 98 3 25 6 5.7 15

56 0.09 1100 98 2 25 6 5.7 15

57 0.09 600 98 3 25 7 5.7 15

58 0.09 815 98 3 25 7 5.7 15

59 0.09 1100 98 3 25 7 5.7 15
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Table 12 Experimental results
from different welding
conditions corresponding to the
parameter settings mentioned in
Table 11

Exp. no. UTS YS % Elong. BA HRD Exp. no. UTS YS % Elong. BA HRD

1 112.08 70.52 9.26 55 51.01 31 2.48 1.69 0.70 5 47.26

2 99.75 58.69 8.72 45 47.77 32 25.50 66.97 1.30 5 46.65

3 116.90 65.65 8.86 60 52.11 33 113.88 59.66 10.66 140 57.80

4 120.28 62.57 21.68 140 47.06 34 121.47 69.51 13.24 140 55.29

5 120.54 62.62 14.66 140 46.23 35 142.23 105.84 16.36 140 62.76

6 114.11 74.58 5.82 140 50.39 36 130.68 80.36 14.92 140 58.55

7 117.19 69.81 7.54 66 51.78 37 129.94 77.85 15.46 140 50.94

8 133.20 63.24 14.60 140 53.82 38 116.66 63.19 14.52 140 53.32

9 94.38 58.61 3.96 45 49.17 39 128.30 79.91 14.94 140 56.13

10 63.28 53.41 3.00 50 47.75 40 125.51 73.05 15.08 140 53.27

11 136.90 72.35 14.8 140 51.24 41 133.89 86.82 15.18 140 49.93

12 112.74 64.25 9.82 10 46.55 42 124.28 70.59 12.71 140 54.57

13 16.01 14.59 0.86 5 49.79 43 129.62 78.97 13.96 140 53.27

14 1.93 1.76 0.76 5 47.26 44 133.05 85.24 15.40 140 50.93

15 138.51 64.47 23.78 140 55.91 45 127.48 75.07 14.01 140 57.31

16 91.72 61.29 4.14 21 46.33 46 132.04 83.37 15.58 140 50.32

17 102.86 69.54 5.60 15 54.29 47 118.50 66.57 12.05 140 56.37

18 94.34 62.74 5.68 25 50.24 48 131.60 84.17 14.34 140 57.93

19 131.00 69.52 17.50 140 52.33 49 125.78 74.71 13.88 140 58.40

20 50.52 49.85 4.34 15 52.23 50 128.52 78.80 14.46 140 55.38

21 64.26 51.72 4.68 10 51.61 51 127.67 75.73 10.26 140 56.11

22 85.09 70.43 3.34 15 52.84 52 133.60 85.65 15.20 140 57.47

23 122.07 57.25 19.28 140 48.61 53 139.73 89.25 16.15 140 58.10

24 117.29 60.76 17.04 140 51.20 54 131.31 84.10 15.06 140 56.09

25 123.68 63.14 10.00 40 48.56 55 135.91 90.74 15.86 140 57.61

26 132.64 63.24 18.26 140 54.29 56 136.22 87.13 16.15 140 53.56

27 91.78 63.54 4.00 10 54.11 57 132.21 87.59 14.62 140 57.64

28 61.52 54.70 1.94 10 51.65 58 135.10 89.25 15.50 140 59.17

29 124.12 63.69 17.46 53 46.83 59 130.53 93.41 15.24 140 54.07

30 126.77 64.09 19.36 140 53.19
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