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Abstract Hyperspectral remote sensing has a strong abil-
ity in information expression, so it provides better support
for classification. The methods proposed to deal the hyper-
spectral data classification problems were build one by one.
However, most of them committed to spectral feature extrac-
tion that means wasting some valuable information and poor
classification results. Thus, we should pay more attention
to multi-features. And on the other hand, due to extreme
requirements for classification accuracy, we should hierar-
chically explore more deep features. The first thought is
machine learning, but the traditional machine learning clas-
sifiers, like the support vector machine, are not friendly to
larger inputs and features. This paper introduces a hybrid
of principle component analysis (PCA), guided filtering,
deep learning architecture into hyperspectral data classifica-
tion. In detail, as a mature dimension reduction architecture,
PCA is capable of reducing the redundancy of hyperspectral
information. In addition, guided filtering provides a passage
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to spatial-dominated information concisely and effectively.
According to the stacked autoencoders which is a efficient
deep learning architecture, deep-level multi-features are not
in mystery. Two public data set PaviaU and Salinas are used
to test the proposed algorithm. Experimental results demon-
strate that the proposed spectral–spatial hyperspectral image
classification method can show competitive performance.
Multi-feature learning based on deep learning exhibits a great
potential on the classification of hyperspectral images.When
the number of samples is 30% and the iteration number is
over 1000, the accuracy rates for both of the two data set are
over 99%.

Keywords Multi-feature learning · Hyperspectral image
classification · Deep learning · Remote sensing

1 Introduction

With the development of hyperspectral sensors and commer-
cial systems, the hyperspectral image data have became the
very important data source of remote sensing. Hyperspec-
tral image usually has more than 100 spectral bands which
represent the reflection of physical characteristics of differ-
ent materials, which we called spectral information.With the
development of science and technology, hyperspectral data
mining has become a newmultilateral area about observation
and analysis of the Earth’s surface (Richards and Jia 2013),
including ecological environment, agriculture, mineralogy,
physics, chemical imaging, astronomy and other aspects.

Pixel-wise classification was applied to many classifi-
cation framework, and each pixel is a high-dimensional
vector which contains a lot of spectral information. However,
each coin has two sides; high dimensional also accompanies
Hughes phenomenon (Ko et al. 2005). Feature extraction
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reduces the dimension effectively, such as principal com-
ponent analysis (PCA) and independent component analysis
(ICA). PCA (Pearson 1901) retains most of the principal
components (PCs), and ICA focuses on the independence of
components. They retain the vast majority of spectral infor-
mation and greatly reduce the dimension. So far, we have not
considered the spatial context between pixel and pixel. Incor-
porating the spatial contextual information, we can research
the strong relationship of pixels in a smallwindow.Chen et al.
(2014) proposed a “flatten neighbor region”model. It used all
pixels inwindowas the spatial informationof the center pixel.
Useful but inefficient, due to the cost of “flatten” is a disaster
when we choose a slightly larger window, despite the PCA
out there. Recently, edge-preserving filtering (Kang et al.
2014) (EPF) has gained a lot of attention, since it smoothed
the image under the premise of preserving edge information.
This method can be used on each hyperspectral dimension
and provide competitive performance on spatial information
extraction. However, the filtering focuses on the results of
SVM, not real raw spectral data. That makes EPF depending
on the complexity of the image, and avoids the spatial infor-
mation of pixels. Spatial information has been the impor-
tant position in the classification of hyperspectral image.
Tarabalka et al. (2010), Li et al. (2013), spatial–spectral
representation is applied to hyperspectral data classifica-
tion effectively. Multi-feature classification method provides
significant improvement. Joint spectral and spatial informa-
tion bring higher dimensions and complexity that proved the
importance of reducing the dimension of data once again.

Traditional machine learning classifiers such as linear
SVM (Melgani and Bruzzone 2004) (a single-layer classi-
fier) and neural network (Mavrovouniotis and Yang 2015),
Azar and Hassanien (2015) with very few layers are dif-
ficult to express complex features since they do not have
sufficient hidden layers. Even for its improvement functions
(Baassou et al. 2013), the overall structures are significantly
limited. Furthermore, under finite samples and computing
units, representation of the complex function is limited. The
generalization ability of the complex classification problem
is restricted. Thus, a deep architecture (Li et al. 2015) based
on artificial neural networks has been proposed in recent
years, with combinations of bottom level features. Deep
learning Chen et al. (2014) is a new field in machine learning
research. The motivation is to build and simulate the human
brain to analyze and study the neural network, which imitates
the human brain to interpret the data.

In this paper, our work focuses on applying guided filter-
ing (He et al. 2013) to exploit spatial-dominated information
and integrating spectral and spatial information. Then, we
use multilayer fine-tuning stacked autoencoder(FSAE) to
learn hyperspectral data features. The method is a member
of the deep architecture-based models, combined with unsu-
pervised deep feature learning and supervised feature fine

Table 1 Definition of all variables

Variables Definition

W The weights of SAE

W′ The weights of SAE

bx The bias of SAE

by The bias of SAE

h The hidden layers

x The input vector data of AE

y The reconstructed vector data of AE

ω The neighborhood window for guided filter

r The semi-radius for window ω

g The guidance image for a guided filter

G G = [g1, . . . , gN ] are the guidance images when
extracting spatial features

U U = [u1, . . . , uN ] are output image for a guided filter
when extracting spatial features

� The input data when extracting spatial features.
� = [I1, . . . , Ik , . . . , IK ], where
Ik = {Ik,1, . . . , Ik,n . . . , Ik,N }

a The linear coefficient for guide filter. It is vector if the
input image is vector

c The linear coefficient for guide filter. c is its vector form.

P The hyperspectral data set, and xn ∈ P is a pixel vector

S The number of band of P

s The index of number of band of P

Z It is equal to P, and zs ∈ Z is a band image

ε The regularization parameter for guided filter

zs The sth band of hyperspectral data Z

ds The sth principal component of hyperspectral data Z

I The input image for guided filter

Ii The i th pixel input image I

f (x) The sigmoid function

Table 2 Number of training iterations comparison with the University
of Pavia and the Salinas

Accuracy (%) Number of training iterations

Data sets 10 100 200 300 500 1000

PaviaU 82.52 99.21 99.03 99.57 99.49 99.51

Salinas 81.58 98.51 98.60 99.15 97.47 99.64

tuning. Finally, we establish a novel classification framework
including previously mentioned methods. All the definitions
of variables are listed in Table 1. Experiments show that the
method has a high classification accuracy with much less
computation burden (Tables 2, 3 and 4).

2 Related works

This high-resolution imagery obtained by remote sensors
contains more detailed spectral and spatial information.
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However, its higher resolutions donot directly result in higher
classification accuracies. How to comprehensively explore
and utilize the spectral–spatial information is still an open
problem. For most current spectral–spatial methods, they
usually have to face three major problems: how to extract
spectral features, how to extract spatial features and how to
combine with the multi-features.

About how to extract spectral features, there are the pop-
ular methods such as nonnegative matrix factorization (Wen
et al. 2013), independent component analysis (Falco et al.
2014), rotation forest (Xia et al. 2014). For hyperspectral
image, the redundancy of the spectral feature is usually high.
Therefore, the extraction of spectral feature mainly involves
in dimension reduction and feature selection schemes such
as PCA, ICA, manifold learning (Lunga et al. 2014). In the
current study of remote sensing classification, the spatial
features are receiving more and more attentions. For spa-
tial feature extraction methods, there is co-occurrence matrix
(Pesaresi et al. 2008; Ouma et al. 2008) which is a texture
extraction and representation method and differential mor-
phological proles (Fauvel et al. 2008) which is based on open
or close operator of structuring elements. Actually, most of
the popular spatial domain filter such as guided filter (Kang
et al. 2014), Markov random fields (Sun et al. 2015), nonlo-
cal means (Liu et al. 2012) and wavelet (Quesada-Barriuso
et al. 2014) all can be easily introduced into spectral–spatial
classification of multi-channel remote sensing image.

It is a open problem about how to combinewith spatial and
spectral features in practice, although both of them are avail-
able. Usually, a combination of multiple features may show
better classification performance. How to integrate multiple
features for image classification is usually a feature selec-
tion problem. The most widely used multi-feature fusion
approach is to concatenate multiple features into one vector
and then interpret the vector via a classier (Huang and Zhang
2013). There is also some research that takes spectral and
spatial features as different subspace (Yuan and Tang 2016).
Most studies mentioned above are based on SVM classifier.
Some of themmay not be suitable for a deep architecture. For
the popular deep leaningmethod, a framework that is a hybrid
of principal component analysis, hierarchical learning-based
feature extraction and logistic regression Chen et al. (2015)
is proposed to promote the classification accuracy. It seems
that spectral–spatial classification is very promising when it
is introduced into deep architecture.

3 Sparse autoencoders (SAEs)

Oneof the fundamental difference between deep learning and
the conventional artificial network model is how to construct
its hidden layers. In this paper, SAE (Vincent et al. 2008)

Fig. 1 AE with single layer. Hidden features are learned by input “x”
and output “y”

as one of the popular autoencoders (AEs) is promoted and
applied to spectral–spatial feature-based classification.

Autoencoder Tan and Eswaran (2008) is the extension of
neural networks which is composed of many hierarchical
single neurons. Figure 1 is an example of AE. It has three
levels: the left side is the input layer with visible inputs, the
middle is a hidden layer with appropriate hidden units, and
the right is the output layer with outputs.

We define P = {x1, . . . , xn, . . . , xN } as the hyperspectral
data set, where xn = {xn,1, . . . , xn,S} is the nth pixel with
S bands. To be convenient, we eliminate the index and use
x when explaining SAE. In the training of SAE, first we
“code” the input x ∈ RS and obtain the activation h. Then
“decode” the h and obtain y ∈ RS . These two processes can
be described as

h = f (Wx + bx ) (1)

y = f
(
W′h + by

)
(2)

where W and W′ are weight associated with connection
between the two neighbor layers. bx and by are the bias.
The activation function f in this paper is sigmoid function.

f (x) = 1

1 + e−x
(3)

The purpose is to find the most appropriate W and bx to
reduce the gap between input and output. In the pre-training
stage, an autoencoder takes an input x, then maps it to a
hidden representation h, using Eq. (1). Then the input is
reconstructed using Eq. (2) where y is the reconstruction of
x by h. The cost function is:

L(x, y) = ||y − x||22 + λ||W||22 (4)

The first term is a sum of squares error. The second term
is regularization, and λ is the regularization parameter. The
main differences between SAE and traditional ANN is the
pre-training stage. Based on the basic autoencoder in Bengio
et al. (2007) and KL-divergence regularization, the sparse
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Fig. 2 A model of SAE with four layers: one input layer, two hidden
layers and one output layer

coding was proposed by Vincent et al. (2008). The object
function becomes

L(x, y) = ||x − y||22 + λ||W||22 + βK L(x‖y) (5)

where

K L(x‖y) =
d∑

k=1

[xk log yk + (1 − xk) log(1 − yk)] (6)

β controls the weight of the sparsity penalty term. In the
iteration, the gradient descent is used to update the parameters
W and bx .

As shown in Fig. 2, the SAE is stacked by several AEs.
Considering the concept of greedy layer-wise training, it
means that the front AE’s “activation” of hidden layer is
taken as the next AE’s inputs, so that a set of deeper para-
meters network can be obtained. Figure 2 shows a simple
of SAE architecture. Therefore, the training process of SAE
has two stages: unsupervised pre-training and supervised fine
tuning. In the unsupervised pre-training, each layer is trained
separately, which has input and hidden representation. Once
we complete the pre-training of all layers, the fine-tuning
step should be performed, which is a back-propagating (BP)
(Rumelhart et al. 1986) step using supervised learning.

4 Guided filter

SAE deep network has good feature learning abilities. For
hyperspectral remote sensing image, apart from spectral fea-
tures we can also introduce spatial features into the SAE deep
network classification. Therefore, how to select and organize
the spatial features of a hyperspectral image is the key prob-
lem in utilizing multi-features in deep network. The guided
filter has the characteristic of edge-preserving and focuses
on a local linear model which considers that a point and its
vicinity (in one function) have the linear relationship. Thus,

we assume in a local window with the radius r , then the size
of the window is ω = (2r + 1) × (2r + 1). Based on the
idea of guided filtering (He et al. 2013), the pixel in guid-
ance image gi (the first three principal components are used
in this paper) and the output single band image Ii has linear
relationship in the local window ω. For the location with a
local window ω, based on the linear relationship the output
pixel ui in the ω is

ui = agi + c, ∀i ∈ ω (7)

where a and c is the linear coefficient that transforms gi to
ui . Since there is �u ≈ a � g, it proves the characteristic of
edge-preserving. In order to get parameter a and c within the
window ω, we hope the filtering output is as near as the input
image pixel Ii in the corresponding location. It is to search
the minimum value of following function:

E(a, c) =
∑

i∈ω

((agi + c − Ii )
2 + εa2) (8)

where ε is the regularization parameter. After obtaining the
linear coefficients (a, c), we can get the final ui as

ui = 1

|ω|
∑

i∈ω

(agi + c) (9)

where |ω| means number of elements in ω. Guided filter
is a good scheme for edge reservation. In constructing the
input feature vector for deep network, the guided filter can
strengthen the continuity of the spectral features based on the
spatial texture of the hyperspectral image.

5 Spectral–spatial feature-based classification

Since x in Eq. (1) only contains spectral information, we
construct a new x′ to employ both spectral and spatial infor-
mation. In this paper, the spatial information is extracted by
guided filter. Before using guided filter, we need a multi-
channel guidance image with spatial features and a group of
input image with spectral information. Then the image data
set needs to be decomposed into different components. PCA
is used to decompose the whole image data set. After that,
we only keep a small amount of principle components

[d1, . . . , dS] = PCA(Z) (10)

where Z is equal to P, but it is in its bands form of Z =
{z1, . . . , zs, . . . , zS} which is the total image with all bands.
zs is the vector unfolded by a single band image. S is the
number of bands. The guidance image G is constructed by
the first three principal components
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Fig. 3 Spectral–spatial feature classification framework. The original
data are decomposed by PCA, and then, we obtain the spectral feature
vector, input images for guided filter and guidance images for guided
filter. Based on input images, guidance images and Eq. (8) we obtain

linear regression parameter a and c. The spatial feature maps u are pro-
duced by the guidance image g and regression parameter a and c. At
last, integrate the spatial feature and spectral feature into x′ and take it
as the input of GF-FSAE

G = [d1, d2, d3] (11)

Since G is 3 × N matrix. We can also rewrite it as G =
[g1, . . . , gN ]. To extract spatial information, the first K prin-
cipal components are selected as the input images � for the
guided filter

� = [d1, . . . , dK ], K < S (12)

We can also rewrite � = [I1, . . . , Ik, . . . , IK ], where image
vector Ik = {Ik,1, . . . , Ik,n . . . , Ik,N }. Based on Eq. (8),
using input image � and guide image G we can obtain all
the parameters {ak,n, ck,n}. For each pixel vector gn , within
its small neighborhood window ωn , we have the output pixel
uk,n

uk,n = ak,ngn + ck,n (13)

To be convenient, we eliminate k and use vector notation,
and there is

un = angn + cn (14)

Now we have the output feature map U = {u1, . . . , un, . . . ,

uN } by the input map � and guide map G.
Since the number of component for filtered map U is K ×

N matrix, un = {un,1, . . . , un,K } is the spatial feature vector.
Similarly, we select the first F principal components from
[d1, . . . , dS] as spectral feature vector which is F×N matrix

B. We can rewrite it as B = {b1, . . . , bn, . . . , bN }, where
bn = {bn,1, . . . , bn,F } is the spectral feature vector. Then
the spectral–spatial feature vector is defined as

P′ =
{(

u1

b1

)
, . . . ,

(
un

bn

)
, . . . ,

(
uN

bN

)}
(15)

To better utilize spatial features, we introduce spatial infor-
mation with two different scales, which can give us more
abundant spatial information. The different scales depend on
the differentwindow sizes r , so thatwe get two spatial feature
matrixes with different neighbor information.

For the images of different scenes, we need to select
different number F of the principal components as spatial
information map and guidance image. After the integration,
x′
n = [un bn]T contains spectrum information and spatial
information. At last, we put the vectors of x′ as SAE’s input,
training with labeled pixels. A deep classification framework
is integrated and constructed. The whole procedure is shown
in Fig. 3.

6 Experiments and results

6.1 Data description and experiment design

In our study, two hyperspectral data sets, i.e., the University
of Pavia, the Salinas image, with different environmental
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Fig. 4 Pavia, Italy, three-band color composite image and ground truth
data image of the University of Pavia (color figure online)

parameters are applied to validate proposed methods. The
University of Pavia image was recorded by the reflective
optics system imaging spectrometer (ROSIS-3) satellite sen-
sor over the University of Pavia, with 610 × 340 pixels and
103 bands.

The image has a spatial resolution of 1.3m per pixel and
collected in the 0.43–0.86µm range of spectral coverage.
Nine material classes are labeled, which are shown in Fig. 4.

The Salinas image was acquired from Salinas Valley by
the AVIRIS sensor, with 512 × 217 pixels and 224 bands,
No. 108–112 154–167, and 224 were discarded because we
can’t handle the water absorption. Therefore, the bands of
Salinas image now is 204. The image has a spatial resolution
of 3.7m per pixel. Figure 5 shows the composite of Salinas
image and sixteen labeled material classes.

6.2 Classification results

In this section, the proposed GF-FSAE method is compared
with some widely used and recently published classifica-

Fig. 5 Salinas, USA, three-band color composite image and ground
truth data image of the Salinas Valley (color figure online)

tion methods, SVM (Melgani and Bruzzone 2004), edge-
preserving filtering (EPF) (Kang et al. 2014), SAE and
SAE-LR (Chen et al. 2014). LIBSVM library (Chang andLin
2011) is a mature SVM framework so that we can generate
SVM classification results. The EPF method takes neigh-
borhood information into account by directly filtering the
results of SVM. EPF can ensure the smoothed probabilities
aligning with real object boundaries and improve the classi-
fication accuracy significantly. The SAE-LR algorithm also
uses the spectral–spatial thinking based on deep learning. In
both images, we part the labeled samples into training data
with 30% randomly components and testing data with other
70% components. The data set of training, testing samples
and the classification results are detailed in Tables 3 and 4.
We compare the capabilities of the proposed framework by
three quality indexes, overall accuracy (OA), average accu-
racy (AA) and kappa coefficient. They show the accuracy

Table 3 Number of training
and testing samples of the Pavia
image and the classification
accuracies

Class Train Test SVM EPF SAE SAE-LR GF-FSAE

Asphalt 1989 4642 95.37 98.64 96.62 97.39 99.29

Meadow 5594 13,055 97.44 99.83 97.85 98.77 99.88

Gravel 629 1470 86.82 82.60 66.84 94.86 98.63

Tree 919 2145 97.64 97.77 96.68 99.43 99.44

Metal sheet 403 942 99.89 99.68 99.15 1 1

Bare soil 1508 3521 94.41 94.75 96.62 97.89 99.77

Bitumen 399 931 89.83 89.62 87.25 91.55 99.24

Bricks 1104 2578 89.02 91.33 93.55 94.37 99.14

Shadows 284 663 1 99.85 99.70 99.40 1

OA – – 95.44 99.28 95.78 97.76 99.51

AA – – 94.49 99.25 94.46 97.07 99.35

Kappa – – 93.95 99.04 94.40 97.03 99.35

Bold values indicate the best results for different methods
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Table 4 Number of training
and testing samples of the
Salinas image and the
classification accuracies

Class Train Test SVM EPF SAE SAE-LR GF-FSAE

Weeds 1 602 1407 1 1 99.64 1 1

Weeds 2 1117 2609 99.85 1 99.58 99.89 99.92

Fallow 592 1384 1 1 99.57 98.78 1

Fallow P 418 976 99.39 98.49 98.58 99.59 99.08

Fallow S 803 1875 99.41 1 98.94 99.46 99.52

Stubble 1187 2772 1 1 1 1 1

Celery 1073 2506 1 1 99.96 99.76 1

Grapes 3381 7890 86.11 96.52 86.91 94.89 99.66

Soil 1860 4343 99.54 99.72 99.52 1 99.66

Corn 983 2295 98.59 99.52 96.37 98.31 99.63

Lettuce 4wk 320 748 98.93 1 99.43 99.60 1

Lettuce 5wk 578 1349 98.78 1 98.83 99.48 99.85

Lettuce 6wk 274 642 99.38 1 98.75 99.69 99.53

Lettuce 7wk 321 749 98.79 99.73 97.54 99.46 99.19

Vinyard U 2180 5088 85.06 99.57 85.47 91.77 99.78

Vinyard T 542 1265 99.61 1 99.76 99.84 99.61

OA – – 94.84 99.09 94.78 97.57 99.64

AA – – 97.78 99.60 97.43 98.78 99.66

Kappa – – 94.25 98.99 94.18 97.30 99.59

Bold values indicate the best results for different methods

Table 5 Parameters for
different methods and different
data sets

EPF rEPF – – – –

PaviaU 2 – – – –

Salinas 2 – – – –

SVM Kernal g c – –

PaviaU RBF 1 100 – –

Salinas RBF 0.125 100 – –

SAE – – Layers Units Iteration

PaviaU – – 4 60 300

Salinas – – 5 40 300

SAE-LR rSAE−LR d Layers Units Iteration

PaviaU 2 3 4 60 300

Salinas 3 4 5 40 300

GF-FSAE r1 r2 Layers Units Iteration

PaviaU 10 30 6 200 300

Salinas 20 50 6 180 300

rates of classifications and the consistency between the clas-
sification results and real labels.

The parameters have a very direct impact on each model.
We summarize all parameters in Table 5. In SVM, the kernel
function is radial basis function (RBF), the semi-radius of the
kernel function g = 1 and penalized parameters c = 100.
For EPF algorithm, the window size of its spatial filter is
rEPF = 2 for both the two data sets. SAE-LR algorithm
is based on deep learning, and it has propounded a neigh-
bor region to obtain the spatial information. Reducing the

dimension of original hyperspectral image by PCA, we can
obtain a d-dimensional principal component where d is rel-
atively small and accorded to the image attribute. Then, we
define the neighbor region rSAE−LR, also accorded to the
image attribute. For the data of Pavia, we configure them
as rSAE−LR = 2 and d = 3, in data Salinas rSAE−LR = 3
and d = 4. In training part, the neural networks for Pavia
data have four layers and each layer has 60 units. The neural
networks for Salinas data have five layers, and each layer
has 40 units. For GF-FSAE algorithm, we determine 60
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Fig. 6 Influence of the number of hidden layers for the proposed GF-
FSAE method. The horizon axis is iteration number. The vertical axis
is accuracy. a Is the result of proposed GF-FSAE method with differ-

ent hidden layers for the Pavia data, and b is the result of proposed
GF-FSAE method with different hidden layers for the Salinas data

spatial dimensions. On the other hand, the value of two win-
dows radius r1 and r2 in guided filtering is 10 and 30 for
the Pavia data and 20 and 50 for the Salinas data, both 30
dimensions.

Table 3 shows the classification accuracies under desig-
nated training and testing samples of the Pavia data. The
Salinas data results are presented in Table 4. Table 2 summa-
rizes the accuracywith different number of training iterations
from 1 to 1000 of two images. Through Tables 3 and 4, we
can gain a full view that the GF-FSAE algorithm showsmore
competitive in OA, AA, kappa under a small training set.
More importantly, this framework permits great expansion
in multi-features learning and provides a great help for the
future work.

The influence of hidden layers number is shown in Fig. 6
where the hidden layers are from 1 to 6.

7 Conclusions

In this paper, we combine the SAE deep learning classifica-
tion framework and guided filtering. Both spatial and spectral
features are efficiently explored in constructing feature vec-
tors. The proposed method promotes the hyperspectral data
classification accuracyby introducing thefilteringof the local
pixel information and utilizing multi-feature in deep fea-
ture learning. An advantage is the framework controls spatial
information skillfully before classification, not focusing on
denoising the result. The proposed multi-feature deep learn-
ing shows better results when compared with some other
methods.

The proposed method also can be applied to classification
of the data acquired by Internet of Things (IoT) sensors and
from socialmedia. For variety of IoT sensors, we often obtain
multi-source data such as image, sound, velocity, tempera-
ture, air pressure. For social media data, most of them are

images, sound, video and texts. Both IoT sensors and social
media data are multi-source or multi-modal data. It is simi-
lar to the characteristic of multi-band in hyperspectral data
in remote sensing field. That image data are correlated with
sound data is just analogous to that the red band is correlated
with infrared band. Some of the general characters extracted
by PCA from the IoT sensors data or social media data could
be used as the guidance data are analog to the guidance image
in the proposedmethod. And then, as an extension of the pro-
posed method, the multi-feature could be better utilized for
the classification problem in IoT sensors and social media
data.
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