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Abstract Non-symmetric similarity relation-based rough
set model (NS-RSM) is viewed as mathematical tool to deal
with the analysis of imprecise and uncertain information in
incomplete information systems with “?” values. NS-RSM
relies on the concept of non-symmetric similarity relation to
group equivalent objects and generate knowledge granules
that are then used to approximate the target set. However,
NS-RSM results in unpromising approximation space when
addressing inconsistent data sets that have lots of boundary
objects. This is because objects in the same similarity classes
are not necessarily similar to each other and may belong
to different target classes. To enhance NS-RSM capability,
we introduce the maximal limited similarity-based rough set
model (MLS-RSM) which describes the maximal collection
of indistinguishable objects that are limited tolerance to each
other in similarity classes. This allows accurate computation
to be done for the approximation space. Furthermore, approx-
imation accuracy comparisons have been conducted among
NS-RSMandMLS-RSM.The results demonstrate thatMLS-
RSM model outperforms NS-RSM and can approximate the
target set more efficiently.
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1 Introduction

Uncertainty in the data degrades the process of analyzing the
data leading to uncertain conclusions (Gantayat et al. 2014).
Classical rough set theory (RST) proposed by Pawlak (1982)
made a great success in processing and analyzing complete
information systems characterized by uncertainty (Qin et al.
2015). Reduct (Jensen et al. 2014; Jiang and Yu 2015) is
the most important issue of RST which eliminates unnec-
essary attributes and creates a minimal sufficient subset of
attributes for decision table. Approximation accuracy mea-
sure (Dai and Xu 2012) that measures the imprecision of
approximation space is employed as heuristics measure to
guide the reduct process. Consequently, for a minimal feasi-
ble subset of features, the approximation accuracy should
be maximal. RST uses the lower and upper approxima-
tions that are defined using the indiscernibility relation to
define the approximation space. The indiscernibility rela-
tion is considered equivalent relation because it is reflexive,
symmetric, and transitive. However, the indiscernibility rela-
tion is a rigid relation (Huang et al. 2014) because it is
based on the assumption that all object’s values for every
attribute are known. This assumption contrasts with several
real-valued information systems situations where the infor-
mation may be incomplete (DU and ZI 2014). This limits
the applicability of RST in real-world applications where
some of the attribute values are unknown. For RST to deal
with incomplete information systems (IIS), two strategies are
proposed. The first one is an indirect method that transforms
the IIS into a complete one according to some rules such as
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probability statistical methods; this is called data prepara-
tion (Wang 2001; Grzymala-Busse and Hu 2005). However,
this may cause loss in the original information leading to
uncertain conclusions. The second one is a direct method
that extends the basic concepts of RST under IIS by relax-
ing the requirement of indiscernibility relation of reflexivity,
symmetry and transitivity (Kryszkiewicz 1998, 1999; Ste-
fanowski and Tsoukiàs 1999, 2001; Skowron and Stepaniuk
1996; Wang 2002; Wang et al. 2008; Leung and Li 2003;
Cheng et al. 2007; Yin and XiuyiJia 2006; Yang 2009; Yang
and Yang 2012; Nguyen et al. 2013; Grzymala-Busse and
Wang 1997; Liu and Shao 2014; Huang and Li 2014).

The unknown values were categorized by Grzymała-
Busse (2004) as follows:

1. The unknown values are “lost ?”, this unknown value
means that it is an absent value and cannot be compared
with any other values in the domain of the corresponding
attribute.

2. The unknown values are “don’t care *,” this unknown
valuemeans that it is amissingvalue and canbe compared
with any other values in the domain of the corresponding
attribute.

In recent years, many researchers extended RST model
by replacing the indiscernibility relation by another non-
equivalent relation to process IIS directly. For example,
Kryszkiewicz (1998, 1999) proposed the tolerance relation
that is reflexive and symmetric but not necessarily transi-
tive to deal with “*” values. In this relation, objects that
have no values in common are considered indistinguish-
able. For example, with two objects X = {1, ∗, 3, ∗} and
Y = {∗, 2, ∗, 4} then according to the tolerance relation,
object X is considered indistinguishable from object Y and
will be gathered in the same tolerance class. Obviously, this
is unreasonable case which limits the applicability of the
tolerance relation. Stefanowski and Tsoukiàs (1999, 2001)
investigated the similarity relation of Skowron and Stepa-
niuk (1996) to be reflexive and transitive but not necessarily
symmetric to deal with “?” values. This relation separates
two objects that are very similar to each other but with lit-
tle loss in the information. At the same time, objects in the
same similarity class are not necessarily similar to each other
and may belong to different target classes. This excludes
some objects from the lower approximation of the target
set. For example, with four objects X = {a, ?, c, d, ?, d1},
Y = {?, s, c, d, ?, d1}, Z = {a, b, c, d, e, d2} and W =
{a, s, c, d, f, d1} then according to the non-symmetric sim-
ilarity relation R−1(X) = {X, Z ,W }. Obviously, object Y
is not included in the same similarity class of object X in
spite of the fact two attribute values are perceived as com-
mon, at the same time objects X , Z and W belong to the
same similarity class in spite of the fact that objects Z and

W are not similar, this lead to R−1(X) � d1 which prevents
objects X and Z from being included in the lower approx-
imation of d1. This decreases the cardinality of the lower
approximation leading to unpromising results with respect to
approximation accuracy. Wang et al. (2008) recognized that
the tolerance relation requirement is too weak as it regards
two objects with no common values as indistinguishable,
also, the requirement of the NS-RSM is too strict as it sep-
arates two objects that are very similar to each other but
with little loss in the information. This makes the process
too extreme. Consequently, Wang proposed the limited tol-
erance relation that tries to relax the requirements of both
tolerance relation andNS-RSM. Limited tolerance relation is
reflexive and symmetric but not necessarily transitive. How-
ever, limited tolerance relation has not differentiated the two
types of unknown attribute values. Leung and Li (2003) pro-
posed the maximal consistent block relation that is reflexive
and symmetric but not necessarily transitive to deal with
“*” values. Maximal consistent block relation describes the
maximal collection of indistinguishable objects in the toler-
ance classes (Cheng et al. 2007). This relation achieves better
approximation accuracy than that provided by tolerance rela-
tion, but it inherits the limitation of the tolerance relation
where objects that have no values in common are considered
indistinguishable. Yin andXiuyiJia (2006) proposed the con-
strained dis-symmetrical similarity relation that is reflexive
and transitive but not necessarily symmetric to deal with “?”
values. This relation extends the non-symmetrical similarity
relation based on the limited tolerance relation. In this rela-
tion, two objects are considered to be similar due to high loss
in the information of one of the two objects. For example,
with two objects A = {3, 2, 1, 0, d1} and B = {?, 2, ?, ?, d2}
then according to dis-symmetrical similarity relation, object
A is considered similar to object B which prevents object
A from being included in the lower approximation of d1
in spite of the fact it contains no “?” values. Yang (2009),
Yang and Yang (2012) proposed the difference relation that
is not necessarily reflexive, symmetric and transitive to deal
with “?” values. The requirement of the difference relation is
too strict as it separates two objects that are very dissim-
ilar but with a slight bit of similarity. For example, with
two objects S = {?, ?, 3, 4, 5} and D = {?, 6, 7, 8, 5} then
according to the difference relation, object S is not con-
sidered dissimilar to object D because value 5 is common
in both objects. This may not allow the difference relation
to approximate the target set whenever all tuples are sim-
ilar to each other, even so, with partial similarity. Nguyen
et al. (2013) proposed a parametric relation that extends the
non-symmetric similarity relation by computing the proba-
bility of matching for each attribute. This relation is reflexive
and symmetric but not necessarily transitive. This relation
needs in advance threshold (α) to control the tolerance
degree.
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Słowiński et al. (2014) reported that up till now, NS-RSM
is the only RST extension that correctly characterizes the tar-
get set as it computes the lower/upper approximations using
two different relations. This is because of the fact that NS-
RSM does not partition the data, instead it uses the similarity
classes, but objects in the same similarity class are not neces-
sarily similar to eachotherwhich leads to unpromising results
with respect to approximation accuracy. Consequently, the
aim of this paper is to enhance the capability of NS-RSM
to provide promising results with respect to approximation
accuracy which can be further used to provide promising
results with respect to reduct. In this paper, we propose the
maximal limited similarity-based rough set model (MLS-
RSM) that is a modified version of NS-RSM able to provide
promising approximation accuracy under IIS with “?” val-
ues. MLS-RSM finds the maximal limited consistent blocks
of similar objects for each similarity class in NS-RSM.
Maximal limited consistent blocks describes the maximal
collection of indistinguishable objects that are limited toler-
ance to each other in the similarity classes. This ensures that
objects in the same block are similar to each other leading
to accurate computation to be done for the lower approxi-
mation. Furthermore, approximation accuracy comparisons
have been conducted among NS-RSM and MLS-RSM. The
results demonstrate that MLS-RSM model outperforms NS-
RSM model.

The rest of this paper is organized as follows. Section 2
introduces some preliminaries on basic concepts and rough
set theory. Some related RST extensions under IIS are
reviewed in Sect. 3. In Sect. 4, we propose the maximal lim-
ited similarity-based rough set model (MLS-RSM) model.
In Sect. 5, approximation accuracy comparisons among
NS-RSM and MLS-RSM have been conducted. Section 6
concludes the paper.

2 Preliminaries

2.1 Basic concepts

For the convenience of discussion, some basic notions and
relevant concepts are introduced at first.

Definition 1 An information system is a quadruple IS =
(U,AT, V, f ), where,U is a non-empty finite set of objects;
AT is a non-empty finite set of features; V is the union of
attribute domains, V = ⋃

a∈A Va, where, Va is the value set
of attribute a; f : U × AT → V is the information function
that assigns a particular value of the object attributes.

If there exist x ∈ U such that fa(x) equals to an unknown
value where a ∈ AT, then the information system is said to
be incomplete information system (IIS).

2.2 Rough set theory

The classical RST uses the indiscernibility relation that is
given by E(A) = {(x, y) ∈ U 2 : ∀a ∈ A, fa(x) =
fa(y)}, where A ⊆ AT. The equivalence classes are given
by [x]E = {y ∈ U : xEy}. The lower/upper approxi-
mations of a set X under RST are given respectively by,
Apr(X) = ⋃{[x]E : [x]E ⊆ X}, Apr(X) = ⋃{[x]E :
[x]E ⋂

X �= φ}. The pair (Apr(X),Apr(X)) is called the
approximation space. The positive, negative and the bound-
ary regions are defined respectively by, POS(X) = Apr(X),

NEG(X) = U − Apr(X), BND(X) = Apr(X) − Apr(X).

2.3 Approximation accuracy measure

Approximation and reduction are two key issues in RST. The
approximation refers to approximately describe a subset of
the universe with respect to a given set of features. While
the reduction is the process of finding a minimal subset of
features that preserve the discriminatory power as the whole
features using the approximation concept. Consequently, the
finer the approximation, the finer the reduction. The approxi-
mation accuracy measure τ (Dai and Xu 2012) is uncertainty
measure that measures the imprecision of rough approxima-
tion. This measure reflects RST ability to find the minimal
subset of features that preserve the discriminatory power as
the whole features. The form of approximation accuracy is
given by

τ = |Apr(X)|
|Apr(X)| (1)

where | · | denotes cardinality. Clearly, the greater the approx-
imation accuracy, the greater the characterizing power of the
available features. Consequently, for aminimal subset of fea-
tures, the approximation accuracy should be maximal.

3 Some RST extensions under IIS

In this section, we review some related RST extensions under
IIS with their issues.

3.1 Non-symmetric similarity relatio-based rough set
model (NS-RSM)

Stefanowski and Tsoukiàs (1999, 2001) redefined the simi-
larity relation of Skowron and Stepaniuk (1996) to deal with
the “?” values as Definition 2.

Definition 2 Given I I S in which A ⊆ AT, the non-
symmetric similarity relation is given by

∀x,y S(x, y) ⇐⇒ ∀a∈A fa(x) �=?, fa(x) = fa(y) (2)
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Table 1 Small illustrative example

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

a1 3 2 2 ? ? 2 3 2 3 1 3 3 3

a2 2 3 3 2 2 3 ? 3 2 ? 2 2 2

a3 1 2 2 ? ? 2 ? 2 1 ? ? 1 2

a4 ? ? 0 1 1 1 3 2 3 ? ? 1 3

d 1 1 2 1 2 1 1 2 2 1 2 1 2

For each object, two similarity classes are defined as follows:

R(x) = {y ∈ U : S(y, x)} (3)

R−1(x) = {y ∈ U : S(x, y)} (4)

where, R(x) represents the set of objects similar to x and
R−1(x) represents the set of objects to which x is similar.

The lower/upper approximations of set X under NS-RSM
are given respectively as follows:

R−1
A (X) = {x ∈ U : R−1(x) ⊆ X} (5)

RA(X) =
⋃

{R(x) : x ∈ X} (6)

Słowiński et al. (2014) stated that the discrimination task
between objects using indiscernibility relation is difficult due
to the imprecision of data describing the objects. This situa-
tion is considered perfectly using non-symmetric similarity
relation.

In the following we will illustrate NS-RSM with a small
IIS shown in Table 1.

Example 1 Consider the IIS presented in Table 1, where
U = {x1, x2, ..., x13}, A = {a1, a2, a3, a4} with 25% lost
(“?”) values and d is the decision attribute that determines a
partition on the universe such that U/d = {d1, d2} = {{x ∈
U : fd(x) = 1}, {x ∈ U : fd(x) = 2}}.

Thus,

R−1(x1) = {x1, x9, x12} R(x1) = {x1, x11}
R−1(x2) = {x2, x3, x6, x8} R(x2) = {x2}
R−1(x3) = {x3} R(x3) = {x2, x3}
R−1(x4) = {x4, x5, x12} R(x4) = {x4, x5}
R−1(x5) = {x4, x5, x12} R(x5) = {x4, x5}
R−1(x6) = {x6} R(x6) = {x2, x6}
R−1(x7) = {x7, x9, x13} R(x7) = {x7}
R−1(x8) = {x8} R(x8) = {x2, x8}
R−1(x9) = {x9} R(x9) = {x1, x7, x9, x11}
R−1(x10) = {x10} R(x10) = {x10}
R−1(x11)= {x1, x9, x11, x12, x13} R(x11)={x11}
R−1(x12) = {x12} R(x12) = {x1, x4, x5, x11, x12}
R−1(x13) = {x13} R(x13) = {x7, x11, x13}

Obviously, NS-RSM separates objects that are very sim-
ilar to each other but with little loss in the information, for

example, in R−1(x3) object x2 is not considered similar to
object x3 in spite of the fact three of their attribute values
are common. At the same time, objects are included in the
same similarity class in spite of the fact they are not similar to
each other. For example, in R−1(x1) = {x1, x9, x12} object
x9 and object x12 are not similar, this leads to R−1(x1) � d1
which prevents object x1 from being included in the lower
approximation of d1. In R−1(x2) = {x2, x3, x6, x8} objects
x3, x6 and x8 are not similar, this leads to R−1(x2) � d1
which prevents object x2 from being included in the lower
approximation of d1. This shrinks the lower approximation
leading to unpromising results with respect to approximation
accuracy.

The lower/upper approximations are as follows:

R−1
A (d1) = {x6, x10, x12}
RA(d1) = {x1, x2, x4, x5, x6, x7, x10, x11, x12}
R−1
A (d2) = {x3, x8, x9, x13}
RA(d2) = {x1, x2, x3, x4, x5, x7, x8, x9, x11, x13}

Consequently, τ(d1) = 3
9 = 1

3 and τ(d2) = 4
10 = 2

5 .

3.2 Limited tolerance relation

Wang et al. (2008) recognized that the requirement of NS-
RSM is too strict as it separates two objects that are very
similar to each other but with little loss in the information.
This makes the process too extreme. Consequently, Wang
proposed the limited tolerance relation that tries to relax the
requirements of NS-RSM as Definition 3.

Definition 3 Given I I S in which A ⊆ AT, the limited toler-
ance relation is given by

∀x,y∈U×U (LTA(x, y)⇐⇒∀a∈A( fa(x)= fa(y)=unknown)

∨ ((PA(x)
⋂

PA(y) �= φ)

∧ ∀a∈A( fa(x) �= unknown

∧ fa(y) �= unknown)

→ ( fa(x) = fa(y))))

(7)

where PA(x) = {a ∈ A : fa(x) is known value} and the
unknown values can be interpreted as * or ? values.

The limited tolerance classes of x is denoted by IA(x)
where

IA(x) = {y : y ∈ U ∧ LTA(x, y)} (8)
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The lower and upper approximations of set X under lim-
ited tolerance relation are given, respectively, as follows:

I A(X) = {x : x ∈ U ∧ IA(x) ⊆ X} (9)

I A(X) = {x : x ∈ U ∧ IA(x)
⋂

X �= φ} (10)

Continue with Example 1. we illustrate Definition 3.
Thus,

IA(x1) = {x1, x4, x5, x7, x9,
x11, x12} IA(x8) = {x2, x8}

IA(x2) = {x2, x3, x6, x8} IA(x9) = {x1, x7, x9, x11}
IA(x3) = {x2, x3} IA(x10) = {x10}
IA(x4) = {x1, x4, x5, x11, x12} IA(x11) = {x1, x4, x5, x7, x9,

x11, x12, x13}
IA(x5) = {x1, x4, x5, x11, x12} IA(x12) = {x1, x4, x5, x11, x12}
IA(x6) = {x2, x6} IA(x13) = {x7, x11, x13}
IA(x7) = {x1, x7, x9, x11, x13}

Obviously, limited tolerance relation relaxed the require-
ment of NS-RSM, for example in LTA(x3) = {x2, x3}, object
x2 is considered indistinguishable from object x3 which is
not the case in R−1(x3). However, limited tolerance rela-
tion failed to relax the requirement of gathering non-similar
objects in the same limited tolerance class, for example, in
IA(x2) = {x2, x3, x6, x8} objects x3, x6 and x8 are not similar
to each other.

The lower/upper approximations are as follows:

I A(d1) = {x2, x6, x10},
I A(d1) = U,

I A(d2) = φ,

I A(d2) = U − x10.

4 Maximal limited similarity-based rough set
model (MLS-RSM)

As we discussed in Sect. 3.1, objects in the same simi-
larity classes are not necessarily similar to each other and
may belong to different target classes which increase uncer-
tainty in the data. This excludes some objects from the lower
approximation of the target set in spite of the fact they could
be classified in the lower approximation leading to unpromis-
ing results with respect to approximation accuracy. In order
to overcome this problem, we propose the maximal lim-
ited similarity-based rough set model (MLS-RSM) which
finds themaximal limited consistent blocks of similar objects
for each similarity class (R(x), R−1(x)). Maximal limited
consistent blocks describe the maximal collection of indis-
tinguishable objects that are limited tolerance to each other
in similarity classes. This reduces the uncertainty from the
data allowing accurate computation to be done for the lower

approximation leading to promising results with respect to
approximation accuracy.

Similar toNS-RSM, for each object, two similarity classes
are defined as Definitions 4 and 5, respectively.

Definition 4 Given I I S and R(x) be set of objects similar to
x in which A ⊆ AT and X ⊆ R(x), we say that X is limited
consistent block of objects similar to x with respect to A if
(x, y) ∈ S(y, x) and ∀y, z ∈ X, (y, z) ∈ LTA(y, z). We say
that X is maximal limited consistent block of objects similar
to x if there does not exist Y ⊆ R(x) where X ⊂ Y and Y is
limited consistent with respect to A. We denote the maximal
limited consistent blocks of all R(x) as ζLT

RA
and the maximal

limited consistent blocks of objects similar to x with respect
to A as ζLT

RA(x).

Definition 5 Given I I S and R−1(x) be set of objects to
which x is similar in which A ⊆ AT and X ⊆ R−1(x), we
say that X is limited consistent block of objects to which
x is similar with respect to A if (x, y) ∈ S(x, y) and
∀y, z ∈ X, (y, z) ∈ LTA(y, z). We say that X is maximal
limited consistent block of objects to which x is similar if
there does not exist Y ⊆ R−1(x) where X ⊂ Y and Y is
limited consistent with respect to A. We denote the maximal
limited consistent blocks of all R−1 as ζLT

R−1
A

and the maximal

limited consistent blocks of objects to which x is similar with
respect to A as ζLT

R−1
A (x)

.

These relations (ζLT
RA

and ζLT
R−1
A
) are reflexive but not nec-

essarily transitive and symmetric.
The lower/upper approximations of set X under MLS-

RSM are given respectively as follows:

ζLT
R−1
A

(X) =
⋃ {

Y ∈ ζLT
R−1(A) : Y ⊆ X

}
(11)

ζLT
RA

(X) =
⋃ {

Z ∈ ζLT
R(x)(A) : x ∈ X

}
(12)

Similar to the classical RST, the positive, negative and the
boundary regions under MLS-RSM are given, respectively,
as follows:

POS(X) = ζLT
R−1
A

(X), (13)

NEG(X) = U − ζLT
RA

(X), (14)

BND(X) = ζLT
RA

(X) − ζLT
R−1
A

(X). (15)

4.1 Properties of MLS-RSM

Property 1 Any similarity class R−1(x) of attributes sub-
set A can be represented as the union of maximal limited
consistent blocks included in it. In other words,
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R−1(x) =
⋃ {

Y ∈ ζLT
R−1
A

: Y ⊆ R−1(x)

}

=
⋃ {

Y ∈ ζLT
R−1
A (x)

}

.

Proof Suppose that R−1(x1) = {x1, x2, x3}, then one of the
following is true with respect to MLS-RSM model.

1. ζLT
R−1
A (x)

= {Y1 = {x1, x2, x3}}
2. ζLT

R−1
A (x)

= {Y1 = {x1, x2},Y2 = {x1, x3}}

Obviously, for both cases it is clear that R−1(x1) is the union
of the blocks Ys found in ζLT

R−1
A (x)

, consequently, we can say

that the similarity class R−1(x1) is the union of the blocks Y
found in ζLT

R−1
A (x)

.

For instance, continuewith example 1,we have ζLT
R−1
A (x1)

=
{Y1 = {x1, x9},Y2={x1, x12}} and⋃{Y1,Y2}={x1, x9, x12}
= R−1(x1). 
�
Property 2 Any similarity class R(x) of attributes subset A
can be represented as the union ofmaximal limited consistent
blocks included in it. In other words,

R(x) =
⋃{

Z ∈ ζLT
RA

: Z ⊆ R(x)
}

=
⋃ {

Z ∈ ζLT
RA(x)

}
.

Proof please refer to the proof of Property 1. 
�
Property 3 Given I I S in which A, B ⊆ AT and X ⊆ U,
then

1. ζLT
R−1
A

(X) ⊆ X ⊆ ζLT
RA

(X).

2. If A ⊆ B �⇒ ζLT
RB

(X) ⊆ ζ LT
RA

(X). But ζLT
R−1
A

(X) ⊆
ζLT
R−1
B

(X) does not hold.

Theorem 1 Given I I S, the lower approximation of X ⊆ U
obtained using MLS-RSM model is a refinement of the one
obtained using NS-RSM.

Proof Wehave to clarify that the lower approximation ofNS-
RSMobtained using Eq. (5) is subset of lower approximation
of MLS-RSM obtained using Eq. (11).

Suppose that x ∈ R−1
A (X) obtained using Eq. (5), then

R−1(x) ⊆ X holds. By property 1, R−1(x) = ⋃{Y ∈ ζLT
R−1
A

:
Y ⊆ R−1(x)} = ⋃{Y ∈ ζLT

R−1
A (x)

}. Then there exist Y ∈
ζLT
R−1
A (x)

that contain x whereY ⊆ X . Therefore, x ∈ ζLT
R−1
A

(X)

obtained using Eq. (11). This means that ∀x ∈ R−1
A (X), x ∈

ζLT
R−1
A

(X). The inverse is not necessarily true. Consequently,

the lower approximation of X obtained using MLS-RSM is

at least equal to the lower approximation of X obtained using
NS-RSM. 
�
Theorem 2 Given I I S, the upper approximation of X ⊆
U obtained using MLS-RSM relation is equal to the one
obtained using NS-RSM.

Proof The upper approximation of NS-RSM is given by
RA(X) = ⋃{R(x) : x ∈ X}. From property 2, R(x) =
⋃{Z ∈ ζLT

RA
: Z ⊆ R(x)} = ⋃{Z ∈ ζLT

RA(x)} for any x ∈ U .

So, RA(X) = ⋃{⋃{Z ∈ ζLT
RA(x)} : x ∈ X} = ⋃{Z ∈

ζLT
RA(x) : x ∈ X} = ζLT

RA
(X) = upper approximation of MLS-

RSM. 
�
Weknow that, in RST, approximation accuracy for a given

target set X ⊆ U is defined as the cardinality of the lower
approximation of X divided by the cardinality of the upper
approximation of X .

Theorem 1means that a better approximation accuracy for
a given target set X ⊆ U can be obtained using MLS-RSM
than NS-RSM. The following example is an illustration

Continue with Example 1. we illustrate Definitions 4
and 5.

Thus,

ζLT
RA(x1)

= {Z1 = {x1, x11}}
ζLT
R−1
A (x1)

= {Y1 = {x1, x9},
Y2 = {x1, x12}}

ζLT
RA(x2)

= {Z2 = {x2}}
ζLT
R−1
A (x2)

= {Y3 = {x2, x3},
Y4 = {x2, x6}, Y5 = {x2, x8}}

ζLT
RA(x3)

= {Z3 = {x2, x3}} ζLT
R−1
A (x3)

= {Y6 = {x3}}
ζLT
RA(x4)

= {Z4 = {x4, x5}} ζLT
R−1
A (x4)

= {Y7 = {x4, x5 x12}}
ζLT
RA(x5)

= {Z4 = {x4, x5}} ζLT
R−1
A (x5)

={Y7 = {x4, x5, x12}}
ζLT
RA(x6)

= {Z5 = {x2, x6}} ζLT
R−1
A (x6)

= {Y8 = {x6}}
ζLT
RA(x7)

= {Z6 = {x7}} ζLT
R−1
A (x7)

= {Y9 = {x7, x9},
Y10 = {x7, x13}}

ζLT
RA(x8)

= {Z7 = {x2, x8}} ζLT
R−1
A (x8)

= {Y11 = {x8}}
ζLT
RA(x9)

= {Z8 = {x1, x7, x9, x11}} ζLT
R−1
A (x9)

= {Y12 = {x9}}
ζLT
RA(x10)

= {Z9 = {x10}} ζLT
R−1
A (x10)

= {Y13 = {x10}}
ζLT
RA(x11)

= {Z10 = {x11}}
ζLT
R−1
A (x11)

= {Y14 = {x1, x9, x11}, Y15 = {x1, x11, x12},
Y16 = {x11, x13}}

ζLT
RA(x12)

= {Z11 = {x1, x4, x5,
x11, x12}} ζLT

R−1
A (x12)

= {Y17 = {x12}}
ζLT
RA(x13)

= {Z12 = {x7, x11, x13}} ζLT
R−1
A (x13)

= {Y18 = {x13}}
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Table 2 Data sets description
Data set Percent of “?” values (%) # of instances # of attributes

Mammographic 3 961 6

Hepatitis 6 155 18

Congress 5.6 435 16

Table 3 Approximation space comparison

Data set Model |Apr
A
(d1)| |AprA(d1)| τ(d1)(%) |Apr

A
(d2)| |AprA(d2)| τ(d2)(%)

Mammographic NS-RSM 413 606 68 355 548 64

MLS-RSM 421 606 70 363 548 67

Hepatitis NS-RSM 92 100 92 71 79 89

MLS-RSM 92 100 92 78 79 99

Congress NS-RSM 260 270 96 160 170 94

MLS-RSM 266 270 98.5 168 170 98.8

Consequently, ζLT
RA

= {Z1 = {x1, x11}, Z2 = {x2}, Z3 =
{x2, x3}, Z4 = {x4, x5}, Z5 = {x2, x6}, Z6 = {x7}, Z7 =
{x2, x8}, Z8 = {x1, x7, x9, x11}, Z9 = {x10}, Z10 = {x11},
Z11 = {x1, x4, x5, x11, x12}, Z12 = {x7, x11, x13}} and
ζLT
R−1
A

= {Y1 = {x1, x9},Y2 = {x1, x12},Y3 = {x2, x3},Y4 =
{x2, x6},Y5 = {x2, x8},Y6 = {x3},Y7 = {x4, x5, x12},Y8 =
{x6},Y9 = {x7, x9},Y10 = {x7, x13},Y11 = {x8},Y12 =
{x9},Y13 = {x10},Y14 = {x1, x9, x11},Y15 = {x1, x11, x12},
Y16 = {x11, x13},Y17 = {x12},Y18 = {x13}}.

Noting ζLT
R−1
A (x1)

= {Y1 = {x1, x9},Y2 = {x1, x12}} object
x9 and object x12 are not included in the same block as NS-
RSM does. This leads to Y2 ⊆ d1 which allows object x1 to
be included in the lower approximation of d1. In ζLT

R−1
A (x2)

=
{Y3 = {x2, x3},Y4 = {x2, x6},Y5 = {x2, x8}} objects x3, x6
and x8 are not in the same block. This leads to Y4 ⊆ d1 which
allows object x2 to be included in the lower approximation
of d1.

In ζLT
R−1
A (x11)

= {Y14 = {x1, x9, x11},Y15 = {x1, x11, x12},
Y16 = {x11, x13}} objects x1, x12 and x13 are not included in
the same block. This leads to Y16 ⊆ d2 which allows object
x11 to be included in the lower approximation of d2.

The lower/upper approximations are as follows:

ζLT
R−1
A

(d1) = {x1, x2, x6, x10, x12}

ζLT
RA

(d1) = {x1, x2, x4, x5, x6, x7, x10, x11, x12}
ζLT
R−1
A

(d2) = {x3, x8, x9, x11, x13}

ζLT
RA

(d2) = {x1, x2, x3, x4, x5, x7, x8, x9, x11, x13}

Consequently, τ(d1) = 5
9 and τ(d2) = 5

10 = 1
2 . The

results are more informative than NS-RSM model. This is
because MLS-RSM finds the maximal limited consistent

blocks of indiscernible objects and now objects in the same
block are similar to each other.

It is worth noting that R−1
A (d1) ⊆ ζLT

R−1
A

(d1), R
−1
A (d2) ⊆

ζLT
R−1
A

(d2), ζLT
RA

(d1) = RA(d1) and ζLT
RA

(d2) = RA(d2) which

verifies the validity of MLS-RSM.

5 Experimental evaluation

5.1 Experimental setup

The proposed approach (MLS-RSM) and the related one
(NS-RSM) are implemented using MATLAB R12a on PC
with windows 8, Intel(R) Core(TM) i7 CPU 2.4 GHZ and
6GB memory, to verify the validity of MLS-RSM. Our
experiments employ three publicly accessible data sets;
mammographic (Team 2015), hepatitis and congress (UCI
2015). The datasets are outlined in Table 2. The objective
of the experiment is to compare the approximation space
located by MLS-RSM and NS-RSM.

5.2 Approximation space comparison

We obtain the numbers of objects in the lower and upper
approximations and the approximation accuracy in terms of
MLS-RSM and NS-RSM as Table 3.

By Table 3, it is easy to note that using MLS-RSM, the
number of objects in the lower approximations of MLS-
RSM model is equal or greater than those in NS-RSM lower
approximations. The number of objects in the upper approx-
imations of MLS-RSM model is equal to those in NS-RSM
upper approximation. This shrinks the boundary region lead-
ing to promising approximation accuracy which verifies the
validity of MLS-RSM model.
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Consequently, we can say that MLS-RSM model can
approximate the target set more accurately than NS-RSM
in IIS with “?” values. This is a perfect indicator that MLS
model can improve the feature subset selection technique in
IIS with “?” values.

6 Conclusion

Uncertainty in the data degrades the process of analyzing
the data. Non-symmetric similarity relation-based rough set
model (NS-RSM) is viewed as a mathematical tool to deal
with uncertainty in incomplete information systems with
“?” values. Unfortunately, NS-RSM results in unpromising
approximation space when addressing inconsistent data sets
that have lots of boundary objects. This is because objects
in the same similarity classes are not necessarily similar to
each other and may belong to different target classes. To
enhance NS-RSM capability, we introduce the maximal lim-
ited similarity relation-based rough set model (MLS-RSM)
which describes the maximal collection of indistinguishable
objects that are limited tolerance to each other in similar-
ity classes. This allows accurate computation to be done
for the approximation space.Theoretical analysis shows that
MLS-RSM can approximate the target set more efficiently
andmore accurately thanNS-RSM. The experimental results
show that MLS-RSM can deal with the analysis of imprecise
and uncertain information in IIS. In the future work, MLS-
RSM can be used to improve the reduct issue.
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