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Abstract In this paper, a novel ant colony optimization
algorithm called modified ant colony optimization algo-
rithm (MACO) is proposed for multi-objective single-model
assembly line balancing problem (SALBP). The proposed
MACO presents a novel heuristic information combined
with subsequent task number and deviation time that can
guide ants to find better solutions for SALBP. The proposed
MACO also adopts three assignment methods (i.e., forward,
backward and local rebalancing assignment methods) and
stratified sequential algorithm combinedwith Pareto-optimal
front as multi-objective decision. The objectives of SALBP
are to minimize the number of workstations, maximize
assembly line efficiency and minimize workload variation
among workstations. In the latter part of the paper, the pro-
posed MACO has been applied to solve Scholl benchmark
problems which include both small-size and large-size prob-
lems. The performance of the proposed MACO has been
compared with the multi-objective genetic algorithm and
the multiple assignment genetic algorithm and has obtained
improved results in many test problems.
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1 Introduction

An assembly line is a continuous production line which con-
sists of materials and workstations combined by conveyor
belts. It is a kind of system which can contact men with
machines closely and efficiently. Assembly is not only the
final step, but also themost important process of themanufac-
turing system. Planning the layout of workstations is the first
task, while building an assembly line and assembly line bal-
ancing problem (ALBP) is especially important. Balancing
the assembly line can keep the production system continuous
and fluent. It also has a great influence on the productivity of
the manufacturing system.

The assembly line balancing problem is a kind of opti-
mization problems which distribute tasks to workstations
satisfying the precedence constraint and optimizing some
objectives. It can be divided into simple model assembly line
balancing problem (SMALBP) and mixed-model assembly
line problem (MMALBP) according to the types of product.
Simple assembly line balancing problem (SALBP) is the best
known ALBP. It can be divided into three types: SALBP-
1, SALBP-2 and SALBP-E (Becker and Scholl 2006). The
SALBP-1 aims to minimize the number of the workstations
within the cycle time. The SALBP-2 aims to minimize the
cycle time, while the number of the workstations is known.
SALBP-E aims to maximizing the line efficiency, while the
number of workstations and the cycle time has been given.

ALBP has been proved as NP-hard problem of combina-
tion optimization problems (Karp 1972). If there are n tasks
andm precedence constraints in anALBP, and then there will
be n!/2m task sequences which are solutions of ALBP (Bay-
bars 1986). The complexity of ALBP will be much higher
as the size of problem increasing. Much more time have to
be consumed for computing because the search space is so
big.
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SALBP is generally solved by exact algorithm when it
arises. Although we can obtain the optimal solution, we need
too much time to calculate it as the problem size increased.
So we usually use exact algorithm to solve small-size prob-
lems. In recent years, several meta-heuristic algorithms such
as genetic algorithm, particle swarm optimization algorithm
and ant colony optimization algorithm have been used to
solve ALBP because of these algorithms’ good performance
on the optimization.

Yu and Yin (2010) put forward a new adaptive genetic
algorithm to solve SALBP-1 in which crossover probability
and mutation probability can be dynamic adjusted accord-
ing to the fitness of individual. If the fitness of individual
is high, the probability of crossover and mutation will be
small. If not, the probabilitywill be big.Gutiérrez andGarcía-
Magariño (2011) proposed a hybrid genetic algorithm which
combines genetic algorithmwith repair heuristics for flexible
job-shop scheduling problems. Hou et al. (2014) proposed
an improved genetic algorithm for balancing product family
assembly line which is a mixed assembly line for a family of
similar products. Petropoulos and Nearchou (2011) used an
improved PSO to solve large-scale multi-objective SALBP.
They developed a new method to generate and retain Pareto
solution of multi-objective SALBP.

As the increasing of problems’ scale, the complexity
and the solution space of the problems increase exponen-
tially. The shortage of based meta-heuristic algorithms for
large-scale problems with big data has been revealed. Novel
and efficient algorithms are in urgent need. Sfrent and Pop
(2015) proposed an asymptotically optimal algorithm com-
bined with first-come, first-served (FCFS) for asymptotic
scheduling problems and achieve better performances. Vasile
et al. (2015) proposed a resource-aware hybrid scheduling
algorithm for tasks scheduling in heterogeneous distributed
computing considering hierarchical clustering of the avail-
able resources into groups.

There are few papers with respect to ACO applied to solve
ALBP as ACO is developed later than other meta-heuristic
algorithms. But ACO has good performance on solving com-
binatorial optimizationproblems.ACOcomparingwith other
swarm intelligence algorithms is just like transgenic tech-
nique comparing with hybridization technique that ACO can
recognize which combination fragment is good guided by
heuristic information and fed back by pheromone. How-
ever, other swarm intelligence algorithms can only recognize
which individual is good. Although ACO may be slow in
running because of much more information needed to be
recognized and recorded than other swarm intelligence algo-
rithms, fast emerging computer hardware can easily solve
this problem.

In this paper, we develop a modified ant colony opti-
mization algorithm (MACO) for multi-objective SALBP
in which objectives are to minimize the number of work-

stations, maximize line efficiency and minimize workload
variation. The proposed algorithm MACO develops a new
heuristic information combining with subsequent task num-
ber and deviation time as expectation value of node which
can guide ants search for the optimal solution effectively. The
proposed algorithm also uses three assignment approaches:
forward, backward and local rebalancing assignments to
assign tasks to workstations simultaneously and calculate the
value of objective function, respectively, and then choose the
best assignment approach for ant. Using three assignment
approaches can increase a task sequence potential effectively.
After comparison among the ants using stratified sequential
algorithm, we retain Pareto-optimal front ant.

The proposedMACO is very suitable to solve SALBP that
it can search for better solutions rapidly and efficiently. The
proposed MACO has been compared with multi-objective
genetic algorithm (MOGA) (Hwang et al. 2008) and multi-
ple assignment genetic algorithm (MA-GA) (Al-Hawari et al.
2015).All the three algorithms canget optimal solutionon the
first objective. The proposed MACO performs much better
than the other two algorithms on the second and third objec-
tives that it can get to a maximum of 26.58% improvement
and 100% improvement on the second and third objective,
respectively.

The structure of the rest paper is as follow: Sect. 2
describes the related work of ALBP. In Sect. 3, the formula-
tion of multi-objective SALBP is given.We can see the detail
of the proposed MACO in Sect. 4 and computational results
in Sect. 5. Finally, there are discussions and conclusions in
Sects. 6 and 7.

2 Related work

In the early years,whenALBPhas just been presented,ALBP
usually be solved by some exact algorithm, such as integer
programming (Bowman 1960), linear programming (Salve-
son 1955), branch-and-bound approaches (Jackson 1956)
and dynamic programming (Held et al. 1963). These exact
algorithms can get optimal solution for small-size ALBP.
However, these algorithms have to consume too much time
which is unrealistic for calculating large-size problems.

In recent years, much more scholars and researchers pay
attention tometa-heuristic algorithms for solving ALBP. The
solutions obtained by meta-heuristic algorithms for solving
ALBP may not be the optimal solution. But meta-heuristic
algorithms can get acceptable solutions in reasonable time
no matter small-size or large-size problems.

Lv (2011) used an improved particle swarm optimization
algorithm (PSO) to solve SALBP-1. In this paper, a new
encoding method has been proposed to ensure that a task
sequence is feasible. Each particle which represents a feasi-
ble task sequence can search for the best solution based on
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the optimization mechanism of the PSO. Dou et al. (2013)
proposed a novel feasible task sequence oriented PSO that
directly records a feasible task sequence by a particle for
solving SALBP-1. However, the algorithms presented by the
literature above can only solve single objective of SALBP-1.

Kilincci (2011) proposed a new heuristic algorithm based
on Petri net approach. The proposed algorithm named firing
sequences backward algorithm has a good performance to
solve SALBP-1. Hamta et al. (2013) proposed a hybrid PSO
algorithm that combines PSO algorithm with variable neigh-
borhood search to solve multi-objective assembly balancing
problems with flexible operation times, sequence-dependent
setup times and learning effect. Li et al. (2014) proposed a
multi-objective teaching–learning-based optimization algo-
rithm for balancing two-sided assembly line.

Bautista and Pereira (2007) used an improved ant colony
optimization algorithm (ACO) to solve a time and space
constrained assembly line balancing problem (TSALBP).
In this paper, they have established mathematical model for
TSALBP in the first place and put forward a new ACO with
fusion ideas and got a good result in the end. Yagmahan
(2011) proposed a multi-objective ant colony optimization
algorithm for mixed-model assembly line balancing prob-
lems and obtains better results.

Hwang et al. (2008) presented a multi-objective genetic
algorithm (MOGA) for straight line and U-shaped assem-
bly line balancing problems. Then, the proposedMOGAwas
applied for Scholl benchmarkproblemswithin different cycle
time. It could get the optimal solution for the first objective
of minimum number of workstations. However, the solutions
for the second and the third objective were unsatisfactory.
Al-Hawari et al. (2015) used a multiple assignment genetic
algorithm (MA-GA) to solve multi-objective SALBP. This
algorithm assigns tasks to theworkstations in threeways: for-
ward, backward and bidirectional assignment. This improved
genetic algorithm has better performance than MOGA pre-
sented in the previous literature.

In this paper, we propose a modified ant colony algo-
rithm with a novel heuristic information and three kinds of
assignment approach to solve multi-objective SALBP. The
proposed MACO has been compared with MOGA and MA-
GA for several Scholl benchmark problems. The results is
much better than the other algorithms.

3 Assembly line balancing problem

3.1 Basic description of SALBP

Figure 1 shows a precedence graph of Bowman problem
model (Scholl 1993) which presents the precedence con-
straints of the tasks. There are a total of 8 tasks which are as
nodes in Fig. 1. The arrows mean the precedence constraints
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Fig. 1 A precedence graph

among the nodes. Only if all the immediate predecessor tasks
of a task have been done, this task can be done.

Figure 2 shows an assumption of tasks assignment. Each
task must be assigned to workstations front to back within
precedence constraint and cycle time constraint.

In this paper, we research simple assembly line balancing
problem. This SALBP has determinate task time, precedence
constraints and a given cycle time. The objectives are to min-
imize the number of workstations, maximize line efficiency
and minimize workload variation, simultaneously.

The characteristics of SALBP are as follows (Baybars
1986; Boysen et al. 2007):

• There is only one type of product on assembly line.
• Each task can be assembled in any one of workstations.
• Each task must not be assembled in more than one work-
station.

• Task time is determinate.
• All the tasks must be assigned to workstations.
• Only if all the immediate predecessor tasks of a task have
been done, this task can be done.

• The sum of the task time in a same workstation must not
be greater than cycle time.

3.2 Mathematical formulation

The notation that exists in mathematical model can be sum-
marized as follows:

i, j Task number, i, j = 1, 2, 3, . . . , N
k Workstation number, k = 1, 2, 3, . . . , M
N The number of tasks
M The number of workstations
C Theoretical cycle time which is given as precondi-

tion
ti The process time of task i
Sk The set of tasks which are assigned to the kth work-

station
T (Sk) The sum time of tasks which are assigned to the kth

workstation
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Fig. 2 Task assignment
illustration

Task 1 Task 2 Task 5Task 3 Task 4 Task 6 Task N

Workstation 
1

Workstation 
2

Workstation 
3

Workstation 
M

A feasible task sequence

Ca Actual cycle time (i.e., Ca = max1≤k≤M T (Sk))
Prec(i) The set of tasks which are the immediate predeces-

sor tasks of task i
Uk Utilization of the kth workstation (i.e., Uk =

T (Sk) /Ca)

Ū The average of all the workstation utilization, (i.e.,
Ū = ∑M

k=1Uk/M)

E Assembly line efficiency (i.e., E = ∑N
i=1 ti/(m ·

Ca))

Wv Workload variation amongworkstations (i.e.,Wv =√
∑M

k=1

(
Uk − Ū

)2
/M)

xik If task i is assigned to the kth workstation, xik = 1,
otherwise xik = 0

3.2.1 Mathematical model

The mathematical model for SALBP is composed of three
objective functions as follow (Al-Hawari et al. 2015):

minM =
N∑

k=1

max
1≤i≤N

(xik) (1)

max E =
N∑

i=1

ti/(m · Ca) (2)

minWv =
√
√
√
√

M∑

k=1

(
Uk − Ū

)2
/M (3)

Subject to:

xik = 0 or 1, ∀ (i, k) (4)
M∑

k=1

xik = 1, ∀i (5)

M∑

k=1

kxik ≤
M∑

k=1

kx jk, ∀ (i, j) , i ∈ Prec ( j) (6)

T (Sk) ≤ C (7)

The first objective function (1) is to minimize the num-
ber of workstations. The second objective function (2) is to
maximize assembly line efficiency, and the third objective
function (3) is to minimize the workload variation among
the workstations.

Formulas (4–7) are the constraints of SALBP. Constraint
(5) combined with constraint (4) means that each task can be
assigned into just only oneworkstation. Constraint (6)means
that task i prior to task j cannot be assigned to theworkstation
whose number is bigger than that of the workstation which
task j is assigned. The last constraint (7) means that the work
time of anyworkstations cannot be bigger than the theoretical
cycle time C .

4 Proposed modified ant colony optimization
algorithm

Ant colony optimization algorithm is created by imitating
ants foraging. There must be a lot of paths between ant hole
and food, and most of the ants will eventually focus on the
shortest path.

We usually consider a problem as a directed graph when
we use ant colony optimization algorithm to solve a prob-
lem. The ant travels in the directed graph within precedence
constraints and a feasible solution will be generated after all
the nodes have been traveled. Then pheromone will be left
in the path which an ant has traveled. The shorter the path is,
the more pheromone left. Ants can get the optimal solution
after a lot of ants have traveled. As the solution procedure
of ACO is similar to the design procedure of assembly line,
ACO can have a good performance among themeta-heuristic
algorithms.

Figure 3 shows the main process of the proposed mod-
ified ant colony optimization algorithm. First, we should
create a set of alternative nodes according to the precedence
constraints and calculate heuristic information and transi-
tion probability of all the nodes in the set of alternative
nodes. Second, we use roulette wheel selection (Holland
1975) to choose a task. Third, repeat the two steps above
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Fig. 3 Flow diagram of the proposed MACO

until all the nodes have been chosen and we can get a
task sequence. Fourth, assign task sequence to worksta-
tions by forward, backward and local rebalancing assignment
approach simultaneously. Forward assignment is to assign
task sequence from the first task to the last one to work-
stations one by one. Backward assignment is to assign task
sequence from the last task to the first one to workstations
one by one. Local rebalancing assignment is to reassign the
workstations between the longest and the shortest work-
station which have been assigned by forward assignment.
The specific of the three assignment approaches have been
introduced in Sect. 4.3. Then calculate objective function of
the three assignment approaches, respectively, and choose
the best as the assignment approach of this task sequence.
Fifth, retain optimal ants using stratified sequential algo-
rithm combined with Pareto-optimal front after all the ants
have completed the trip. Sixth, update the pheromone com-
bining with local and global update. Use all the solution
in the set of Pareto to update global pheromone trails. Set
a limit restrict the quantity of pheromone on each trail.
Finally, repeat all the steps above until no better solution in
three hundred generations or reach the maximum number of
iteration.

4.1 Heuristic information

Ant colony optimization algorithm has some advantages
compared with genetic algorithm and particle swarm algo-
rithm.GAandPSOonly use heuristic information to generate
an initial feasible solution at the beginning of algorithm or

even not. Then the two algorithms only rely on optimiza-
tion mechanism of themselves to search for optimal solution.
However, ACO can take full advantage of heuristic infor-
mation. ACO utilizes heuristic information each time when
choosing nodes to establish a task sequence.

Heuristic information built according to the character-
istics of problem can guide an ant to build a feasible
solution efficiently and quickly. Heuristic information can
affect the quality of the optimal solution which the algo-
rithm searches for. If the heuristic information that we build
is not good enough, the direction of the algorithm conver-
gence will be wrong and algorithm could not find good
solution.

In this paper, we use subsequent task number Ui and
deviation time di as heuristic information shown in Eq. (8)
according to the characteristics of SALBP and objective
functions.

ηi = ω1 · Ui

maxUj
+ ω2 · 1

di + 1
, i, j ∈ CA (8)

ηi is heuristic information which is the expectation value of
the task i . Subsequent task number Ui means the number of
the tasks whichmust be operated later than task i . IfUi is big,
a lot of tasks can be alternativewhen task i has been operated.
The bigger Ui is, the more important task i is. di represents
the deviation time which is the difference between the total
time of current workstation and the average time of all the
previous workstations when choose task i and assign it to
the current workstation. CA represents the set of alternative
tasks. ω1 and ω2 are the weights of subsequent task number
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and deviation time in heuristic information. We suppose that
ω1 = 1, ω2 = C/5 after lots of experiments.

Equation (9) shows deviation time di . It means that if we
choose task i and use forward assignment approach to assign
task i to the kth workstation. Deviation time di is the differ-
ence between the total work time of current kth workstation
and the average of the total work time of previous k − 1
workstations. When kth workstation is the first workstation,
deviation time di is equal to 0. As deviation time di can be
zero, we might as well set di+1 as denominator in the heuris-
tic information. We can know that if all workstations have
similar work time, the value of line efficiency and workload
variation will be good. If all workstations’ work time is the
same, the value of line efficiency and workload variation will
be the optimal value 100% and 0, respectively. If deviation
time di is small, it means that the work time of current work-
station is close to that of previous workstations. The smaller
di is, the higher choice possibility of task i is.

di =
⎧
⎨

⎩

∣
∣
∣
∣T (Sk) −

∑k−1
m=1 T (Sm )

k−1

∣
∣
∣
∣ , k > 1;

0, k = 1.
(9)

Data analysis plays an irreplaceable role during the period
of solving a problem. The essence of cognitive analysis is to
determine the consistency of featureswith the expectations of
the problems (Ogiela and Ogiela 2009). The most important
is to take into consideration both the information of current
situation and the impact to further development (Ogiela and
Ogiela 2014). It can get twice result with half the effort for
finding the core information of the problem. The heuristic
information presented in this paper is just in conformity with
the point of cognitive analysis that deviation time shows the
information of current situation and subsequent task number
represents the impact to further development, respectively.

4.2 Construction of a feasible solution

4.2.1 Set up alternative node set CA

Wemust set up an alternative node set according to the prece-
dence constraints each time when choosing next node and
choose one node from the alternative node set by roulette
wheel selection. Only the nodes whose the immediate pre-
decessor tasks have been done can be put into the alternative
node set.

In this paper, we use N × N matrix Pre to represent the
precedence constraints. If task i is the immediate predeces-
sor task of task j , Pre(i, j) = 1. If not, Pre(i, j) = 0. Thus,
we can build a 0–1 matrix of precedence constraints. Equa-
tion (10) shows a precedence matrix according to Bowman’s
precedence graph shown in Fig. 1. The number of tasks N
is 8.

Pre =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(10)

If
∑N

i=1 Pre (i, j) = 0, i.e., all the elements of the j th
column of Pre matrix are zero, it means that task j has no
immediate predecessor task, and it can be put into alterna-
tive node set. We can know that

∑N
i=1 Pre (i, 1) = 0 from

Eq. (10), i.e., task 1 is alternative and it is obvious that
only task 1 has no immediate predecessor task at first from
Fig. 1.

Suppose that we have chosen task i and put it into Tabu
set which reserve the tasks that have been chosen. Then we
must update Pre matrix. Make all the elements of the i th row
of Pre matrix to be zero, i.e., Pre(i, j) = 0, j = 1, 2, . . . , N .
So that we can choose a task using the method proposed in
previous paragraph all the time. If a node has been put into
Tabu set, do not put it into alternative node set even though
all immediate predecessor tasks of it have been done.

4.2.2 Calculate transition probability and select

We must calculate transition probability of all the nodes in
alternative node set every time when we are choosing next
node and then use roulette wheel selection method to choose
a node.

Transition probability Pi j is calculated like Eq. (11). i is
the number of the node which is chosen just last time. τi j rep-
resents the amount of pheromone between task i and task j .
η j represents the expectation value of task j . α and β repre-
sent the weight of pheromone and expectation, respectively.

Pi j =
⎧
⎨

⎩

τα
i j ·ηβ

j
∑

l∈CA τα
il ·ηβ

l

, j ∈ CA

0, j /∈ CA
(11)

After all the alternative nodes’ transition probability have
been calculated, we use roulette wheel selection method
(Holland 1975) to choose next node. The specific procedures
of roulette wheel selection are as follow:

1. Put all the alternative nodes between 0 and 1 one by one.
2. Size of the space that each node occupies is equal to the

node’s transition probability.
3. Random generate a number between 0 and 1.
4. Select the node whose region contain the generated

number.
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Fig. 4 Multiple assignment illustration

The higher the transition probability of a node is, the
higher probability it can be selected. But roulettewheel selec-
tion would not neglect the nodes whose transition probability
is very small. So that ants can avoid local optimum.

4.3 Task assignment

In this paper, we adopt three methods: forward assignment,
backward assignment and local rebalancing assignment
which have not been used along with ACO before to assign
task sequence at the same time. A task sequence assigned
by three assignment methods may obtain different results. If
we only use forward assignment, we will ignore the other
two results which may be better than the result of forward
assignment. Figure 4 shows the advantage of using three
assignment methods. The first part of Fig. 4 shows a prece-
dence graph for example with a given cycle time 25 and two
feasible task sequences of the proposed example. The two
feasible task sequences are assigned into workstations by
using forward assignment, backward assignment and local
rebalancing assignment, respectively, as shown in the rest
three parts of Fig. 4. Next, we will specify the three assign-
ment methods.

4.3.1 Forward assignment

In the most of previous papers, they only use forward
assignment to assign task sequence. In this paper, when we
construct a task sequence, we also only use forward assign-
ment. But after a task sequence has been constructed, we use
the other two assignment methods to find if there are better

results. Forward assignment is to assign task sequence from
the first task to the last one to the workstation. If a worksta-
tion’s work time is bigger than cycle time, assign the task to
the next workstation until all tasks have been assigned.

4.3.2 Backward assignment

Backward assignment is to assign task sequence from the
last task to the first on to the workstation. If a workstations’
work time is bigger than cycle time, assign the task to the next
workstation until all tasks have been assigned. Then, wemust
reverse the number of workstations, i.e., the first workstation
turns to the last one, the second turns to the penultimate one.
So that it can conform to precedence constraint.

4.3.3 Local rebalancing assignment

Local rebalancing assignment is to rebalance some tasks
which have been assigned into workstations based on for-
ward assignment. The definite procedures are as follow:

1. After all tasks have been assigned by forward assignment,
we can pick out the workstations whose work time is the
longest or the shortest. If the number of the workstation
which has the longest work time is smaller than that of
the workstation which has the shortest work time, go to
the second step. If not, go to the third step.

2. If the number of the workstation which has the longest
work time is smaller than that of the workstation which
has the shortest work time, reallocate tasks in the work-
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stations between the longest workstation and the shortest
workstation.

3. Calculate the average time of these workstations as first.
Then assign these tasks to the workstations one by one. If
the difference between a workstation’s work time and the
average time after a task assigned to this workstation is
bigger than that before a task assigned to thisworkstation,
assign this task to the next workstation.

4. If the number of the longest workstation is bigger than
that of the shortest workstation, reallocate the tasks in
the workstations between the first workstation and the
shortest workstation, and the tasks in the workstations
between the longest workstation and the last workstation,
respectively. The regulation of the reallocation is just like
the third step.

In this paper, we simultaneously adopt the three assign-
ment methods and calculate objective function and then
choose the best one for the ant. But there are three objec-
tives, and we can not distinguish which is the best one. We
useEq. (12) to evaluate the objective value of the three assign-
ment methods.

Fv1 = max f1 − f1
max f1 − min f1

Fv2 = f2 − min f2
max f2 − min f2

Fv3 = max f3 − f3
max f3 − min f3

Fv = Fv1 + Fv2 + Fv3 (12)

Max fi and min fi , (i = 1, 2, 3) represent the maximum
and the minimum of the i th objective during the three assign-
ment methods. Fv is the value of evaluation. The bigger of
Fv is, the better the assignment method is.

4.4 Multi-objective decision

In this paper, we combine stratified sequential algorithm
with Pareto-optimal front to screen the best ant. We set
minimization of the number of workstations as the first
level, maximization of line efficiency and minimization of
workload variation as the second level. Then we search for
Pareto-optimal front in the second level.

4.4.1 Stratified sequential algorithm

Stratified sequential algorithm’s basic idea is to divide
objective functions into different levels according to the
significance of each objective and optimize the latter level
objective on the premise that the front level objective has
obtained the best.

In this paper, we establish three functions to evaluate the
performance of assembly line balancing. We can know that
the first objective that minimize the number of workstations
is the most significant, and the other two objectives is just
to balance the work time of each workstation on the premise
of the first objective. So we distribute the first objective that
minimize the number of workstations to the first level and
the other two objectives to the second level.

4.4.2 Construction of Pareto-optimal front set

Suppose that X1 and X2 are any two of feasible solutions. If
they can satisfy Eq. (13), it means that X1 dominate X2.

∀u ∈ {1, 2, . . . ,U } , fu (X1) ≤ fu (X2) ;
∃i ∈ {1, 2, . . . ,U } , fi (X1) ≤ fi (X2) . (13)

If X1 dominate X2, it means that X1 is better than X2

on all the objectives. As a consequence, the solution which
cannot be dominated by any other solutions can be put into
Pareto-optimal front set.

4.5 Pheromone updating rule

In this paper, we update pheromone among the nodes and set
a limitation to limit pheromone between τmax and τmin. We
use the solutions of each generation for local update and all
the solutions in Pareto-optimal front set for global update.

We should calculate the new pheromone �τi j left by ants
as Eq. (14) at first.

�τi j = �τi j + Q

L
(14)

L represents the evaluation of an ant, and it is calculated
as Eq. (15).

L = f1
min f1

− f2
max f2

+ f3
min f3

(15)

Min f1, max f2, min f3 represent the optimal value of the
three objectives in Pareto-optimal front at that time.

After calculating the new left pheromone �τi j , we will
update the pheromone among the nodes as Eq. (16).

τi j = (1 − ρ) · τi j + �τi j , (i, j = 1, 2, . . . , N ) (16)

If some pheromone oversteps the limitation, make it equal
to corresponding threshold. Limitation of pheromone can
limit the difference among the pheromone on each road to
be oversize. As a consequence, it can effectively avoid ants
trapping in local optimum.
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5 Computational experiments and results

In this section, we use the proposed MACO to solve some
famous test problems (Scholl 1993; Scholl and Klein 2007)
with some different cycle times in order to test its perfor-
mance formulti-objective SALBP, and comparewithMOGA
(Hwang et al. 2008) and MA-GA (Al-Hawari et al. 2015).

5.1 Algorithmic and experimental configurations

The experiments are coded on Visual Basic 6.0 and per-
formed on a Core-i3 CPU (2.10GHZ speed). The parameters
of the proposed MACO are shown in Table 1. Terminal con-
ditions of the experiments are shown as follow:

Table 1 Parameters configurations

Parameter Value

Population size: PopSize 2/3 × N

Pheromone weight: α 1

Heuristic information weight: β 3

Pheromone volatilization coefficient: ρ 0.4

Pheromone concentration: Q 40

Pheromone upper limit: τmax 20

Pheromone lower limit: τmin 80

• The number of generations reaches one thousand.
• No better solution appears in three hundred generations.

5.2 Results

We can see the results of the proposed MACO for multi-
objective SALBP comparing withMOGA andMA-GA from
Table 2. The column of m* represents the minimum num-
ber of workstations which has been known as the optimal
solution. The results shown in bold fonts are better than that
of both MOGA and MA-GA. The last column shows the
assignment methods that the optimal solution chooses.

Figures 5 and 6 show the values of line efficiency and
workload variation of all the algorithms using histogram.
We can see the difference of the performance of the three
algorithms for ALBP easily. Figures 7 and 8 show the
improvement of results that the proposed MACO obtains
comparing with MOGA and MA-GA.

Figure 9 shows the convergence line chart of workload
variation obtained from the 18th test problem.We can see that
the proposed MACO can get better solution at the beginning
of iteration. The main reason is that the suitable heuris-
tic information plays a leading role during ants search for
solutions.

Table 3 shows the results of statistical treatment that each
problem has been run for 30 times by the proposed MACO.

Table 2 Experimental results of the proposed MACO versus MOGA and MA-GA

No. Test problem N C m* MOGA MA-GA Proposed MACO Assignmenta

m E% Wv m E% Wv m E% Wv

1 Mitchell 21 14 8 8 93.7 0.042 8 93.7 0.042 8 93.7 0.042 1, 2, 3

2 15 8 8 87.5 0.090 8 93.8 0.042 8 93.8 0.042 1, 3

3 21 5 5 100.0 0.000 5 100.0 0.000 5 100.0 0.000 1, 2, 3

4 Heskia 28 138 8 8 92.7 0.022 8 99.2 0.006 8 99.2 0.006 1

5 205 5 5 99.9 0.001 5 99.9 0.001 5 99.9 0.001 1, 2, 3

6 324 4 4 79.0 0.153 4 100.0 0.000 4 100.0 0.000 3

7 Sawyer 30 27 13 13 92.3 0.035 13 95.9 0.032 13 95.9 0.024 1, 3

8 33 11 11 89.2 0.046 11 92.1 0.036 11 92.1 0.034 1

9 54 7 7 85.7 0.030 7 96.4 0.024 7 96.4 0.015 1, 3

10 Kilbridge 45 79 7 7 99.8 0.004 7 99.8 0.004 7 99.8 0.004 1, 2, 3

11 92 6 6 100.0 0.000 6 100.0 0.000 6 100.0 0.000 1, 2, 3

12 184 3 3 100.0 0.000 3 100.0 0.000 3 100.0 0.000 1, 2, 3

13 Tonge 70 364 10 10 96.4 0.039 10 98.6 0.007 10 99.4 0.004 1, 3

14 468 8 8 93.8 0.014 8 97.9 0.009 8 99.5 0.003 1

15 Arcus1 83 6842 12 12 92.2 0.043 12 96.9 0.041 12 97.6 0.041 1, 3

16 8412 10 10 90.0 0.038 10 97.1 0.015 10 98.3 0.007 3

17 10,816 8 8 87.5 0.160 8 92.4 0.048 8 97.6 0.011 3

18 Arcus2 111 10,027 16 16 93.7 0.030 16 96.7 0.025 16 99.4 0.004 1

19 10,743 15 15 93.3 0.035 15 98.3 0.014 15 98.7 0.012 3

a Assignment-1, forward assignment; 2, backward assignment; 3, local rebalancing assignment
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Fig. 9 Convergence line chart of workload variation

value, standard deviation and average convergence time of
30 times results of each problem, respectively.

Figure 10 shows the standard deviation of the 30 times
results. Figure 11 shows the tendency of average convergence
time as the problem size N increasing.

Figures 12 and 13 show the Gantt chart of two problems’
optimal solution which the other two algorithmsMOGA and
MA-GA can not get. The two test problems are Sawyer and
Arcus1whose given cycle time are 27 and 8412, respectively.

6 Discussion

It is observed that the proposed MACO performs better than
MOGA and MA-GA for all the test problems from Table 2.
The proposed MACO can acquire the optimal number of
workstations and the same or better line efficiency and work-
load variation than MOGA and MA-GA. The improvement

123



A modified ant colony optimization algorithm for multi-objective assembly line balancing 6891

Table 3 Statistical treatment of the proposed MACO for 30 times results of each problem

No. Test problem N C m Best Worst Average SD ACT (s)

E% Wv E% Wv E% Wv E% Wv

1 Mitchell 21 14 8 93.7 0.042 93.7 0.042 93.7 0.042 0.000 0.000 1.0

2 15 8 93.8 0.042 93.8 0.042 93.8 0.042 0.000 0.000 1.0

3 21 5 100.0 0.000 100.0 0.000 100.0 0.000 0.000 0.000 1.0

4 Heskia 28 138 8 99.2 0.006 99.2 0.006 99.2 0.006 0.000 0.000 1.6

5 205 5 99.9 0.001 99.9 0.001 99.9 0.001 0.000 0.000 6.8

6 324 4 100.0 0.000 100.0 0.000 100.0 0.000 0.000 0.000 2.3

7 Sawyer 30 27 13 95.9 0.024 95.9 0.043 95.9 0.036 0.000 0.007 2.6

8 33 11 92.1 0.034 92.1 0.036 92.1 0.035 0.000 0.001 3.8

9 54 7 96.4 0.015 96.4 0.015 96.4 0.015 0.000 0.000 2.1

10 Kilbridge 45 79 7 99.8 0.004 99.8 0.004 99.8 0.004 0.000 0.000 2.8

11 92 6 100.0 0.000 100.0 0.000 100.0 0.000 0.000 0.000 2.2

12 184 3 100.0 0.000 100.0 0.000 100.0 0.000 0.000 0.000 1.2

13 Tonge 70 364 10 99.4 0.004 98.9 0.005 99.3 0.004 0.158 0.001 30.2

14 468 8 99.5 0.003 99.3 0.005 99.5 0.003 0.089 0.001 29.9

15 Arcus1 83 6842 12 97.6 0.041 96.5 0.043 97.2 0.042 0.427 0.001 91.3

16 8412 10 98.3 0.007 98.3 0.011 98.3 0.008 0.000 0.001 63.8

17 10,816 8 97.6 0.011 97.6 0.012 97.6 0.011 0.000 0.001 128.8

18 Arcus2 111 10,027 16 99.4 0.004 99.1 0.010 99.3 0.006 0.148 0.002 160.2

19 10,743 15 98.7 0.012 98.6 0.014 98.7 0.013 0.063 0.001 132.4
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Fig. 10 Standard deviation of the proposed MACO

of the proposed MACO can be a maximum of 26.58 and
100% improvement than MOGA for the second and the
third objective, respectively, and a maximum of 5.6 and 84%
improvement than MA-GA. MACO has good performance
for large-scale ALBP such as test problem Arcus2. As a
consequence of that, we can say that proposed MACO has
excellent performance for both small-scale and large-scale
SALBP. Furthermore, we can see that the standard deviation
is very small for all the test problem. It demonstrates that
the proposed MACO has an excellent stability for all kinds
of SALBP. The convergence time of the proposed MACO is
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Fig. 11 Average convergence time of the proposed MACO

also in a reasonable scope no matter for small-size or large-
size problems observed from Fig. 11.

The larger the scale of assembly line is, the more feasible
solutions exist. In this paper, the proposedMACO can search
for the better solutions than MOGA and MA-GA from the
large number of feasible solutions. Themain reason for this is
that we establish a suitable heuristic information. We can see
it from Fig. 9 which shows the convergence line of MACO
for Arcus2 test problem. The proposed MACO can search
for better solutions at the beginning of iteration because we
have established a suitable heuristic information. A suitable
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Fig. 12 Optimal solution of Sawyer test problem for which the given C is 27

Fig. 13 Optimal solution of Arcus1 test problem for which the given C is 8412

heuristic information can actively guide ants to search for the
optimal solution accurately and rapidly. It is different from
pheromone which impacts ants by feedback derived from
optimization mechanism of ACO itself. Pheromone can only
passively affect ants. Heuristic information must be estab-
lished according to objectives.Awrong heuristic information

may guide ants to the wrong direction and could not find the
optimal solution forever. In this paper, we establish heuristic
information with subsequent task number and deviation time
according to objectives of SALBP. It proves that the proposed
heuristic information has a good performance on SALBP
according to the test results in Sect. 5. Such as the tests of
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nos. 7, 8, 9 and so on which can get better solutions than
MOGA and MA-GA using forward assignment. These tests
which eliminate the influence of multiple assignments fully
prove that the proposed heuristic information has good effect.

Besides that, the proposed multiple assignment approach
and multi-objective decision that stratified sequential algo-
rithm combined with Pareto-optimal front also play indis-
pensable roles. Multiple assignment approach can assign
a task sequence to different workstations and get differ-
ent objective value as a result. So that it can increase the
potential of a task sequence. As the proposed heuristic infor-
mation tends to assign a task whose processed time is short
to the bottom of a workstation, it is beneficial for local
rebalancing assignment to reallocate the short tasks at the
bottom of a workstation to the next workstation to seek bet-
ter solutions and does not destroy the cycle constraint. We
can see that the 6th, 16th, 17th and 19th test problems in
Table 2 can be searched for the optimal solution only by
local rebalancing assignment method. It proves that multi-
ple assignment approach plays a great role in MACO. The
proposed multi-objective decision which combines strati-
fied sequential algorithm with Pareto-optimal front is able to
screens much more and better solutions than linear weighted
sum method. The more and better solutions screened for
pheromone global update can improve the influence of
pheromone on the Pareto-optimal solutions’ path and guide
ants to better path.

7 Conclusions

The main contribution of this paper is the improvement
of a modified ant colony optimization algorithm for multi-
objective SALBP using the novel heuristic information,
multiple assignment method and a modified multi-objective
decision. The proposed MACO has a good performance
on multi-objective SALBP which is to minimize the num-
ber of workstations, maximize line efficiency and minimize
workload variation as a consequence of test problem experi-
ments. It is obvious that the proposed MACO has improved
results compared to MOGA and MA-GA. The maximum
improvement of the proposedMACOcan be 26.58 and 100%
improvement than MOGA and 5.6 and 84% improvement
thanMA-GA on the second objective and the third objective,
respectively. The proposed MACO also has an excellent sta-
bility as the standard deviation is always less than 0.427 for
all the test problems. The computing speed of the proposed
MACO is also very fast. It can get optimal solution within
200s even though the test problem is Arcus1 whose problem
size is reach up to 111 tasks.

In the future, wewill continue to studyALBPwith respect
to other objective functions and improve ACO for the new
objectives. We will also investigate to combine ACO with

othermeta-heuristic algorithm forALBP. The contribution of
this paper put forward a new idea to improve ACO according
to the characteristic of the problem to be solved.
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