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Abstract A Bayesian network (BN) is an important prob-
abilistic model in the field of artificial intelligence and a
powerful formalism used to describe uncertainty in the real
world. As science and technology develop, considerable data
on complex systems have been acquired by various means,
which presents a significant challenge regarding how to
accurately and robustly learn a network structure for a com-
plex system. To address this challenge, many BN structure
learning methods based on swarm intelligence have been
developed. In this study,we performa systematic comparison
of three typical methods based on ant colony optimiza-
tion, artificial bee colony algorithm, and bacterial foraging
optimization. First, we analyze and summarize their main
characteristics from the perspective of stochastic searching.
Second, we conduct thorough experimental comparisons to
examine the roles of different mechanisms in each method
bymeans of multiaspect metrics, i.e., the K2 score, structural
differences, and execution time. Next, we perform further
experiments to validate the robustness of different algorithms
on some benchmark data sets with noise. Finally, we present
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the prospects and references for researchers who are engaged
in learning BN networks.

Keywords Bayesian network structure learning · Swarm
intelligence · Ant colony optimization · Artificial bee colony
algorithm · Bacterial foraging optimization

1 Introduction

Uncertainty is a natural phenomenon that exists widely in the
real world, especially in the current era of large data sets. As
powerful probabilistic graphical models, Bayesian networks
(BNs) (Pearl 1988) have played an increasingly important
role in modeling and reasoning with uncertainty. There are
two main differentiated areas in the research of BNs: (1)
learning a BN that represents a given data set and (2) pro-
viding an inference mechanism to issue queries and answers.
Alongwith the development andpopularity ofmachine learn-
ing and data mining, BNs have gradually been extensively
developed and studied (Koller and Friedman 2009) and have
been applied in a variety of different areas, including pattern
recognition (Shan et al. 2009), data mining (Romero and
Ventura 2010), neuroscience (Bielza and Larraňaga 2014),
computational biology (Needham et al. 2007), brain infor-
mation processing (Mumford and Ramsey 2014), and risk
analysis (Weber et al. 2012).

Learning a BN from data includes two main subtasks,
first to learn the structure of a BN (i.e., identifying the
topology of a BN) and second, to learn the numerical para-
meters associated with a BN structure (Daly et al. 2011).
For the two subtasks, learning a BN structure is a fun-
damental task, and parameter learning is a subroutine in
structure learning. Over the past two decades, learning a
BN structure from data has received considerable attention.
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Researchers have proposed various algorithms (De Campos
et al. 2002; Ji et al. 2013; Yang et al. 2016; De Campos and
Huete 2000; Cheng et al. 1997; Heckerman 1998; Suzuki
1999; Wong et al. 1999; Alcobó 2004; Cooper and Her-
skovits 1992) in which the conventional methods mainly
include the dependency analysis approach (De Campos
and Huete 2000; Cheng et al. 1997) and the score-and-
search approach based on a general search strategy (Alcobó
2004; Cooper and Herskovits 1992). The first approach
constructs a BN structure by judging dependency and inde-
pendency relationships among variables, which needs to
perform dependency tests. The second approach constantly
uses a search method to search for candidate network struc-
tures in the space of BN structures until the network structure
with the best metric is found. Unfortunately, both conven-
tional approaches have fatal drawbacks. The first approach
has to perform an exponential number of dependency tests,
which are computationally expensive and may be unreli-
able (Cheng et al. 1997; Cooper and Herskovits 1992). For
the second approach, the space of candidate network struc-
tures increases extremely rapidly and becomes very large
when the number of variables increases (Robinson 1977;

Chickering et al. 1994), which makes the second approach
using deterministic search methods often trapped in a local
optimum and not be able to obtain the best solution. To effi-
ciently search the optimum or near-optimum in the whole
candidate structure space of BNs, swarm intelligence (SI)
methods which incorporate nature-inspired stochastic search
were applied to learn BN structures from data in recent
years and quickly became a new and significant focus of
research.

Over the past decade, several SI methods, such as ant
colony optimization (ACO) (Dorigo et al. 1996), artificial
immune system (AIS) (Mori et al. 1993), particle swarm
optimization (PSO) (Kennedy and Eberhart 1995), artificial
bee colony algorithm (ABC) (Karaboga 2005), and bacterial
foraging optimization (BFO) (Passino 2002), have been suc-
cessfully applied to BN structure learning (BNSL). Among
them (see Table 1), ACO-B (De Campos et al. 2002), ABC-
B (Ji et al. 2013), and BFO-B (Yang et al. 2016) are three
representative algorithms. ACO-B opened up the way to
learn BN structures using SI methods. ABC-B and BFO-B
are recent extensions of ABC and BFO for BNSL, respec-
tively. Moreover, these three SI methods have the greatest

Table 1 Different SI algorithms on BNSL

Type Algorithm References Space Representation Metric Solving
mechanism

ACO ACO-B De Campos et al. (2002) DAGs Graph K2 ACO + Local
search

ACO-K2SN De Campos et al. (2008) Orderings Permutation K2 ACO + K2SNa +
Local search

MMACO Pinto et al. (2009) DAGs Graph BDEu MMPCb + ACO

ACO-E Daly and Shen (2009) PDAGs Graph BDEu ACO + Local
search

I-ACO-B Ji et al. (2009) DAGs Graph K2 CIc + ACO +
Local search

ChainACO&K2ACO Wu et al. (2010) Orderings Chain permutation K2 ACO + K2 search

HACO-B Ji et al. (2011) DAGs Graph K2 CI + ACO +
Simulation
annealing

AIS Copt-aiNet Castro and Zuben (2005) DAGs Connectivity matrix BIC Copt-aiNetd

PSO BNDP Heng et al. (2007) DAGs Adjacency list BDEu PSO

BN-BQPSO Zhao et al. (2009) DAGs Connectivity matrix BIC PSO

PSO-BNL Wang and Yang (2010) DAGs Connectivity matrix BDEu PSO

IBPSO Li (2010) DAGs Connectivity matrix MDL PSO

PSO-K2 Aouay et al. (2013) Orderings Permutation K2 PSO + K2 search

ABC ABC-B Ji et al. (2013) DAGs Graph K2 EABCe

BFO BFO-B Yang et al. (2016) DAGs Graph K2 BFO

a K2SN: An extension of K2 algorithm, which does not require a given ordering (De Campos and Puerta 2001)
bMMPC: A local discovery algorithm called max–min parents and children (Tsamardinos et al. 2003)
c CI: The conditional independence test used by the dependency analysis approach to judge dependent and independent relationships among variables
(Koller and Friedman 2009; De Campos and Huete 2000)
d Copt-aiNet: Artificial immune network for combinatorial optimization algorithm, which was proposed in Gomes et al. (2003)
e An extended ABC algorithm (Ji et al. 2013)
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similarity in BNSL. They use the same representation and
metric to find better BN structures in the same search space.
Today, BNSL methods based on SI have drawn increasing
attention, which is also verified by the state-of-the-art sur-
vey on SI (Martens et al. 2011). Authors regarded BNSL
as an important application of SI in this survey. However,
to the best of our knowledge, there is no previous survey
that exclusively focuses on SI for BNSL. Therefore, we
will conduct a thorough investigation of SI for BNSL in
this paper, whose main contributions include the following
aspects:

(1) We classify the popular BNSL algorithms based on
SI into five paradigms and present the search spaces,
solution representation forms, metrics, and searchmech-
anisms for different algorithms, which provide a deeper
insight into BNSL methods based on SI, and can help
the interested researchers to have a better understanding
of this domain.

(2) To explain in detail the working principle of SI methods
for BNSL, we take ACO-B, ABC-B, and BFO-B as rep-
resentatives, discuss their common characteristics, and
compare their basic principles: stochastic search mecha-
nisms, local optimization mechanisms, and information
transmission mechanisms. And then, we conduct sys-
tematic experiments to validate the roles of important
mechanisms using derived algorithms.

(3) We further evaluate the properties of ACO-B, ABC-B,
and BFO-B by assessing their robustness in comparison
with two non-SI methods on data sets with noisy data.

The rest of this paper is organized as follows. Section 2
briefly presents an overview about the research on BNSL,
especially the BN structure learning based on SI. In Sect. 3,
we summarize the common characteristics and differences of
ACO-B, ABC-B, and BFO-B. Next, experimental and com-
parison results are given and discussed in Sect. 4. Finally,
Sect. 5 summarizes our conclusions and future directions.

2 BN and its structure learning

2.1 BN

A BN is a directed acyclic graph (DAG) (Bang-Jense and
Gutin 2008): G = 〈X, A〉, in which each node Xi ∈ X
represents a random variable in a domain and each arc
ai j ∈ A describes a direct dependence relationship between
two variables Xi and X j . Associated with each node, Xi ,
is a conditional probability distribution represented by θi =
P(Xi |Π(Xi )), which quantifies the degree to which the node
Xi depends on its parentsΠ(Xi ). Because the graph structure
G qualitatively characterizes the independence relationships

among random variables, and these conditional probability
distributions quantify the strength of the dependencybetween
each node and its parent nodes, it can be proved that a BN
〈X, A〉 uniquely encodes the joint probability distribution of
the domain variables X = {X1, X2, . . . , Xn} (Pearl 1988):

P(X1, X2, . . . , Xn) =
n∏

i=1

P(Xi |Π(Xi )). (1)

2.2 BNSL

The structure of a BN uncovers the underlying probabilistic
dependence relationships among nodes and a set of assertions
about conditional independencies, which is an important the-
oretical basis to learn a BN structure from data. The problem
of learning a BN structure from data can be stated as follows:
Given a sample data D = {X [1], X [2], . . . , X [N ]}, where
X [i] is an instance that contains a set of value assignments
for n discrete domain variables, the learning goal is to find a
BN structure that matches D as well as possible. Many algo-
rithms have been proposed to learn a BN structure from data.
According to implementation mechanisms, these algorithms
are usually classified into two basic categories (Daly et al.
2011; Heckerman 1998; Buntine 1996): (1) the dependency
analysis approach and (2) the score-and-search approach.
The former views BNSL as a constraint satisfaction prob-
lem, whereas the latter takes it as an optimization problem.
More specifically, the dependency analysis approach usually
uses a statistical method to estimate dependent and inde-
pendent relationships among variables in the domain and
constructs an ideal BN by analyzing these properties. The
score-and-search approach always uses a search method to
find candidate network structures and uses a scoringmetric to
evaluate the fitness of candidate structures, until the network
structure with the best score is found. The implementation
of the dependency analysis approach is relatively simple.
However, computations for high-order statistical testing are
often complex and unreliable, and the learning quality is dif-
ficult to ensure (Cheng et al. 1997; Cooper and Herskovits
1992).

Learning BN structures is an NP-hard problem as the
number of variables increases (Chickering et al. 1994), and
exact searchmethods can do nothing when the candidate net-
work space becomes large. Although some heuristic search
methods, such as two famous algorithms, incremental hill-
climbing search (IHCS) (Alcobó 2004) and max–min hill-
climbing (MMHC) (Tsamardinos et al. 2006), can address
the problem of large search space, they are local optimiza-
tion techniques in essence; thus, they can get trapped in
local optima. To solve this problem, some stochastic search
methods have drawn great attention from all over the world.
The stochastic search methods are global search and able to
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search the whole space in a reasonable amount of time. They
employ meta-heuristic and stochastic mechanisms to escape
from a local optimal solution and obtain the global optimal
solution or nearly global optimal solution. Up to now, sev-
eral stochastic methods have been applied to BNSL. These
methods can be divided into two categories: the evolution-
ary method and the SI method. The evolutionary method
draws inspiration from evolution and natural genetics, such
as genetic algorithm (Larrañaga et al. 2013) and evolutionary
programming (Larrañaga et al. 2013). The SI method mod-
els the social behavior of certain living creature, such as PSO
(Daly et al. 2011), ACO (Daly et al. 2011), AIS (Castro and
Zuben 2005), ABC (Ji et al. 2013), and BFO (Yang et al.
2016).

2.3 BNSL based on SI

SI algorithms are meta-heuristic search methods that are
motivated by the collective behavior of a group of living
organisms (such as ants, bees, fish, or bacteria). The essen-
tial characteristic of SI is the global optimization mechanism
of a population of individuals. Each individual in the pop-
ulation is a simple agent with limited capabilities, such as
local interaction with other individuals and the environment,
but they can cooperatively perform many complex tasks
for their survival. From the perspective of self-organization,
a swarm is a group of agents that cooperate to achieve a
goal. These agents usually use local perception and moving
rules to govern their actions and use interaction and feed-
back mechanisms to achieve a collective intelligence. That
is, although there is no centralized control to guide the behav-
ior of the agents, local interactions among agents always
lead to the emergence of global behavior (Eberhart et al.
2001).

Since ACO was used for BNSL in 2002 (De Campos
et al. 2002), SI has gradually become a very promising
approach for BNSL. Up to now, there are five SI paradigms,
i.e., ACO, AIS, PSO, ABC, and BFO, which have been
applied in this domain. Table 1 summarizes some represen-
tative algorithms based on the five paradigms and lists the
algorithm names, the corresponding references, the search
spaces, the solution encodings, the scoring metrics, and
the mechanisms. According to the different learning goals,
there are three search spaces, namely DAGs, orderings (De
Campos et al. 2008), and PDAGs (Daly and Shen 2009)
(partially DAGs), which represent feasible BN structures,
variable ordering combinations, and equivalence classes of
BNs, respectively. Graphs, adjacency lists (Heng et al. 2007),
and connectivity matrix (Zhao et al. 2009) are three avail-
able solution encodings in the search space of DAGs, and
a graph is also used as a valid solution encoding in the
search space of PDAGs, whereas permutation (De Campos
et al. 2008) and chain permutation (Wu et al. 2010) are two

solution forms in the search space of orderings. Based on
the penalized maximum likelihood or the marginal likeli-
hood, four different scoring metrics Bayesian information
criterion (BIC) (Schwarz 1978), Bayesian Dirichlet equiv-
alence (BDEu) (Heckerman et al. 1995), K2 (a specific
case of Bayesian Dirichlet metric) (Cooper and Herskovits
1992), and minimum description length (MDL) (Rissa-
nen 1978) are used to evaluate the quality of solutions
in the search process. The last column in the table gives
the problem-solving mechanism that corresponds to each
algorithm.

3 Qualitative comparisons of ACO-B, ABC-B, and
BFO-B

To explain in detail the working principle of SI methods for
BNSL, this section takes ACO-B, ABC-B, and BFO-B as
examples to discuss their common characteristics and com-
pare their basic principles.

3.1 Common characteristic and framework

The ACO-B algorithm (De Campos et al. 2002) is a score-
and-search approach for learning BN structures based on
ACO, whosemain idea is to use ant colony stochastic search-
ing to construct and search for a global optimal solution in
the feasible solution space. The ABC-B algorithm (Ji et al.
2013) extends ABC optimization to learn the BN structure.
The important characteristic of ABC-B is that employed
bees and onlooker bees carry out neighbor searches, while
scout bees construct new solutions in the feasible solution
space. The BFO-B algorithm is a new approach just pro-
posed in Yang et al. (2016) that makes use of BFO to
learn a BN structure. The key feature is that BFO-B merges
three principal schemes (i.e., chemotaxis, reproduction, and
elimination and dispersal) into the score-and-search process
and attempts to achieve balance between exploitation and
exploration.

Although the three paradigms simulate different behav-
ioral models and make use of different search methods, their
common characteristic is that solution searches are com-
bined into the meta-heuristic optimization mechanism. From
the perspective of basic processes, they all perform three
phases: solution construction, local optimization, and infor-
mation transmission. Figure 1 roughly shows the basic flow
diagram that uses these SI techniques to learn a BN struc-
ture. In general, a swarm in these algorithms can be viewed
as a group of agents to cooperatively obtain the BN struc-
ture with the best score, in which each agent represents a
feasible solution. In this process, all solutions in a swarm
are iteratively updated and optimized by swarm foraging
behaviors and gradually converge near the global optima.
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Fig. 1 The flow diagram of employing SI for learning BN structures

Table 2 Feature comparisons of the three learning algorithms based on SI

Algorithms Agent Biological
phenomena

Main features in three common phases

Solution
construction

Local optimization Information
transmission

ACO-B Ant Ant colony foraging Locally percept and
randomly search (α, β
and q0)

Simple operators (lstep) Pheromone (ρ, ϕ and τ0)

ABC-B Bee Bee colony foraging Locally percept and
randomly search (α, β
and q0)

Neighbor search (qd and
limit)

Dancing and inductive
pheromone (ρ and τ0)

BFO-B Bacterium Bacterial flora
foraging

Randomly add a small
amount of arcs (–)

Swimming and tumbling
(Ns , Nc, Nre, Ned and
Ped )

Reproduction (Sr )

Specifically, agents at each iteration use local perception
rules to construct their solutions, use simple operators to
locally optimize solutions in their neighboring regions, have
the aid of the interactions of the entire swarm to transmit
the solution information, and eventually achieve their search
objectives.

3.2 Feature comparisons of ACO-B, ABC-B, and BFO-B

Table 2 lists the biological principles simulated and the main
features embodied in the three common phases of BNSL for
the three swarm paradigms, in which the control parameters
involved in the corresponding phase are provided in paren-
theses and “-” represents no parameter.

(1) Agent and biological phenomena The three algorithms
use different agents to simulate different biological phe-
nomena. In ACO-B, an ant is viewed as an agent with
sensing and cognitive capabilities. In nature, ants can
find the shortest path from their nest to a food source
by exploring and exploiting pheromone information that
has been deposited on the path. By simulating the behav-
ior of ant colony foraging, ACO-B attempts to search for
the BN structure with the highest K2 score in the candi-
date solution space.

As for ABC-B, three kinds of bees (i.e., employed bees,
onlookers, and scout bees) are viewed as different agents that
play their respective roles and collaboratively achieve a com-
mon task. The intelligent foraging behavior of a honey bee
swarm can be briefly described as follows. The employed and
onlooker bees carry out exploitive searches in the local area,
while the scouts perform exploratory searches in a candidate
solution space. Through mutual cooperation and collabora-
tion, the three types of bees efficiently perform the collecting
nectar task. By modeling the process of the bee colony col-
lecting nectar, ABC-B attempts to find the BN structure with
the best score.

For BFO-B, some species of bacteria likeEscherichia coli
are viewed as a group of agents that can move, reproduce,
and perform elimination–dispersal under certain conditions
in their lifetimes. As a natural ecosystem, bacterial foraging
behavior exhibits chemotactic activity, where the alternation
between swimming and tumbling enables each bacterium to
search for more nutrients in random directions. To mimic
bacterial foraging behavior, BFO-B uses some simple but
powerful optimization operators to learn BN structures from
a data set.

(2) Solution construction The solution construction is one
of the most important phases for the three swarm algo-
rithms. The three algorithms have some differences
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in solution construction. In ACO-B, each ant uses its
perception ability for the pheromone and heuristic infor-
mation of arcs, starts from an empty graph (arcs-less
DAG), and proceeds by adding new arcs to the cur-
rent graph one by one until there is no way to make
the score of a new solution higher. This process is
used for all ants in each main loop and has the most
core activity to obtain the optimal BN structure. In
ABC-B, each employed bee perceives its local envi-
ronment in traversing nodes and randomly adds some
new arcs by means of the inductive pheromone and
heuristic information associated with arcs in the initial-
ization phase. In addition, a scout bee also performs a
similar process during the exploratory phase. In BFO-
B, each bacterium randomly adds a small number of
arcs onto an empty graph and carries out the solution
construction process to obtain a new initial solution in
the initialization and elimination–dispersal phases. For
ABC-B and BFO-B, the aim of the construction solu-
tions is to have some new starting points in the search
area.

(3) Local optimization The three algorithms have different
local optimization mechanisms. To improve the quality
of a solution, ACO-B periodically makes use of an extra
optimization process that uses the simple operators of
addition, deletion, and reversal of arcs to locally opti-
mize the obtained solution. For ABC-B, both employed
bees and onlookers perform local neighbor search oper-
ators to optimize their associated current solutions each
time, which is the most important step for ABC-B to
obtain better results. In BFO-B, bacterial chemotaxis
is a complex and close combination of swimming and
tumbling that keeps bacteria in places with higher scores
of BN structures. On the one hand, swimming is more
frequent when a bacterium approaches a better solu-
tion using the same local optimization operator. On
the other hand, tumbling controls the change among
different local optimization operators, which is more
frequent when a bacterium moves away from a certain
solution to search for a better one. This local opti-
mization process plays a crucial role in a chemotaxis
activity.

(4) Information transmission Based on different biological
principles, the three algorithms use different mech-
anisms for information transmission. Because
pheromones are an important medium in ant colony
communication, local and global updating steps are
included in ACO-B. The local updating step is per-
formed when each ant adds an arc during the solu-
tion construction, and the global updating step is
carried out for each arc of the best solution after
the ants have executed their searches at every itera-
tion. Obviously, the information transmission mecha-

nism not only keeps the swarm information feasible
but also reinforces the effect of the optimal solu-
tion on the search process, so it plays an important
role in determining the BN structure with the highest
score.

In ABC-B, there are two ways to transmit information
about solutions among bees. One is the behavior communi-
cation (dancing) used in the neighbor search process, that
is, employed bees share information about food sources with
onlooker bees according to the duration of a dance. The other
is a chemical communication (inductive pheromone) in the
constructing solution process. The inductive pheromone is a
kind of releaser pheromone that is left by the scouts when
they walk and is a useful information carrier in construct-
ing solutions. In ABC-B, both methods of communication
strengthen the collaboration among bees; this can not only
bettermaintain balance between exploitation and exploration
but can also more effectively look into promising regions of
the search space.

For BFO-B, an information exchange mechanism implic-
itly occurs in the reproduction process, in which half of the
population of bacteria with higher scores survives, while the
other half of the population of bacteriawith lower scores dies.
In essence, the process represents a fairly abstract model of
Darwinian evolution and biological genetics in genetic algo-
rithms, thus achieving the elite information to delivery among
swarm agents.

As discussed above, there are several common phases in
the SI search, but different algorithms have specific features
and mechanisms, where the most significant differences in
these algorithms are, and how these different mechanisms
play their roles in learning theBN structures, which areworth
of in-depth research.

4 Simulation comparisons of ACO-B, ABC-B, and
BFO-B

In this section, we test the performance of ACO-B, ABC-
B, and BFO-B algorithms from two perspectives. First, we
compare each algorithm with its variants to show the effects
of their characteristic mechanisms (see Sect. 3.2). Second,
the three algorithms are compared with two non-SI algo-
rithms on a set of benchmark data sets with noisy data to
check their robustness. To ensure fair comparison, the pop-
ulation sizes of the three SI algorithms are set to 80. The
other specific parameters of these algorithms and two non-SI
algorithms conform to the best settings as reported in their
original papers, which were tuned by a series of hand-tuning
experiments. The experimental platform is a PC with Core 2,
2.13GHz CPU, 2.99GB RAM, Windows XP, and all algo-
rithms are implemented using Java language.
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Table 3 Data sets used in our
experiments

Data set (D) Original
network (G)

Size of D Number of
nodes

Number of
arcs

K2 scoring of G

Alarm-1000 Alarm 1000 37 46 −5034.53

Alarm-2000 Alarm 2000 37 46 −9729.13

Alarm-3000 Alarm 3000 37 46 −14412.69

Alarm-4000 Alarm 4000 37 46 −19110.77

Alarm-5000 Alarm 5000 37 46 −23793.81

Alarm-6000 Alarm 6000 37 46 −28358.21

Child-3000 Child 3000 20 25 −15978.37

Credit-3000 Credit 3000 12 12 −13844.74

4.1 Benchmark data sets

We adopt the general method to evaluate a BNSL algorithm
based on SI. We test a algorithm on data sets generated from
famous benchmark networks using probabilistic logic sam-
pling (Henrion 1986). The first network is the Alarm network
(Beinlich et al. 1989), which is used for potential anesthesia
diagnosis in the operating room and contains 37 nodes and
46 arcs. The second is the Child network (Spiegelhalter et al.
1993), which is applied to a preliminary diagnosis for new-
born babies with congenital heart disease and consists of 20
nodes and 25 arcs. The third is the Credit network for assess-
ing an individuals’ credit worthiness that was provided by
Gerardina Hernandez as class homework at the University of
Pittsburgh. This network is available in the GeNie software
or https://dslpitt.org/genie/ and often appears as an example
in textbooks about data mining and contains 12 nodes and 12
arcs. All of the data sets used in our experiments are gener-
ated from these three networks. Table 3 shows a summary of
the data sets, which include the name of the data set (D), the
name of the original network graph (G), the size of the data
set, the number of nodes in G, the number of arcs in G, and
the K2 score for the original network structure under a given
data set used in the experiments.

4.2 K2 scoring metric

As described in Sect. 2, there are four popular scoring met-
rics: K2, BIC, BDEu, and MDL. In this paper, we use the K2
metric due to the following two reasons: (1) None of the four
metrics has beenproven tobe superior to others (Tsamardinos
et al. 2006). (2) The five algorithms used in the experiments
all adopted the K2 score in their original papers. The K2met-
ric is one of the most well-known Bayesian scoring methods
that can measure how well a BN structure matches a data set.
Because the scoring metric is first used in the K2 algorithm
(Cooper and Herskovits 1992), it is referred as the K2metric.
Let D be a given data set and let G be a possible network
structure that contains all of the variables in X . Each variable

Xi ∈ X has ri possible value assignments: (vi1, . . . , viri ) and
a set of its parent nodes, which can be represented with a list
of variables Π(Xi ). qi is the number of possible configura-
tions for the variables in Π(Xi ) relative to D. Ni jk is the
number of cases in D where Xi = vik andΠ(Xi ) are instan-
tiated to the jth configuration. The initial expression of the
K2 metric is:

P(G, D) = P(G) ·
n∏

i=1

qi∏

j=1

(ri − 1)!
(Ni j + ri − 1)!

ri∏

k=1

Ni jk !, (2)

where Ni j =
ri∑
k=1

Ni jk .

To obtain a decomposable metric, the logarithm of the
above formula is used as the K2 scoring metric f (G : D)

instead of P(G, D), and the constant of log P(G) is ignored
when assuming a uniform prior for each P(G) (De Campos
et al. 2002). Thus, the simplified metric f (G : D), which
evaluates G with respect to D, can be decomposed in the
following way:

f (G : D) = log(P(G, D)) ≈
n∑

i=1

f (Xi ,Π(Xi )), (3)

where f (Xi ,Π(Xi )) represents a K2 score for each node Xi

in G and is formally defined as:

f (Xi ,Π(Xi )) =
qi∑

j=1

(
log

(
(ri − 1)!

(Ni j + ri − 1)!
)

+
ri∑

k=1

log(Ni jk !)
)

. (4)

The formula denotes that the K2 score of each node is
only related to the local structure involving the node and its
parent nodes. Because the joint probability for each candidate
network is less than 1, the K2 metric using log(P(G, D))

always takes a negative value. Whatever form (P(G, D) or
log(P(G, D))) takes, the K2 metric is essentially a Bayesian
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scoring metric. Hence, the best K2 value is the largest one
that corresponds to the optimal BN structure.

4.3 Metrics of performance

Generally, there are two basic ways to use the score-and-
search approach to evaluate the learned results. One way is
based on a scoring metric (e.g., the K2 scoring metric in this
paper), whereas the other is based on the metric of structural
differences between the learned network and the original one.
According to the first way, a higher K2 score of the learned
network indicates a better corresponding algorithm. In con-
trast, a smaller structural difference indicates a better learning
algorithm in the view of the latter metric. Essentially, the
network with the highest K2 score is not necessarily the net-
work with the smallest structural difference; thus, there may
be conflict between the two ways. In this paper, from the
perspective of optimization, we put the K2 scoring metric in
the first place to evaluate the learned results. The evaluation
metrics used in this section are listed as follows.

– HKS: the Highest K2 Score obtained over all trials.
– LKS: the Lowest K2 Score obtained over all trials.
– AKS: the Average K2 Score obtained over all trials.
– BSD: the Biggest Structural Difference (including arcs
accidentally added, deleted, and inverted) obtained over
all trials.

– SSD: the Smallest Structural Difference over all trials.
– ASD: the Average Structural Difference obtained that
converges over all trials.

– SET: theSmallest ExecutionTimeobtained over all trials.
– LET: the Longest Execution Time obtained over all trials.
– AET: theAverageExecutionTimeobtainedover all trials.

Obviously,HKS,LKS, andAKSare three scoringmetrics;
higher corresponding values indicate better learned networks
are. BSD, SSD, and ASD are three structural difference met-
rics; smaller corresponding values indicate better learned
networks are. The last three items are time metrics; smaller
values indicate better time performance of the corresponding
algorithm.

To study the comparison results with a certain confidence
level, we also use the schema of statistical analysis in Rubio-
Largo et al. (2012) to distinguish whether the algorithm
performances differ significantly. According to the schema,
we first perform Kolmogorov–Smirnov tests on the exper-
imental results and know that our results do not follow a
Gaussian distribution. Thus, we make use of Kruskal–Wallis
tests to carry out nonparametric analysis on the results. In this
paper, the confidence level is always set 95%, which means
the probability of producing a difference by chance is not
more than 5%. The statistical results are shown as p values.
That is, if the p value obtained in a statistical test is less than

5%, we can assume that significant differences exist in the
corresponding experimental results.

In addition to the nine metrics mentioned above, we also
use the log-loss metric to measure how well the learned net-
works model the target distribution. Generally, the higher the
log-loss value, the better the algorithm. The process is as fol-
lows. Randomly generate a test data set with 10,000 cases
and then compute the average log-loss of a learned network
to the test data set in the case of a variety of data loss, where
the average log-loss of a learned network on a test data set
can be denoted as:

	 = 1

Num.

Num.∑

i=1

log PB(xi ) (5)

where Num. is the size of the data set (i.e., 10,000), B is the
learned network structure, xi ∈ D is an instance in the data
set, and PB(xi ) is the probability that the instance happens
in light of the current B.

4.4 Effects of different mechanisms in ACO-B, ABC-B,
and BFO-B

To study which mechanism in the three paradigms strongly
influence performance, we compared each algorithm with
its variants on four data sets: Alarm-2000, Alarm-6000,
Child-3000, and Credit-3000. Tables 4, 5, 6, and 7 give the
corresponding results on the four data sets. The bold numbers
in these tables indicate the best values for the correspond-
ing metrics. More specifically, ACO-B1 and ACO-B2 are
two variants of ACO-B. ACO-B1 removes the process of
pheromone updating locally and globally while keeping the
ant colony construction and local optimization processes.
ACO-B2 removes both the local optimization process in
the ant colony iterative search and the local optimization
for ants in the last time. Similarly, ABC-B1 and ABC-B2
are two variants of ABC-B. ABC-B1 removes the effects of
the inductive pheromone by removing inductive pheromone
updating from ABC-B, whereas ABC-B2 removes scout
exploring from ABC-B. As two variants of BFO-B, BFO-
B1 removes the reproduction process from BFO-B, whereas
BFO-B2 removes the elimination and dispersal process from
BFO-B. These results in the four tables are obtained over
20 independent runs under the same parameter set for each
algorithm. Table 4 shows the parameter sets for each basic
paradigms, which are the optimal configurations provided in
the original studies.

From the perspective of scoring metrics, the different
mechanisms in ACO-B, ABC-B, and BFO-B play their
respective roles in obtaining the best score. (1) ACO-B,
whether by pheromone updating or by local optimization,
has obvious roles in finding better solutions, and the former
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Table 4 Performance comparisons among each algorithm and its variations on Alarm-2000

Algorithm Scoring Structure Time (s)

HKS LKS AKSd SSD BSD ASDd SET LET AETd

ACO-Ba −9717.46 −9723.84 −9718.96± 2.18 5 13 7.40± 2.03 221 416 286.2 ± 55.1

ACO-B1 −9720.09 −9734.17 −9727.53 ± 4.02 3 20 13.20 ± 4.38 57 249 215.6 ± 59.3

ACO-B2 −9717.46 −9726.96 −9722.34 ± 3.14 5 15 10.30 ± 2.51 146 272 195.4± 39.5

ABC-Bb −9717.46 −9723.48 −9718.15± 1.80 5 9 5.90± 1.61 82 116 101.6 ± 10.9

ABC-B1 −9717.46 −9733.10 −9721.45 ± 3.89 5 18 8.65 ± 3.02 68 90 82.5 ± 6.0

ABC-B2 −9723.55 −9733.25 −9727.36 ± 3.73 4 18 12.15 ± 3.94 55 78 67.7± 5.6

BFO-Bc −9717.46 −9721.28 −9717.83± 0.98 3 9 5.25± 1.09 209 361 300.5± 40.1

BFO-B1 −9717.46 −9723.34 −9718.86 ± 1.78 3 10 5.25 ± 2.12 253 366 308.5 ± 34.8

BFO-B2 −9717.46 −9725.97 −9718.72 ± 2.67 3 11 5.60 ± 2.03 263 401 324.6 ± 45.6

a The parameters of ACO-B: A = 80, ρ = ψ = 0.4, β = 2.0, q0 = 0.8, N = 150
b The parameters of ABC-B: K = 80, α = 1, β = 2, ρ = 0.1, q0 = 0.8, N = 150, limit = 3
c The parameters of BFO-B: S = 80, Ns = 4, Nc = 30, Nre = 4, Ned = 3, Ped = 0.10
d Results in the form μ ± δ indicate the mean μ and the standard deviation δ

Table 5 Performance comparisons among each algorithm and its variations on Alarm-6000

Algorithm Scoring Structure Time (s)

HKS LKS AKS SSD BSD ASD SET LET AET

ACO-B −28347.11 −28353.88 −28348.19± 1.55 3 12 5.95± 2.33 690 1248 914.8 ± 120.8

ACO-B1 −28350.24 −28387.34 −28365.45 ± 8.40 5 20 10.75 ± 4.22 188 806 617.5± 239.3

ACO-B2 −28347.14 −28375.23 −28354.83 ± 10.50 4 17 9.00 ± 4.36 471 1155 762.1 ± 145.2

ABC-B −28347.11 −28360.11 −28347.99± 2.83 3 8 4.95± 1.28 284 346 319.9 ± 17.9

ABC-B1 −28347.21 −28370.60 −28354.63 ± 8.89 1 12 5.65 ± 2.73 220 281 250.5 ± 17.1

ABC-B2 −28358.31 −28387.85 −28373.45 ± 8.44 4 17 10.80 ± 3.47 184 220 206.8± 8.98

BFO-B −28347.11 −28349.19 −28347.90± 0.93 1 5 2.60 ± 1.20 564 810 684.7± 59.5

BFO-B1 −28347.11 −28356.34 −28348.46 ± 2.57 1 6 3.00 ± 1.38 618 878 769.3 ± 60.5

BFO-B2 −28347.11 −28352.37 −28348.46 ± 1.32 1 7 2.40± 1.56 540 860 728.1 ± 77.5

Table 6 Performance comparisons among each algorithm and its variations on Child-3000

Algorithm Scoring Structure Time (s)

HKS LKS AKS SSD BSD ASD SET LET AET

ACO-B −15975.66 −15975.66 −15975.66± 0.00 1 1 1.00± 0.00 15 40 26.1 ± 6.8

ACO-B1 −15975.66 −15976.38 −15975.76 ± 0.26 1 4 1.45 ± 1.07 9 37 23.4± 10.4

ACO-B2 −15975.66 −15976.82 −15975.75 ± 0.29 1 4 1.25 ± 0.77 13 35 25.5 ± 5.8

ABC-B −15975.66 −15976.38 −15975.69± 0.16 1 4 1.15± 0.65 12 30 18.2 ± 4.9

ABC-B1 −15975.66 −15976.38 −15975.73 ± 0.22 1 4 1.30 ± 0.90 9 17 13.4 ± 1.9

ABC-B2 −15975.66 −15976.82 −15976.19 ± 0.36 1 4 3.05 ± 1.36 10 15 12.6± 1.4

BFO-B −15975.66 −15976.38 −15975.76± 0.26 1 4 1.45± 1.07 52 72 62.6 ± 6.3

BFO-B1 −15975.66 −15976.38 −15975.76± 0.26 1 4 1.45± 1.07 56 91 71.3 ± 7.7

BFO-B2 −15975.66 −15976.38 −15975.87 ± 0.33 1 4 1.90 ± 1.37 50 73 60.0± 5.9

plays a greater role in relative terms. Compared with the
results of ACO-B in Tables 4, 5, 6 and 7, the HKS values of
ACO-B1 have some variances on Alarm-2000 (−9720.09)
and Alarm-6000 (−28,350.24) and keep the same value as
those of ACO-B on Child-3000 (−15,975.66) and Credit-

3000 (−13,842.16). For the HKS values of ACO-B2, there
is little change on Alarm-6000. However, both the LKS and
AKS values of ACO-B1 and ACO-B2 in Tables 4, 5 and 6
have obvious variances compared with the results of ACO-
B. In general, the two types of values go bad when the ACO
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Table 7 Performance comparisons among each algorithm and its variations on Credit-3000

Algorithm Scoring Structure Time (s)

HKS LKS AKS SSD BSD ASD SET LET AET

ACO-B −13842.16 −13842.16 −13842.16± 0.00 4 4 4.00± 0.00 2 3 2.5± 0.5

ACO-B1 −13842.16 −13844.84 −13842.70 ± 1.07 4 6 4.40 ± 0.80 2 6 3.3 ± 1.1

ACO-B2 −13842.16 −13842.16 −13842.16± 0.00 4 4 4.00± 0.00 2 3 2.7 ± 0.5

ABC-B −13842.16 −13842.16 −13842.16± 0.00 4 4 4.00± 0.00 2 4 2.8 ± 0.4

ABC-B1 −13842.16 −13847.52 −13843.65 ± 2.10 4 7 5.05 ± 1.43 2 9 3.5 ± 2.0

ABC-B2 −13842.16 −13847.74 −13845.74 ± 1.39 4 9 6.60 ± 0.92 2 5 2.3± 0.6

BFO-B −13842.16 −13844.00 −13842.35± 0.55 1 4 3.70± 0.90 7 66 12.8 ± 13.9

BFO-B1 −13842.16 −13844.84 −13842.65 ± 1.02 1 7 3.95 ± 1.24 6 59 13.9 ± 13.0

BFO-B2 −13842.16 −13845.57 −13843.08 ± 1.33 1 7 4.10 ± 1.70 7 9 7.9± 0.8

paradigm does not use pheromone updating or local opti-
mization. For the Alarm network, which has a larger number
of nodes and number of arcs, the effect of pheromone updat-
ing has a more significant influence on the LKS and AKS
values than does local optimization, such that the LKS values
drop about 11 and 34 and the AKS values drop about 9 and
17 on Alarm-2000 and Alarm-6000, respectively. Of course,
the role of local optimization should not be overlooked due
to the fact that the LKS and AKS values drop about 21 and
6, respectively, on Alarm-6000. For both Child and Credit
networks, which have fewer nodes and arcs, there are no sig-
nificant differences in the role of the two mechanisms. For
instance, the LKS and AKS values of ACO-B1 and ACO-B2
drop about 1 and 0.1, respectively, on Child-3000; the LKS
and AKS values of ACO-B1 drop about 2 and 0.5 , respec-
tively; and LKS and AKS values of ACO-B2 have the same
values as those of ACO-B on Credit-3000. These results also
mean that the role of pheromone updating is greater than
that of local optimization in learning BN network structures.
(2) As for ABC-B, both inductive pheromone updating and
scout exploring have obvious roles in finding better solutions,
and the latter plays a greater role in relative terms. Based on
the HKS values in Table 4, 5, 6, and 7, ABC-B1 without
the inductive pheromone obtains the same results as ABC-
B on Alarm-2000, Child-3000, and Credit-3000, whereas
it achieves a slightly lower (−28,347.21) value on Alarm-
6000. ABC-B2 without scout exploring can obtain the same
results as ABC-B on Child-3000 and Credit-3000, whereas
it only achieves two obviously lower values (−9723.55 and
−28,358.31) onAlarm-2000 andAlarm-6000. From theLKS
and AKS metrics, both ABC-B1 and ABC-B2 achieve obvi-
ously smaller values than ABC-B except for Child-3000,
which shows that the twomechanisms are necessary to obtain
the optimal solution by means of ABC. According to the
fluctuations in these values, ABC-B2 has worse results than
ABC-B1, which means that the scout exploring process is
a more important mechanism in ABC-B than the induc-

tive pheromone. (3) As for BFO-B, both the reproduction
process and the elimination and dispersal process have a cer-
tain impact on solution scores, and there is little difference
between the effects of the two processes. It is not difficult
to find that both BFO-B1 and BFO-B2 can obtain the same
HKS values as those of BFO-B on four different data sets
and only obtain slightly worse AKS values than that of BFO-
B except for BFO-B1 on Child-3000. For the LKS values,
BFO-B1 and BFO-B2 gain the same result as BFO-B on
Child-3000 and also obtain slightly lower values on Credit-
3000 and worse results than BFO-B only on Alarm-2000 and
Alarm-6000.These results reflect that the chemotaxis process
is more essential to BFO-B than the other two mechanisms.

From the perspective of structural metrics, the use of
mechanisms from ACO-B, ABC-B, and BFO-B affects the
network structure obtained to a certain extent. (1) Although
these variant algorithms remove somemechanisms, the basic
random search frameworks are still in keeping with their
respective paradigms. Therefore, there are few changes in the
SSD values over 20 runs in Tables 4, 5, 6, and 7, whereas the
SSD values of ACO-B1 onAlarm-2000 and Alarm-6000 dif-
fer slightly from that of ACO-B, the SSD values of ACO-B1
on Child-3000 and Credit-3000 are the same as that of ACO-
B, the SSDvalue ofACO-B2onAlarm-6000 is slightly larger
than that of ACO-B, and the SSD values of ACO-B2 on the
other three data sets are the same as those of ACO-B. ABC-
B1 obtains better SSD values on Alarm-6000. ABC-B2 also
obtains better SSD values on Alarm-2000 but worse results
on Alarm-6000, which shows the randomness of ABC-B2.
In other cases, ABC-B1 and ABC-B2 obtain the same SSD
values as ABC-B. BFO-B1 and BFO-B2 obtain the same
SSD values as BFO-B for all four data sets, which shows
that the chemotaxis mechanism plays the greatest role in the
BFO paradigm. (2) For the BSD metric, there are obvious
changes in most cases because each paradigm is missing an
importantmechanism.When comparedwithACO-B, the val-
ues for ACO-B1 decline by 7, 8, 3, and 2 for Alarm-2000,
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Alarm-6000, Child-3000, and Credit-3000, respectively, and
the values for ACO-B2 decline by 2, 5, and 3 for Alarm-
2000, Alarm-6000, and Child-3000, respectively. Compared
with ABC-B, the BSD values for ABC-B1 and ABC-B2
decline from 9 to 18 for Alarm-2000. The BSD value for
ABC-B1 declines from 8 to 12 on Alarm-6000, whereas
that for ABC-B2 declines from 8 to 17. The BSD value for
ABC-B1 declines from 4 to 7 on Credit-3000, whereas that
for ABC-B2 declines from 4 to 9. Compared with BFO-B,
the BSD value of BFO-B1 declined 1, 1, and 3 for Alarm-
2000, Alarm-6000, and Credit-3000, respectively, whereas
those of BFO-B2 declined 2, 2, and 3, respectively. (3) In
almost all cases, the ASD values of these variants become
worse than those of their initial algorithms, mainly because
of the fluctuations in the BSD values. From the ASD metric,
BFO-B2 seems to obtain a better value than for BFO-B on
Alarm-6000. However, the smaller average structural differ-
ence does not mean that the result is better; the ASD metric
is a mathematical mean, so it implies only that BFO-B2 is
more stable than BFO-B with these data.

From the perspective of time metrics, the execution time
mostly depends on the mechanisms used in the three par-

adigms. As a whole, ACO-B1, ACO-B2, ABC-B1, and
ABC-B2use less time than their initial algorithms for compli-
cated networks such as Alarm and Child because the removal
of a certain mechanism from ACO-B or ABC-B may save
time in obtaining an optimal result. However, BFO-B1 and
BFO-B2 use more time than BFO-B for the same data sets
because the reproduction process and the elimination and
dispersal process are two indispensable mechanisms in the
BFO paradigm; the deletion of anymechanismwill affect the
convergence of BFO-B, which causes an increase in the exe-
cution time. For the Credit network with less nodes and arcs,
the three paradigms remain relatively stable on the SETmet-
ric; however, these variants give different time performances
for the LET and AET metrics, which shows that application
of SI to the solution of a simpler optimization problem has a
chance of convergence. From Table 7, we learn that BFO-B2
can savemuch time in finding a simpler BN structure because
it removes the elimination and dispersal process.

To further illustrate the roles of different mechanisms in
the three algorithms, we performed Kruskal–Wallis tests on
the results over 20 independent runs in pairs. Tables 8, 9,
and 10 give the p values of the statistical tests for the ACO,

Table 8 The p valuea of Kruskal–Wallis test on different data sets for ACO-Bb

Data sets Algorithm Scoring Structure Time

ACO-B1 ACO-B2 ACO-B1 ACO-B2 ACO-B1 ACO-B2

Alarm-2000 ACO-B 2.765e−07 0.0004578 4.17e−05 0.0006286 0.0001147 1.042e−06

ACO-B1 0.0002816 0.01042 0.002031

Alarm-6000 ACO-B 6.086e−07 0.004829 0.000101 0.00335 1.917e−05 0.003636

ACO-B1 0.0009117 0.1875 0.2914

Child-3000 ACO-B 0.07536 0.1521 0.07536 0.1521 0.5423 0.8921

ACO-B1 0.5877 0.5877 0.6844

Credit-3000 ACO-B 0.07536 NA 0.07536 NA 0.0042 0.2094

ACO-B1 0.07536 0.07536 0.03562

a The confidence level is 95%
b The parameters of ACO-B: A = 80, ρ = ψ = 0.4, β = 2.0, q0 = 0.8, N = 150

Table 9 The p valuea of Kruskal–Wallis test on different data sets for ABC-Bb

Data sets Algorithm Scoring Structure Time

ABC-B1 ABC-B2 ABC-B1 ABC-B2 ABC-B1 ABC-B2

Alarm-2000 ABC-B 1.719e−05 4.262−08 3.022e−06 6.525e−08 7.733e−07 6.125e−08

ABC-B1 2.288e−05 0.002389 6.071e−07

Alarm-6000 ABC-B 3.022e−06 6.525e−08 0.4218 9.888e−07 6.257e−08 6.222e−08

ABC-B1 4.803e−06 4.011e−05 6.691e−08

Child-3000 ABC-B 0.5533 2.924e−05 0.5533 3.364e−05 0.0002844 2.262e−08

ABC-B1 0.0001301 0.0001678 0.1811

Credit-3000 ABC-B 0.004193 2.262e−08 0.004025 1.675e−08 0.7862 6.327e−05

ABC-B1 0.005002 0.003905 0.008311

a The confidence level is 95%
b The parameters of ABC-B: K = 80, α = 1, β = 2, ρ = 0.1, q0 = 0.8, N = 150, limit = 3
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Table 10 The p valuea of
Kruskal–Wallis test on different
data sets for BFO-Bb

Data sets Algorithm Scoring Structure Time

BFO-B1 ABC-B2 BFO-B1 BFO-B2 BFO-B1 BFO-B2

Alarm-2000 BFO-B 0.02795 0.4133 0.3643 0.9383 0.5699 0.1515

BFO-B1 0.2300 0.2722 0.33

Alarm-6000 BFO-B 0.829 0.1794 0.3959 0.4324 0.0002342 0.04248

BFO-B1 0.2267 0.1304 0.06989

Child-3000 BFO-B 1 0.262 1 0.262 0.0006096 0.1843

BFO-B1 0.262 0.262 6.466e−05

Credit-3000 BFO-B 0.3376 0.04531 0.4327 0.3351 0.782 0.09457

BFO-B1 0.2702 0.7304 0.1214

a The confidence level is 95%.
b The parameters of BFO-B: S = 80, Ns = 4, Nc = 30, Nre = 4, Ned = 3, Ped = 0.10

ABC, and BFO paradigms, respectively. In the three tables, a
p value <0.05 (in bold) indicates that the two corresponding
algorithms have significant differences in the performance
metric and vice versa.

Table 8 shows the p values of the Kruskal–Wallis tests
on the four data sets for ACO-B, where NA represents a
case in which both algorithms obtain the same results over
20 independent runs. (1) For a larger network like Alarm,
bothACO-B1 andACO-B2 have significant differences from
the initial ACO-B on all three types of metrics, and in most
cases, there are significant differences between them except
for the structure and time metrics on Alarm-6000. (2) For
Child-3000, no two of the three algorithms have a significant
difference by means of p values. (3) For Credit-3000, ACO-
B1 differs significantly from ACO-B and from ACO-B2 on
the time metric. There are no significant differences for any
two of the three algorithms on the scoring and structural met-
rics. These testing results show that pheromone updating and
local optimization are two important processes in accurately
learning a complex BN model, even though they cost more
time, but they have no significant role on the solution quality
when the BN model is simple.

As shown in Table 9, it is easy to see that: (1) From
the perspective of the scoring metric, the scoring values
obtained by ABC-B and ABC-B1 have significant differ-
ences for Alarm-2000, Alarm-6000, and Credit-3000; the
scoring values obtained by ABC-B andABC-B2 have signif-
icant differences for Alarm-2000, Alarm-6000, Child-3000,
and Credit-3000; and the scoring values obtained by ABC-
B1 and ABC-B2 also have significant differences for all four
data sets. (2) From the perspective of the structural metric,
the results obtained by ABC-B and ABC-B1 have signif-
icant differences for Alarm-2000 and Credit-3000 and the
results obtained by ABC-B and ABC-B2 or by ABC-B1 and
ABC-B2 have significant differences for all four data sets.
(3) From the perspective of the time metric, the time cost of
ABC-B and ABC-B1 differs significantly for Alarm-2000,
Alarm-6000, and Child-3000; the time cost of ABC-B and

ABC-B2 differs significantly for four data sets; and the time
cost ofABC-B1 andABC-B2 differs significantly forAlarm-
2000, Alarm-6000, and Credit-3000. These test results show
that inductive pheromone updating and scout exploring are
two basic mechanisms that have significant effects on the use
of the ABC paradigm to learn BN structures. Moreover, the
two mechanisms have very different roles and thus cannot be
alternatives to one another.

Table 10 gives some interesting information on BFO-B:
(1) From the perspective of the scoring metric, the scoring
values obtained by BFO-B and BFO-B1 have significant dif-
ferences only on Alarm-2000, whereas the scoring values
obtained by BFO-B and BFO-B2 also have significant dif-
ferences only forCredit-3000. (2) From the perspective of the
structural metric, the results obtained by any two algorithms
have no significant difference for all four data sets. (3) From
the perspective of the time metric, the time costs of BFO-
B and BFO-B1 have significant differences for Alarm-6000
and Child-3000, the time costs of BFO-B and BFO-B2 have
a significant differences for Alarm-6000, and the time costs
of BFO-B1 and BFO-B2 also have significant differences
for Child-3000. These test results show that the reproduc-
tion process and the elimination and dispersal process have
certain effects on the solution scoring and a great improve-
ment in the execution time, but there is no significant role
in the structural optimization, which just demonstrates that
the chemotaxis process is the most important and indispens-
ablemechanism for the BFOparadigm to learn BN structures
from another point of view.

4.5 Robustness comparisons

SI is a kind of intelligent algorithms based on population. The
intelligence emerges from the swarm and does not directly
from the single agent. An individual agent that fails in the
process of solving a problem will not affect functionality
of the whole swarm, which naturally gives SI good robust-
ness to noise. In this section, we perform a large number
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of experiments on Alarm data sets with noise to evaluate
the robustness properties of ACO-B, ABC-B, and BFO-B.
There are two reasons for only choosing Alarm data sets
to do the experimental comparisons: (1) Alarm network is
the most popular benchmark in the domain of learning BN
structures. Nearly all the algorithms mentioned in this paper
used the Alarm network to test the performance of algorithm
in their original study. (2) Alarm network is more complex
than another two networks (Child and Credit) used in this
paper. The more complex the network, the more difficult for
a algorithm to learn its structure. For a algorithm for BNSL,
the performance played on a complex network more fully
embodies its ability to learn a BN structure. Based on the
two reasons described above, we only select data sets gener-
ated from Alarm network in this section. To show the better
robustness of SI, we compare the three algorithms with two
non-SI methods: HCST (hill-climbing searcher technique)
and TS-B (tabu search for BNs). According to the basic
idea of a greedy construction heuristic in Alcobó (2004),
Tsamardinos et al. (2006), we developed an HCST algo-
rithm to learn BNs from data that uses the three operators of
arc addition, arc deletion, and arc reversion to maximize the
increase in the K2 scores. TS-B (Ji et al. 2008) is an effec-
tive global searching approach that makes use of the tabu
list and aspiration criteria to guide the search of BN struc-
tures, and performs local neighborhood searches by adding
arc, reducing arc, and reversing arc operators. Obviously,
HCST is a simple and common heuristic-based approach,
whereas TS-B is a stochastic global optimization algorithm.
The main reason for the selection of these two algorithms is
similarity of their three operators with those of the three SI
algorithms.

Based on benchmark data sets, we first generate test
databases with noisy data. Themethod is as follows. (1) Ran-
domly generate two integers i and j and perform a modulo
operation on the two numbers: i%SD and j%NN (SD rep-
resents the size of the data set and NN represents the number
of nodes in the network). (2) Take the i%SD case and the
j%NN node as the location of the insertion of noise. (3) Ran-
domly generate an integer located at [0, NV) (NV represents
the total number of candidate values for the variable at the
current location) and replace the initial value with the new
integer generated. (4) Repeat the three steps p ∗ SD times
to obtain the data set needed (p is a noise ratio). By means
of this method, various test data sets with 5, 10, 15, 20, and
25% noisy data are obtained.

The detailed comparison results on six Alarm data sets
with different proportions of noisy data for five algorithms
are presented in Tables 11, 12, 13, 14, 15, and 16, where the
first column represents the noise ratio deliberately added;
the second column lists the five algorithms used; the third,
fourth, and fifth columns give three scoring values; the sixth,
seventh, and eighth columns give three structure values; the

ninth, tenth, and eleventh columns give three time values;
and the last column shows the average log-loss values.

(1) From the perspective of scores in these six tables, we can
see that each algorithm obtains different scoring values
under different data capacities and different noise ratios;
the more the noise is added, the lower the score becomes.
The three SI algorithms acquire almost unanimously the
best results in each case compared with non-SI methods.
Among the SI methods, ABC-B gets the highest scores
in most cases. TS-B sometimes obtain the best results,
but is significantly inferior to three SI algorithms in most
cases, and the difference becomes greater as the noise
increases except in a few cases on Alarm-6000. HCST
has the worst performance among the five algorithms in
all cases, and the scoring values get worse as the data
capacity increases.More strangely, HCST seems insensi-
tive to the increase in the noise, because its performance
is nearly identically poor in all cases. The reasons for
these experimental results are as follows. ACO-B, ABC-
B, BFO-B, and TS-B are global search methods and can
obtain a near-optimal solution. Further, ACO-B, ABC-B,
and BFO-B are three SI methods that make use of col-
lective intelligence to search for optima, and are better
than an independent search of a single agent like TS-B.
So the three SI methods show the best performance and
robustness. HCST is a local search method that only can
obtain a local optimal solution in a larger solution space,
so its performance in learning the BN structures is the
poorest.

(2) From the perspective of the structural differences in
the six tables, we can see that when the data capacity
increases, the structural differences generally decrease
and the learning quality improve, which means that high-
quality solutions are ensured using plenty of instances.
The results obtained by ACO-B, ABC-B, and BFO-B
are nearly the same, and overall BFO-B obtains the best
results among the three algorithms. TS-B and HCST
obtain larger structural differences than the three SI algo-
rithms. More specifically, HCST performs better than
TS-B when the data capacity is smaller, but TS-B greatly
improves as the data capacity increases. These results
show that the SI-based algorithms can obtain high-quality
solutions in all cases and a local search like HCST only
obtains better results than a global search like TS-Bwhen
the data capacity is smaller. Intuitively, a greater amount
of noise leads to larger structural differences. However,
because all of the test algorithms take the K2 score as an
optimization goal, the network with the smallest struc-
tural difference does not actually correspond to the one
with the best score. Moreover, the SI methods are a self-
organizing search that has the ability to reduce the effects
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of noise. Therefore, the structural differences sometimes
fluctuate as the noise changes.

(3) From the perspective of the execution time in the six
tables, it is easy to see that the global search takes more
time than the greedy local search. ACO-B and BFO-B
take the longest run times, and ABC-B has the shortest
time cost among the three SI algorithms that can com-
petewith TS-B.HCST is the fastest and far superior to the
other four algorithms. The reasons for these results are
as follows. The SI algorithms are a kind of population-
based optimization method in which each individual has
to perform an independent optimization task and com-
plete information exchange among the individuals at each
iteration; therefore, the time cost is the highest.

(4) From the perspective of the log-loss values in the six
tables, it is difficult to determine which of the three

SI algorithms are good or bad in all cases. TS-B per-
forms well when there is no noise, even better than
the three SI algorithms in some cases. However, when
noise is present, its log-loss value significantly decreases.
Although HCST is not sensitive to noise, its performance
is always the worst. These results show that the three SI
methods have the strongest robustness, followed by TS-
B, and HCST is the worst in the robustness.

To further exhibit the differences in robustness of the five
algorithmson the samedata,we takeAlarm-4000 as an exam-
ple to illustrate the performance from four aspects. As shown
in Fig. 2a, ACO-B, ABC-B, and BFO-B consistently have
the best performance in light of the K2 score in all cases, and
there is little difference among the three algorithms. That is,

Fig. 2 Different performance comparisons for five algorithms on Alarm-4000. a K2 scoring comparison. b Structural difference comparison. c
Execution time comparison. d Log-loss comparison
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the three SI algorithms perform well both with and without
noise. HCST plays the worst in all cases. When there is no
noise, TS-B obtains slightly better K2 score than the three
SI algorithms. However, when noise is present in data, TS-
B is not as good as the three SI algorithms, even though it
is much better than HCST. Figure 2b shows structure dif-
ference comparison of the five algorithms. BFO-B has the
smallest structural difference in almost all cases; it has only
about five error arcs even when the noise ratio reaches 20%.
ACO-B andABC-B have similar trends and variation ranges,
although as a whole they are inferior to BFO-B. When there
is no noise, TS-B obtains a relatively good result with five
error arcs. However, once noise is introduced into the data
set, there is a great gap between the standard structure and
the structure learned by TS-B. Compared with the other four
algorithms, HCST has the largest structural difference in all
cases. These results further demonstrate the advantages of
the SI-based algorithms. Figure 2c shows the curve of the
execution time of the five algorithms, which demonstrates
that the execution time of each algorithm has nothing to do
with the noise and depends only on its time complexity. In all
cases, HCST has the best time performance (less than 10s)
and has an obvious advantage over the other four algorithms.

Although ABC-B and TS-B are inferior to HCST, they are
two most competitive algorithms among the four stochas-
tic global optimization methods. ACO-B has the worst time
performance, and BFO-B is slightly better that ACO-B. It is
obvious that ABC-B is the most simple and effective algo-
rithm based on SI. Figure 2d shows the histogram of the
average log-loss values of five algorithms. When there is no
noise, the four stochastic global optimization algorithmshave
very similar log-loss values. When noise is introduced, the
three SI-based algorithms maintain a higher level of log-loss
even when the noise ratio reaches 25%. The log-loss value
of TS-B gradually decreases as the noise ratio increases. The
log-loss values of HCST are significantly lower than those
of the other four algorithms in all cases, which suggests that
the BN structure learned by HCST does not reflect the target
data distribution well. Moreover, because HCST is a greedy
search method and only finds local optimal solutions, the
log-loss values obtained by HCST show some fluctuations
in different noise ratios. In a word, global optimization algo-
rithms have better solution performance and robustness than
the local optimization algorithms.

Figures 3, 4, 5, and 6 show the evolution trend of dif-
ferent algorithm in terms of various evaluation metrics on

Fig. 3 K2 scoring comparisons for five algorithms on Alarm network with different proportions of noisy data. a 0% of noisy data, b 5% of noisy
data, c 10% of noisy data, d 15% of noisy data, e 20% of noisy data f 25% of noisy data
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Fig. 4 Structural difference comparisons for five algorithms on Alarm network with different proportions of noisy data. a 0% of noisy data, b 5%
of noisy data, c 10% of noisy data, d 15% of noisy data, e 20% of noisy data, f 25% of noisy data

the Alarm network with different proportions of noisy data.
From Fig. 3, we can conclude that the K2 score for each
data set decreases as the noise increases and that the three
SI-based algorithms nearly achieve the best K2 score values
for each data set with or without noise. TS-B also obtains
the best K2 score values on some small data sets without
noise and slightly lower K2 score values on other data sets.
HCST has the worst performance on the K2 score for all
data sets. Although the K2 values are different for different
data sets, the advantage and disadvantage comparisons of the
five algorithms on the scoring performance are consistent.
Figure 4 shows that the three SI-based algorithms achieve
excellent performance on structural differences for all data
sets, and the structural differences decrease as the sample
capacity increases. Both TS-B and HCST also comply with
the change trend from the Alarm-1000 to Alarm-4000 with-
out noise. However, once noise is introduced into the data set,
the change in the structural differences presents large fluctu-
ation, which shows the instability of the two algorithms. As
shown in Fig. 5, although there are some fluctuations for TS-
B, there is a linear relationship between the execution time
and the sample capacity for the five algorithms. The line for
HCST has the smallest slope, and the line for ACO-B has the

largest slope. More importantly, the linear relationship is not
influenced by noise. From Fig. 6, we can see that there is no
great difference between the three SI algorithms according to
the log-loss metric. Relatively strictly speaking, ABC-B per-
forms the best, followed by ACO-B and then BFO-B. When
there is no noise, TS-B performs very well and can match the
SI algorithms on some data sets. However, it cannot match
them when there is noise. Compared with the first four algo-
rithms, HCST always has significant gaps on all data sets.

What are the reasons for good or bad performance in
BNSL tasks? HCST starts with an empty graph without an
arc and then iteratively uses greedy searching operators to
construct an available solution. The biggest disadvantage is
that it is easy to fall into a local optimum; thus, it acquires
the worst results for the K2 score, structural difference, and
log-loss with and without noise in the data set. However, it
has the best time performance because it adopts a quick and
simple searchingway.AlthoughTS-B also uses an individual
to perform local searches, it combines the tabu strategy and
aspiration criteria, so the search has a certain randomness and
may escape from a local optimum. Thus it can acquire better
K2 scores, structural differences, and log-loss than HCST
and may even be comparable with the three SI algorithms
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Fig. 5 Execution time comparisons for five algorithms on Alarm network with different proportions of noisy data. a 0% of noisy data, b 5% of
noisy data, c 10% of noisy data, d 15% of noisy data, e 20% of noisy data, f 25% of noisy data

when there is no noise. But it costs more time than HCST
due to that searching through a larger search space requires
more iterations. To make matters worse, TS-B relies heavily
on the parameter of tabu length, which is a fatal disadvan-
tage and gives it poor control and adaptive abilities when
there is noise. ACO-B, ABC-B, and BFO-B are three SI-
based methods that use a population of individuals to carry
out searches. This kind of algorithm can usually determine
the global optimal solutions by collaborations and commu-
nications among individuals in the population. In particular,
they have self-learning ability and can resist noise through
useful information delivery and feedback, so they always
have access to high-quality solutions regardless of whether
there is noise. But they always take longer running time than
the single individual-based search methods, since they must
complete optimization of the population at each iteration.

5 Conclusions

As an important model in artificial intelligence, a BN can
effectively represent uncertain knowledge in the real world.
Along with the development of new technologies in machine
learning and data mining, learning a BN structure from data
has received considerable attention over the past decade.

Especially in recent years, SI-based algorithms have been
successfully applied to learn BN structures and have shown
promising results with good accuracy, robustness, and speed.
In this paper, we classified the popular SI algorithms for
BNSL into five paradigms and selected three representa-
tive algorithms, ACO-B, ABC-B, and BFO-B, to exhibit
in detail the working principles of SI methods for BNSL.
For the three algorithms, we discussed their common char-
acteristics, compared their basic principles, and conducted
experiments to validate the roles of important mechanisms
using derived algorithms. To show better robustness of SI
methods, we tested the three SI algorithms and two non-SI
algorithms on data sets with noisy data. The experimen-
tal results demonstrated the following conclusions: (1) For
ACO-B, the information transmission, i.e., pheromone trans-
mission and updating, is the most essential mechanism. For
ABC-B, the information transmission and the global search,
i.e., inductive pheromone transmission and updating and the
scout bees’ ability of exploring the whole search space, are
two key mechanisms. For BFO-B, the local optimization,
i.e., chemotaxis toward better solutions by swimming and
tumbling, is a determinant mechanism. These results show
that different SI methods mainly rely on different specific
mechanisms since the biological phenomena, respectively,
simulated are different. (2) Among the three SI methods,
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Fig. 6 Log-loss comparisons for five algorithms on Alarm network with different proportions of noisy data. a 0% of noisy data, b 5% of noisy
data, c 10% of noisy data, d 15% of noisy data, e 20% of noisy data, f 25% of noisy data

ABC-B usually achieves the highest K2 score and the least
time, BFO-B gets the smallest structural differences on the
whole, but it is difficult to tell which algorithm is better on
the log-loss values. These results demonstrate that ABC-B
is more appropriate for the situation that there are higher
requirements for efficiency and thematching degree between
a BN structure and a data set. BFO-B is better suited to the
case that there is a higher demand for the structural difference
between the learned network and the real one. Compared to
ABC-B and BFO-B, ACO-B has no significant advantages.
(3) Except the time performance, the three SI methods are
superior to two non-SI methods on K2 scoring, structural
difference, and log-loss values. These results suggest that SI
methods have better robustness and global search ability and
are more suitable for situations where the data sets contain
noisy data and the search spaces are large.

In our future work, we will continue to study the SI meth-
ods for BNSL in the following aspects.

(1) Robustness This paper probed the learning perfor-
mances of different SI algorithms with regard to the
presence of noise in the data set and found that these
algorithms have a certain degree of robustness. However,

many real-world situations are even more complicated.
For example, there may be hidden variables in a complex
system, and data sets are usually missing data. Moreover,
some questions remain to be answered, such as whether
learning performances are sensitive to the values of the
parameters involved in the random search processes and
the relationship between the performances and the para-
meters. Thus, a development that can effectively model
the relationships among system variables and tolerate
many uncertain factors to a great extent will be critical
for the SI-based algorithms to learn a BN structure from
data.
(2) Distributed and parallel mechanisms For a com-
plex system with a large number of random variables,
the superexponential search space is a major difficulty
in BNSL. Although the learning algorithms based on
SI do not perform brute-force searches, population-
based searching is still time-consuming. To speed up the
SI-based learning algorithms, it would be desirable to
leverage their natural parallel processing mechanism.
(3) Parameter modeling At present, most of studies
just like this paper determine the parameter values by
hand tuning and set a fixed value for each parameter,
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which may seriously affect the performance, because
this method adopts the assumption that the parameters
are independent, which may not hold in most cases.
Even if the parameters in SI algorithms are irrelevant,
the potential relationships among these parameters may
be reflected by the evolution of the solutions. Thus, it
would be necessary for us to further reveal the inherent
relationships between different parameters and to realize
the simultaneous optimization of parameters.
(4) Researching on more SI methods This paper only did
in-depth study of three SI methods for BNSL. In fact,
there are some other SI algorithms for BNSL, such as
PSO, AIS. To fully show the superiorities of SI methods
for BNSL , it is necessary to take a further research on
more SI methods for BNSL in the future.
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