
Soft Comput (2017) 21:6481–6497
DOI 10.1007/s00500-016-2207-x

METHODOLOGIES AND APPLICATION

Multi-objective multi-robot deployment in a dynamic environment

Reza Javanmard Alitappeh1 · Kossar Jeddisaravi1 · Frederico G. Guimarães1

Published online: 4 June 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Finding a distribution of a group of robots in an
environment is known as Deployment problem, which is one
of the challenges in multi-robot systems. In real applications,
the environment may change over time and thus deployment
must be repeated periodically in order to redistribute the
robots. In this paper, we propose a multi-objective optimiza-
tion method to deploy/redeploy robots in the environment by
considering two objectives for the deployment. One objec-
tive represents a good estimation of final positions, where
the robots will be located, while the second objective is
finding the shortest path from the robots initial location to
these positions. Thus, our problem is modeled as a multi-
objective optimization problem, which is approached with a
multi-objective optimization evolutionary algorithm. To deal
with the deployment problem, a discrete setup of locational
optimization framework and Voronoi partitioning technique
are employed. Simulation results on real application testify
the performance of our proposed method in comparison with
other methods.

Keywords Multi-robot deployment · Multi-objective
optimization · Voronoi partitioning

1 Introduction

A multi-robot system is a collection of robots, collaborating
together to fulfill the global goal. Every robot is a physical
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agent equipped with processors and sensors to be able to
perform independent operation and individual autonomous
behaviors. Numerous applications of multi-robot systems
can be found, such as environmental surveillance and mon-
itoring (Chaimowicz et al. 2005), search and rescue (Bhat-
tacharya et al. 2013b), risky material removal, and so on. In
such applications, robots need to be distributed in the envi-
ronment in order to perform the entire task. In this way,
multi-robot deployment represents one of the challenges
in locational-based robot distribution (Cortes et al. 2004).
Among different topics, covering an area is an important
objective in deployment problem. In this problem, the envi-
ronment is partitioned into regions and each robot of the
team should be responsible for covering the events happen-
ing inside its assigned region. To measure the performance
of any specific solution, a deployment function represents
the quality of the robots distribution over the field. Such a
function might be defined based on the distance of robots
to the points in the environment, which must be minimized.
Therefore, the deployment problem can be translated to a
minimization problem.

In this paper, we address the deployment problem in a
dynamic environment,where the size or location of the region
that should be covered by the robots might change, and thus
the robots must be redistributed over time. This dynamic
behavior is very common but unpredictable in our real life
application, since the entities in the environment move, i.e.,
peoples or vehicles in a city. Therefore, in contrast to studies
in the state of the art that applied gradient descent techniques,
for instance Cortes et al. (2004), Pimenta et al. (2008), Bhat-
tacharya et al. (2013c), etc., which are local search-based
methods and may stuck in local minimum, in this paper
we develop a global search platform to deploy and rede-
ploy the robots time by time. Thus, two objectives are taken
into account: (i) minimizing the deployment function; and
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(ii) minimizing the path from initial to final position in the
redeployment process.

For better understanding and also testing our approach,
two scenarios are presented in this paper: One considers an
indoor non-convex environment with the presence of obsta-
cles, and another one is a convexmap inoutdoor environment.
In the second scenario, which is related to rescue services
application, the entire task is conveying first aid to victims
that must be distributed among the robots. In our algorithm,
the Voronoi tessellation technique partitions the environ-
ment among the robots. Generally, the Voronoi diagram is
one of the useful methods in partitioning environments, and
thus in robotics it has received a great deal of attention, see
Bhattacharya et al. (2013c), Yun and Rus (2013), Tzes and
Stergiopoulos (2010), Stergiopoulos and Tzes (2011).

Similar to other works in the literature about the deploy-
ment problem, we also define a density function that shows
the priority of regions in the map, computed based on the dis-
tribution of a crowd1 in the environment. As the distribution
of the crowdand correspondingly the density function change
during time, robots will be redeployed through our algorithm
periodically. In a different way, we develop an ellipse-based
technique to define a multi-modal density function given by
fitted ellipses over the crowd. Therefore, not only the loca-
tional distribution is considered but also the crowd number
is taken into account.

In order to have a global search in the problem space, a
well-known multi-objective optimization evolutionary algo-
rithm (MOEA) is applied to minimize the two objectives.
Unlike other heuristic methods in deployment, our approach
provides a set of compromise solutions and thus the user has
the opportunity to select one of them based on his/her desired
criterion. The priority of objectives is considered during the
evolutionary process by using a modified version of NSGA-
II proposed in Friedrich et al. (2013); and also during the
decision-making stage with the method ELECTRE I (Roy
1968) at the end.

It is worthwhile to remark that dynamic obstacles, robots
localization and networking are not considered in the present
paper; therefore, only a high level planning is addressed.

The paper is organized as follows. Next section reviews
the literature about the robot deployment problem and multi-
objective optimization methods. In Sect. 3, the formulations
for the deployment problem and p-median are explained.
The proposed methods in the deployment problem are dis-
cussed in Sect. 4. For better understanding two case studies
are described in Sect. 5. Section 6 indicates the simulation

1 In order to avoid conflict between the population in the distribution
function and the population in the concept of an evolutionary algorithm,
we use the word “crowd” hereafter in the paper to indicate the group of
people or entities in our deployment workspace.

results and comparisons, and finally Sect. 7 is dedicated to
the conclusion and future works.

2 Related work

In this section, some studies on deployment problem and
related subjects such as path planning and coverage are
reviewed at first. Secondly, a short discussion about multi-
objective optimization problems is presented.

One category of multi-robot deployment control schemes
is based on artificial potential or force fields. Parker (2002)
developed a low-level control, which is described in terms
of attractive and repulsive force fields. The author tried
to deploy a group of homogeneous robots into an unclut-
tered environment to observe multiple moving targets. very
large scale robots (VLSR) with hundreds, even thousands of
mobile robots, are considered by Reif and Wang (1999) in
their study. They used social potential field method for com-
puting the control law for deploying each individual robot
given by artificial force imposed by other robots and other
components of the system. In another work by Poduri and
Sukhatme (2004), the authors presented a deployment algo-
rithm for mobile sensor networks by using repulsive and
attractive forces to control the interaction between vertices of
the network. Moreover, Ji and Egerstedt (2007) used graph-
based nonlinear feedback control laws in a group of mobile
agents to make the graph stay connected for all times.

A second category is based on common coverage con-
trol approach through the definition of feedback control laws
defined with respect to the centroids of Voronoi regions.
Cortes et al. (2004) presented a distributed approach for
optimally deploying a team of robots in a domain based
on the Lloyd algorithm (Lloyd 1982). Each robot fol-
lows a control law, which is a gradient descent algorithm
that minimizes the functional encoding the quality of the
deployment. Different variations of theirwork have been pro-
posed, including Pimenta et al. (2008), Bhattacharya et al.
(2013a), Yun and Rus (2013) and Alitappeh and Pimenta
(2016), in which robots in non-convex environment were
taken into account. They used geodesic distance metric to
address non-convex region instead of Euclidean distance.
Other extensions were done in Bhattacharya et al. (2013b)
and Nowzari and Cortés (2012), where the authors address
general Riemannian manifolds with boundaries, and self-
triggered coverage algorithms, respectively.

These studieswere established relying on gradient descent
methods to minimize the deployment function; therefore,
they may get stuck in a local minimum. In contrast to these
studies, in our work we define a new model of this problem,
such that the solution is found by running a MOEA, thus
providing some probability of escaping local minima. Fur-
thermore, our proposed method considers the initial position
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of the robots in order to find the shortest path in redeploy-
ment. To the best of our knowledge, this issue has not been
considered yet in the literature.

In our problem, the second objective (minimizing the dis-
tance from the initial to the final position) can be considered
as a path planning problem. Thus, we are going to review
and compare some of the articles in multi-objective path
planning problem.Among such previous approaches, usually
two objectives, namely safety and length, are of impor-
tance (Davoodi et al. 2013; Huang 2013; Wanga et al. 2015;
Hidalgo-Paniagua et al. 2015; Jeddisaravi et al. 2016) etc.
More specifically, Davoodi et al. (2013) defined the length
and clearance of the path as two main objectives in a discrete
space. They used genetic algorithm and NSGA-II to solve
the optimization problem, and in a later work, they consider
smoothness of the path and energy consumption, seeDavoodi
et al. (2015). Considering the same objectives (namely safety,
length and smoothness), Hidalgo-Paniagua et al. (2015) pro-
posed amulti-objectivefirefly algorithm (MO-FA) thatworks
based on the flashing behavior of fireflies to solve the path
planning problem. In another study, the NSGA-II algorithm
has been applied to address the same objectives by Ahmed
and Deb (2013). Similar objectives (shortest collision-free
paths) were considered by Wanga et al. (2015), and a hybrid
of genetic algorithm and particle swarm optimization (GA-
PSO) algorithm is proposed to solve the welding robot path
planning problem. Zhang et al. (2012) also presented amulti-
objective path planning algorithm based on particle swarm
optimization for robot navigation. They consider two com-
mon objectives to search for a path for a single robot: risk
degree of the path (or safety) and the length of the path. A
new multi-objective evolutionary algorithm (RankMOEA)
is also developed by Ortiza et al. (2013), who consider the
length and safety of the path as objectives. In Ioannidisa et al.
(2011), the problem of finding a collision-free path is solved
by a method based on Cellular Automaton technique.

In path planning problems, the final position is usually
known, whereas in our problem the objective is to find
undefined positions where the robots will be deployed. Addi-
tionally, in our paper we employ a multi-robot system to
solve the deployment problem, which consists of dividing
the region among the robots, and path planning for them
simultaneously.

As we mentioned before, in our problem one of the chal-
lenges is how to balance the workload among robots or
partition the environment into regions and assign a robot
to each of the regions. Obviously, this challenge does not
exist in the single robot path planning problem. Hence, we
reviewed some of the related works regarding the p-median
problem.

According to the environment, the state of the art in
deployment problem is divided into continuous and discrete
setups. Some of the mentioned works deal with continu-

ous workspace for instance (Cortes et al. 2004; Pimenta
et al. 2008). On the other hand, some applications in the
real world have a discrete nature, and thus, the discrete ver-
sion of the Lloyd algorithm (DLA) was provided to solve
them by Holder et al. (2007). In this way, one of the use-
ful preprocessing techniques is modeling the workspace as
a form of graph (Alitappeh and Pimenta 2016), and then
the problem becomes one of graph partitionings, which has
been extensively studied (Fjallstrom 1998; Reese 2006). In
the graph representation, the deployment problem can be
interpreted as a p-median problem, in which a limited num-
ber of facilities will be assigned to customers. Solving this
problem is useful in many public applications, such as deter-
mining bus stations, health centers and so on over a city or
country. A large amount of algorithms can be found in the
literature, e.g., see works proposed by Resende and Wer-
neck (2004), Senne et al. (2005), Fleszar and Hindi (2008),
Landa-Torres et al. (2012), Brimberg and Drezner (2013),
Yaghini et al. (2013). Among these works, metaheuristic-
based algorithms have been intensively investigated. For
instance, Yaghini et al. (2013) proposed a cutting-plane
neighborhood structure combined with tabu search, while
Fleszar and Hindi (2008) used a variable neighborhood
search heuristic method to solve the capacitated p-median
problem (CPMP). Resende and Werneck (2004) achieved
a better running time and solution quality, by applying a
multi-start hybrid heuristic that combines elements of several
traditional metaheuristics to find near-optimal solutions, and
in a recent work, Landa-Torres et al. (2012) presented group-
ing heuristic-based approaches, which are called Grouping
Genetic Algorithm (GGA) and Grouping Harmony Search
(GHS). To overcome continuous p-median problem in Brim-
berg and Drezner (2013), the authors improved the local
search and used simulated annealing and tabu search to find
the solution. Senne et al. (2005) applied a branching rule and
the tree search on a binary integer programmingmodel of the
uncapacited p-median problem.

For the purpose of application in robotics, Gabriely and
Rimon (2001) presented a centralized coverage algorithm in
a discrete environment, and applied Spanning Tree Covering
(STC) on the corresponding grid cell in order to partition
the graph and direct the robots to cover the environment.
Senthilkumar and Bharadwaj (2012) built multiple span-
ning trees corresponding to multiple robots simultaneously
using the depth first search (DFS) technique and named as
the Simultaneous Multiple Spanning Trees Construction (S-
MSTC) algorithm. In fact this work extends their previous
method, such that in the extended S-MSTC (ES-MSTC), ant-
type robots were used to cover the terrain leaving marks on
the terrain by solving the challenge of finding k spanning
trees for k robots simultaneously. Durham and Carli (2012)
considered a discrete partitioning and coverage optimization
algorithm for robots with short-range Gossip communica-
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tion. Authors in Bhattacharya et al. (2013a); Alitappeh and
Pimenta (2016); Yun and Rus (2013) represented a discrete
non-convex environment by a graph. With the same platform
Alitappeh and Pimenta (2016) added safety to robot motion
in deployment problem. Yun and Rus (2013) proposed a dis-
tributed algorithm for coverage using Voronoi tessellation.
They prove that the proposed controller guarantees conver-
gence to the locally optimal configuration.

Similar to these cited papers, in the proposed technique a
graph representation discretizes the environment into cells.
We model the multi-objective problem as a mixed linear
integer programming with two objectives: finding the best
position in the environment to deploy the robots on them
(similar to the p-median problem) andminimizing the length
of robots paths from the initial to the end position. Later
Dijkstra algorithm is applied on the given graph to define
the Voronoi regions of each robot. In the implementation a
multi-source Dijkstra reduces the computational complex-
ity and memory usage, which is achievable by starting the
wavefront from robots’ current position and ending when it
collides with the neighbor regions.

Finally, multi-objective optimization algorithms are
explained briefly. Nevertheless, a good survey of principles
is available in Marler and Arora (2004). The main challenge
in multi-objective optimization is finding an estimate of the
Pareto set or finding the solution that maximizes satisfac-
tion for the decision-maker. The Pareto-optimal set contains
those solutions in which any improvement in one objective
degrades the value of at least one other objective. More-
over, in Multi-objective Evolutionary Algorithm (MOEA)
the challenge is assessing fitness to solutions that are vec-
tor valued in the multi-objective context. There are several
methods to address this problem.One of standard approach is
an extension of the Genetic Algorithm, which was proposed
by Deb et al. (2002) and is called Non-dominated Sorting
GeneticAlgorithm (NSGA-II). There are otherworks inKing
and Rughooputh (2003); Zitzler et al. (2002), Knowles and
Corne (1999), which are suggested to the reader to get more
details.Along the variety of algorithms,we engaged aMOEA
algorithm similar to NSGA-II because of its high capability
in globally searching for the set of solutions. Among exten-
sions of NSGA-II, we applied a version that incorporates
weights of objectives during the evolution (Friedrich et al.
2013). Furthermore, the Elimination and Choice Translat-
ing Reality (ELECTRE I) is employed as decision-making
method to find the best solution in the Pareto set (Roy 1968).
This technique provides a partial ordering of solutions based
on declared preferences of each objective.

After running the algorithm, the robots will be deployed
on their corresponding positions and will respond to events
occurring in their allocated region. In our case studies, robots
are supposed to give different kinds of service to humans,
which is explained in detail in Sect. 5. However, there are

other works about service robots in Xue and Liu (2010),
Budiharto et al. (2011), Veloso et al. (2012), Ma et al. (2015),
which have proposed different kinds of service that should
be done by the robots.

Statement of Contributions:
Comparing to traditional search and optimization meth-

ods, such as calculus-based and enumerative strategies, the
evolutionary algorithms are robust and global; hence, as our
first extension, we propose a newMOEA platform to address
the multi-robot deployment problem. Since the environment
is dynamic and robots need to be redeployed periodically,
in our problem definition, in addition to the quality of the
deployment, we consider the initial location of robots as the
secondary objective,which has not been addressed in deploy-
ment/redeployment problem yet. This objective can be vital
in a given application where the transportation of the source
of deployment, which can be a robot, car, facilities, etc., has
a very high cost. Therefore, a shorter distance from the initial
position to the new deploying location is preferred.

As MOEA is applied to solve our multi-objective Mixed
Integer Linear Programming (MILP) problem the result will
be a set of solutions instead of a single one, thus an expert can
choose one of the alternatives based on preferences about the
problem. Those preferences are considered in both the evo-
lutionary process and also when selecting the final solution
over the estimate of the Pareto front.

Another contribution of ourwork is theway of defining the
density function, such that the concentration ellipse method
is applied to find an ellipse centered on the mean point of
the crowd. By using this technique a realistic representation
of the distribution of the crowd is achieved, also modeling a
multi-modal density function is straightforward based on dif-
ferent clusters of crowds, in which the number and locational
information of the crowd is taken into account.

Finally, to investigate the performance of our proposed
platform, we simulate and compare our method with other
methods.

3 Preliminary definitions

In this section, we explain the basic concept of deployment
and p-median problems.

3.1 Deployment problem formulation

Given a team of n robots that are distributed in the bounded
environment, Ω ⊂ R

2. The configuration of robots can be
represented by P = {p1, . . . , pn}, where p j ∈ R

2. Also,
V = {v1, · · · , vn} is the Voronoi regions that represent a
partitioning of the environment given by:

v j = {q ∈ Ω|d(q, p j ) ≤ d(q, pi ),∀ j �= i}. (1)

123



Multi-objective multi-robot deployment in a dynamic environment 6485

p4

V2

V3

V4

Ω

p2

p3

V1p1

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

xy

D
en

si
ty

 F
un

ct
io

n

(a) (b)

Fig. 1 Partitioning an environment and the density function. a Agroup
of robots with corresponding Voronoi region. b Gaussian distribution
function centered at the point qc = [0.5, 0.5]T

An example of environment with four robots is depicted in
Fig. 1a. The main objective of deploying a team of robots is
that each robot j be responsible for covering a region v j . By
covering region v j , we mean that the robot must be respon-
sible to service all the events occurring inside its dedicated
region. The performance of this process can be measured by
using a deployment function proposed originally by Cortes
et al. (2004) as follows:

H(P, V ) =
n∑

j=1

H(p j , v j ) =
n∑

j=1

∫

q∈v j

d(q, p j )φ(q)dq.

(2)

The density function φ indicates the priority of points in
the environment, such that regions with higher value have
more priority to be covered (φ : Ω → R

+). Figure 1b
shows an example of a density function in a 2D environ-
ment for which high coverage is required in the central area,
while no coverage is required at the boundary. d(q, p j ) gives
the distance between a point q and the robot configuration,
p j . Different metrics can be used to compute the distance
between any two points in the map. In Fig. 2a, comparison
between Euclidean and geodesic distance in the non-convex
environment is shown.While the Euclidean distance between
p and q is shorter and suitable for a convexmap, the geodesic
distance is more realistic and addresses non-convex environ-
ment (dash line).

According to the explanation above, the problem of
deployment is then translated to a minimization problem of
the function in Eq. (2). While this section explained the defi-
nition of a continuous deployment setup, a discrete definition
is discussed next.

3.2 p-median problem

If we consider that the input map is discretized into cells
and represented by a graph, the deployment problem can be

Fig. 2 Euclidean and geodesic (dash line) distance in non-convex envi-
ronment

Fig. 3 A solution of p-median problem with two facilities and seven
customers

viewed as a p-median problem. In the p-median problem, the
objective is to find the location of n facilities (or medians)
relative to a set of users or customers, in which the sum of
the shortest demanded distance from customers to facilities is
minimized. This problem is classified as NP-hard problem;
therefore, many heuristic methods have been proposed to
solve it. The mathematical model of this problem can be
defined as follows:

Consider a set of possible locations for facilities W =
{1, · · · , n}, and a set of customers U = {1, · · · ,m}. d is
a distance function, in which d(i, j) indicates the shortest
distance from customer i to facility j (i ∈ U and j ∈ J ),
where J is a subset of W . Thus, the objective is to minimize
the following function:

F =
∑

i∈U
min
j∈J

d(i, j), (3)

where J ⊆ W and |J | = p.
An example of this problemwith seven customers and two

facilities is shown in Fig. 3.
The deployment problem that is addressed in this paper,

works in a discrete setup, so that m points (vertices or

123



6486 R. J. Alitappeh et al.

customers) will be assigned to n robots (representing the
facilities).

4 Multi-robot deployment

In our proposed method, we construct the graph G from the
input map by applying discretization technique; thereafter,
all the computation is done upon this graph. In this section,
we discuss about graph representation, computing Voronoi
Diagram (VD), dynamic environment, objective functions
and also the proposed algorithm.

4.1 Graph-based tessellation in non-convex
environments

For representing the map in a discrete way, we use an occu-
pancy grid approach. But before discretization, we compute
free configuration space (Qfree) of the input map. This is
done by growing the obstacles by the size of the robot. Fig-
ure 4a points to the result of growing a circular robot by
a specific radius around the obstacles. Also in Fig. 4b, the
result of dividing Qfree into cells is shown. It is apparent
from Fig. 4b that cells are considered as obstacles if they are

Fig. 4 A descritized map represented by a graph and it corresponding
VD. a Result of growing a circular robot on a map to compute Qfree
(white region). b Discretized map and corresponding grid graph with
small filled square inside cells as vertices and lines are edges. c Voronoi
diagram corresponding to three robots placed at three highlighted cells

occupied partially with obstacles (unmarked). In contrast,
the cells are called free cells if they are completely free of
obstacles (marked by green squares at the center).

We define a discretization rate (α) that can be set based
on the size of robots. In this way, if we consider a map with
size M × N (N , M = 2k, k ∈ N), after discretization the
number of cells (in row and column) will be:

(
M

α
,
N

α

)
.

Based on this uniform square tiling of 2-dimensional
configuration space, we will generate a grid graph and
perform efficient graph search algorithms to compute the
Voronoi Diagram. Let a weighted graph given by G =
{V(G), E(G), C(G)} that is constructed with vertices (V),
edges (E : V × V → R

+) and weights (C : V → R
+). Ver-

tices can be shown also in the form of a set V = {1, · · · ,m},
where m = M

α
. N
α
is the number of vertices that is obtained

by converting the 2D discretized map matrix into a single
row matrix with m vertices.

This is evident in Fig. 4b, where vertices of the graph
are placed in every accessible discretized cell, and edges are
established between neighboring vertices based on Moor-
neighborhood (8-connectivity). The cost of each edge is
computed by relying on the metric induced by the config-
uration space, typically the Euclidean length of the edges.

In order to locate robots in this discretizedmap,we assume
that the robots can move over the centers of cells (or corre-
sponding nodes on the graph), and thus the distance between
robots and other cells (nodes) can be computed simply by
searching on the graph.

4.2 Computing Voronoi diagram on the graph

Since computing the Voronoi diagram is one of the impor-
tant steps in our framework, we explain the details of this
technique here.

In order to compute the Voronoi diagram on the graph
G, one technique has recently been presented by Bhat-
tacharya et al. (2013a). The strategy is based on the Dijkstra
algorithm with multiple sources (Cormen et al. 2009) and
(Dijkstra 1959), in which multiple wavefront start frommul-
tiple sources (vertices that can pose the location of the
robots) and propagate until colliding with the neighborhood
wavefront. This region indicates the boundaries of two neigh-
boring VDs. Figure 4c presents the result of computing VD
for three robots positioned at three arbitrary configurations.

In this study, we develop a parallel implementation of
Multi-Source Shortest Path (MSSP). In Fig. 5, we show some
of the iterations starting the wavefront from the initial posi-
tions of the vertices (robots). In each iteration, a new level
is added to the prior one and it stops on the Voronoi bound-
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(a) (b)

(c) (d)

Fig. 5 Running parallel wavefront algorithm. Robots are represented
as circles. a 1st iteration, b 2nd iteration, c 4th iteration, d Final result

ary, where wavefronts collide. As it is explained in Klein
(2005), this implementation reduces the time complexity and
the required space.

After computing VD and partitioning the graphG, a given
subgraph, gi is induced as follows:

gi = {V(gi ), E(gi ), C(gi )},
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

V(gi ) ⊆ V(G)

E(gi ) ⊆ E(G), 1 ≤ i ≤ m,

V(gi )
⋂V(g j ) = ∅, i �= j

E(gi )
⋂ E(g j ) = ∅, i �= j,

where n is the number of sources or, in this case, robots.
It should be noticed that applying Dijkstra algorithm upon

our grid graph representation enables our solution to be
applied on both convex and non-convex environments. This
is achieved due to its ability to compute the shortest distance
between two arbitrary points based on the geodesic metric
instead of the Euclidean one, although in convex environ-
ments both metrics lead to the same result.

4.3 Objective functions

As we mentioned, in our problem the robots are located at
some nodes at the beginning, but after running our algorithm
they must be deployed to new configurations. Thus minimiz-

ing the deployment function and minimizing the path from
the initial to the deploying position are considered as our
main objectives. The multi-objective problem considered in
this paper can be formulated as the following binary inte-
ger programming problem, which is similar to the p-median
problem (Lim et al. 2009).

Let P = {p1, · · · , pn} be the location of a team of robots,
where p j indicates the position of robot j (or the index of
the vertex that robot j is located at). The map is represented
by G with m vertices. Moreover, d(i, j) denotes the shortest
distance from vertex i to j in the graph G, and X is an m by
n matrix (m is the number of vertices and n is the number
of robots), where X (i, j) is a binary variable to determine
whether vertex i is associated with a robot with vertex j or
not, which is given by:

X (i, j) =
{

1 if vertex i is associated to vertex j

0 otherwise,

Therefore, the formulation can be defined as:

(1) min F1 =
m∑

i=1

n∑

j=1

d(i, j).φ(i)X (i, j)

(2) min F2 =
∑

k∈τ

n∑

j=1

d(k, j)X (k, j) (4)

subject to the following constraints:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a)
∑n

j=1 X (i, j) = 1, for i = 1, . . . ,m,

b)
∑n

j=1 X ( j, j) = n

c) X ( j, j) ≥ X (i, j), i = 1, . . . ,m, j = 1, . . . , n, i �= j,

d) X (i, j) ∈ {0, 1}
(5)

In the first objective, F1, constraints (a) force each vertex
of the graph to be assigned to exactly one vertex and con-
straint (b) specifies the total number of centroids, which is
equal to the number of robots, n. Constraints (c) limit the
vertices to be associated with only centroids.

It should be noticed that in this equation the distance
d(i, j) is weighted by φ such that when φ has higher value,
the corresponding d(i, j) becomes more important. Thus
those weighted d(i, j) should be minimized since the first
objective is considered as a minimization problem.

In the second objective, F2, τ is the set of initial positions
of the robots. And d(k, j) represents the shortest distance
from the initial position of a robot, pk , to the deploying posi-
tion, p j . As we mentioned, in our algorithm, the shortest
distance between two points (vertices) and its corresponding
path is computed by Dijkstra algorithm for computing F1 (an
example of the shortest path found by Dijkstra is shown in
Fig. 6); hence, no more computation is needed to compute
F2. In fact, by minimizing the second objective robots try
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Fig. 6 Shortest path between two points (vertices) pi and pk is com-
puted by Dijkstra algorithm.

to be close to their initial (or last) locations. The inherent
conflict between these two objectives is explained in the next
subsection.

4.4 Robots in dynamic workspace

The environment is dynamic in the sense that the working
space changes over the time. In a specific application, if, for
example, we define the density function based on the spatial
distribution of the crowd (people), they might move in our
dynamic environment, hence changing the density function.

Regarding to this dynamic behavior, we can figure out the
conflict between twodefinedobjectives as follows.Whenever
the distribution of the crowd changes significantly, we start
the redeployment process. If the crowd stays close to the
robots current positions, they do not need to change much
their positions and the two objectives are not conflicting.
However,when the distribution of the crowdchanges in away
far from the robots current positions, the objectives become
conflicting and we need to repeat redeployment process.

Figure 7 encompasses the possible states that the robots
can take in our system: servicing, deployment or redeploy-
ment and rest. For instance in servicing state robot responses
to a call from a customer; deployment or redeployment hap-
pens in two conditions: (i) periodically in each �t , see Fig.
7a; (ii) change detected in the crowd distribution, as the
system senses the crowd distribution changing more than a
specific threshold, see Fig. 7b.

Whenever a robot needs any kind of service (such as
charging or stop working), it will enter to the rest state. It
is important to remark that this state machine can be gener-
alized to deployment of any kind of service robot.

4.5 Algorithm design

In order to solve the multi-objective problem, a similar
method to NSGA-II is chosen because of its popularity and
its ability to find a good spread of solutions and fairly good

Finish

Need to be 
serviced?Need to be 

serviced?

Finish

Servicing

Rest

(Re)Depl
oyment

Finish

Need to be 
serviced?Need to be 

serviced?

Finish

Distributions 
changes 

Servicing

Rest

(Re)Depl
oyment

(a)

(b)

Fig. 7 The state machine that contains different states of a robot in our
proposed framework. a Redeployment based on time event. b Rede-
ployment based on change in the distribution of crowd

convergence toward the true Pareto-optimal front compared
to other methods. In general, the entire process to achieve the
solution is shown in the flowchart of Fig. 8. In the following,
we describe the algorithm with more detail.

The configurations of a robot in final deploying position,
pi , is given by the position of the cells on themap or its corre-
sponding vertex index in the graph. Hence, the chromosome
contains a set of points, P∗ = {p1, . . . , pn}, where n is the
robot number (see Fig. 9).

Also we define another set P̂ini t = { p̂1, . . . , p̂n} as
initial positions of the robots in the environment that will not
be changed during each run of the algorithm. Each element in
this set has its corresponding pair in P∗. Algorithm 1 shows
all the steps in the MOEA. This algorithm repeats whenever
a new deployment is needed. Two different conditions for
calling this algorithm are explained in Sect. 4.4.

As this algorithm is well known, we just show how in line
3 and we evaluate each individual in Algorithm 2 and also
our genetic operators.

In Algorithm 2, to compute the Voronoi region in line 2,
the Multi-Source Shortest Path technique, based on Dijkstra
algorithm, explained in Sect. 4.2, is applied.
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Termination 
criteria?

Non-domination sort

Yes

End

Mutation operation

Selection

No

Input map and initial 
position of robots ( )

Create corresponding graph (G)

Initial random population ( )

Compute Voronoi diagram (VD)

Compute deployment function 
( )

Compute shortest path  by 
Dijkstra algorithm ( )

Select a solution (ELECTREI)

Fig. 8 The flowchart of the proposed deployment algorithm

p1 p2 pn

Fig. 9 Representation of candidate solutions

After computingVoronoi region, first objective is obtained
in line 3. Later the shortest path between the previous and the
new position of the robot is calculated in line 4. Finally, in
line 5 the second objective is assigned to the corresponding
chromosome.

For creating the new generation, two different types of
mutation operators are applied. In the first type, after select-
ing one of the individuals randomly, all the genes will be
changed by new random values. This operator plays the role

Algorithm 1: MOEA()

Input: G, P̂ini t , // Input graph, Robots initial position
Output: P∗ // Robots final position

1 Chrom ← I ni tial(G) // Create initial population.
2 while (! T ermination_Criteria) do

// until termination criteria is met.

3 Chrom ← Computing_Fitness(G, P̂ini t ,Chrom)// Compute
fitness.

4 Chrom ← Non_Dominated_Sort (Chrom)// Applying
Non-dominated Sorting.

5 Parent_Chrom ← Selection(Chrom)// select best population
as survival.

6 O f f spring_Chrom ← Genetic_Operators(Parent_Chrom)

// Create new generation by applying mutation.
7 Chrom ← Concat (Parent_Chrom, O f f spring_Chrom)

//concatenate children and parents.
end

8 P∗ ← ELECT RE I (Chrom) //Select one of the solution.

Algorithm 2: Computing_Fitness(G, P̂ini t ,Chrom)

Input: G, P̂ini t ,Chrom// Input graph, Robots initial position and
chromosomes.

Output: Chrom // Chromosomes with their fitness (F1, F2).
1 for chromi ∈ Chrom do
2 V ← Compute_V D(G, chromi ) // Compute Voronoi Diagram

for Chromosome i .

3 chromF1
i ← Compute_H(V ) // Compute the deployment

function.

4 Path ← Find_Shortest_Path(G, chromi , P̂ini t ) // Find
shortest path between each pair.

5 chromF2
i ← length(Path) // Compute sum of paths length.

Fig. 10 Mutation operator changes the deploying position (square)
with range r . a Selected parent, b created children

of global exploration over the problem space. In addition,
second operator performs a local search by changing one of
the genes in a random selected parent. Indeed, a single gene
will be selected, and then we add a small disturbance that
might change the position, pi within range (r ) around it. An
example of this operator is depicted in Fig. 10.

After running algorithm 1, a non-dominated set will be
obtained, and then through this set of results, the final answer
will be selected via multi-criteria decision-making technique
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(Figueira et al. 2005). The Elimination and Choice Translat-
ing Reality (ELECTRE I) (Roy 1968) is employed since the
decision-maker can define a preference of each objective in
this method; after comparing all pairs of alternatives, ELEC-
TRE I provides a partial ordering of solutions based on the
declared preferences.

4.6 Density function

Since in this work the distribution of the robots is based on
the density of the crowd in the environment, we obtain the
density function φ, based on a concentration ellipse method
proposed by Belta and Kumar (2004). After clustering the
distributed crowd in the workspace to specific number of
clusters, which can be determined based on the size (area)
of workspace and the capacity of crowd in the field, a fitted
ellipse to each cluster about the mean of the cluster is found.
For this ellipse, a Gaussian function is defined:

f (x, y) = exp

{
−

(
(x − x0)2

2a02
+ (y − y0)2

2b02

)}
, (6)

where a0, b0 are equal to the semiaxis (or spreads of the
blob), and x0 and y0 are set to the center of the ellipse (see
Fig. 11).

Such an example of crowd clustering, finding the fitted
ellipse and obtaining a density function is depicted in Fig. 12.
In this example, the distributed crowd is divided into three
clusters by applying k-means clustering algorithm (Hartigan
and Wong 1979). Later in Fig. 12b, three ellipses are found,
such that they enclose the points in each cluster, and a multi-
modal density function is obtained on the union of these three
ellipses (c, d). It is worth tomention that the number of crowd
in each cluster affects the peak of the corresponding cluster
relatively. Therefore, based on Eq. (6) the Gaussian function
of the i th cluster can be modeled as follows:

( )

( )

Fig. 11 An ellipse centered on (x0, y0) with semiaxis (a0, b0), rotated
by θ degree

Fig. 12 Example of applying concentration ellipsemethod on a sample
crowd. a A distribution of crowd, b corresponding clustering and fitted
ellipse, c 2D Gaussian function correspondingly, d 3D representation
of Gaussian function

f̂i = ε + α f (x, y), (7)

In Eq. (7), ε is defined as a small bias value to avoid f̂
returns zeros ( f̂i �= 0), α is a coefficient representative of
the crowd number in a cluster. A cluster more crowded has
a bigger α, accordingly a bigger peak in its density function.

In order to find the ellipse over the crowd, let qi =
[xi , yi ] ∈ R

2 represents the position of individual i , and
thus the mean and covariance of N samples are given by
Eqs. (8, 9):

μ = 1

N

N∑

i=1

qi , (8)

	 = 1

N − 1

N∑

i=1

(qi − μ)(qi − μ)T . (9)

The position of individuals (q) according to the fitted
ellipse in a cluster is given by:

q̂ = [x̂i , ŷi ] = RT (qi − μ), i = 1, 2, . . . N ,

such that R is the rotation matrix [Eq. (10)] and θ indicates
the rotation of the ellipse in the workspace (see Fig. 11):

R =
[
Cos(θ) −Sin(θ)

Sin(θ) Cos(θ)

]
. (10)

The semiaxes of the ellipse can be obtained by

l1 = 1

N − 1

N∑

1

x̂2i , l2 = 1

N − 1

N∑

1

ŷ2i . (11)

According to Eqs. (8) and (9), the ellipse in terms of
contours of probability p for normally distribution crowd
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in workspace can be explained as:

(x − μ)T	−1(x − μ) = c, c = −2 ln(1 − p). (12)

Given the above explanation, we can induce an abstraction
a = (R, μ, l1, l2, α), which indicates that p percentage of
normally distributed α crowd in workspace lies inside an
ellipse centered at μ, with semiaxes

√
cl1,

√
cl2, rotated by

R. The rotation matrix, R ∈ SO(2), is defined around θ ∈
(−π/2, π/2) as follows:

θ = 1

2
tan−1

(
N∑

i=1

(qi − μ)E1(qi − μ)T ,

N∑

i=1

(qi − μ)T E2(qi − μ)

)
,

(13)

where

E1 =
[
0 1
1 0

]
, E2 =

[
1 0
0 −1

]
.

A comprehensive explanation can be found in Belta and
Kumar (2004). Finally, a map function c : ⋃

ak → φ, (k is
number of ellipses) creates a density function φ based on the
abstraction a of multi-ellipse representing the distribution of
the crowd in the environment.

4.7 Complexity

In order to compute the total complexity of our algorithm, it is
considered in two main parts: the complexity of MOEA and
the operation of constructing Voronoi tessellation. The com-
plexity of a standard implementation of NSGA-II is equal to
O(GMN 2), where G is the number of iterations and M and
N are the number of objectives and population size, respec-
tively. However, in Jensen (2003) and Liu and Zeng (2010),
the authors decreased this complexity to O(GN logM−1 N )

and O(kN+log N ), where k is the number of non-dominated
front. Hence, a logarithmic computational cost can be con-
sidered for executing NSGA-II. Moreover, the complexity of
creatingVoronoi tessellation,which is done by usingDijkstra
algorithm and heap structure, is given by: O(|V| log |V|).

5 Case study

Aswe explained in the introduction, we defined two different
scenarios for indoor and outdoor environments. We consider
an office-like environment with the presence of obstacles
and a very large obstacle-free beach area (ocean) which are
explained in the continuation.

Fig. 13 Office-like environment

5.1 Office-like environment

Such an office-like building contains obstacles (walls), rooms
andpersons (employees or applicants). In thismap, a groupof
service robots will service to people who are working in this
building. In this way, robots can perform different tasks, i.e.,
delivering/transferring documents between rooms, guiding
applicants, cleaning, etc. Fig. 13 shows the given map. In
order to have the location and distribution of the applicants,
we assume an internal camera-based system that produces
their locational information.

5.2 Lifeguard robot in beach

Second scenario is associatedwith a group of lifeguard robots
in an outdoor environment (beach). In this application, robots
must be responsible to give aid to victims in minimum time.
Hence, robots must get positions somewhere in the arena
in order to be accessible through the whole environment
in the minimum distance. Indeed a group of robots play a
role of life security on a beach, such that many people are
swimming inside an ocean close to a beach, while robots are
surveilling the environment (swimming region) to help vic-
tims on demand. As the given area is very large a group of
robots are distributed over the environment and service the
events in their assigned region. Thus, by solving deployment
problem in this scenario we can guarantee that the robots
can access to victims in minimum time, which is vital when
a victim is drowning or in danger. It should be noticed that
the number and positions of swimmers are varying in time;
therefore, robots must be redeployed periodically. Indeed,
we deem each swimmer has a sensor to send his/her current
position to the main system, and after updating locational
information of swimmers in each �t , redeployment might
be triggered. Such an environment is shown in Fig. 14.

In this area, the density function shows the crowd of swim-
mers; therefore, the density function for a region with more
swimmers has a higher value.

123



6492 R. J. Alitappeh et al.

Fig. 14 A beach (ocean) area

6 Simulation result

Experiments are done in the two defined scenarios, and
solutions were found using MATLAB on a computer with
processor Intel (R) Core (TM) i7-3520M 2.90 GHz with 6
GB RAM.

6.1 First scenario

In the fist scenario, six robots are going to find the best con-
figuration to be deployed in an office. As it is explained in
Sect. 4.1, themap is discretized into cells, in which the center
of cells (highlighted by small points) indicates the vertices of
graph in Fig. 15a. In Fig. 15b a single modal density function
that will be used in this simulation is presented.

The reported parameters in Fig. 16 are used for this sim-
ulation.

In order to have a more realistic problem, we did not cen-
tralize all robots in the same position. So robots are divided
into 3 groups, and each group contains 2 robots. They start
moving from 3 different corners of the map.

We also compute the estimation of the Pareto front, for
this scenario, based on the idea of Monte Carlo algorithm
to validate that our results are very close to the estimated
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Fig. 15 Office-like map, and its corresponding density function. a
Descretized map (Highlighted points are the center of cells). b Den-
sity function (3D view)

Map & Robot ELECTRE I MOEA Density function Ellipse

Parameters Size Discretization 
rate Robot # W1,W2 Population# Max 

Iteration , , 

Value 400*600 units 15 6 0.5 20 200 0.8 300,450 13,48 0.099

Fig. 16 Parameters in the first scenario
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Fig. 17 An estimation of the Pareto front and the non-dominated set
obtained by proposed solution. a The result of applying Monte Carlo
algorithm to obtain an estimation of the Pareto front. bThe result of pro-
posed solution. The square shows the selected solution by ELECTRE
I (F1 = 0.26, F2 = 0.43)

Fig. 18 Result of deployment on office-like map. a Selected solution
by ELECTRE I (F1 = 0.26, F2 = 0.43). b Another solution in the
Pareto front with higher F2 (F1 = 0.18, F2 = 0.76)

Pareto front. To obtain that, we simulate random population
for 100 times. Later non-dominated sorting algorithm finds
the estimation of the Pareto front, see Fig. 17a.

After running the algorithm for 200 iterations, an estima-
tion of the Pareto front is obtained. In Fig. 17b, we present
the set of solutions that are distributed along the Pareto
front. Because of the overlaps between solutions, just eight
solutions are visible in this figure. The same situation has
happened in Figs. 21 and 26. Afterward, by applying the
decision-making tool, ELECTRE I, it finds the best solution
regarding to the weights of the objectives. The selected solu-
tion is highlighted by a black square in this figure. Since the
weights of both objectives are equal (0.5), a balanced solution
on both objectives is selected.

The corresponding representation of the selected solution
is depicted in Fig. 18a, in which the input map is partitioned
into 6 regions (with different colors) and each of the robots is
responsible for its associated region. Also, robots have con-
verged to the peak of the density function at the center ofmap.
The trajectory of the robots from the initial configuration (cir-
cles) to the deploying configuration (squares) is also shown.
In order to compare the selected solution with other solutions
in the non-dominated set, another solution with higher F2 is
illustrated in Fig. 18b. It is obvious that the length of the
explored path (with bigger value in F2) by robots is longer
than the one for the selected solution by ELECTRE I.
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6.2 Second scenario

In this scenario, we consider an outdoor map with more
complex density function. The discretized map and its corre-
sponding multi-modal density function are depicted in Fig.
19a, b. In this scenario, although themap is convex, according
to our technique described in Sects. 4.1 and 4.2, the geodesic
distance metric is applied to compute the shortest path and
Voronoi diagram. Therefore, since there is no obstacles in
the outdoor convex scenario, the computed geodesic distance
became equal to the Euclidean distance.

It should be noticed that the input map is converted to
a grayscale image and comprises two regions: land (gray
region) and water (white region). In this realistic map, we
are going to show not only deployment of the robots inside
the ocean, but also their redeployment based on changes in
the crowd distribution in the time unit. The initial distribu-
tion of swimmers in the ocean, corresponding clusters, fitted
ellipses and the density function are shown in Fig. 19b–d.
The maximum number of clusters for this map is considered
equal to 5. This parameter can be defined regarding to the area
of the map and relative capacity of crowd. The video of the
whole process of deployment and redeployment is available
at https://youtu.be/QNbovdZfH7s.

The parameters that have been applied in this simulation
are reported in Fig. 20.

Similar to the previous test, we find and estimation of the
Pareto set in Fig. 21a. After solving the problem, the approx-
imated Pareto set, the selected solution by ELECTRE I and
the robots trajectories are illustrated in Figs. 21b and 22,
accordingly. It can be understood through these figures that

Fig. 19 Beach map with distribution of swimmers in ocean. a Dis-
cretized map (gray is land and white is the ocean). b People distribution
and clustering. c Corresponding density of the crowd. d 3D view

Map & Robot ELECTRE I MOEA Density function Ellipse

Parameters Size Discretization 
rate Robot # W1,W2 Population# Max 

Iteration Multi modal 

Value 1600*730 units 21 12 0.5 20 200 0.8 - 0.099

Fig. 20 Applied parameters in the second scenario
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Fig. 21 An estimation of the Pareto front and the non-dominated set
with the selected solution. a The result of applying Monte Carlo algo-
rithm to obtain an estimation of the Pareto front in the second scenario
(100 times random simulation). b The square shows the selected solu-
tion by ELECTRE I (F1 = 0.37 , F2 = 0.29) obtained by the proposed
method

Fig. 22 Explored paths by the robots. Circles show the initial config-
urations. More robots are deployed about the peaks. Representation of
the selected solution with F1 = 0.37 , F2 = 0.29

the whole environment is covered by robots, and the number
of robots deployed about the peak of the density function
is more. For example, in the right side of the map, as the
crowd (swimmers) is bigger than other regions, more robots
are deployed there.

6.3 Comparison with standard NSGA-II

Generally, from the figures shown so far, in both scenarios
more robots were deployed around the peaks of the density
function, which are our desired regions.

As we mentioned in Sect. 4.5 in the NSGA-II, we applied
a new mutation operator instead of using crossover. In order
to investigate the efficiency of this operator, we also simulate
both scenarios byusing standardNSGA-II. This standardver-
sion uses a mutation (similar to ours) and 2 points crossover
operator. Apart from the crossover rate, which is 0.85, all
other parameters are equal to the values in Figs. 16, 20.
Also the number of runs for both our modified NSGA-II∗
and the standard NSGA-II is equal to 100. As a result,
Table 1 contains the mean and standard deviation of both
objectives in two defined scenarios, for both algorithms. It
can be understood that our modified NSGA-II works bet-
ter than the standard one. A remarkable effect of our new
mutation operator is keeping diversity during iterations and
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Table 1 Comparison between NSGAII-∗: our modified version, and
NSGAII: the standard one

Mean SD

F1 F2 F1 F2

NSGA-II Scen1 0.42 0.65 0.11 0.18

NSGA-II Scen2 0.53 0.40 0.17 0.059

NSGA-II∗ Scen1 0.35 0.46 0.15 0.19

NSGA-II∗ Scen2 0.38 0.28 0.036 0.015
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Fig. 23 Non-dominated set obtained by standard NSGA-II in 200
iterations. a Pareto front of applying standard NSGA-II in office-like
scenario.bPareto front of applying standardNSGA-II in beach scenario

better exploration. In contrast crossover could not save diver-
sity since it is biased by the initial population. This is clear
from the standard deviation in the table. In NSGA-II∗ (our
method), the values of standard deviation in the selected
solution indicate the successful convergence in the last gen-
erations with diversity. In contrast to the first scenario, in
ocean case study because of its convexity, the last population
has converged with less difference in the standard deviation.

The estimates of the Pareto front for both scenarios
obtained by a typical run of the standard NSGA-II are shown
in Fig. 23. While the statistical performance of both meth-
ods is contrasted in Table 1, this snapshot of one of the runs
gives an idea of this difference. Compare these with the cor-
responding estimates achieved by our modified NSGA-II∗,
see Figs. 17b and 21b.Ourmethod could find not only a better
solution, but also a better distribution of the non-dominated
solutions over the Pareto front.

The dominated hypervolume (or S-metric) is a commonly
accepted quality measure for comparing approximations of
Pareto fronts generated by multi-objective optimizers. The
area comprised by the approximated front and a reference
(dominated) point, in our case the point (1, 1) in the objec-
tive space, can be used to indicate both convergence and
distribution of solutions. The bigger this value, the better
the approximation generated by the multi-objective method.
By having the hypervolume value for the outcomes of 100
runs, we take the sample mean and standard deviation. Table
2 shows the results obtained by our method NSGA-II∗ and
the standard NSGA-II. As can be seen, our method provides

Table 2 Comparison between NSGA-II-∗: our modified version, and
NSGA-II: the standard one, in terms of the hypervolume values

Mean SD

NSGA-II Scen1 0.79 0.005

NSGA-II Scen2 0.86 0.001

NSGA-II∗ Scen1 0.98 0.007

NSGA-II∗ Scen2 0.99 0.002

higher values for this metric, showing that the approxima-
tions of the Pareto front obtained by NSGA-II∗ are indeed
better.

6.4 Comparison with gradient descent-based method

Since the multi-robot deployment problem is considered as
anNP-hard problem, cited local searchmethods offer accept-
able solutions in many cases, by minimizing the function in
Eq. (2). But because of the nature of gradient descent-based
approaches, they may stuck in local minimum specially in
a complicated non-convex environment. In this simulation,
we are trying to compare our global search multi-objective
approach (we call it “method 1” here) with one of the most
common gradient descent-based techniques from the liter-
ature (called “method 2”). We applied a similar discrete
controller proposed by Bhattacharya et al. (2013b) and Ali-
tappeh and Pimenta (2016) to solve the problem in the first
scenario. It should be mentioned that in this simulation we
intended to compare the ability of these methods in finding
a better solution in deployment, thus in contrast to previous
simulation we assume a static environment (without chang-
ing in density function).

We selected the non-convex office-like map from our first
scenario (Sect. 6.1). In bothmethods, thefirst step is discretiz-
ing the map into cells, and hence the input map is divided
into 80×120cells (discretization rate is 5). We employed six
robots starting from the same initial positions in both meth-
ods. Figure 24 includes all the applied parameters in this
simulation.

By decreasing the discretization rate and cell size con-
sequently, robots will have more precise movement in the
environment. Since the main objective in method 2 is mini-
mizing the deployment function (F1), we give more priority
to this objective with w1 = 0.9 and the weight of F2 is set to
w2 = 0.1. To make a fair comparison, we set the maximum
iteration number to 70 in both methods.

Map & Robot ELECTRE I MOEA Density function

Parameters Size Discretization 
rate Robot # W1,W2 Population# Max 

Iteration , , 

Value 400*600 units 5 6 0.9, 0.1 20 70 0.8 98,435 120,120

Fig. 24 Applied parameters in this simulation
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Fig. 25 Density function (3D view) centered at most top right of the
map
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Fig. 26 Comparison between proposed method (M1) and method
1 (M2). a Final solution in objective space. (M1:Method 1 and
M2:Method 2). b Evolution of objective functions over iterations

The center of density function is defined at the most top
right of the map, which indicates that this region has more
priority to be covered. If we consider this scenario as an
office, this means more applicants need to be serviced in that
area (see Fig. 25).

After executing the algorithms, results are depicted in
Figs. 26 and 27. In Fig. 26a, the Pareto front of method 1
and the selected solution by ELECTRE is shown. Moreover,
by computing the second objective in method 2, it is shown
that our method could find a better Pareto and even dominate
the solution of method 2. In another comparison, we show in
Fig. 26b, how the values of F1 and F2 evolve over iterations
in both methods (in method 1 the mean of objectives in each
iteration are shown). It should be noticed that in method 2,
since the robots started from the initial location and get closer
to the final location iteratively, F1 and F2 started form the
worse (max) or best (min) values. For instance, the value of
F2 (total traversed path by robots) starts from 0 and increases
linearly with time. While we set a higher priority for the first
objective, in method 1, F2 gets worse over the evolution. But
it reached to a better value than method 2.

Finally, for the sake of clarity we illustrate robots behav-
ior in this simulation in Fig. 27. Robots started from the

Fig. 27 Final deployment of six robots. aVoronoi region for each robot
and the trajectory (start to end) in proposed method. b Voronoi region
and robots’ trajectory of method 2

same depots, in (a), robots directed toward the peak of den-
sity function, and move over the straight shortest path to
the final deployment position. In contrast, in (b), method 2
made some redundant motion (even sometimes backward),
which increases the traversed path by robots. Corresponding
Voronoi region for each robot is highlighted with different
color.

7 Conclusion

In thiswork,weaddress themulti-robot deployment/redeploy-
ment problem in non-convex environments. In our applica-
tion, we assumed that the robots must run the deployment
algorithm periodically, since the distribution of the crowd
(or density function) in the area varies with time. Differ-
ently from previous works, we consider a multi-objective
setup in a mixed integer linear programming and MOEA
was applied to solve this optimization problem. The first
objective is about minimizing the cost function of deploy-
ment problem that shows accessibility of robots in the field.
The second objective includes the length of the path between
robots initial positions and final deploying configuration.
Finally, for selecting one of the solutions on the estimated
Pareto front, we applied ELECTRE I as a decision-making
technique.

We also employed an ellipse technique to find an ellipse
centered about the mean of the crowd, and thus the density
function is definedbyusing this ellipse as itsmain level curve.

In simulation results, we validated the performance of
the proposed algorithm in two different maps. Moreover, we
show that not only the quality of deploying a team of robots
is important, but also the path that the robots must traverse
in order to get to these locations. In future work, this tech-
nique canbe extended to consider other objectives in different
applications in robotics.
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