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Abstract This study proposes a new approach combining
the chemical reaction optimization framework with the uni-
fied tabu search (UTS) heuristic to solve the capacitated
vehicle routing problem (CVRP). The CVRP is one of the
most well-studied problems not only because of its real-life
applications but also due to the fact that the CVRP could be
used to evaluate the efficiency of new algorithms and opti-
mization methods. Chemical reaction optimization (CRO)
is a new optimization framework mimicking the nature of
chemical reactions. The CRO method has proved to be very
effective for solving NP-hard optimization problems such as
the quadratic assignment problem, neural network training,
the knapsack problem, and the traveling salesman problem.
We also present the design of elementary chemical reac-
tion operations, the adaptation of the UTS algorithm to
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educate solutions in these operations. Finally, a thorough
testing against well-known benchmark problems has been
conducted. Experimental results show that the proposed algo-
rithm is efficient and highly competitive in comparison with
several prominent algorithms for this problem. The presented
methodology may be a fine approach for developing similar
algorithms to address other routing variants.

Keywords Capacitated vehicle routing problem · Chemical
reaction optimization · Tabu search · Metaheuristic

1 Introduction

The vehicle routing problem (VRP) plays an important role
in the optimization of transportation cost for logistics and
supply chain management. The VRP is also one of the most
extensively studied problems due to its methodological inter-
est. The VRP or the CVRP was first introduced by Dantzig
andRamser (1959). It is also a basicmodel for a large number
of routing problems. In the VRP literature, there are many
contributions targeted at this basic problem. The CVRP is
described as the problem in which vehicles concentrated on
a single depot are required to visit a number of customers
in order to service their known demands. The total trans-
portation cost of vehicles must be minimized. The CVRP is
an NP-hard problem. Hence, it is difficult to solve the CVRP
using exact algorithms in reasonable computing time. There-
fore, heuristic and metaheuristic methods have mostly been
used to address this problem; for example, see a number
of recent surveys (Laporte et al. 2000; Cordeau et al. 2002;
Eksioglu et al. 2009) and books (Toth andVigo 2002; Golden
et al. 2008).

Chemical reaction optimization is a fairly new paradigm
introduced recently by Lam and Li (2010). This paradigm
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encodes solutions as molecules and mimics the interactions
of molecules in chemical reactions to search for optimal
solutions. The CRO has four elementary reactions, namely,
on-wall ineffective collision, inter-molecular ineffective col-
lision, decomposition and synthesis. The first two reactions
perform the exploitation, while the last two reactions gain
the exploration. Meanwhile, a central energy buffer is also
implemented in CRO and helps the molecules to escape
from local optima. The CRO method has a good searching
ability. It can also inherit advantages of genetic algorithms
(GAs) when the four operators of CRO are designed using
the crossover and mutation operators. The CRO method has
demonstrated its capability to solve NP-hard optimization
problems. Specifically, this paradigm has been applied to
address many problems with high efficiency as presented in
(Lam and Li 2012; Li et al. 2012; Xu et al. 2013; Truong
et al. 2013; Melin et al. 2013; Sánchez et al. 2014; Truong
et al. 2015).

In order to evaluate the effectiveness of algorithms for
solving the CVRP, the most used benchmark is the 14 clas-
sical instances of Christofides et al. (1979). Besides, other
well-known test instance sets for the CVRP have been pro-
vided by authors like Augerat et al., Breedam, Christofides,
and Elion. Each instance has its particular characteristics
such as the number of customers, constraints on vehicle
capacity, restrictions on maximum route lengths, and a pre-
defined minimal number of vehicles. Many algorithms have
provided good solutions for the CVRP but they may not
pay much attention to constraints that exist in real life.
For example, most works focus on minimizing the total
travel cost than the number of vehicles used. Unified tabu
search (UTS) (Cordeau et al. 2001) is an effective and
flexible local search metaheuristic which relaxes the con-
straints and handles them through a penalty function when
exploring neighborhoods. However, the UTS performs the
single-starting-point search and thus its performance relies
highly on a good initial solution. Recently, the optimized
crossover genetic algorithm of Nazif and Lee (2012) was
shown to produce very good solutions, though the compu-
tation time still remains high. Moreover, novel optimization
paradigms should be able to performwell in comparisonwith
other optimization techniques and must be flexible to handle
different variants of the VRP (Laporte 2009). Furthermore,
the CRO method has been shown to be a successful opti-
mization algorithm for NP-hard problems but it should be
improved in many aspects, especially its exploitation capa-
bility. And the CRO has not yet been applied to solve the
CVRP. Hence, it is worthwhile to evaluate the performance
of the CRO paradigm for addressing the CVRP.

Given the above observations, we propose an algorithm
that combines the CRO framework and the adapted UTS
algorithm to solve the CVRP. The main contribution of this
work is to develop a new approach to tackle the CVRP

by adapting the conventional CRO framework in combina-
tion with the adapted UTS, and to design new operations
for performing the four elementary chemical reactions. The
inter-molecular ineffective collision operator is a special-
ized crossover which aims at minimizing the number of
vehicles used and the total travel cost concurrently while
satisfying constraints. The remaining reaction operators are
well-designed by adopting crossover and mutation operators
of GAs. Offspring produced by these crossovers and muta-
tion are likely to violate some of the constraints, which is an
important issue for GAs. Therefore, the adapted UTS proce-
dure is employed to educate the resulting solutions produced
by crossover or mutation operator in each CRO reaction. The
adapted UTS is able to repair solutions and enhance their
quality. Penalty parameters of the adapted UTS are updated
based on information of the complete population instead of
using only the current solution as in the original UTS. The
adapted UTS not only helps the algorithm to get fast con-
vergence but also enriches the diversification, which could
improve exploitation capability of the canonical CRO. By
this design, the proposed method, called CROUTS, inher-
its the advantages of both GA and UTS. The total distance
travelled by the vehicles and the number of vehicles are
minimized at the same time while relaxing constraints. Fur-
thermore, the decomposition and synthesis reactions may
change the number of individuals in a population. Hence
the proposed algorithm has more opportunity to jump out
of local optima as well as to explore broader areas of the
solution space. The CROUTS can thus find good solutions
in less time than a GA. On the other hand, the proposed
method suffers from the inherent drawback of the CRO par-
adigm, which is that the number of parameters is slightly
greater than some other approaches. However, these parame-
ter values are deduced from the literature and well-tuned in
the extensive experiment contributing to the effectiveness of
the proposed algorithm, as well as guiding other researchers
for future work. Thirty benchmark instances of the CVRP
are employed to confirm the efficiency of the proposed
algorithm. Experimental results show that the proposed algo-
rithm is efficient and highly competitive in comparison with
other algorithms from the literature. The proposed algorithm
is able to find high-quality solutions within a reasonable
time.

The rest of this paper is organized as follows: The next
section describes the vehicle routing problem then briefly
presents the literature review. Related work involving the
chemical reaction algorithm, the unified tabu search and the
genetic algorithm are briefly presented in Sect. 3. In Sect. 4,
the proposed CROUTS algorithm is introduced and analyzed
in detail. Then, Sect. 5 surveys and compares the performance
of the proposed CROUTS algorithm. Finally, the last section
draws the conclusion and discusses future work.
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2 The vehicle routing problem

The vehicle routing problem is formally defined on a
complete undirected graph G = (V, E) where V =
{v0, v1, . . . , vn} is the vertex set and E = {(vi , v j ) : vi , v j ∈
V} is the edge set. Vertex v0 refers to the depot while the
remaining vertices vi = (v1, v2, . . . , vn) are customers. A
distance or travel cost ci j is assigned to every edge (vi , v j ) ∈
E . Each customer vi has a demand qi and a service time di .
We have a fleet of m vehicles, each vehicle has capacity Qk

and is based at the depot. A route is a sequence of customers
that the vehicle services. Vehicle routes are restricted to a
maximum duration of Dk , k = 1, . . . ,m.

In this study, we address the case where vehicles are
homogenous with Qk = Q and have a common route dura-
tion restriction Dk = D. Therefore, the objective of the
CVRP is to construct a feasible set of at most m routes with
one route for each vehicle, minimizing the total cost, such
as (1) the vehicle must start and finish its tour at the depot;
(2) each customer must be serviced by exactly one vehicle;
(3) the total size of demand must not exceed Q and vehicle
route duration combining travel and service time is bounded
to a preset limit duration D. Mathematical formulations of
the CVRP can be found in the book of Toth and Vigo (2002).

The CVRP is one of the most popular problems in com-
binatorial optimization. Hence, the CVRP literature is very
rich. As the CVRP is an NP-hard problem, a large number
of approximation techniques have been proposed to solve
this one. These techniques are divided into two main cate-
gories: classical heuristics and metaheuristics. An overview
of these techniques may also be found in (Laporte et al.
2000) and (Cordeau et al. 2002). In the last 50years, many
metaheuristics have been developed to adress the CVRP. For
example, tabu search (TS) is the most widely used technique,
which is based on a simple mechanism to prevent the process
from cycling over a sequence of solutions. The TS meta-
heuristic can provide a good compromise between solution
quality and computing time.Many researchers have proposed
efficient variants of the standard TS algorithm and the best
known results belong to Taillard (1993) and Rochat and Tail-
lard (1995). The UTS algorithm of Cordeau et al. (2002)
and other authors had similar results by using Tabu Search,
such as (Osman 1993; Gendreau et al. 1994; Toth and Vigo
2003). Simulated annealing (SA) has also gained the simi-
lar results (Osman 1993). TS and SA are local search-based
metaheuristics. At each iteration, they select the best solu-
tion in the neighborhood of the current solution as the new
current solution. Their performances thus highly depends on
the choice of a good initial solution. The large sized VRP can
be efficiently solved by using variable neighborhood search
method (Chen et al. 2010). Mester and Bräysy (2007) pro-
posed an adaptation of the active guided evolution strategies
metaheuristic that gives highly competitive results. Tarantilis

(2005) presented an adaptive memory programming method
for the CVRP. Marinakis (2012) proposed a modified ver-
sion of greedy randomized adaptive search procedure that is
rather good at computation time.

Over the past decade, a number of nature-inspired meta-
heuristics have been proposed to address the VRP. The
most commonly used methods are genetic algorithms. Baker
and Ayechew (2003) proposed a competitive GA. Berger
and Barkaoui (2004) introduced a hybrid GA which com-
bines evolutionary search and local search. Prins (2004)
has developed an algorithm combining two main features
of evolutionary search, namely crossovers and mutations.
And then improvements are obtained by a local search pro-
cedure applied to a candidate solution. A good optimized
crossover genetic algorithmwas introduced recently byNazif
and Lee (2012). Particle swarm optimization (PSO) is a
population-based search method that mimics the behavior
of group organism as a searching method. PSO was also
proposed for solving the CVRP (Chen et al. 2006; Ai and
Kachitvichyanukul 2009; Marinakis et al. 2010) and many
other natue-inspired algorithms (such as Yu et al. 2009; Niu
et al. 2015). A more detailed descriptions of algorithms for
the VRP can also be found in the surveys (Laporte et al.
2000; Cordeau et al. 2002; Eksioglu et al. 2009) and in the
books (Toth and Vigo 2002; Golden et al. 2008).

3 Related work

In this section, we briefly present related work on the chemi-
cal reaction optimization framework, the unified tabu search
algorithm and genetic algorithms.

3.1 Chemical reaction optimization

Chemical reaction optimization (Lam and Li 2012) is a
variable population-basedmetaheuristic. Itmimics the chem-
ical reaction process where the interactions of molecules go
toward the minimum state of free energy, similar to objec-
tive function in optimization problems. A molecule (w) has
potential energy (PE), kinetic energy (KE), hit numbers and
other optional characteristics to represent a solution of the
considered problem. The two key properties attached to a
molecule are PE and KE. The former corresponds to the
fitness value of the solution while the latter is used to con-
trol the toleration to new solutions having worse fitness. The
CRO method implements four types of chemical reactions,
including on-wall ineffective collision, decomposition, inter-
molecular ineffective collision and synthesis. The on-wall
ineffective collision and decomposition reactions are sin-
gle molecule reactions, while the inter-molecular ineffective
collision and synthesis reactions are multiple molecule reac-
tions. Exploitation is mainly produced by on-wall ineffective

123



6424 T.-L. Dam et al.

collision and inter-molecular ineffective collision, while the
two remaining reactions gain exploration. After doing a num-
ber of reactions, the potential energy changes to the lowest
state and the best solution is the molecule with the lowest
PE. More details about CRO can be found in (Lam and Li
2010, 2012; Lam et al. 2013).

As suggested by experts, CRO is proposed as a gen-
eral optimization framework, therefore dedicated problem-
specific heuristics should be integrated into the four ele-
mentary reactions.Moreover, if decomposition and synthesis
operations are not well designed, they will have low effi-
ciency. The pseudocode of basic CRO as in (Lam and Li
2012) is presented in Algorithm 1 and it is suitable to imple-
ment CRO with an object-oriented program language.

Recently, a slightly different approach from the CRO was
proposed byAstudillo et al. (2015), namedChemical reaction
algorithm (CRA). This algorithm is a greedy approach for the
CRO paradigm. The CRA algorithm has a simpler parameter
representation and is proven to be efficient. CRA employs
the broad exploration mechanisms in combination with the
elitist reinsertion strategy. These characteristics can reduce
the probability that the CRA algorithm stagnates in local
optima.

Algorithm 1 The CRO Algorithm
Input:

Objective function f , constraints and the dimensions of the prob-
lem;
Output:

Thebest solution found and its objective function value;
1: \\ Initialization
2: Set PopSize, KELossRate, MoleColl, buffer, InitialKE, α and β;
3: Create PopSize number of molecules;
4: \\ Iterations
5: while the stopping criteria not met do
6: Generate b ∈ [0, 1];
7: if b > MoleColl then
8: Randomly select one molecule Mw;
9: if Decomposition criterion met then
10: Trigger Decomposition;
11: else
12: Trigger On-wallIneffectiveCollision;
13: end if
14: else
15: Randomly select two molecules Mw1 and Mw2;
16: if Synthesis criterion met then
17: Trigger Synthesis;
18: else
19: Trigger Inter-molecularIneffectiveCollision;
20: end if
21: end if
22: Check for any new minimum solution;
23: end while
24: \\ The final stage
25: Output the best solution found and its objective function value;

The chemical reaction optimization was shown to out-
perform many existing evolutionary algorithms. It has been

successfully applied to the quadratic assignment problem
(Lam and Li 2010), channel assignment problem in wire-
less mesh network (Lam and Li 2012), traveling salesman
problem (Sun et al. 2011), knapsack problem (Truong et al.
2013, 2015), heterogeneous computing environments (Li
et al. 2012), scheduling scheme on heterogeneous computing
systems (Xu et al. 2013, 2015), network coding optimization
(Pan et al. 2011),modular neural networks applied in emotion
classification (Sánchez et al. 2014), fuzzy controller design
for mobile robots (Astudillo et al. 2013; Melin et al. 2013;
de la Castillo et al. 2015), producing a hybrid method for
optimization (Nguyen et al. 2014), andmany other problems.

3.2 Unified tabu search algorithm

The unified tabu search algorithm (Cordeau et al. 2001) is a
local search metaheuristic, which was initially designed for
the periodic VRP and the multi-depot VRP. The UTS algo-
rithm was then later modified to solve the CVRP (Cordeau
et al. 2002) and other VRP with time windows variants.
UTS has the ability to explore infeasible solutions during
its search. Let S denote the set of solutions, a solution s ∈ S
mayviolate the constraints of theVRP. Therefore, the authors
use self-adjusting positive coefficients α, β and γ for viola-
tion of vehicle capacity, route duration and customer service
time windows constraints, respectively. The UTS starts from
a given solution s and chooses, at each iteration, the best
non-tabu solution s̄ in the neighborhood N (s). If s̄ does not
violate capacity constraint, the value of α is divided by a fac-
tor 1 + δ; else it is multiplied by that factor. The same rule
applies to β and γ . The best value reported by the authors is
δ = 0.5. The diversification is implemented as follows: any
solution s̄ ∈ N (s) that has fit(s̄) ≥ fit(s) is penalized by a
factor p(s̄). Finally the best solution s* found by the search
is post-optimized. The pseudocode of UTS algorithm, as in
(Cordeau et al. 2002), is presented in Algorithm 2.

To our knowledge, the UTS algorithm has been success-
fully applied to many variations of the VRP. It is relatively
simple and flexible. The UTS ranks high on accuracy and
quite well on speed using just a simple mechanism. It may
be the simplest of all tabu search implementations for the
VRP. However, the UTS algorithm is not the best available
for the VRPs and it does not always yield a solution that
minimize the number of vehicles used.

3.3 Genetic algorithm

Genetic algorithms were proposed by Holland (1975) and
the principles of GAs are well known. GAs are inspired
by the natural selection process where a population con-
sisting of solutions encoded as bitstrings or chromosomes
will gradually improve through a selection, crossover and
mutation process. The chromosomes with higher fitness val-
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Algorithm 2 The UTS Algorithm
Input:

Solution s;
Output:

The best solution found s*;
1: Set α = 1, β = 1 and γ = 1;
2: if s is feasible then
3: s∗ = s;
4: c(s∗) = c(s);
5: else
6: c(s∗) = ∞;
7: end if
8: for k = 1, …, η do
9: Choose a solution s̄ ∈ N (s) that minimizes f (s̄)+ p(s̄) and is not

tabu or satisfies the aspiration criteria;
10: if solution s̄ is feasible and c(s̄) < c(s∗) then
11: s∗ = s̄;
12: c(s∗) = c(s̄);
13: end if
14: Compute q(s̄), d(s̄) and w(s̄) and update α, β and γ accordingly;
15: s = s̄;
16: end for
17: Apply a post-optimization heuristic to each route of s∗;
18: return s∗;

ues are more likely to survive while the ones with lower
fitness values are more likely to disappear. GAs rely on
three basic operators: selection, crossover and mutation. The
selection operator simulates the natural selection to select
chromosomes in the population for reproduction. The fitter
the chromosome, the more times it is likely to be selected
to reproduce. The crossover operator employs the selection
procedure to take two parents from the population and then
exchanges someof their parts to reproduce the offspring solu-
tions. For example, in the case of a bitstring encoding, the
classical one-point crossover selects a cut point on the two
parent strings and then exchanges their end parts. The off-
spring may have higher quality. To prevent the optimization
process from getting trapped into local optima, GAs use the
mutation operator on offspring, then replace the worst citizen
of the population by the resulting offspring. Mutation opera-
tor is considered as a secondary operator that processes each
offspring position by position and flips the bit value at each
position with a small probability. At the end of each iteration,
the offspring together with the solutions from the previous
generation form a new generation, after undergoing a selec-
tion process to keep a constant population size. Starting from
a randomly or heuristically generated initial population, this
cycle is repeated for a number of generations, and the best
solution found is returned at the end.

cThe basic GA is very generic, and there are many aspects
that can be implemented differently according to the specific
problem such as the representation of solutions or chro-
mosomes, the selection strategy, and the type of crossover
and mutation operators. When applied to the vehicle rout-
ing problems, the basic GA scheme is often modified. In

particular, the encoding of solutions into chromosomes is
either ignored by applying the various operators directly
on the solutions or designed in a very particular way to
get advantages of specialized crossover and mutation opera-
tors (Baker and Ayechew 2003; Nazif and Lee 2012). More
specifically, the solutions are encoded using integer strings
of fixed length with or without route delimiters, while bit-
strings are used in classical GAs. In this case, an integer
stands for a vertex and the sequence of integers in the solu-
tion string is the order that customers are serviced. With
this representation, a straightforward application of a clas-
sical GA does not work. For example, with the classical
one-point crossover, the offspring may have some vertices
are duplicated while others may be missed. The offspring
may also violate some of the problem requirements and a
repair phase is required. Therefore, numerous studies have
proposed specialized operators which allow valid offspring
routes to be generated.Moreover, to gain better performance,
GA has been combined with local search heuristics (Berger
and Barkaoui 2004; Prins 2004). However, GAs are still
slower than many tabu search algorithms, it is only faster
than some of them. In general, GAs are adaptable, robust and
have become one of the most popular approach for design-
ing evolutionary algorithms. GAs have been successfully
applied to a huge number of applications in many fields of
optimization.

4 Design of the CROUTS

The CRO framework has three stages: initialization, itera-
tion and the final stage. The initial population, initial values
of parametersKElossRate, InitialKE, PopSize,MoleColl and
buffer are generated in the first stage. The second stage
simulates the process of reacting. In this stage, accord-
ing to the condition, there are four types of elementary
reactions occurring. They are on-wall ineffective collision,
decomposition, inter-molecular ineffective collision and sys-
nthesis. The two first operators are uni-molecular collisions,
the rest are inter-molecular collisions. Decomposition and
synthesis act as global search operators while on-wall
ineffective collision and inter-molecular ineffective colli-
sion are local search operators. This section presents the
infrastructure and rationale of the proposed CROUTS algo-
rithm.

4.1 Solution representation

A molecule corresponds to one solution of the CVRP, and
has the following characteristics:PE,KE, InitialKE,minHits,
numHits,MoleColl.PE is positive and is the total route length
of this solution. To represent the routes and the sequence of
customers serviced in each route, we adapt the permutation
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of n integer string which contains both customers and route
splitters as shown in the following solution example for a
7-customer VRP with three routes.

Route No. 1: 0 → 3 → 7 → 2 → 0.
Route No. 2: 0 → 1 → 4 → 0.
Route No. 3: 0 → 5 → 6 → 0.

The coded string is

−3 → 7 → 2 → −1 → 4 → −5 → 6.

In the coded string of this example, the numbers are the
customer indexes. The (−) sign standing in front of a cus-
tomer index indicates that the customer is the first one of
the route. In this example, route 1 begins at the depot, visits
customer 3, 7 and 2 in that order then returns to the depot,
and so on. This representation is unique and one string can
only be decoded to one solution. The (−) sign plays the role
of route delimiter.

4.2 Unified tabu search adaptation

In order to yield better search ability, we allow the infea-
sible during the search by relaxing the constraints on the
maximum vehicle load and route duration. Given a solu-
tion s, the objective value will be calculated as f (s) =
c(s)+ α1q(s)+ α2d(s) where c(s) is total travel cost of its
routes, q(s) and d(s) is respectively the total violation of
vehicle capacity and duration, α1 and α2 are penalty parame-
ters which are adjusted dynamically during the search. The
authors Cordeau et al. (2001) update these penalty parame-
ters based only on the current solution. We instead employ
information of the complete population to update them. Let
q̄ and d̄ be the average violation of vehicle capacity and route
duration all over the current population. Let

h =

⎧
⎪⎨

⎪⎩

c(sworst) if there is no

feasible solution in the population;
c(sbest feasible) otherwise.

Then the twoparameters are computedby the following equa-
tions:

α1 = h
q̄

q̄2 + d̄2
; α2 = h

d̄

q̄2 + d̄2
(1)

Whenever the algorithm finds a new best feasible solution,
h is recalculated then all fitness values will be recomputed
using the updated penalty parameters. Finally, the best solu-
tion found will be post-optimized by 2-opt (Lin 1965) and
CROSS-exchange (Taillard et al. 1997) operators.

2 3 7 5 4 6 1 

5 3 7 2 4 6 1 

Select two positions at random 

Swap the relative customers 

w 

w’ 

Fig. 1 Single swap mutation operator

4.3 Elementary chemical reaction operators

This subsection is dedicated to present four elementary chem-
ical reaction operations designed for the proposed algorithm.
They are on-wall ineffective collision, decomposition, syn-
thesis and inter-molecular ineffective collision.

4.3.1 On-wall ineffective collision operator

An on-wall ineffective collision occurs when a molecule hits
a wall of the container, and then bounces back. Suppose that
the source molecular structure is w. Then, after the reaction
we obtain a new molecule w′ from the neighborhood of w.
We adopt the single swap mutation operator of GAs here. An
illustration of this mutation operator is presented in Fig. 1.
Two customers in w will be chosen randomly, and are then
exchanged. After that, the resulting solution may be feasible
or infeasible. However, it will be educated by the adapted
UTS to improve its quality, in all cases. The pseudocode
of the on-wall ineffective collision operator is described in
Algorithm 3.

Algorithm 3 Onwall(w)
Input:

Molecule w;
Output:

New molecule w’;
1: Duplicate w to generate w′;
2: Generate i , j randomly in [1, n];
3: Swap w′(i) and w′( j);
4: UTS(w′);
5: return w′;

4.3.2 Decomposition operator

When a molecule hits a wall of the container too vigorously,
it will be decomposed into two pieces and the resultant mole-
cules should be very different from the original one. We
adopt the order crossover (OX) operator of GAs to imple-
ment decomposition because OX is better suited for cyclic
permutations and it is fast. The first parent is the original
molecule w, and the second one is generated randomly. The
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Crossover 

2 3 7 5 4 6 1 

2 3 6 5 4 7 1 

Select two positions at random 

  i = 3              j = 5 

w1

2 1 3 5 4 7 6 

2 7 1 5 4 3 6 

w2

Fig. 2 Example of OX crossover

example in Fig. 2 shows how OX constructs the offspring.
Firstly, two cutting points i and j are randomly selected. In
this example, we have i = 3 and j = 5. Then, the substring
between i and j of the first parent w1 is copied into off-
spring w′

1. Finally, the second parent w2 is swept circularly
from j+ 1 onward to complete the first offspring w′

1 with the
missing customers. The first offspring w′

1 is filled circularly
from j + 1, too. The roles of parents are then exchanged to
obtain the second offspring. The adapted UTS is also used to
ensure that the constraints are met before returning results.
The pseudocode of the decomposition operator is presented
in Algorithm 4.

Algorithm 4 Decomposition(w)
Input:

Molecule w;
Output:

Two new molecules w′
1 and w′

2;
1: Duplicate w to generate w1;
2: Generate w2 randomly;
3: Generate i , j randomly in [1, n];
4: Copy part w1[i, . . . , j] to w′

1[i, . . . , j];
5: Copy part w2[i, . . . , j] to w′

2[i, . . . , j];
6: From j+1, swept w2 onward to copy the missing customers to w′

1;
7: From j+1, swept w1 onward to copy the missing customers to w′

2;
8: UTS(w′

1);
9: UTS(w′

2);
10: return w′

1 and w′
2;

4.3.3 Synthesis operator

The synthesis reaction is opposite to decomposition reaction,
two molecules collide and then combine into one molecule.
In this operator, the partially mapped crossover (PMX) of
GAs is employed. Suppose that we attempt to synthesize
two molecules w1 and w2 into a new molcule w′. The PMX
operator works as follows. Firstly, the two cutting points are
chosen randomly. Then, the part between these two cutting
points ofw1 is copied tow′, and the other remaining positions
of w′ are filled with the remaining customers so that their

absolute positions are inherited as much as possible from
w2. After that, the resulting molecule is sent to the adapted
UTS procedure to ensure that the constraints are met and to
improve the solution quality. The detailed pseudocode of the
synthesis operator is described in Algorithm 5.

Algorithm 5 Synthesis(w1,w2)
Input:

Two molecules w1 and w2;
Output:

The new molecule w′;
1: Generate i , j randomly in [1, n];
2: Copy part w1[i, . . . , j] to w′[i, . . . , j];
3: for k = i to j do
4: if (geneP2 = w2[k] have not been copied) then
5: geneP1 = w1[k];
6: index P2 j = index of geneP1 in w2;
7: geneP2 j = w1[index P2 j];
8: if (geneP2 j = null) then
9: w′[index P2 j] = geneP2;
10: else
11: index P2k = w2[geneP2 j];
12: w′[index P2k] = geneP2;
13: end if
14: end if
15: end for
16: Copy the remaining non-copied customers in w2 to w′;
17: UTS(w′);
18: return w′;

4.3.4 Inter-molecular ineffective collision operator

Inter-molecular ineffective collision represents the case
where two molecules collide, and then bounce away. Sup-
pose that two new molecules w′

1 and w′
2 are produced from

two input molecules w1 and w2. This operator aims at min-
imizing the number of vehicles used and cost concurrently
while checking for feasibility.

As illustrated in Fig. 3, the new solutions are generated as
follows: from each parent, one route is picked randomly, then
we remove the customers of picked route from the other par-
ent. For example, the first route that contains customer 1 and
customer 2 is chosen fromparentw1, these two customers are
removed from parentw2 and then they are reinserted sequen-
tially into the best possible positions to produce childw′

2.We
exchange the roles of parents to produce child w′

1. Finally,
the two children are improved by the adapted UTS algorithm
before returning. The pseudocode of inter-molecular ineffec-
tive collision operator is presented in Algorithm 6.

5 Experimental results

In this section, we present simulation results of the proposed
algorithm. The objective of this section is twofold. The first is
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Fig. 3 Illustration of inter-molecular ineffective collision operator

Algorithm 6 Inter-moles-collide(w1,w2)
Input:

Two molecules w1 and w2;
Output:

Two new molecules w′
1 and w′

2;
1: Duplicate w1 to generate w′

1;
2: Duplicate w2 to generate w′

2;
3: Select route r1 of w′

1 randomly;
4: Select route r2 of w′

2 randomly;
5: Delete the customers of route r1 from w′

2;
6: Delete the customers of route r2 from w′

1;
7: Reinsert the customers of route r1 into w′

2 in best positions;
8: Reinsert the customers of route r2 into w′

1 in best positions;
9: UTS(w′

1);
10: UTS(w′

2);
11: return w′

1 and w′
2;

analyzing the parameter settings and the second is evaluating
performance of the proposed CROUTS through a compar-
ison against the known best-so-far results reported in the
literature. The whole CROUTS algorithm was implemented
in C++. All simulations were run on a personal computer
equipped with an Intel Core2 Duo 2.40GHz CPU, and 4GB
of RAM, running the Microsoft Windows 7 64bit operat-
ing system. The CROUTS algorithm was tested with various
famous CVRP benchmarks.

5.1 Parameter analysis

Theparameter settingplays an important role to the efficiency
of an algorithm. TheCROUTS has two groups of parameters,
one for the CRO and one for the UTS. With CRO, there are

seven parameters (i.e. InitialKE,PopSize,KElossRate,Mole-
Coll, buffer, α, β). Therefore, it is impractical to perform a
complete evaluation of all combinations of these parameters.
We only tackle the question how to assign parameter val-
ues that gives relatively good performance concerning both
solution quality and computation time. After thorough test-
ing and deducing from the literature (Lam and Li 2010), the
selected parameters are summarized in Table 1. Note that the
function evaluation limit is set to 1,000, which is less than
the 100,000 value used in Lam and Li (2010). Two threshold
parameters α and β are used to denote the decomposition
and synthesis criteria, respectively. For uni-molecular col-
lisions, decomposition will take place if a molecule cannot
find a better solution with the number of hits larger than
α, otherwise the on-wall ineffective collision happens. For
inter-molecular collisions, if both molecules have kinetic
energy less than β then the synthesis will be performed.
Otherwise the inter-molecular ineffective collision occurs.
These two parameters are tuned. We set α ∈ [10, 100], β ∈
[10,

Total PE of Initial Pop

20
]. Then, a number of alternative

values were tested, we made 50 independent runs for each
chosen pair, the ones that gave the best results were selected.

The number of iterations of the UTS algorithm was cho-
sen in the [50, 100] range. Note that if a larger number of
iterations is used, much more time could be spent to improve
solutions. Experiments have also showed that appropriate
parameter values change with the size of instances. Besides,
the UTS procedure used a tabu list length of θ = 5 log10(n),
this value is smaller than the θ = 7.5 log10(n) that the
authors Cordeau et al. (2002) had used.
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Table 1 Parameter values

Parameter Value

KElossRate 0.8

PopSize 20

MoleColl 0.2

buffer 0

InitialKE 1000

Function evaluation limit 1000

α [10, 100]

β [10,
Total PE of Initial Pop

20
]

Number of UTS iterations [50, 100]

Tabu list length θ 5log10(n)

In order to obtain a good initial population including 20
individuals, the first 10 solutionswere generated by themodi-
fied Clarke-and-Wright algorithm using parameter λ (Yellow
1970), with λ ∈ [0.5, 2] generated randomly for each solu-
tion, the remainders were created randomly.

5.2 Numerical results

The proposed algorithm was evaluated on two sets of
the CVRP benchmarks. The first set was proposed by
Christofides et al. (1979), and the second set was the same
sixteen benchmark instances that had been used by Chen
et al. (2006) and Ai and Kachitvichyanukul (2009). The
first set consists of fourteen benchmark instances and the
number of nodes varies from 51 to 200 nodes including the
depot. Each instance has vehicle capacity constraints while
the benchmark instances 6–10, 13 and 14 plus the restric-
tion of maximum route lengths and the existence of nonzero
service times. In the second set, the total number of nodes
varies from 33 to 135 nodes including the depot, and there
exist vehicle capacity constraints and a predefined minimal
number of vehicles. The efficiency of algorithms for the VRP
is measured by the quality of their produced solutions. This
quality is expressed in terms of the relative deviation from
the best-so-far (BSF) (or the best known) solution to date
reported in the literature, that is:

dev = cCROUTS − cBSF
cBSF

× 100 (%) (2)

where cCROUTS denotes the cost of the solution found by the
proposed algorithm and cBSF is the cost of the best-so-far
solution.

Concerning the first set, some of the best techniques have
been selected, namely the unified tabu search (UTS) algo-
rithm of Cordeau et al. (2002), the particle swarm optimiza-
tion (PSO) algorithm of Ai and Kachitvichyanukul (2009),

the hybrid genetic particle swarm optimization (HybPSO)
algorithm of Marinakis et al. (2010) and two GA methods
proposed by Berger and Barkaoui (2004) (denoted as GAB)
and byNazif andLee (2012) (the optimized crossover genetic
algorithm, denoted as OCGA). Results related to the best
objective functions found by these algorithms onChristofides
et al. benchmarks are reported in Table 2. In the table, the
first column describes the instance number. The next five
columns provide the best results presented by the compared
algorithms. The seventh, eighth and ninth columns give the
best result, relative deviation and standard deviation of the
proposed algorithm. The last column lists the best-so-far
solutions previously reported in the literature. Row Num-
ber presents the number of best known results that has been
found by the corresponding method; row AvgDev gives the
average deviation from the best known solution values over
all 14 instances. The bold values on the tables mean that the
best known solution has been found. For this classical set,
the best result belongs to Rochat and Taillard (1995) with
the average deviation is 0. It can be seen from Table 2 that
our proposed algorithm has reached the best known solu-
tion for ten out of the fourteen benchmark instances. For the
rest of the instances, the solution quality is between 0.5266
and 0.7164%. A close observation of Table 2 shows that
CROUTS slightly outperforms OCGA and HybPSO in some
instances.

Computation time is as important as solution quality in
solving optimization problems. In fact, we often aim at estab-
lishing a balanced tradeoff between solution quality and
computation speed. Average computation times (in minutes)
as well as used computers for the first set are reported in
Table 3 where the first column also describes the instance
number, the second column shows the number of nodes and
the remaining columns provide average wallclock times of
the algorithms. The computation times for instances C4, C5,
C9, C10, C11 and C13 of the OCGA (Nazif and Lee 2012)
are not reported. Our average accumulated computing time
per instance is 1.99min. This number indicates that the pro-
posed algorithm is quite fast even the computer differences
are considered. Regarding the computational efficiency, for
the first benchmark set, the CROUTS produces high-quality
solutions within an acceptable time.

Concerning the second set, the hybrid Discrete Parti-
cle Swarm Optimization algorithm (DPSO) of Chen et al.
(2006) and thePSOofAi andKachitvichyanukul (2009) have
been selected for comparison. This benchmark set includes
16 instances, with the number of nodes varies from 33 to
135 nodes including the depot, vehicles only have capac-
ity constraints and the total number of vehicles varies from
3 to 10 vehicles. More specifically, this set is comprised
of 9 instances of Augerat et al. (3 instances begin with A,
4 instances begin with B and 2 instances begin with P),
2 instances of Christofides and Eilon beginning with E, 3
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Table 2 Comparison of results
on benchmarks of Christofides
et al.

Instance UTS GAB OCGA PSO HybPSO CROUTS BSF

Best Dev SD

C1 524.61 524.61 524.61 524.61 524.61 524.61 0.0000 0 524.61a

C2 835.45 835.26 835.26 844.42 835.26 835.26 0.0000 0 835.26a

C3 829.44 827.39 826.14 829.40 826.14 826.14 0.0000 1.34 826.14a

C4 1038.44 1036.16 1028.42 1048.89 1028.42 1034.03 0.5455 2.75 1028.42a

C5 1305.87 1324.06 1299.64 1323.89 1291.45 1298.09 0.5266 4.64 1291.29b

C6 555.43 555.43 555.43 555.43 555.43 555.43 0.0000 0 555.43a

C7 909.68 909.68 909.68 917.68 909.68 909.68 0.0000 0 909.68a

C8 866.38 868.32 865.94 867.01 868.45 865.94 0.0000 2.15 865.94a

C9 1171.81 1169.15 1163.38 1181.14 1164.35 1169.38 0.5875 3.79 1162.55a

C10 1415.40 1418.79 1406.23 1428.46 1396.18 1405.85 0.7164 2.58 1395.85b

C11 1074.13 1043.11 1042.11 1052.34 1044.03 1042.11 0.0000 1.56 1042.11a

C12 819.56 819.56 819.56 819.56 819.56 819.56 0.0000 0 819.56a

C13 1568.91 1553.12 1542.25 1546.20 1544.18 1541.14 0.0000 2.27 1541.14a

C14 866.53 866.37 866.37 866.37 866.37 866.37 0.0000 0 866.37a

Number 4 6 10 4 7 10

AvgDev 0.69% 0.48% 0.11% 0.88% 0.084% 0.17%

a Taillard (1993)
b Rochat and Taillard (1995)

Table 3 Comparison of
computation times on
benchmarks of Christofides et
al.

Instance Nodes UTSa GABb OCGAc PSOd HybPSOe CROUTSf

C1 51 4.57 2 0.81 0.40 0.05 0.40

C2 76 7.27 14.33 3.92 0.95 0.21 0.68

C3 101 11.23 27.90 8.01 1.68 0.32 1.51

C4 151 18.72 48.98 – 3.72 1.01 0.03

C5 200 28.10 55.41 – 6.88 2.15 4.63

C6 51 4.61 2.33 1.25 0.50 0.05 0.71

C7 76 7.55 10.50 4.29 1.15 0.28 0.99

C8 101 11.17 5.05 7.35 1.92 0.89 1.48

C9 151 19.17 17.88 – 4.92 1.57 2.47

C10 200 29.74 43.86 – 8.62 3.01 6.10

C11 121 14.15 22.43 – 1.55 0.53 3.62

C12 101 10.99 7.21 4.45 1.47 0.38 3.06

C13 121 14.53 34.91 – 2.67 0.41 1.27

C14 101 10.65 4.73 6.57 1.65 0.37 0.96

Average time 13.75 21.25 – 2.72 0.80 1.99

a Sun Ultrasparc 10 440MHz
b Pentium II 400MHz
c Pentium IV 2GHz
d Pentium IV 3.4GHz
e Centrino Mobile Intel Pentium M750 1.86GHz
f Intel Core2 Duo 2.40GHz

instances of Fisher beginning with F and 2 instances of
Christofides et al. beginning with M. The computational
results in terms of the best objective function found and the
average computation time of the algorithms are shown in
Table 4. The first three columns indicate the instance name,
the number of customers and the number of vehicles, respec-

tively. The fourth column provides the best-so-far results
reported in the literature. The next three columns present
the best objective function found by the three algorithms.
Columns dev and stddev respectively present the relative
deviation and the standard deviation of the proposed algo-
rithm. And the last three columns report computation times
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Table 4 Comparison of computational results on benchmarks of Chen et al. and Ai and Kachitvichyanukul

Instance Nodes No. veh. BSF Cost Computation time (s)

DPSO PSO CROUTS Dev SD DPSOa PSOb CROUTSc

An33k5 33 5 661 661 661 661 0.0000 0 32 13 19

An46k7 46 7 914 914 914 914 0.0000 0 129 23 20

An60k9 60 9 1354 1354 1355 1354 0.0000 1.74 309 40 28

Bn35k5 35 5 955 955 955 955 0.0000 0 38 14 13

Bn45k5 4 5 751 751 751 751 0.0000 0 134 20 20

Bn68k9 68 9 1272 1272 1274 1274 0.1572 1.54 344 50 35

Bn78k10 78 10 1221 1239 1223 1223 0.1683 3.84 429 64 60

En30k3 30 3 534 534 534 534 0.0000 0 28 16 10

En51k5 51 5 521 528 521 521 0.0000 0 301 22 20

En76k7 76 7 682 688 682 682 0.0000 0.68 527 60 37

Fn72k4 72 4 237 244 237 237 0.0000 0 398 53 42

Fn135k7 135 7 1162 1215 1162 1162 0.0000 1.16 1526 258 207

Mn101k10 101 10 820 824 820 820 0.0000 0 874 114 93

Mn121k7 121 7 1034 1038 1036 1034 0.0000 1.29 1734 89 79

Pn76k4 76 4 593 602 594 593 0.0000 0.96 496 48 41

Pn101k4 101 4 681 694 683 681 0.0000 0 978 86 80

Number 7 10 14

Average 0.97% 0.07% 0.02% 517.31 60.63 47.75

a Mobile Intel Pentium IV CPU 1.80GHz
b Pentium IV 3.4GHz
c Intel Core2 Duo 2.40GHz PC

Table 5 Results of the
Friedman test (α = 0.05)

Benchmark set Friedman value Value of χ2 p value

Benchmarks of Christofides et al. 18.6429 9.2959 <0.00001

Benchmarks of Chen et al. 7.3256 5.9063 0.00257

in second of the algorithms. It can be easily seen in this table
that the proposed algorithm is highly efficient on this set as
it reaches the best-so-far solution for fourteen of the sixteen
instances, and for the remainders the deviation is very small
(0.1572% for instance Bn68k9 and 0.1638% for instance
Bn78k10). The average accumulated computing time per
problem is 47.75 s. This number suggests that the proposed
method is fast, at least not inferior to other heuristics even
when the computer differences are considered.

The first benchmark set contains larger problems than the
second set, and it should be noted that research on addressing
the problem of larger size can be a challenging task. Nev-
ertheless, computational results suggest that the proposed
algorithm is able to find high-quality solutions for benchmark
instances of this set within a reasonable time. The proposed
algorithm produces better results than UTS and GA on large
instances C5 and C10 of the first benchmark set. The average
deviations from the best known solutions are 0.17 and 0.02%
for the first and the second set of benchmarks, respectively.

Furthermore, to perform a multiple comparison, it is nec-
essary to check whether all the results obtained by the
algorithms present any inequality. Therefore, statistical tests
were also performed. The chosen method is the Friedman
test (Sheskin 2007), which is a nonparametric analogue of the
parametric two-way analysis of variance by ranks. Table 5
shows the result obtained by applying the Friedman test on
the results of the two benchmark sets, to see whether there
are global differences in the results. In this table, the p values
of the Friedman test are lower than the level of significance
considered α = 0.05, indicating that there are significant
differences among the observed results produced by the algo-
rithms. Tables 6 and 7 summarize the ranking obtained by
the Friedman test on the results of the two benchmark sets,
respectively. The best performing algorithm is the algorithm
that obtains the lowest rank as computed by theFriedman test.
According to the results obtained, the proposed CROUTS
algorithm is ranked secondon thebenchmarks ofChristofides
et al. and is ranked first on the benchmarks of Chen et al.
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Table 6 Rankings obtained
through Friedman test on the
benchmarks of Christofides et
al.

Algorithm Mean rank

UTS 4.5714

GAB 3.8929

OCGA 2.5

PSO 4.5714

HybPSO 2.8571

CROUTS 2.6071

Table 7 Rankings obtained
through Friedman test on the
benchmarks of Chen et al.

Algorithm Mean rank

DPSO 2.4678

PSO 1.9063

CROUTS 1.625

Thehigh-quality results yieldedby theproposed algorithm
may be explained as follows. By analyzing the chemical reac-
tion operations designed in CROUTS and the operational
environment of CROUTS, it is clear that CROUTS absorbs
the advantages of both GAs and UTS. For example, the inter-
molecular ineffective collision of CROUTS exchanges the
partial structure of two different molecules, and thus acts
like the crossover operation used in GAs. The design of
this operator also plays an important role to the effective
of the proposed method on the second benchmark, where the
number of used vehicles must be minimized. The designed
on-wall collision operator of CROUTS randomly changes
the molecular structures, which has an effect similar to the
mutation operation of GAs. Besides, the diversification of
the proposed method is enriched by using the adapted UTS
to repair and improve the quality of the result molecules. In
addition to the similarity to GAs and UTS, CROUTS has two
additional operations: decomposition and synthesis. These
two operations may change the number of individuals in a
population, which will bringmore opportunities to CROUTS
for jumping out of local optima as well as exploring wider
areas in the solution space. This characteristic also enables
CROUTS to find good solutions in less time than GAs do.

6 Conclusion

In this study, we proposed a nature-inspired algorithm named
CROUTS based on chemical reaction optimization and uni-
fied tabu search, to effectively solve the vehicle routing
problem. The VRP is an important problem in the field of
distribution and logistics where the research and applica-
tions related to the application of artificial intelligence are
now emerging. One of the main contributions of this paper is
to indicate that chemical reaction optimization can be used in
combination with other metaheuristics to tack the VRP with

remarkable results in terms of solution quality and compu-
tational efficiency. The second contribution is the utilization
of crossover and mutation operators for the design of CRO
operators to implement the local search and global search.
Four problem-specific elementary reactions need to be care-
fully designed to achieve efficiency. The adaptive penalty
schema is utilized for the unified tabu search algorithm to
repair and improve the result solutionswithin eachCROoper-
ator. Finally, the proposed algorithm is flexible and could be
extended to solve other VRP variants with more constraints.
The algorithmwas applied on two set of benchmark instances
and gave competitive results. More specifically, on the clas-
sic benchmark instances of Christofides, the average quality
is 0.17% and it is 0.02% on the second set of benchmark
instances. However, the proposed algorithm has not yet over-
come a drawback of theCROmethod of having slightlymuch
parameters. In the future, we plan to intensively study the
influence of parameter values to enhance the performance of
the proposed approach, and possibly reduce the number of
parameters. Furthermore, in practice, there exists very large
scale VRPs, having much more constraints. In the literature,
variable neighborhood search and parallelization have shown
to be efficient ways of handling large scale VRPs. There-
fore, extension of the proposed approach in combinationwith
these strategies for addressing realistic large scale VRPs is
also an interesting topic for future work.
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