Soft Comput (2016) 20:3097-3115
DOI 10.1007/s00500-016-2195-x

@ CrossMark

FOCUS

Adaptive-mutation compact genetic algorithm for dynamic

environments

Chigozirim J. Uzor! - Mario Gongora! . Simon Coupland! - Benjamin N. Passow

Published online: 7 June 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract In recent years, the interest in studying nature-
inspired optimization algorithms for dynamic optimization
problems (DOPs) has been increasing constantly due to its
importance in real-world applications. Several techniques
such as hyperselection, change prediction, hypermutation
and many more have been developed to address DOPs.
Among these techniques, the hypermutation scheme has
proved beneficial for addressing DOPs, but requires that the
mutation factors be picked a priori and this is one of the
limitations of the hypermutation scheme. This paper inves-
tigates variants of the recently proposed adaptive-mutation
compact genetic algorithm (amcGA). The amcGA is made up
of a change detection scheme and mutation schemes, where
the degree of change regulates the probability of mutation
(i.e. the probability of mutation is directly proportional to
the degree of change). This paper also presents a change
trend scheme for the amcGA so as to boost its performance
whenever a change occurs. Experimental results show that
the change trend and mutation schemes have an impact on
the performance of the amcGA in dynamic environment and
also indicate that the effect of the schemes depends on the
dynamics of the environment as well as the dynamic problem
being considered.

Communicated by D. Neagu.

B Chigozirim J. Uzor
juzor@dmu.ac.uk

Centre for Computational Intelligence (CCI), De Montfort
University, Leicester, UK

Centre for Computational Intelligence (CCI), De Montfort
University’s ITS Research Group (DIGITS), De Montfort
University, Leicester, UK

2

Keywords Dynamic optimization problems (DOPs) -
Evolutionary algorithms (EAs) - Compact genetic algorithm
(cGA) - Adaptive-mutation compact genetic algorithm
(amcGA) - Population-based incremental learning (PBIL)

1 Introduction

Most real-world engineering, economic and information
technology problems change over time (i.e. experience
uncertain and dynamic changes). The interest in improving
the performance of EAs in dynamic environments continues
to increase so as to identify promising techniques capable
of addressing more complex DOPs. Many studies (such as
Nelson et al. (2009) and Gongora et al. (2009) and many
more) have demonstrated that the standard EA is good at
finding the optimum of complex multi-modal functions when
the promising region of the search space remains station-
ary during an optimization process. However, when solving
DOPs, the standard EA is not suitable because the algorithm
is expected to not only find the optimum, but also track the
optimum with respect to time. In fact, realistic applications
are more likely to experience uncertain or dynamic changes,
in the sense that one or more of the problem specifications
(i.e. the target function, constraints and parameters) may vary
over time. In such environment, optimization algorithms are
not only required to optimize the problem in its actual state,
but also adapt to the new optima whenever an environmental
change is detected and then to continuously track the moving
optima throughout the whole optimization process.

In EAs, diversity in the population is useful for adapting
in a changing environment, since members of the popu-
lation represent potential solutions that can be applied to
different environmental circumstances (Branke et al. 2000;
Yang 2008). Standard EAs have been successful in solving

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-016-2195-x&domain=pdf

3098

C.J. Uzor et al.

optimization problem in static environments, e.g. Deb et al.
(2002), Juang (2004) and Passow et al. (2008), but when
confronted with DOPs the algorithms performance is lim-
ited (see Yang and Tinds (2007)). Also the standard EAs
employ a strong selection policy based on feedback which
gradually reduces diversity during an optimization process
(Cobb and Grefenstette 1993). In typical applications, the
function representing the environment remains static so that
the algorithm is mainly limited to finding a solution. If the
environment changes, the performance of the standard EA is
not guaranteed as it is unable to redirect its region of concen-
tration in the search space (Grefenstette et al. 1992).

Recently, Uzor et al. (2014a) investigated a compact
genetic algorithm (cGA) for DOPs known as adaptive-
mutation ¢cGA (amcGA). They introduced a mechanism
whereby the mutation rates are directly linked to the detected
rate of change (i.e degree of change determines the prob-
ability of mutation). In Uzor et al. (2014b), the amcGA
was evaluated using a real-world dynamic optimization con-
trol problem with some preliminary results. In this paper,
variants of the amcGA are presented and further investi-
gated to improve the algorithms adaptability in a dynamic
environment. These variants are denoted as amcGA1 (Uzor
et al. 2014a), amcGA2, amcGA3, amcGA4 and amcGAS.
In amcGA2 and amcGA3, a scaled mutation rate (based
on the degree of change) is used to regulate the amount a
mutation operation alters the probability vector within the
algorithm. The amcGA4 and amcGAS make use of change
patterns exhibited by the current working probability vector
to mutate the probability vector held in memory so as to boost
the algorithms response to dynamic change.

The rest of this paper is organized as follows; Sect. 2
reviews existing EAs for dynamic environments, Sect. 3
introduces a background knowledge of the cGA and details
the amcGA as well as its variants, and Sect. 4 describes
the set-up scene for all experiments and performance analy-
sis. Finally, Sect. 5 concludes this paper with discussions on
future direction.

2 EAs for DOPs

In real-world applications, certain problems arise which can
be a search or optimization problem (e.g. Higuchi et al.
(1999) and Bektas (2006)). These problems normally require
the consideration of multiple performance criteria and non-
proportional control variables. Optimization problems can be
found everywhere in science, technology and even daily life
activities, e.g. planning (Bui et al. 2012), tuning of controllers
(Pedersen and Yang 2006) and many more. For more than 20
years, static optimization has been an active area of research.
However, the inclusion of time dependency by Goldberg and
Smith (1987) created a distinct degree of difficulty. Most

@ Springer

real-world optimization problems are often influenced by
uncertain and dynamic factors (Jin and Branke 2005), and it is
unlikely that a solution found for a particular problem would
remain valid for a long period of time. In order to counter
these dynamic and uncertain factors, an adaptive mecha-
nism is required to introduce changes to the current solution.
These types of optimization problems can be referred to as a
dynamic optimization problem.

The nature of DOPs presents challenges to traditional opti-
mization algorithm because these problems usually require
the tracking of the changing environment with respect to
time. In general, addressing DOPs using EAs can be grouped
into four categories:

— Using implicitly or explicitly defined memory to store
and reuse useful information so as to adapt the EA
whenever a change occurs (Goldberg and Smith 1987;
Dasgupta and McGregor 1993, 1992; Yang and Yao
2008).

— Creating a multi-population to distribute the search force
in the search space (Branke et al. 2000; Zhu et al. 2006).

— Promote diversity by inserting random immigrants back
in the population (Grefenstette et al. 1992; Yu et al. 2008)
and

— Adjusting genetic operators adaptively (Morrison and De
Jong 2000; Eiben et al. 2006).

Apart from the approaches mentioned above, for an EA
to function properly the genetic operators need to be
tuned/defined properly as it affects performance and is prob-
lem dependent. This can be achieved in three ways: (1)
Deterministic method, which involves adjusting the value
of the strategy parameter using a deterministic rule which is
fixed. (2) Adaptive method, which makes use of feedback
from the optimization process to determine when to change
the strategy parameter, which can be in form of an [IF-THEN
rule and may involve a credit assignment which defines the
quality of the solution discovered. (3) Self-adaptive method,
where the mechanism for updating the strategy parameter is
implicitly defined (see Eiben et al. (1999) and Eiben and Smit
(2012)).

When solving DOPs, evolutionary algorithms are con-
sidered a good choice because they are inspired from the
principles of biological evolution, which takes place in a
dynamic environment (Goldberg 1989). But when using clas-
sic EAs, once converged, they are unable to adapt to changes
in a dynamic environment. In DOPs, values of the optima
change with time, thus rendering the problem of optimum
finding to optimum tracking. This means that the fitness land-
scape of a given problem is dynamic with possibly both the
search space and fitness being time dependent. In Yang and
Tinos (2008), a hyperselection scheme in dynamic environ-
ment was proposed for a genetic algorithm (GA) to address

Adaptive-mutation compact genetic algorithm for dynamic environments

3099

DOPs, where the selection pressure is increased whenever
an environment change occurs. In standard GAs, individuals
in the population converge to an optimal solution in static
environments due to selection pressure, but in dynamic envi-
ronments, converging to an optimum becomes a problem for
the standard GAs since it does not encourage genetic diver-
sity and hence makes it hard to adapt to a new environment
whenever a change occurs. Although the scheme discussed
in Yang and Tinos (2008) demonstrated the effects of selec-
tion pressure for GAs in dynamic environment, adjusting the
selection pressure adaptively during an optimization/search
process still remains an open question. A forward-looking
approach for solving dynamic multi-objective optimization
problems using EA was proposed in Hatzakis and Wallace
(2006). They implemented a forecasting method where the
location in variable space of the optimal solution is estimated.
The optimization algorithm exploits past information and
prepares for the change before it arrives instead of reacting
to the change.

In Yang (2008), a memory and elitism-based immigrants
approach for GAs in dynamic environment were presented.
The best individual during an optimization process is stored
in memory (or elite from previous generation) and is retrieved
as a base to create new individuals by mutation so as to
ensure diversity and also adapt to a new environment. In gen-
eral, certain techniques are suitable for certain environments.
Memory-based approaches are suitable for periodic optima.
Self-adaptation and mutation approaches are suitable for
landscapes with fast changes. Multi-population approaches
are suitable for competing peaks and maintaining diversity
is suitable for continuously moving peaks (Woldesenbet and
Yen 2009).

Although these algorithms have been successful in tack-
ling DOPs, none of the authors have considered linking
change severity with a diversity scheme such that the degree
of change is directly proportional to the diversity scheme.
Numerous dynamic techniques have been proposed to tackle
dynamic problems effectively (Nguyen et al. 2012). How-
ever, the complex structure of some the existing dynamic
optimization algorithms makes them unsuitable for solving
real-time DOPs on-board embedded hardware system with
limited memory. Therefore, a compact dynamic approach is
investigated in this paper.

3 ¢GA for DOPs

There are some optimization problems that limit the applica-
tion of traditional optimization algorithm due to hardware
limitations. This is as a result of the complex structure
employed by population-based approach (which makes them
computationally expensive). In order to overcome hardware
limitations, a compact algorithm is required. The compact

genetic algorithm (cGA) offers the advantage of being com-
putationally efficient (i.e requires less memory and execution
time) (see Harik et al. (1999) and Mininno et al. (2008)).
The compact genetic algorithm as proposed by Harik et al.
(1999) is an estimation of distribution algorithm (EDA) (Lar-
raanaga and Lozano 2001; Pelikan et al. 2000) that generates
offspring population according to an estimated probability
model of the parent population. The cGA makes use of areal-
valued probability vector 73 to represent the bit probability
of 0 or 1 which models the distribution of the population:

%
P ={P,..., P} (1)

where [is the binary-encoding or chromosome length and
Pi €{0,1},(i =1,...,1). The probability vector is initially
assigned 0.5 to represent a randomly generated population.
In every generation, competing solutions are generated based
on the current probability vector and the probabilities P; are
updated to favour a better solution. In a simulated population
of size s, the probability of each gene increases or decreases
by % based on the gene of the best solution, i.e.

. [PO+ s
T P —1ys

if best; = 1, (2a)
if best; = 0. (2b)

The cGA maintains a probability vector and evolves it
towards the best sample solution created from it. The driving
force for cGA to solve an optimization problem lies in the
update mechanism of the probability vector towards the best
sample created from it iteratively. The probability vector of
the cGA usually converges to either 0.0 or 1.0 in each ele-
ment which will produce the optimal solution when sampled
in static environments. The performance of the cGA in a
dynamic environment is not guaranteed since once the prob-
ability vector converges it is unable to adapt to the changed
environment (Ahn and Ramakrishna 2003). As a result, mod-
ifications to the original algorithm have been proposed so as
to enable it to tackle DOPs.

To address the convergence problem, several approaches
have been developed to reintroduce diversity after a change
occurs, e.g. the restart scheme which resets the optimization
algorithm back to the default setting when a change occurs
(Harik et al. 2006; Sastry et al. 2005), the hypermutation
scheme (Cobb 1990; Morrison and De Jong 2000) where the
probability of mutation is raised from a low mutation rate to a
high mutation rate when the environment changes and many
more. The hypermutation creates an adaptive EA with small
incremental memory and computational cost, but requires the
mutation factor to be picked a priori.

Although these algorithms have been successful in tack-
ling DOPs, to the best of the authors knowledge none has
considered an adaptive method for controlling the mutation

@ Springer

3100

C.J. Uzor et al.

factor and none has tried to link together the mutation scheme
with a change severity scheme (i.e. measuring the degree
of change) such that the degree of change is directly pro-
portional to the mutation factor. This section describes the
amcGA as well as variants.

3.1 Change detection

A Gaussian function is employed to detect and determine the
degree of change Cq in the environment:

Cq=e* 3)

Af — 2

where c is the mean (and is set to 1.0), o represents standard
deviation of the change detection and Af is the change in
fitness or fitness difference between the elite solution at gen-
eration ¢ and same elite solution re-evaluated at generation
r+1:

Af = f(Es,t) — f(Es, t + 1) (&)

It is important to note that change in fitness of the elite solu-
tion is considered in this study as a sign of change in the
environment (i.e. the algorithm monitors the performance
of the elite solution). The algorithm employs the elitism
approach, where the best solution from a previous genera-
tion is transferred and evaluated in subsequent generations.
In order to adaptively control the mutation rate (i.e. proba-
bility of mutation) py,, Cq is converted to the mutation rate
such that a high degree of change results in a high mutation
rate and a low degree of change results in a low mutation
rate, but when no change occurs, the algorithm proceeds as
a normal cGA. The probability of mutation py, is defined as
follows:

mp — mj

- Cq—dp x (2=
Pm = my + (Cq 1)><(dh_d]

) , pm €[0.01,0.5]
®)

where m; = 0.01 is low probability of mutation, my = 0.5
is high probability of mutation, d; = 0.0 is low degree of
change and d}, = 1.0 is high degree of change.

3.2 Mutation schemes

Unlike the mutation scheme adopted by most cGA variants
where mutation is applied directly to candidate solutions to
create another solution for selection, the mutation scheme
discussed in this paper is applied directly to the probability
vector that generated the best solution (i.e. elite) since the
probability vector represents a distribution of the population.

@ Springer

Suppose at generation ¢ an elite solution Eg with fitness
f(Es, t) was obtained, the probability vector that generated
the solution is held in a temporary memory rﬁ . At genera-
tion ¢ + 1, the elite solution is re-evaluated and a new fitness
value is obtained, i.e. f(Es, t + 1). If the fitness difference
Af is greater than a defined threshold (e.g. Af > 0), then
a change is said to have occurred which triggers the muta-
tion scheme, which is applied directly to nﬁ)’ to generate a
mutated version of the elite solution Ey, to compete with Ej.

The cGA makes use of a real-valued probability which
generates two solutions when sampled. In order to apply the
mutation scheme to the probability vector, a random number
r = rand(0.0, 1.0) is generated and then compared with pp,
and m_f)’ is mutated as follows:

amcGAl
, rand(Cq, m P;) if r < pm, (7a)
mP; = .
mP; if r > pm. (7b)
amcGA2
, {lmPi+n_Pm| ifr < pm, (8a)
mP; = .
mP; ifr > pnm. (8b)
amcGA3
Pm .
’mP,- + (n - —)‘ ifr < pm, (9a)
mP! = p2
’mP,- — (n — Tm)‘ ifr > pm. (9b)

The diversity techniques by Vavak et al. (1996) differ in that
it makes use of a variable local search around the locations
in the search space which are represented by chromosomes
before a change occurs. It is triggered when the time-average
best performance of the population falls below a defined
threshold. When triggered, all mutation and crossover oper-
ations are suspended.

However, the amcGA detects and measures the degree of
change whenever there is a drop in the fitness of an elite solu-
tion. Then, the probability of mutation is directly linked to
the measured degree of change. The amcGA has been design
to be suitable for systems and applications with limited com-
putational resources and time constraints. This is because the
amcGA maintains the small footprint of the cGA without a
significant increase in memory requirements, unlike the algo-
rithm presented by Vavak et al. (1996), which is not efficient
in such systems and applications.

Sometimes, changes in dynamic environments may exhibit
some trends (or pattern). In such case, it might be beneficial
to try to use these change trends to improve the algorithms

Adaptive-mutation compact genetic algorithm for dynamic environments

3101

response to subsequent changes in such dynamic environ-
ment. Some studies have been made following this idea by
exploiting the predictability of dynamic environments (e.g.
Simdes and Costa (2009b, a)).

Memory approaches (Branke 1999; Yu and Suganthan
2009), which were originally proposed to deal with period-
ical changes, can also be considered as a type of prediction
method. Algorithms following the prediction approach make
use of memory scheme to cope with various types of changes
(e.g. cyclic, noisy and random), but require the use of accu-
rate training data and dedicated memory allocation, which
makes the respective algorithm computationally expensive.

In this study, the change trend Tchg is used to boost the
amcGAs performance whenever a change occurs by apply-
ing the change trend to nﬁJ such that nﬁ’ learns from past
dynamic changes and adapts to future dynamic changes
instead of explicitly using stored training data. The change
trend T is defined as follows:

—s -
Tchg =mP; — P4 (10)

where ?’) ++1 18 the current working probability vector at gen-
eration ¢ + 1. The amcGA4 and amcGAS make use of the
change trend approach described above and are defined as
follows:

amcGA4
Teho:

‘mPi + (n — %)‘ if r < pm, (11a)

mP/ =
Tchg,- .

mpP; — n—T ifr > pm. (11b)

amcGAS
Teng .

mp! = ‘mp,- NEp——— if r < pm, (12a)

mP; if r > pm. (12b)

where s = (n - me) and [is the binary string length. It is

important to state that the change trend scheme was applied to
amcGA2 and amcGA3 (which yields amcGAS and amcGA4,
respectively) to study the effect of Tchg on the performance
of the algorithm. This way, the mutation strategy updates
itself based on the change pattern exhibited by the probability
vector. Also Tche controls the amount a mutation operation

—
alters the value of each element in m P.
After the mutation operation, a mutated version of the
elite solution E, is generated using the mutated temporary
—

probability vector (i.e. m P)Hto compete with the current elite
solution Ej. If the mutated elite solution performs better than
the current elite, it replaces the elite solution and the mutated
probability vector replaces the current probability vector. The

mutation scheme is repeated for a defined number of genera-
tions similar to the hypermutation scheme. After the mutation
operation, the algorithm continues as a standard cGA unless
another change occurs.

The adaptive mutation scheme presented in this section is
somewhat similar to the well-established covariance matrix
adaptation evolution strategy (CMA-ES) (Hansen and Oster-
meier 2001, 1996; Hansen and Kern 2004), which is a de
facto standard in continuous domain evolutionary optimiza-
tion (in static environments). Both algorithms share same
idea of storing information about a candidate solution which
is used to update/bias the solution sampling process. How-
ever, in the CMA-ES evolution cycle, after the evaluation and
ranking of the solutions, their relative steps are used to update
the parameters of the sampling distribution. This process is
repeated through out the evolution cycle until a termination
criterion is met. On the other, the amcGA only updates lﬁ’
when an elite is discovered and samples a mutated elite from
it when a dynamic change occurs. This sampling and update
process is only repeated for a defined number of iterations.
Also, the amcGA is developed for combinatorial optimiza-
tion problems and the embedded adaptive mutation scheme
can be considered as an improved form of the popular hyper-
mutation scheme.

4 Experiments
4.1 Dynamic benchmark generator

For the experiments, the DOP generator proposed in Yang
and Yao (2005) which constructs a dynamic environment
was chosen to test the efficiency of the amcGA variants. The
generator can construct a DOP from any binary-encoded sta-
tic function f (7). Given a static optimization problem f(x)
(x € {0, 1})) where [is the binary string length, the dynamic
environment is generated by applying a binary XORing mask
M to each solution before evaluating at every t generations.

fo 0 = fx @ MK) (13)

where f(x,t) is the fitness of solution x, k = ¢/t is the
period index at time ¢, @ is a bitwise exclusive-or (XOR)
operator which is applied to the x and M (k) according to the
following principle:

(14a)
(14b)

0 if Xi =Xj,
X Dx; = .
' / 1 otherwise.

For each environment k, M (k) is incrementally generated
as follows:

— — —
Mk)y=Mk—-1) T (k) (15)

@ Springer

3102

C.J. Uzor et al.

where 7") (k) is an intermediate binary template generated for
environment k. 7") (k) is generated with p x I (p € (0.0, 1.0])
random loci set to 1 while the remaining loci set to 0. p
controls the intensity or severity of change. If p is set to
0, the environment is considered stationary since ? will
contain only Os and no change will occur. On the other hand,
p = 1 guarantees a high degree of change (i.e. high change
severity). Also a small T means faster environment change
while a large T means slow environment change.

4.2 Dynamic test problem

The dynamic test problems used in the experiments are
presented in this section. Three 100-bit binary-encoded prob-
lems are selected as stationary functions and are described
below:

4.2.1 Decomposable unitation-based functions (DUFs)

The decomposable unitation-based functions have been used
as benchmark functions by the EA community in an attempt
to understand what constructs difficult optimization prob-
lems for EAs (Goldberg 2002). These type of functions return
the number of ones in a binary string (i.e. unitation function
of binary string). Two decomposable unitation-based func-
tions denoted as DUF1 and DUF2 are used as static functions
to construct dynamic test environments, in order to compare
the performance of algorithms discussed in this paper.

The DUF]1 is simply a Onemax function which aims to
maximize the number of 1’s in a binary string. The fitness of
a binary string is the number of 1’s contained in the string.

Sfpurt (x) = u(x) (16)

where u(x) is number of 1’s in a building block.

DUF2 is a fully deceptive function (Goldberg 2002),
which is considered hard problems for EAs because the low-
order building blocks inside the functions do not combine to
form the higher-order optimal building block. Instead, they
combine to form deceptive suboptimal building block (Whit-
ley 1991). This property makes it much more difficultly for
EAs to solve DUF2 than DUFI.

3 —u(x) ifu(x) <4

otherwise

(17a)

Sfour(x) = (17b)

Using the dynamic benchmark generator discussed in
Sect. 4.1, dynamic test environments are constructed from
the DUFs and are referred to as dynamic DUFs (i.e. denoted
as DDUF1 and DDUF2). The DDUF:s consists of 25 copies of
4-bit building blocks. Each building block of the two DDUFs
contributes a maximum value of 4 to the total fitness. The
fitness of a bit string is the sum of contributions from all

@ Springer

building blocks which gives an optimal fitness of 100 (for
DDUF1 and DDUF2).

4.2.2 Dynamic knapsack problem

The knapsack problem is a classic NP-complete combina-
torial optimization problem that has been rigorously studied
by the EA community in the last few decades (Branke et al.
2006; Wang et al. 2009; Rohlfshagen and Yao 2009). The
main aim of this problem is to fill a knapsack with the best
subset of items among a larger set to maximize the value
of contents in the knapsack without exceeding the knapsack
capacity. This benchmark problem has been studied in both
static (e.g. Shah and Reed (2011), Martins et al. (2014)) and
dynamic environments (e.g. Yang et al. (2013) with different
modifications. The dynamic property of the knapsack prob-
lem is achieved when the problem parameters (such as item
weight, value and sack capacity) are time dependent and sub-
ject to variation.

Given n items, each of which has a weight w;(¢) and a
value v; () and a knapsack of capacity C. The main goal
of the knapsack problem is to load the items that guarantees
maximum value without exceeding the knapsack capacity C.
A dynamic test environment is constructed for the knapsack
problem and is denoted as DKP. Mathematically DKP can
be described as follows:

Maximize fpkp(x.) = D pi()x;(t) (18)
i=1
> winx@) =C (19a)
s.t. P
xi()e{0,1}, i=1,...,n (19b)

where x; is the binary decision variable used to indicate if
item i is included or discarded. In this study, all values and
weights are positive, also all weights are less than the knap-
sack capacity C = 500. A knapsack problem with 100 items
using randomly generated data was constructed as follows:

w; = uniformly random integer[2, 20] (20)

pi = uniformly random integer[1, 30] 21

The sum of the profits of the selected items is used as the
fitness of a candidate solution if the sum of item weight is
within the knapsack capacity. However, if a candidate solu-
tion selects too many items such that the summed weight
exceeds the knapsack capacity, then a penalty function is
used to judge how much the candidate solution exceeds the
knapsack capacity. The penalty function is defined as follows:

Adaptive-mutation compact genetic algorithm for dynamic environments

3103

n n
DiXi wix; <C (22a)
Sokp(x, 1) = ; o igl o
S, 1) =1y else (22b)

n
where Iy =7 x (Z wix; — C) and n = 100.

These dynamicltelst problems have been chosen to eval-
uate the performance of the amcGA in different dynamic
scenarios. Specifically the DDUFs and DKP are academic
combinatorial problems suitable for evaluating dynamic
(binary-encoded) optimization algorithms. The DDUFs has
an increasing difficulty for the amcGA in the order from
DDUF1 to DDUF2. This is due to the deceptive property
inherent in DDUF2 which makes it a difficult problem for
dynamic EAs (Whitley 1991; Goldberg 2002). The DKP is
another difficult problem, because the profit and weight of
each item selected change over time based on the XOR mask

L=
(i.e. M) in Eq. 13.
4.3 Parameter settings and performance measures

Experiments were carried out on the selected DOPs to inves-
tigate the effect of the change detection, change trend and
mutation schemes on the performance of the amcGA. An
additional experiment was carried out to compare the perfor-
mance of the schemes presented in Sect. 3 with a probability-
based incremental learning algorithm with hypermutation
(denoted as PBILm) (Yang and Richter 2009) and a cGA
with hypermutation (denoted as cGAm). The hypermutation
scheme embedded in cGAm generates a mutated version
of an elite solution for tournament selection whenever a
dynamic change occurs. The elite solution is replaced if it
is outperformed by the mutated elite. This way the ?’) in
c¢GAm is only updated by the elite solution.

For all algorithms, some common parameters were set
as follows; the population size n = 100, speed of change
v = 20, 60 and 100, and change ratio p = 0.1, 0.2, 0.5 and
1.0. While the sensitivity level for detecting change Af > 0
for the scheme described in Sect. 3, probability of mutation
(for the PBILm) pp = 0.05 with mutation shift § = 0.05.
Also all algorithms use the elitism approach (in the case
of the PBIL an elite of size 1 was used). For the PBILm,
the probability of mutation was set to a base level pfn =
0.05 for normal generations and a high value p’ = 0.3 for
interim generations when the hypermutation scheme is trig-
gered due to change in environment and this lasts for five
generations, i.e. gn,, = 5. Three kinds of dynamic environ-
ments were constructed (i.e. cyclic, cyclic with noise and
random) using the dynamic problem generator discussed in
Sect. 4.1.

For each experiment using all algorithms on the DOP, 30
independent runs were executed and for each run 20 envi-

ronmental changes were allowed, which are equivalent to
400, 1200 and 2000 generations for T = 20, 60 and 100,
respectively. Best-of-generation fitness was recorded every
generation, and the overall offline performance of all algo-
rithms on each DOP is defined as:

Ay
Froc = ~ z I Z FBog,; (23)
i=1 " j=I

where Fgog ;j eXpresses the fitness value of the best solution
at generation i of run j, G = 20 x t is the total number
of generation for a run, N = 30 is the total number of runs
and Fpog is the overall offline performance, which is the
best-of-generation fitness averaged over N and then over the
data gathering period.

Experimental results of all algorithms on the selected
DOPs based on F gog are presented in Figs. 1, 2, 3 and 4,
respectively. The corresponding statistical tests are shown in
Tables 1 and 2, where Kruskal-Wallis tests were applied fol-
lowed by pairwise comparisons using Wilcoxon rank-sum
tests with the Bonferroni correction. In Tables 1 and 2, the
result regarding Alg. 1-Alg. 2 is shown as “+”, “—"" and “~”
when Alg. 1 is significantly better than, significantly worse
than or statistically equivalent to Alg. 2. The dynamic per-
formance of all algorithms regarding the best-of-generation
fitness against generations on the dynamic problems is plot-
ted in Figs. 1, 2 and 3 (with T = 60 and p = 0.2).

From Figs. 1, 2, 3 and 4, Tables 1, 2, 3, several behaviours
can be observed and are discussed in next section from two
aspects: (1) regarding performance based on Frog and (2)
algorithms behaviour on the selected DOPs (i.e. the effect of
environmental dynamics on algorithms performance).

4.4 Experimental study regarding overall performance

First, PBILm shows a constant performance across all DOPs
regardless of the dynamics of the environment. This is
because the PBILm evaluates 100 candidate solutions (every
generation) and has a greater chance of finding better solu-
tions than the cGAm and amcGAs which only evaluates two
candidate solutions every generation. With the increasing t,
PBILm has more time to search for solutions with higher fit-
ness before the next change. However, in some environment
change ratio p, PBILm was outperformed by the amcGA
(variants) as can be observed from Fig. 4 and Table 1. This
is due to the lack of information transfer from the last envi-
ronment of the last dynamic change. Also, PBILm applies
the mutation scheme to the current working P which has
no information of the previous environment and this means
the PBILm is focused more on preventing premature conver-
gence of P . The performance of the PBILm was expected to
be better than that of the amcGA and cGAm. Due to its algo-

@ Springer

3104

C.J. Uzor et al.

Cyclic DDUF1

(@) 100

A— ‘ . ’ —| --- cGAm
% i ---- PBILm
jﬁ: ~~~~~~~~~~ amcGA1
E ----amcGA2
. amcGA3
*C:é -—- amcGA4
£ - - amcGAH
g
5}
A
o,
o
ke !
g i
oa) '

0 L L L L L l""'! L L \‘ L L
0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200
Generation
Cyclic with noise DDUF1
b
(b) 100 w w ‘ ‘ ‘ --- cGAm
?3 sl 1 |--- PBILm
5 e amcGA1l
b= ----amcGA2
5 —amcGA3
.‘é -—- amcGA4
5] - - amcGAbH
g
5}
&b
o,
o
-
3
M
30 I I I I I I I I I I I
100 200 300 400 500 600 700 800 900 1,000 1,100 1,200
Generation

© Random DDUF1
(¢
° 100 T ' ' --- ¢GAm
2 gl 1 |--- PBILm
= e aMCGAL
ti ----amcGA2
g amcGA3
= --—amcGA4
“E - - amcGAH
3}
50
o,
9
A7
53
aa)]

30

1 1 1 1 1 1
0 100 200 300 400 500 600

Generation

1 1 1 1 1
700 800 900 1,000 1,100 1,200

Fig. 1 Dynamic behaviour of all algorithms on DDUF1 with 7 = 60 and p = 0.2 in different dynamic environment, i.e. a cyclic, b cyclic with

noise and ¢ random environments

rithmic structure, the PBILm generates series of solutions
(population) every generation until a solution with better fit-
ness is discovered. Therefore, it is important to state that this
comparison was carried out in order to see which of the com-
peting algorithm was less behind the PBILm in terms of the
overall performance (see Table 3).

Second, cGAm outperforms some of the amcGA variants
in some of the DOPs (see Fig. 1b, c). This is due to the fact

@ Springer

that whenever a change occurs, the cGAm tries to find a better
solution for the current environment (i.e. which is the effect
of rapid increase in probability of mutation py,), but does
not ensure diversity as can be seen in Fig. 1a. Also for some
dynamic settings, cGAm shows similar performance to some
of the amcGA variants (see Figs. lc, 2a). It must be noted
that the cGAm and amcGAs are modified variants of the cGA
suitable for solving DOPs.

Adaptive-mutation compact genetic algorithm for dynamic environments

3105

Cyclic DDUF2

(@) 100
i ‘ ; ‘ --- ¢GAm
2 ; | --- PBILm
g [! ~~~~~~~~~~ amcGA1
= 80 i 1 |----amcGA2
g o —amcGA3
= --- amcGA4
= - - amcGA5
S
5}
50
o,
o
o
%
m
20 1 1 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200
Generation
Cyeclic with noise DDUF2
(b) 100
--- ¢GAm
@ ---- PBILm
= e aMCGAL
& ----amcGA2
= amcGA3
8 ---amcGA4
SR ol EEEE S SR - - amcGAH
g e e]
g H
5)
R T TR S O i S I SRR S
o =
S a0] F- b |
+ 1 .
17} = e ' PR SO 1 | H
) ! e ' I— i 1 i i [
[aa)] v | — o i
20 Il Il Il Il Il Il Il Il \I- - -I Il Il
0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200
Generation
© Random DDUF2
€) 100
‘ ‘ ‘ --- ¢GAm
----- PBILm
.......... amcGA1
80 1 |----amcGA2
— amcGA3
-——amcGA4
60 - - amcGA5

S
o

Best-of-generation fitness

2 1 1 1 1 1 1
00 100 200 300 400 500 600

1 1 1 1 1
700 800 900 1,000 1,100 1,200

Generation

Fig. 2 Dynamic behaviour of all algorithms on DDUF2 with T = 60 and p = 0.2 in different dynamic environment, i.e. a cyclic, b cyclic with

noise and ¢ random environments

Third, among the five variants of the amcGA, amcGA1
and amcGA3 exhibit better performance (see Table 2). From
Figs. 1, 2 and 3, it can be observed that amcGA3 performs
better than amcGA1. This is as a result of how the muta-
tion scheme within both algorithms alters m P. The amcGA3
mutation scheme either increase or decrease nﬁ at areduced
scale (see Eq. 9), while amcGAL is a randomized mutation
based on the current values of elements of m_[)’ and the degree

of change Cq4 [see Eq. (7)]. Also, amcGA3 shows stable
performance across different environment dynamics. Perfor-
mance of all amcGA variants based on Fpog is shown on
Figs. 1,2 and 3 for different environment dynamics. Although
figures show general performance of all algorithms, it is dif-
ficult to draw out conclusions about the final result of the
compared algorithms by just visual inspection of the perfor-
mance curves. Using the Kruskal-Wallis tests followed by

@ Springer

3106

C.J. Uzor et al.

Cyclic DKP

(a) 1,000

800

600

cGAm

---- PBILm
e aMCGA T
----amcGA2
— amcGA3
------ amcGA4
- - amcGA5H

400

200 F

Best-of-generation fitness

Il Il Il Il i L Il H Il Il
00 100 200 400 500 600 700 800 900 1,000 1,100 1,200
Generation
Cyeclic with noise DKP
(b) 1,000

800 -
600

400

200

Best-of-generation fitness

--- amcGA4
- - amcGA5

1
600

1 1
700 800 900

Generation

Random DKP

—_
()
~
=

o
o
o

--- ¢GAm
2 ---- PBILm
= 800k e ameGAL
= ----amcGA2
g . b —amcGA3
= 600 I’f':' R T T B amcGA4
< » i | - - amcGA5
& i !
g 400 . i A
e i "
o i "
Xt i .
<200 ! .
7 s
m
0 I I I I I I I I b I I
0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200
Generation

Fig. 3 Dynamic behaviour of all algorithms on DKP with r = 60 and p = 0.2 in different dynamic environment, i.e. a cyclic, b cyclic with noise

and ¢ random environments

pairwise comparisons using Wilcoxon rank-sum tests with
the Bonferroni correction, several results can be observed.
On several environment dynamics, the performance of the
amcGA1 and amcGAZ3 is better than that of the cGAm (see
Tables 1 and 2). Also when the p is low and t is low
to medium, most of the amcGA variants outperformed the
c¢GAm (and the PBILm in some environment dynamics). This
behaviour is as a result of how the amcGA handles its prob-
ability vector.

@ Springer

The amcGA3 maintains a moderate convergence rate as it
explores the search space (see Figs. 1b, ¢, 3a). The amcGA
not only carries information from one stage of the problem
to the next stage, but also retains these information in the
form of rﬁ’, which represents properties and dynamics of
a particular environment. Also since the mutation scheme
is only applied to ﬁ, it ensure that the current working
73 maintains its diversity unless a solution generated by the
mutated ﬁ (whenever a change is detected) outperforms

Adaptive-mutation compact genetic algorithm for dynamic environments 3107
Cyclic DDUF1 Cyclic with noise DDUF1 Random DDUF1
70 T 70 T 70
b cGAm

687 68— = 6 = PBILm
C(J; /%\ /%\ i —A-amcGA1
s 66 < 664 = 66 —6—amcGA2
& E 6 E o gﬂﬁﬁgﬁi
S 624 § 62 ¢ e - amcGA5
3 3 = = 3
£ 60) g 60 g 60)
3 ; 3 g \
g 58 S 58 o B8N
[<] <)
=1 23 2,
o 56 g 56§ o 56
E 54 & 54 g 54
o o o

Offline performance (fitness)

Offline performance (fitness)

L
).1 0.2 0.5 1

Change ratio (p)

Cyclic DDUF2

40 1
L L
3%.1 0.2 0.5 1
Change ratio (p)
Cyeclic DKP
1,000 T
o0B—S = £
800 1
(}—e\e\é
700 &
600%
500 |-
400 |
0.10.2 0.5 1

Change ratio (p)

Offline performance (fitness)

Offline performance (fitness)

52

b L
5%.1 0.2 0.5

Change ratio (p)

Cyclic with noise DDUF2
90 T

Change ratio (p)

Cyclic with noise DKP

400

0102 05
Change ratio (p)

Offline performance (fitness)

Offline performance (fitness)

5%,1 0.2 0.5

Change ratio (p)

Random DDUF2
90 T

Change ratio (p)

Random DKP
1,000 T

- cGAm

-5 PBILm

—A-amcGA1
- amcGA?2
-6~ amcGA3
-® amcGA4
-k~ amcGAS

0

-® cGAm
= PBILm

900

800 |-

400 -

Bl |-a- amcGA1

0102 05
Change ratio (p)

——-amcGA2
-&-amcGA3
-®-amcGA4
= amcGAS5

Fig. 4 Experimental results of all algorithms on DOPs in different dynamic environments (i.e. cyclic, cyclic with noise and random) with T = 60

@ Springer

C.J. Uzor et al.

3108

e e e e wdd-cvHoue
-+ — + = + ~ o~ = = = = A = o~ o~ = = A+ A~ = o~ A= = A~~~ = = WwyDHoI-gyHIwe
- - - - - - - - - - - — 4+ - — — 4 = - — 4 - — - — ~ ~ 4+ - = - ~ - - - - wrdd-Tvoowe
- + ~ + — 4+ ~ ~ - - — — ~ 4+ 4+ 4+ 4+ ~ 4+ + + ~ ~ ~ + + + + — 4+ + + ~ ~ ~ = wyHI-TyDowe
wopuvy|

- - - - - = = - - - = = = = = = = = = = = = = = = = = === === === wrdd-svoouwe
B T T T A N I wyHoI-gyHowe
T wirdd-yvoouwe
R T T e L T e T S R e WyDHI—-yyHowe
B e wirdd-¢voouwe
+ + + + + + 4+ 4+ ~ + + ~ + + 4+ - - - - — — ~ — ~ 4+ 4+ + + + + + + - ~ ~ ~ wWyHO-gvyHowe
T T e S wirdd-cvoouwe
R T T S S T S S L T S P wyDI-gyDHIWe
- - - - - = - - = - - = - - = = - = = = = = = = = = A~ === == === wrdd—Ivooue
- + + + - 4+ + + - - ~ — 4+ 4+ + 4+ 4+ ~ ~ + — ~ ~ ~ + + + + ~ 4+ + + - ~ + + wyHo-[yDHouwe
a510U YJIM U.Q.u\mb

- - - - - - - - - - = =+~ = =+ o~ = = 4+ o~ = = = = = = = = = = = = = = wrdd-svDoue
~ + + + — — ~ ~ — = — — ~ ~ o~ o~ o~~~ N~~~ o~~~ =~ o~ o+ wyHo-cyHouwe
- - - - - - - — - — — — 4+ ~ - — 4+ ~ = — 4 ~ - - = - - — - - - - - - - = wirdd—yvDoue
— + + + = = A~ A~ = = = = A~~~ A~~~ A~~~ o~~~ o~ =~ o~ o+ wyHoI—pyHoue
- - - - - - - - — - — — 4+ - — — 4+ - = ~ 4 - - - - - - - - - - - - - - = wrdd—¢vDouwe
+ + + o+ + o+ + o~ =+ = = A~ = = A~ A~ = = = 4+ o+ o+ o~ o~~~ o~ wyHo-¢gyHowe
B T L T T T T S T wrdd—cvoouwe
— 4+ = = N~ A~ = = = = N A A~ A~ tF e~ e~~~ o~~~ o~~~ o+ wyHo-gyHoue
— = — = m - = — - = = =t A=~ et o~ =~ A= = = = = N = = = A= - - wirdd-Trvoowe
- + + + - = ~ 4+ 4+ - - - ~ ~ ~ + + = ~ ~ 4+ ~ ~ ~ ~ + + + ~ ~ + + ~ ~ + + wyHI-[yHowe
21196)

01 ¢0 T0 I'0 0T S0 CTO0 I'0 O €0 C0 I'0 0T S0 ¢0 I'0 0T 0 €0 10 0T €0 ¢0 1'0 0T §0 TO0 I'0 01T S0 CT0 I'0 0T S0 T0 I'0 d
00l = 2 09=12 0c=1 001 =12 09=1 0c=12 00l =2 09=12 0C = 2 somureukp juswuonAuyg

dd onaa 140ndd sdOd pue SWyILos[y

SWIYILIOS e J9YI0 Jsurese SJUBLIBA OHIWE Y} Jo douewiofiad aurgjo oY) Surpresar synsal [eonsnels | d[qeL

pringer

Qs

Adaptive-mutation compact genetic algorithm for dynamic environments 3109

S N the current best solution generated by 7’), thereby replacing
b N 7’) with m—P> This can be considered as an advantage over the
§ N hypermutation scheme. The TD) in cGAm is mainly updated
| — based on the solutions sampled from it. This implies that
" 2 R genetic diversity is encouraged at individual level since the
=+ mutation scheme is applied directly to a candidate solution
b T to create another for selection.
slel, 0 Finally, performance of the amcGA4 and amcGAS in the
- cyclic environment is better than (or same as) that of the
LT cGAm on some of the DOPs, i.e. cyclic DDUF1 and DKP
Sl (with respective environment dynamics). This behaviour is
2l 0 as a result of the change trend scheme within the algorithm.
o | Although this scheme does not make use of any external
& ‘H f corr training data, it has a positive effect on the performance of
Alels| o 1 1 1 the amcGA4 and amcGAS. The change trend scheme ensures
il T S that th_e) amcGA retains information about past envirorgnent
2l e 0 (i.e. m P) while searching for promising region (using P) in
S | the search space of a new environment. This can be observed
] f + e when 7 = 100 and p is between 0.1 and 0.5 (see Table 1)
sl]+ and the algorithms are given more time to search before
Sl 0 4 4 o+ 4o+ the next environmental change, but experience slow conver-
" gence rate. On the other hand, convergence deprives cGAm
- : corrr of the adaptability to changing environments because the P
s e within ¢cGAm learns from the best hypermutated solution
el | + 10 1 whenever a change occurs. However, the mutation mecha-
il I nism and change trend scheme embedded in amcGA4 and
" amcGAS grants more diversity than cGAm (and PBILm in
- : e some environment) and hence better adaptability to environ-
5 Sl e mental changes (see Fig. 3a, b). The change trend scheme
8 LI e R within amcGA4 and amcGAS makes use of change patteir)ls
=7 I exhibited by the ﬂl)rrent working probability vector (i.e. P)
" to mutate/alter m P. This way, both amcGA4 and amcGAS5
S + 2 e . .
sl a respond to dynamic changes based on how often new elites
Slsf+ e e are obtained. One limitation of the amcGA4 and amcGAS5
Ll S+ + 0 1 0 is the lack of an explicitly defined memory allocation to
21, store change trends such that various change patterns can
- be reused. This means the performance of the amcGA4 and
s+ amcGAS is problem dependent. In addition, the structure of
IS+ 1 ¢ 11 the amcGA4 and amcGAS permits their application to DOPs
L' Sl 0 0 0 with limited computational resources specifically limited in
=1, the amount of available memory.
Sl
% 1S 4.5 Experimental analysis of algorithms behaviour on
A= selected DOPs
< 8 § . . . In order to better ur}derstand the e.xperlmeFltal results, we
é ° 2 g 3 g 3 g 3 need to look deeper into the dynamic behaviour of all algo-
£ g £ QI) E‘F QI) E‘F 9‘) E‘F rithms. The dynam.ic behavigur 2.111 different algorithms on
~|s g T LI I LN the selected DOPs is shown in Fig. 4, where the data were
=g £ TRRYILR averaged over 30 runs, t is set to 60, p = 0.1, 0.2, 0.5 and
El< & 5§55 5§ E§ 1.0. Several behaviours can be observed when examining the

@ Springer

C.J. Uzor et al.

3110

e CyDOUWR—7yDOWe
~ o~ — = = = A~ = =~ = — A =+ A = = — = = A = = A — A = = — A = =~ SV DOWE—] yOHOoue
— 4+ - + = 4+ ~ = = 4+ o~ = ~ 4+ o~ + + = = F+ = ~ o+ + + A+ o~ = = o~ = = = = o+ Y DOWE—] yHowe
- - - - - - - - - - - - - - N = = = A= = = = e e A = = N == = == == CyDouwe—[yDowe
- + + + ~ — 4+ + ~ ~ + + + 4+ — + + = — + 4+ ~ + + + + — 4+ ~ + — + o+ o+ + o+ vy Douwe—] yHowe

wopuny

I
I
¢
I
I
I
¢
I
I
I
I
I
I
¢
I
I
I
I
¢
I
I
I
I
I
I
I
¢
I
I
I
¢
I
I
¢
¢
I

cyDdIwe—HyHouwe

~ + — ~ 4+ ~ 4+ ~ — ~ + + = ~ ~ + ~ + ~ + — + 4+ ~ + ~ + + ~ ~ + + ~ ~ + + Sy DouR—¢yDHoWwe
~ ~ + — 4+ + ~ - + 4+ ~ — 4+ - ~ - — ~ - + — ~ — 4+ + ~ 4+ + - + — ~ — ~ 4+ + PyDIUe—gyHoue
0 SVDOWR—7yDHOWe
- - - - - - - = = = = = = == == = = = = = = e e = e e e = = = = N~ = Y DOWR—7yDHOWeR
- - - - - - - = = = = = === = e e e e e N = = = N = = = = = = = === €y DOWE—7yDHIWe
- 4+ - + ~ ~ - 4+ ~ - - ~ - ~ ~ — 4+ - - 4+ - = - 4+ - - — 4+ - ~ - ~ — ~ + + Sy DOWe—] yOHIwWe
~ + ~ + ~ ~ — 4+ + ~ — + ~ ~ ~ 4+ + - - ~ — 4+ — ~ — ~ — + — 4+ — 4+ ~ - + - FyDdIwe—[yHoue
- - N~ = = = = AN = = = = = = = == = = e = e e = e e = e e = e = = === €y DOWe—| yOHIwe
- + + - ~ 4+ + + 4+ + ~ + + 4+ + + - ~ + + t+ ~ ~ + + ~ + + - 4+ - + - + + - yDoWe—| ynoue
810U YJIM 21196

+ ~ ~ 4+ + ~ ~ ~ ~ + + + + ~ + ~ + + — + + ~ + ~ — ~ ~ ~ + ~ + ~ + ~ ~ ~ Sy DOWe—HyHOWe
~ 4+ + 4+ + + + ~ ~ + + + ~ + 4+ + + ~ + 4+ + ~ 4+ + + + + + + ~ 4+ + + ~ + + Sy DoWe—¢yHOWe
+ + + ~ 4+ + 4+ + ~ 4+ + + 4+ + ~ - ~ 4+ + ~ ~ + + 4+ ~ + + + — + + 4+ + + + + FyDdIwe—gyHoure
-~ - + - — 4+ ~ - ~ ~ — + — ~ — 4+ - — ~ - - - ~ - - 4 - - ~ = = - = — % Sy DoWe-gyHIWe
- - ~ ~ = = ~ = = = 4+ - - — 4+ — 4 - — — — 4 ~ ~ 4+ ~ ~ — ~ ~ — ~ + - ~ = Py DOWe—gyHowe
- - - - - - - - - - - - - - = - - N == e e e e e e e e N === === CyDOWR-7yHIWe
~ ~ + 4+ - ~ - + — ~ ~ - — 4+ — + 4+ + — 4+ + - - + 4+ - ~ + + - + - ~ + - SyDoWe—[yHowe
+ - — 4+ - — ~ ~ — ~ ~ 4+ + ~ ~ — 4+ = + - 4+ — ~ + ~ - + - - - 4+ + - - + Py DOWe—] yHouwe
I - - - = - = - CyDoOWe—[yHowe
+ + + 4+ + — 4+ + + + + 4+ + + - + + + ~ — — + 4+ ~ + + + + + ~ ~ + + + + + yDoWe—] ynHouwe
211960

0T §0 T0 T'0 0T SO CTO 10 OT S0 CTO I'0 0T SO0 CO 1'0 OT S0 TO I'0 0T SO0 CO0 10 OT S0 TO I'0 0T SO0 TO 10 OT S0 TO 10 4
001 =12 09=12 0c=12 001 =2 09=12 0c=1 001 =2 09=12 0T = 2 SOIWBUAP JUSWUOIAUY

4Ad dnaa 14NAd sdOd pue SwyLos[y

SJueLIRA YDOWE Y] JO dourwIojrad sulyjo ay) Suipredal synsal [ednsnels g AqelL

pringer

Qs

Adaptive-mutation compact genetic algorithm for dynamic environments

3111

Table 2 continued

DDUF2 DKP

DDUFI

Algorithms and DOPs

7 =20 T =060 T =100 T =20 T =060 7 =100

=100

T =060

Environment dynamics t = 20

0.1 02 05 1.0 0.1 02 05 1.0 0.1 02 05 1.0 0.1 02 0.5 1.0 0.1 0.2 05 1.0 0.1 0.2 05 1.0 0.1 02 0.5 1.0 0.1 02 05 1.0 0.1 0.2 0.5 1.0

amcGA2-amcGA4
amcGA2-amcGAS5S
amcGA3-amcGA4
amcGA3-amcGAS5
amcGA4—-amcGAS5S

+

+

+

+

effect of the dynamic environments on the performance of
the algorithms investigated.

From Fig. 4, it can be observed that for a fixed T with
increasing value of p, PBILm outperforms other algorithms
on several cases and maintains almost the same performance
across the three DOPs. The behaviour is a result of the
high adaptability brought in by the hypermutation scheme
(and population-based structure) within PBILm. However,
the performance of PBILm decreases on the cyclic DDUF2
and random DDUF2. This is due to the fact that, when the
environment changes, the deceptive building blocks inside
DDUEF2 will draw the population into the new environment
slowly. This means the deceptive attractors are not globally
optimal, but they are suboptimal with relatively high fitness.

An interesting behaviour is that on DDUFI, the perfor-
mance of the amcGA variants drops when p is between 0.1
and 0.5, but soon stabilizes. This is because when p = 1.0,
the environment switches between two landscapes and the
algorithm may wait during one environment for the return
of the other environment to which they converged well.
Also, among the amcGA variants, the amcGA3 shows bet-
ter performance in DDUF1. The reason lies in the way the
mutation scheme operates within amcGA; it ensures that the
amcGA3 adapts to the changing environment regardless of
the change severity. Also, the mutation scheme only increases
(or decreases) m_f)’ by (n— %’“) which is determined by a ran-
dom number r unlike the mutation scgeme in PBILm which
is determined by the probabilities in P .

In Fig. 4, it can be observed that on the cyclic DDUF2
(with and without noise), all amcGA variants show low per-
formance when p = 0.1 to 0.5, but exhibit rapid increase
in performance when p = 1.0. This is due to the deceptive
nature of DDUF2, since low-order building block inside the
function does not clearly lead to a high-order building block
and the amcGAs seems to be sensitive to low p. However, all
amcGA variants cope well with high p (i.e. when p = 1.0)
because the environment switches between two states which
in turn gives more time for the algorithm to obtain a better
solution suitable for the environment before the next change
occurs.

Looking at DKP (bottom) of Fig. 4, it can be observed
that for all dynamic environments, the performance of all
variants of the amcGA reduces as p increases. This can be
considered normal, since an increase in p implies more severe
environment changes. When the cyclic nature of the dynamic
environment increases from cyclic to cyclic with noise, the
performance of all amcGA variants (and cGAm) increases
slightly. Despite the fact that a cyclic environment with noise
is relatively more difficult than a cyclic environment, the
amcGA variants showed better performance. But in the ran-
dom environment, the performance of some of the amcGA
variants dropped (i.e. when p = 0.5 and 1.0). This implies

@ Springer

C.J. Uzor et al.

3112

.V, A&q wrgd oy jo @oueuwrioyrod oy uey)

1018213 ST WILIOS[B 9A1IadSaI A} JO SSAUIY [[BISAO Y] SABIIPUL , +,, A[IYM . V/,, AQ WG Y} JO douewriojrad ayy uey) ssof s1 wiyLio3[e 9A1nadsal oyl Jo SSauly [[BISAO 9Y) JBy) SAJedIpul / —,, YL

8T 6vS— v1'87C— €9°LTT— Ly'81T— 9€'96£— TES67— €L0VT— v'661— 98'L1S— Ly 08— 68'8€€— 98'ThE— SyDoure
81ZIS— LE6TT— 10— YO PrT— LT'S6E— 96'867— 6£°0vT— $8'861— ¥8'615— TS LLY— TrosE— 9L'65€— pyDowe
68'S61— 69°681— T€'991— 19°85T— L1661 97 L8T— L6'LLT— $9'89T— T1'10T— 90°6LT— 0£'991— LSTTT— gyDoure
96'T1S— 9'9¢7— 9¢TIT— LLOST— T8r6E— 1L¥6T— STThT— LT0TT— 80°STS— 9€'S8Y— 66'€TE— 1979~ ZvDowe
L'80S— €LIT— YETOT— 10181— T1'086— vI'SLT— €eeeT— €681 — 20°8TS— 06'0St— TrL6T— 19p€€— Tvoouwe
€5'187— 80°SvT— €8°€91— 16°€h1— 00'8v7— 99°0LT— 08'vET— 16°061— 10767~ 88 18¢— 69 76E— € pse— wyno
01 S0 z0 1’0 01 $0 z0 1'0 01 $0 z0 1'0 d
3 wopuey 43I 2s10U YIM O1PAD A oKD sdod

YT LTH SE€T— 2007 SL9T— YO'ET— 68 L1— SL6T— L3861~ Sh'LT+ 8T+ o1'L— 10'8— SyDoure
9T LT+ 91'€T— 1€°0C— $9'91— PrTI— 9L'81— 61°07— 7861 SV'LT+ €T+ SLL— 69'8— pyDowe
v 1T+ LT9T— v6'TI— ¥8'8— 18°5— 18C1— 90°€T— €0TI— LS8T+ €8+ 69— 65°S— gypoure
STLT+ 8T €T~ 98'61— 19°91— €0€T— PI'81— ST07— 8L'61— vy LT+ o1'T+ 1€°L— ¥0'6— ZvDowe
19°9¢+ S8 HI— 1971— vE'L— 90°s— 8T 1rei— L LT or'T+ peS— 69t — Tvoouwe
YT STH 88°91— L6~ ovv1— S0'6— YTYI— 09'v1— 99°¢1— SSSTH SLT+ 87— 8L'S— wyno
01 S0 z0 1'0 01 S0 z0 1'0 01 $0 z0 1'0 d
7dNaq wopuey 7dNAd 2s1ou yim o1ok) 7dnad omkd sdod

P1'9T— €9°LI— wel— SL6— 6591 8791 0S¥1— 65 11— 89°'81— 9L'81— wLi— 0°S1— SyDoure
ST91— 0L LT— 1Tyi— €TL— 991 9591 — 08'v1— 88 11— L8'81— 8L'8T— YT LT— PIPT— pyDowe
1el— SOTI— rr9— 06'0— L6'0T— L1T LYL— 68°9— SOH1— €TSI— 91— 691 gyDoure
€091 — T6'L1— Py pT— 78'8— €591 — 1991— PSPI— 1S°01— $8'81— 69'81— LYLI— €I g1— ZvDowe
€8°61— 96— vEr— L6'0— €ESI— 1STI— 06— STT— 981 — TI8I— 10T1— LTL— Tvooure
61'L1— 08°€1— 61°01— 19'p— wLsI— SSSI— PO pI— 18°C1— v8'61— $8°61— TL0T— 6LTT— wyno
01 S0 z0 10 01 S0 z0 10 01 S0 z0 10 d
14NAQ wopuey 1INAJ 3S10u PIA O1PAD 110Ad 214D sdod

wIrgd Y} Wolj st syDHowe

pue wyno Yy} Jo ddueuiofrad Y} JJo Ief Moy SMOYs d[qe) YL, ‘| PUB G ‘70 ‘1°0 = ¢ pue ()9 = 2 udym WIgd 9y} IsureSe SyDHOWe pue Wy nHd Y} JO 9OUAIIIP SSOUIY UIPJO [[BIAQ € dqeL,

pringer

Qs

Adaptive-mutation compact genetic algorithm for dynamic environments

3113

that even though the existence of noise in a cyclic environ-
ment may over weigh randomness (i.e. in terms of difficulty),
it favours the performance of all amcGA variants.

Finally, from Figs. 1, 2, 3 and 4, it can be observed that
the amcGA variants (i.e. amcGA to amcGAS5) performed bet-
ter on the DDUF2 problem, especially when 7t is large (see
Table 1). This implies that the performance of the amcGA
not only depends on the dynamics of the environment but
also on the DOP being considered. Generally speaking, the
experimental results indicate the amcGA variants can be con-
sidered when solving DOPs with deceptive properties. These
are functions in which low-order building block does not
combine to form higher-order building block. Instead, low-
order building block may mislead an optimization algorithm
towards local optima (Whitley 1991; Fernandes et al. 2009).

5 Conclusion and future work

Mutation is a double-edged sword; it ensures diversity and
improves an algorithm’s ability to respond to changes in a
dynamic environment. However, mutation can reduce the
performance of an optimization algorithm if the mutation
rate is too high and not controlled appropriately. The effect
of change trend and different mutation schemes on the perfor-
mance of the amcGA in dynamic environments was studied
in this paper. From experimental results, several conclusions
can be drawn on the overall performance of the algorithms:

First, the mutation schemes have a positive effect on the
performance of the amcGA in dynamic environments as it
ensures that information about an environment is retained
and reused whenever the environment changes (instead of
using a dedicated memory space and/or training data).

Second, on all but a very small niche of the DOPs with
extreme environmental change, the proposed amcGA algo-
rithms were statistically significantly outperformed by the
PBILm. On several cases, the change in environment had
minimal effect on the performance of the amcGA variants
while the algorithms try to find a suitable solution. Also, the
interaction between the change trend and mutation depends
on the DOP (see Fig. 4; Tables 1, 2, 3).

Third, the addition of a change trend scheme to the amcGA
improves the algorithms performance in dynamic environ-
ments. The change trend scheme ensures that the amcGA
responds to dynamic changes based on the change pattern
exhibited by the current working probability. Also, it allows
the algorithm to update its mutation strategy using the change
pattern. However, the effect may not be as strong as the effect
of the hypermutation on the performance of the PBILm.

Finally, the mutation scheme embedded within all amcGA
variants promotes diversity in dynamic environments, i.e.
it ensures that the population maintains its diversity while

tackling the DOP and gradually moves towards the optimal
solution.

In general, this paper investigated the effects of the change
trend and adaptive mutation schemes for the amcGA in
dynamic environments. Based on results obtained, there are
several future works relevant to this paper:

All amcGA variants are relatively easy to implement,
especially in memory-constrained application since all vari-
ants of the amcGA retain the small footprint of the cGA.
This allows direct implementation on memory-constrained
devices, thus overcoming the limitations related to typi-
cal population-based dynamic optimization algorithms (e.g.
PBILm).

The results obtained may be used to guide the design
of compact dynamic optimization algorithms for tack-
ling DOPs and compare the algorithms obtained with the
amcGA variants as well as other EAs for DOPs. Further
research will focus on using the schemes developed in this
paper to solve real-world DOPs (implemented in memory-
constrained applications and embedded hardware) which
include further experimentations to identify possible limi-
tations of the algorithms.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

Ahn CW, Ramakrishna RS (2003) Elitism-based compact genetic algo-
rithms. IEEE Trans Evol Comput 7(4):367-385

Bektas T (2006) The multiple traveling salesman problem: an overview
of formulations and solution procedures. Omega 34(3):209-219

Branke J (1999) Memory enhanced evolutionary algorithms for chang-
ing optimization problems. In: In congress on evolutionary com-
putation CEC99, Citeseer

Branke J, KauBler T, Smidt C, Schmeck H (2000) A multi-population
approach to dynamic optimization problems. In: Parmee IC (ed)
Evolutionary design and manufacture. Springer, pp 299-307

Branke J, Orbayr M, Uyar S (2006) The role of representations in
dynamic knapsack problems. In: Rothlauf F, Branke J, Cagnoni
S, Costa E, Cotta C, Drechsler R, Lutton E, Machado P, Moore
JH, Romero J, Smith GD, Squillero G, Takagi H (eds) Applica-
tions of evolutionary computing. Springer, pp 764-775

Bui LT, Michalewicz Z, Parkinson E, Abello M (2012) Adaptation in
dynamic environments: a case study in mission planning. IEEE
Trans Evol Comput 16(2):190-209

Cobb H, Grefenstette J (1993) Genetic algorithms for tracking changing
environments, Morgan Kaufmann Publishers Inc, San Francisco,
CA, pp 523-530

Cobb HG (1990) An investigation into the use of hypermutation as an
adaptive operator in genetic algorithms having continuous, time-
dependent nonstationary environments. Technical Report AIC-90-
001, Naval Research Laboratory, Washington

Dasgupta D, McGregor DR (1993) SGA: a structured genetic algorithm.
University of Strathclyde, Department of Computer Science

@ Springer

3114

C.J. Uzor et al.

Dasgupta D, McGregor DR (1992) Nonstationary function optimization
using the structured genetic algorithm. In: PPSN, pp 145-154

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput
6(2):182-197

Eiben A, Smit S (2012) Evolutionary algorithm parameters and methods
to tune them. In: Youssef H, Eric M, Frédéric S (eds) Autonomous
search. Springer, pp 15-36

Eiben A, Schut M, de Wilde A (2006) Boosting genetic algorithms
with self-adaptive selection. In: IEEE congress on evolutionary
computation. CEC 2006. pp 477482

Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in
evolutionary algorithms. IEEE Trans Evol Comput 3(2):124-141

Fernandes CM, Guervés JJIM, Rosa AC (2009) Using dissortative mat-
ing genetic algorithms to track the extrema of dynamic deceptive
functions. CoRR abs/0904.3063

Goldberg DE (1989) Genetic algorithms in search, optimization and
machine learning, 1st edn. Addison-Wesley, Boston

Goldberg DE (2002) The design of innovation: lessons from and for
competent genetic algorithms. Kluwer Academic Publishers, Nor-
well

Goldberg DE, Smith RE (1987) Nonstationary function optimization
using genetic algorithms with dominance and diploidy. In: ICGA,
pp 59-68

Gongora M, Passow B, Hopgood A (2009) Robustness analysis of evo-
lutionary controller tuning using real systems. In: IEEE Congress
on evolutionary computation. CEC ’09, pp 606-613

Grefenstette JJ et al (1992) Genetic algorithms for changing environ-
ments. PPSN, vol 2. San Francisco, CA, pp 137-144

Hansen N, Kern S (2004) Evaluating the cma evolution strategy on
multimodal test functions. In: Yao X, Burke EK, Lozano JA, Smith
J, Merelo-Guervos JJ, Bullinaria JA, Rowe JE, Tivno P, Kaban A,
Schwefel H-P (eds) Parallel problem solving from nature-PPSN
VIII. Springer, pp 282-291

Hansen N, Ostermeier A (1996) Adapting arbitrary normal muta-
tion distributions in evolution strategies: the covariance matrix
adaptation. In: Proceedings of IEEE international conference on
evolutionary computation, pp 312-317. doi:10.1109/ICEC.1996.
542381

Hansen N, Ostermeier A (2001) Completely derandomized self-
adaptation in evolution strategies. Evol Comput 9(2):159-195

Harik G, Lobo F, Goldberg D (1999) The compact genetic algorithm.
IEEE Trans Evol Comput 3(4):287-297

Harik G, Lobo F, Sastry K (2006) Linkage learning via probabilistic
modeling in the extended compact genetic algorithm (ecga). In:
Pelikan M, Sastry K, CantPaz E (eds) Scalable optimization via
probabilistic modeling, studies in computational intelligence, vol
33. Springer, Berlin, pp 39-61

Hatzakis I, Wallace D (2006) Dynamic multi-objective optimization
with evolutionary algorithms: a forward-looking approach. In: Pro-
ceedings of the 8th annual conference on genetic and evolutionary
computation. ACM, New York, GECCO 06, pp 1201-1208

Higuchi T, Iwata M, Keymeulen D, Sakanashi H, Murakawa M, Kajitani
I, Takahashi E, Toda K, Salami N, Kajihara N, Otsu N (1999) Real-
world applications of analog and digital evolvable hardware. IEEE
Trans Evol Comput 3(3):220-235

Jin Y, Branke J (2005) Evolutionary optimization in uncertain
environments-a survey. IEEE Trans Evol Comput 9(3):303-317

Juang CF (2004) A hybrid of genetic algorithm and particle swarm
optimization for recurrent network design. IEEE Trans Syst Man
Cybern B Cybern 34(2):997-1006

Larraanaga P, Lozano JA (2001) Estimation of distribution algorithms:
a new tool for evolutionary computation. Kluwer Academic Pub-
lishers, Norwell

@ Springer

Martins JP, Fonseca CM, Delbem AC (2014) On the performance of
linkage-tree genetic algorithms for the multidimensional knapsack
problem. Neurocomputing 146:17-29

Mininno E, Cupertino F, Naso D (2008) Real-valued compact genetic
algorithms for embedded microcontroller optimization. IEEE
Trans Evol Comput 12(2):203-219

Morrison RW, De Jong KA (2000) Triggered hypermutation revisited.
In: Proceedings of the 2000 congress on evolutionary computation,
IEEE, vol 2, pp 1025-1032

Nelson AL, Barlow GJ, Doitsidis L (2009) Fitness functions in evo-
lutionary robotics: a survey and analysis. Robot Auton Syst
57(4):345-370

Nguyen TT, Yang S, Branke J (2012) Evolutionary dynamic optimiza-
tion: a survey of the state of the art. Swarm Evol Comput 6:1-24

Passow B, Gongora M, Coupland S, Hopgood A (2008) Real-time evo-
lution of an embedded controller for an autonomous helicopter.
In: IEEE congress on evolutionary computation. CEC 2008 (IEEE
World Congress on Computational Intelligence), pp 2538-2545

Pedersen GK, Yang Z (2006) Multi-objective pid-controller tuning for
a magnetic levitation system using nsga-ii. In: Proceedings of the
8th annual conference on genetic and evolutionary computation.
ACM, New York, GECCO 06, pp 1737-1744

Pelikan M, Goldberg D, Lobo F (2000) A survey of optimization by
building and using probabilistic models. In: Proceedings of the
2000 American control conference, vol 5, pp 3289-3293

Rohlfshagen P, Yao X (2009) The dynamic knapsack problem revisited:
a new benchmark problem for dynamic combinatorial optimisa-
tion. In: Giacobini M, Brabazon A, Cagnoni S, Di Caro G, Ekrt A,
Esparcia-Alczar A, Farooq M, Fink A, Machado P (eds) Appli-
cations of evolutionary computing. Lecture notes in computer
science, vol 5484. Springer, Berlin, pp 745-754

Sastry K, Abbass HA, Goldberg D (2005) Sub-structural niching in
non-stationary environments. In: Geoffrey IW, Xinghuo Y (eds)
AI 2004: advances in artificial intelligence. Springer, pp 873-885

Shah R, Reed P (2011) Comparative analysis of multiobjective evo-
lutionary algorithms for random and correlated instances of
multiobjective d-dimensional knapsack problems. Eur J Oper Res
211(3):466-479

Simdes A, Costa E (2009a) Improving prediction in evolutionary
algorithms for dynamic environments. In: Proceedings of the
11th annual conference on genetic and evolutionary computation.
ACM, pp 875-882

Simdes A, Costa E (2009b) Prediction in evolutionary algorithms for
dynamic environments using markov chains and nonlinear regres-
sion. In: Proceedings of the 11th annual conference on genetic and
evolutionary computation. ACM, pp 883-890

Uzor C, Gongora M, Coupland S, Passow B (2014a) Adaptive mutation
indynamic environments. In: 14th UK workshop on computational
intelligence (UKCI), pp 1-7

Uzor CJ, Gongora M, Coupland S, Passow BN (2014b) Real-world
dynamic optimization using an adaptive-mutation compact genetic
algorithm. In: 2014 IEEE Symposium on computational intelli-
gence in dynamic and uncertain environments (CIDUE), pp 17-23

Vavak Frank, Fogarty Terence C, Jukes Ken (1996) A genetic algorithm
with variable range of local search for tracking changing environ-
ments. In: Voigt H-M, Ebeling W, Rechenberg I, Schwefel H-P
(eds) Parallel problem solving from nature PPSN IV. Springer, pp
376-385

Wang H, Yang S, Ip W, Wang D (2009) Adaptive primal-dual genetic
algorithms in dynamic environments. IEEE Trans Syst Man
Cybern B Cybern 39(6):1348-1361

Whitley D (1991) Fundamental principles of deception. In: Foundations
of genetic algorithms 1991 (FOGA 1), pp 221-241

Woldesenbet Y, Yen G (2009) Dynamic evolutionary algorithm with
variable relocation. IEEE Trans Evol Comput 13(3):500-513

http://dx.doi.org/10.1109/ICEC.1996.542381
http://dx.doi.org/10.1109/ICEC.1996.542381

Adaptive-mutation compact genetic algorithm for dynamic environments

3115

Yang S (2008) Genetic algorithms with memory-and elitism-based
immigrants in dynamic environments. Evol Comput 16(3):385—
416

Yang S, Richter H (2009) Hyper-learning for population-based incre-
mental learning in dynamic environments. In: IEEE congress on
evolutionary computation. CEC *09, pp 682-689

Yang S, Tin6s R (2007) A hybrid immigrants scheme for genetic algo-
rithms in dynamic environments. Int J Autom Comput 4(3):243—
254

Yang S, Tinos R (2008) Hyper-selection in dynamic environments. In:
IEEE congress on evolutionary computation. CEC 2008 (IEEE
World Congress on Computational Intelligence), pp 3185-3192

Yang S, Yao X (2005) Experimental study on population-based incre-
mental learning algorithms for dynamic optimization problems.
Soft Comput 9(11):815-834

Yang S, Yao X (2008) Population-based incremental learning with
associative memory for dynamic environments. IEEE Trans Evol
Comput 12(5):542-561

Yang S, Jiang Y, Nguyen TT (2013) Metaheuristics for dynamic com-
binatorial optimization problems. IMA J Manag Math 24(4):451—
480

Yu E, Suganthan P (2009) Evolutionary programming with ensemble
of explicit memories for dynamic optimization. In: IEEE congress
on evolutionary computation. CEC 09, pp 431438

Yu X, Tang K, Yao X (2008) An immigrants scheme based on
environmental information for genetic algorithms in changing
environments. In: IEEE congress on evolutionary computation.
CEC 2008 (IEEE World Congress on Computational Intelligence),
pp 1141-1147

Zhu H, Jiao L, Pan J (2006) Multi-population genetic algorithm for
feature selection. In: Jiao L, Wang L, Gao X, Liu J, Wu F (eds)
Advances in natural computation. Lecture notes in computer sci-
ence, vol 4222. Springer, Berlin, pp 480-487

@ Springer

	Adaptive-mutation compact genetic algorithm for dynamic environments
	Abstract
	1 Introduction
	2 EAs for DOPs
	3 cGA for DOPs
	3.1 Change detection
	3.2 Mutation schemes

	4 Experiments
	4.1 Dynamic benchmark generator
	4.2 Dynamic test problem
	4.2.1 Decomposable unitation-based functions (DUFs)
	4.2.2 Dynamic knapsack problem

	4.3 Parameter settings and performance measures
	4.4 Experimental study regarding overall performance
	4.5 Experimental analysis of algorithms behaviour on selected DOPs

	5 Conclusion and future work
	References

