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Abstract In this paper, we develop and study two recursive
weighted logics (RWLs) Lw and Lt , which are multi-modal
logics that express qualitative and quantitative properties of
labelled weighted transition systems (LWSs). LWSs are tran-
sition systems describing systems with quantitative aspects.
They have labels with both actions and real-valued quantities
representing the costs of transitions with respect to various
resources. RWLs use first-order variables to measure local
costs. The main syntactic operators are similar to the ones
of timed logics for real-time systems. Lw has operators that
constrain the value of resource-variables at the current state.
Lt extendsLw by having quantitative constraints on the tran-
sitionmodalities as well. This extensionmakes sure thatLt is
adequate, i.e. the semantic equivalence induced by Lt coin-
cides with the weighted bisimilarity of LWSs. In addition,
our logic is endowed, with simultaneous recursive equations,
which allow encoding of properties of infinite behaviours.
We prove that unlike in the case of the timed logics, the sat-
isfiability problems for RWLs are decidable. The proofs use
a variant of the region construction technique used in the
literature with timed automata, which we adapt to the spe-
cific settings of RWLs. For Lt , we also propose an attractive
alternative proof which makes use of the algorithm for Lw.
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1 Introduction

Formal specification, verification and analysis of behavioural
properties of software-based systems have emerged as a
useful method for validating a design before the implemen-
tation of the system has started. However, in the setting
of embedded software systems or cyber–physical systems,
the correctness is intimately linked to the resource con-
straints of the execution platform as well as quantitative
aspects of the physical environment to be controlled. Hence,
specification and verification should not only consider func-
tional properties (correctness, predictability, etc) but also
non-functional properties such as those related to resource
constraints (time, energy, bandwidth, etc). To deal with the
growing complexity of embedded systems—in size as well
as in features—there is a pressing need for tools that pro-
vide computer assistance to the verification and analysis,
with the area of model checking providing a number of such
fully automated tools. Within model checking, various state
machine-based modelling formalisms have surfaced, which
allow for such quantitative aspects to be expressed, especially
time constraints, with the well-established notion of timed
automata (Alur andDill 1990) being ideal formodelling such
aspects. Time is, however, not the only quantity that is rel-
evant for embedded systems; another important quantitative
aspect is energy, which may be consumed or—for certain
systems—harvested. Here, the extension to weighted timed
automata (Behrmann et al. 2001; Alur et al. 2001) allows for
such constraints to be modelled and efficiently analysed.
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In this paper, we put forward the notion of labelled
weighted transition systems (LSW) as the semantics foun-
dation for models of systems with quantitative aspects. More
precisely, an LWS is a labelled transition system that has a
number of resources,which allowus tomodel the quantitative
consumptions of resources. Its transitions are labelled at the
same time with both actions and real values, representing the
costs of the corresponding transitions in terms of resources.
Note that our notion of weighted transition systems can also
be infinite and/or infinitely branching and thus is more gen-
eral than weighted automata (Droste et al. 2009). In order to
use a variant of the region construction technique developed
for timed automata in (Alur and Dill 1990; Alur et al. 1990),
we only consider non-negative labels in this paper.

In order to specify and reason about not only the quali-
tative but also about quantitative properties of the systems,
we consider two recursive weighted logics (RWL)—Lw and
Lt—semantically to be interpreted over LWSs. The RWLs
are extensions of the weighted modal logic (Larsen andMar-
dare 2014) with maximal fixed points. The maximal fixed
points—which are defined by simultaneous recursive equa-
tions (Larsen 1990; Cleaveland et al. 1992; Cleaveland and
Steffen 1993) in this paper—allow encoding of properties of
infinite behaviours including safety and cost-bounded live-
ness. They specify the weakest properties satisfied by the
recursive variables.

Resource constrains in RWLs are encoded by the use
of resource-variables, similar to the clock-variables used in
the timed logics (Alur et al. 1993a; Henzinger et al. 1992;
Aceto et al. 2007). We use resource valuation to assign non-
negative real values to resource-variables. In previous work
(Larsen et al. 2014b), we restricted our attention to only one
resource-variable for each type of resources. This guaranteed
the decidability of the logic and the finite model property.
However, this restriction bounds severely the expressiveness
of the logic. Consider as an example a quantitative system
performing the actions a, b, c and d in sequence, but with the
additional constraint that the energy consumption between a
and c should be at most 2 joule, and the energy consump-
tion between b and d should be at least 3 joule. Given the
overlap between the two energy-constrained phases a −−c
and b − −d, this property cannot be specified by the logic
with only one resource-variable for each type of resources,
because we need two resource-variables to measure the same
resource—energy in this example.

In this paper, we allow multiple resource-variables for
each type of resource, which measure the resource in
different ways. For both Lw and Lt , we discuss the event-
related resource-variables. More precisely, for each type of
resource and each action, we associate one resource-variable.
Whenever the system performs one action, all the resource-
variables associated with this action are reset to zero after the

corresponding transition,meaning that the resource valuation
will map those resource-variables to zero.

RWLs are endowed with modal operators that constrain
the values of resource-variables, allowing us to specify and
reason about the quantitative properties related to resources,
e.g. energy and time. While in an LWS we can have real-
valued labels, the modalities of the logics only encode
rational values. This will not limit too much the expres-
sive power of RWLs, because a real-valued resource can be
characterized by using an infinite convergent sequences of
rationals approximating it.

Lw has operators that constrain the value of resource-
variables at the current state. However, the logic does have
nomeans of constraining the resource consumption of transi-
tions. Whereas Lw can be used to encode various interesting
scenarios, it is not adequate in the sense that it is not suf-
ficiently expressive to characterize weighted bisimulation.
The logic Lt extends Lw by having quantitative constraints
on the transition modalities as well. As an important result
of the paper, we prove that Lt is adequate, i.e. the seman-
tic equivalence induced by Lt coincides with the weighted
bisimilarity of LWSs.

Even though Lw is the least expressive of the two logics
discussed in this paper, we shall see that it fails to enjoy the
finite model property! However, as another important result
of the paper, we demonstrate how to apply a variant of the
region construction technique developed for timed automata
(Alur andDill 1990;Alur et al. 1990; Laroussinie et al. 1995),
to obtain symbolic LWSs of the satisfiable formulas. These
symbolic LWSs provide an abstract semantics for LWSs,
allowing us to reason about satisfiability by investigating the
symbolic models that are finite. We have proposed a model
construction algorithm, which constructs a symbolic LWS
for a given satisfiable (consistent)Lw formula. The symbolic
model can be eventually used to determine the existence of
the concrete LWSs and generate them—possibly infinite—
which are models of the given formula.

The satisfiability problem of Lt can be solved in a similar
way with Lw. However, an attractive alternative is to firstly
encode the problem for Lt into one similar to that of Lw

by translating the given Lt formula into Lw with a special
0-cost action and then use the model construction algorithm
with a minor modification to check the satisfiability of this
Lw formula, and if the Lw formula is not satisfiable, then
the given Lt formula is not satisfiable either; otherwise, the
given Lt formula is satisfiable and we finally generate the
model for it according to the model for the corresponding
Lw formula.

The satisfiability problem is known to be undecidable for
logics very similar to ours, such as TCTL (Alur et al. 1993b),
Tμ (Henzinger et al. 1992), Lν (Laroussinie et al. 1995) and
timed modal logic (TML) (Larsen et al. 2014a). Therefore,
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our decidability results are quite important and, in a sense,
surprising.

The paper is organized as follows: in the following sec-
tion, we present the notion of labelled weighted transition
system together with weighted bisimulation; in Sect. 3, we
introduce the recursive weighted logic Lw with its syntax
and semantics; Sect. 4 is dedicated to the region construction
technique and the symbolic models of LWSs; in Sect. 5, we
prove the decidability of the satisfiability problem for Lw;
in Sect. 6, the more expressive recursive weighted logic Lt

is introduced, together with the adequacy problem and the
satisfiability problem being solved. The paper also includes
a conclusive section where we summarize the results and
describe future research directions.

This paper is an extension of our previous work that has
been presented at ICTAC2014 (Larsen et al. 2014c).

2 Labelled weighted transition systems

A labelled weighted transition system (LWS) is a transition
system that has several types of resources (e.g. energy, price,
time, bandwidth, etc.) and has the transitions labelled both
with actions and (non-negative) real numbers. In Fig. 1 is
represented such a system in which there are three types
of resource; each number is used to represent the cost
of the corresponding transitions in terms of one type of
resource.

Definition 1 (Labelled Weighted Transition System) A
labelled weighted transition system is a tuple

W = (M,K, �, θ)

where M is a non-empty set of states, K = {e1, . . . , ek} is
a finite set of (k types of) resources, � a non-empty set of
actions and θ : M×(�×[K → R≥0]) → 2M is the labelled
transition function, where [K → R≥0] represents the set of
functions from K to non-negative reals.

For simplicity, hereafter we represent the function f :
K → R≥0 defined by f (ei ) = ri for all i = 1, . . . , k, using

Fig. 1 Labelled weighted transition system

the real values vector u = (r1, . . . , rk) ∈ R
k≥0. For u ∈ R

k≥0,
we use u(ei ) to denote the i-th component of the vector u,
i.e. the cost of the resource ei during the transition.

Instead of m′ ∈ θ(m, a, u), we write m
u−→a m′.

To clarify the role of the aforementioned concepts, con-
sider the following example.

Example 1 In Fig. 1, we show the LWS

W = (M,K, �, θ),

where M = {m0,m1,m2},K = {e1, e2, e3}, � = {a, b},
and θ defined as follows: m0

(3,4,5)−−−−→a m1,m0
(π,π,0)−−−−→b m2

and m1
(
√
2,1.9,7)−−−−−−→a m2.

W has three states—m0,m1,m2, three kinds of resource—
e1, e2, e3 and two actions—a, b. The state m0 has two
transitions: one a-transition to m1—which costs 3 units of
e1, 4 units of e2 and 5 units of e3, and one b-transition to
m2—which costs π units of e1 and e2, respectively (and 0
units of e3). If the system does an a-transition from m0 to
m1, the amounts of the resource e1, e2 and e3 increase with
3, 4 and 5 units, respectively.

The concept ofweightedbisimulation is a relation between
the states of a given LWS that equates states with identical
(action and weighted) behaviours.

Definition 2 (Weighted Bisimulation)
Given an LWS W = (M,K, �, θ), a weighted bisim-

ulation is an equivalence relation R ⊆ M × M such that
whenever (m,m′) ∈ R,

• if m
u−→a m1, then there exists m′

1 ∈ M s.t. m′ u−→a m′
1

and (m1,m′
1) ∈ R;

• if m′ u−→a m′
1, then there exists m1 ∈ M s.t. m

u−→a m1

and (m1,m′
1) ∈ R.

If there exists a weighted bisimulation relation R such that
(m,m′) ∈ R, we say thatm andm′ are bisimilar, denoted by
m ∼ m′.

As for the other types of bisimulation, the previous def-
inition can be extended to define the weighted bisimulation
between distinct LWSs by considering bisimulation relations
on their disjoint union. Weighted bisimilarity is the largest
weighted bisimulation relation; if Wi = (Mi ,Ki , �i , θi ),
mi ∈ Mi for i = 1, 2 and m1 and m2 are bisimilar, we write

(m1,W1) ∼ (m2,W2).

The following examples show the role of the weighted
bisimilarity.
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Fig. 2 Weighted bisimulation

Example 2 In Fig. 2, W1 = (M1,K1, �1, θ1) is an LWS
with five states and one type of resources, where

M1 = {m0,m1,m2,m3,m4},

�1 = {a, b, c, d},K1 = {e} and θ1 is defined as:m0
3−→a m1,

m0
2−→b m2, m1

0−→d m2, m1
3−→c m3, m2

0−→d m1 and

m2
3−→c m4. It is easy to see thatm3 ∼ m4 because neither of

them can do any transition. Besides, m1 ∼ m2 because both
of them can do a c-transition with cost 3 to some states which
are bisimilar (m3 and m4) and a d-action transition with cost
0 to each other. m0 is not bisimilar to any states inW1.

W2 = (M2,K2, �2, θ2) is an LWS with three states,
where M2 = {m′

0,m
′
1,m

′
2}, �2 = �1 K2 = K1 and θ2

is defined as: m′
0

3−→a m′
1, m

′
0

2−→b m′
1, m

′
1

0−→d m′
1 and

m′
1

3−→c m′
2.

We can see that:

(m0,W1) ∼ (m′
0,W2),

(m1,W1) ∼ (m′
1,W2),

(m2,W1) ∼ (m′
1,W2),

(m3,W1) ∼ (m′
2,W2),

(m4,W1) ∼ (m′
2,W2).

Notice that

(m′′
0,W3) � (m′

0,W2),

because

(m′′
1,W3) � (m′

1,W2).

Besides,m′′
1 � m′′

2, becausem
′′
1 can do a d-actionwithweight

2 while m′′
2 cannot and m′′

2 can do a d-action with weight 1
while m′′

1 cannot.

3 Recursive weighted logic Lw

In this section, we introduce the first recursiveweighted logic
(RWL)we study in this paper, denoted byLw, which encodes
properties of LWSs.

To encode various resource constrains in Lw, we use
resource-variables, similar to the clock-variables used in
timed logics (Alur et al. 1993a; Henzinger et al. 1992;
Aceto et al. 2007). In this section, we introduce event-related
resource-variables tomeasure the resources in different ways
corresponding to different actions, i.e. for each action a ∈ �,
we associate resource-variables x1a , . . . , x

k
a for each type of

resource e1, . . . , ek , respectively. In the following, we use

Vi = {xia | a ∈ �}

to denote the set of the resource-variables associated for the
type of resource ei ,

Va = {xia | i = 1, . . . , k}

to denote the set of the resource-variables associated with the
action a and

V =
⋃

i=1,...,k

Vi =
⋃

a∈�

Va

to denote the set of all the resource-variables.
Note that:

1. for any i, j such that i 	= j , Vi ∩ V j = ∅,
and for any a, b such that a 	= b, Va ∩ Vb = ∅;

2. |Vi | = |�| for any i ∈ {1, . . . , k},
|Va | = k for any a ∈ �,

|V| = |�| × k.
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In addition to the classic boolean operators (except nega-
tion), our logicLw is firstly endowedwith a class of recursive
(formula) variables X1, . . . , Xn , which specify properties of
infinite behaviours. We denote by X the set of recursive for-
mula variables.

Secondly, Lw is endowed with a class of modalities,
named transition modalities, of type [a] or 〈a〉, for a ∈ �,
which are defined as the classical transition modalities with
reset operation of all the resource-variables associated with
the corresponding action followed. More precisely, every
time the system does an a-action; all the resource-variables
x ∈ Va will be reset after this transition, i.e. x is interpreted
to zero after every a-action, for all x ∈ Va .

Besides, Lw is also endowed with a class of modalities of
arity 0 called state modalities of type x �� r , for r ∈ Q≥0,
x ∈ V and �� ∈ {≤,≥,<,>}, which predicates about the
value of the resource-variable x at the current state.

Before proceeding with the introduction of the maximal
fixed points, we firstly define the basic formulas of Lw and
their semantics. Based on them, we will eventually introduce
the recursive definitions—the maximal equation blocks—
which extend the semantics of the basic formulas.

Definition 3 (Syntax of LwBasic Formulas) For arbitrary
r ∈ Q≥0, a ∈ �, x ∈ V , �� ∈ {≤,≥,<,>} and X ∈ X , let

L : φ := � | ⊥ | x �� r | φ ∧ φ | φ ∨ φ | [a]φ | 〈a〉φ | X.

Before introducing the semantics for the basic formulas,
we define the notion of resource valuation and extended
states.

Definition 4 (Resource Valuation) A resource valuation is
a function l : V → R≥0 that assigns (non-negative) real
numbers to the resource-variables in V .

A resource valuation assigns non-negative real values to
all the resource-variables, and the assignment is interpreted
as the amount of resources measured by the corresponding
resource-variable in a given state of the system. We denote
by L the class of resource valuations.

We write li to denote the valuation for all resource-
variables x ∈ Vi under the resource valuation l, i.e. for any
x ∈ V ,

li (x) =
{
l(x), x ∈ Vi

undefined, otherwise

Similarly, wewrite la to denote the valuation for all resource-
variables x ∈ Va under the resource valuation l, i.e. for any
x ∈ V ,

la(x) =
{
l(x), x ∈ Va

undefined, otherwise

If l is a resource valuation and x ∈ V, s ∈ R≥0 we denote
by l[x �→ s] the resource valuation that associates the same
values as l to all variables except x , to which it associates the
value s, i.e. for any y ∈ V ,

l[x �→ s](y) =
{
s, y = x
l(y), otherwise

Moreover, for V ′ ⊆ V and s ∈ R≥0, we denote by l[V ′ �→ s]
the resource valuation that associates the same values as l
to all variables except those in V ′, to which it associates the
value s, i.e. for any y ∈ V ,

l[V ′ �→ s](y) =
{
s, y ∈ V ′
l(y), otherwise

For u ∈ R
k≥0, l + u is defined as: for any i ∈ {1, . . . , k}, for

any x ∈ Vi ,

(l + u)(x) = l(x) + u(ei ).

A pair (m, l) is called extended state of a given LWSW =
(M,K, �, θ), wherem ∈ M and l ∈ L . Transitions between
extended states are defined by:

(m, l) →a (m′, l ′) iff m u−→a m′and l ′ = (l + u)[Va �→ 0].

Given an LWSW = (M,K, �, θ), we interpret theLw basic
formulas over an extended state (m, l) and an environment
ρ which maps each recursive formula variable to subsets of
M × L . The LWS-semantics of Lw basic formulas is defined
inductively as follows.

W, (m, l), ρ |� �—always;
W, (m, l), ρ |� ⊥—never;
W, (m, l), ρ |� x �� r iff l(x) �� r ;
W, (m, l), ρ |� φ1 ∧ φ2 iffW, (m, l), ρ |� φi , i = 1, 2;
W, (m, l), ρ |� φ1 ∨ φ2 iff W, (m, l), ρ |� φi , i = 1 or

2;
W, (m, l), ρ |� [a]φ iff for arbitrary (m′, l ′) ∈ M × L

such that (m, l) →a (m′, l ′), we have W, (m′, l ′), ρ |� φ;
W, (m, l), ρ |� 〈a〉φ iff there exists (m′, l ′) ∈ M × L

such that (m, l) →a (m′, l ′) and W, (m′, l ′), ρ |� φ;
W, (m, l), ρ |� X iff (m, l) ∈ ρ(X).

Definition 5 (Syntax of Maximal Equation Blocks) LetX =
{X1, . . . , Xn} be a set of recursive formula variables. A
maximal equation block B is a list of (mutually recursive)
equations:

X1 = φ1
...

Xn = φn
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in which Xi are pairwise distinct over X and φi are basic
formulas over X , for all i = 1, . . . , n.

Each maximal equation block B defines an environment
for the recursive formula variables X1, . . . , Xn , which is the
weakest property that the variables satisfy.

We say that an arbitrary formula φ is closed with respect
to a maximal equation block B if all the recursive formula
variables appearing in φ are defined in B by some of its
equations. If all the formulas φi that appears in the right
hand side of some equation in B are closed with respect to
B, we say that B is closed.

Given an environment ρ and ϒ = 〈ϒ1, . . . , ϒn〉 ∈
(2M×L)n , let

ρϒ = ρ[X1 �→ ϒ1, . . . , Xn �→ ϒn]

be the environment obtained from ρ by updating the binding
of Xi to ϒi .

Given a maximal equation block B and an environment
ρ, consider the function

f ρ
B : (2M×L)n −→ (2M×L)n

defined as follows:

f ρ
B (ϒ) = 〈�φ1�ρϒ, . . . , �φn�ρϒ 〉,

where �φ�ρ = {(m, l) ∈ M × L | W, (m, l), ρ |� φ}.
Observe that (2M×L)n forms a complete lattice with the

ordering, join and meet operations defined as the point-wise
extensions of the set-theoretic inclusion, union and intersec-
tion, respectively.Moreover, for anymaximal equation block
B and environment ρ, f ρ

B is monotonic with respect to the
order of the lattice, and therefore, according to the Tarski
fixed point theorem (Tarski 1955), it has a greatest fixed point
that we denote by νX . f ρ

B . This fixed point can be character-
ized as follows:

νX . f ρ
B =

⋃
{ϒ | ϒ ⊆ f ρ

B (ϒ)}.

Consequently, a maximal equation block defines an environ-
ment that satisfies all its equations, i.e.

�B�ρ = νX . f ρ
B .

When B is closed, i.e. there is no free recursive formula
variable in B, it is not difficult to see that for any ρ and
ρ′, �B�ρ = �B�ρ′. So, we just take ρ = 0 and write �B�

instead of �B�0. In the rest of the paper, we will only discuss
this kind of equation blocks. (For those that are not closed,
we only need to have the initial environment which maps the
free recursive variables to subsets of M × L .)

Now we are ready to define the general semantics of Lw:
for an arbitrary LWS W = (M,K, �, θ) with m ∈ M , an
arbitrary resource valuation l ∈ L and arbitrary Lw-formula
φ closed w.r.t. a maximal equation block B,

W, (m, l) |�B φ iff W, (m, l), �B� |� φ.

The symbol |�B is interpreted as satisfiability for the block
B.Whenever it is not the case thatW, (m, l) |�B φ, we write
W, (m, l) 	|�B φ. We say that a formula φ is B-satisfiable if
there exists at least one LWS that satisfies it for the block B
in one of its states under at least one resource valuation; φ is
a B-validity if it is satisfied in all states of any LWS under
any resource valuation—in this case, we write |�B φ.

To exemplify the expressiveness of Lw, we propose the
following example of a systemwith recursively defined prop-
erties.

Example 3 Consider a system which only has one type of
resource, e.g. energy. It involves three actions: a, b and c, to
which three resource-variables xa, xb and xc are associated,
respectively. Those resource-variables are used to measure
the amount of energy in the system. The specifications of the
system are as follows:

1. The system cannot cost one or more than one unit of
energy;

2. The system has the following (action) trace: abcbcbc . . .,
i.e. it does an a-action followed by infinitely repeating the
sequence bc of actions, during which both b and c will
have some nonzero cost.

In our logic, the above-mentioned requirements can be
encoded as follows:

φ = 〈a〉X,

B =
{
X = xa < 1 ∧ 〈b〉(Y ∧ xc > 0),
Y = xa < 1 ∧ 〈c〉(X ∧ xb > 0)

}

��

4 Regions and symbolic models

Before proceeding with the definitions of regions and sym-
bolicmodels,we take a further look at Example 3 in the above
section. It is not difficult to see that there exists a model sat-
isfying the formula φ under the maximal equation block B,
but it must be infinite. This is because xa is synchronized
with xb and xc, which are constantly growing, while xa is
bounded by 1. This example proves that Lw does not enjoy
the finite model property.

In this section,we introduce the region technique for LWS,
which is inspired by that for timed automata of Alur and Dill
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(1990), Alur et al. (1990). It provides an abstract semantics
of LWSs in the form of finite labelled transition systems with
the truth value of the Lw formulas being maintained.

Herewe introduce the regions defined for a givenmaximal
constant N ∈ N. For the case where the maximal constant is
a rational number p

q , where p, q ∈ N, we only need to get
the regions for the maximal constant pi first and divide all
the regions by q. In fact for this case, we could, alternatively,
assume that all the constraints involve natural numbers, since
the constraints that occur in one formula are finitely many
(for instance, we can multiply all the rationals with the same
well-chosen integer; by this operation the truth values of the
correspondingly modified formulas are preserved).

For r ∈ R≥0, let �r� def= max{z ∈ Z | z ≤ r} denote the
integral part of r , and let {r} = r − �r� denote its fractional
part. Moreover, we have �r� def= min{z ∈ Z | z ≥ r}.

Definition 6 Let N ∈ N be a given maximal constant and
let Vi be a set of resource-variables for resource ei . Then,
li , l ′i : Vi → R≥0 are equivalent with respect to N , denoted
by li

.= l ′i iff:

1. ∀x ∈ Vi , li (x) > N iff l ′i (x) > N ;
2. ∀x ∈ Vi s.t. 0 ≤ li (x) ≤ N ,

�li (x)� = �l ′i (x)� and {li (x)} = 0 ⇔ {l ′i (x)} = 0;

3. ∀x, y ∈ Vi s.t. 0 ≤ li (x), li (y) ≤ N ,

{(li (x)} ≤ {li (y)} ⇔ {(l ′i (x)} ≤ {l ′i (y)}.

The equivalence classes under
.= are called regions.

[li ] denotes the region which contains the labelling li for
resource-variables x ∈ Vi and RVi

Ni
denotes the set of all

regions for the set Vi of resource-variables for resource ei
and the constant Ni . Notice that for a given Ni ∈ N, RVi

Ni
is

finite.
For a region δ ∈ RVi

Ni
, we define the successor region as

the region δ′—denoted by δ � δ′—iff:

for any li ∈ δ, there existsd ∈ R≥0s.t. li + d ∈ δ′.

As we mentioned before, for the case where the maximal
constant is a rational number pi

qi
where pi , qi ∈ N, we only

need to get the regions for the maximal constant p first and
divide all the regions by qi to achieve the set of all regions
for the set Vi of resource-variables for resource ei and the
constant pi

qi
—denoted by RVi

pi /qi
. Let

RV = {[l] = ([l1], . . . , [lk]) |
[li ] ∈ RVi

pi /qi
,
pi
qi

∈ Q≥0 for any i ∈ {1, . . . , k}}

For r ∈ R≥0, we use r ∈ [l](x) to denote r ∈ [li ](x), for
any i ∈ {1, . . . , k} and x ∈ Vi .

Wewill now define the fundamental concept of a symbolic
model of LWS. Every extended state (m, l) is replaced by
a so-called extended symbolic state (m, [l]). Whenever we
have transition between two extended states, there should
also be a transition between the corresponding symbolic
states, i.e.

(m, [l]) →a (m′, [l ′]) iff (m, l) →a (m′, l ′).

Definition 7 GivenRV and a non-empty set of states Ms , a
symbolic LWS is a tuple

Ws = (Π s, �s, θ s)

where Π s ⊆ Ms ×RV is a non-empty set of symbolic states
π s = (m, δ),�s is a non-empty set of actions and

θ s : Π s × (�s) → 2Π s

is the symbolic labelled transition function, which satisfies
the following:

if (m′, δ′) ∈ θ((m, δ), a), then δ � δ′.

Given a symbolic LWS, we can define the symbolic satis-
fiability relation |�s with π = (m, δ) ∈ Π s as follows:

Ws, π, ρs |�s �—always;
Ws, π, ρs |�s ⊥—never;
Ws, π, ρs |�s x �� r iff for any w ∈ δ(x), w �� r ;
Ws, π, ρs |�s φ1 ∧ φ2 iffWs, π, ρs |�s φi , i = 1, 2
Ws, π, ρ |�s φ1 ∨ φ2 iffWs, π, ρs |�s φi , i = 1 or 2;
Ws, π, ρs |�s [a]φ iff for any π ′ ∈ Π s s.t. π →a π ′, we

have Ws, π ′, ρs |�s φ;
Ws, π, ρs |�s 〈a〉φ iff there exists π ′ ∈ Π s s.t. π →a π ′

and Ws, π ′, ρs |�s φ;
Ws, π, ρs |�s X iff m ∈ ρs(X),
where δ[Va �→ 0] is defined as:

δ[Va �→ 0](x) =
{
0, x ∈ Va

δ(x), otherwise

Similarly, we can define the symbolic B-satisfiability rela-
tion |�s

B as in Sect. 3:

Ws, π |�s
B φ iff Ws, π, �B� |�s φ.

Lemma 1 Let φ be a Lw formula closed w.r.t a maximal
equation block B. If it is satisfied by a symbolic LWS Ws =
(Π s, �s, θ s) i.e. Ws, π |�s

B φ with π = (m, δ) ∈ Π s ,
then there exists an LWSW = (M,K, �, θ) and a resource
valuation l ∈ L such that W, (m, l) |�B φ with m ∈ M.
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Proof Let � = �s,K be the set of the resources appear-
ing in RV and l ∈ δ. The transition function is defined as:

(m1, δ1, l1)
u−→a (m2, δ2, l2) iff,

1. (m1, δ1) →a (m2, δ2),
2. for i = 1, 2, li ∈ δi ,
3. and l2 = (l1 + u)[Va �→ 0].

We define the transition relation starting from (m, δ, l).
Let M be the set of all the states in the form of (m′, δ′, l ′)
defined for the transitions as the above. Note that it might be
infinite. It is easy to verify that W, ((m, δ, l), l) |�B φ. ��

5 Satisfiability of Lw

In this section, we prove that it is decidable whether a given
Lw formulaφwhich is closedw.r.t. amaximal equation block
B is satisfiable. We also present a decision procedure for the
satisfiability problem of Lw. The results rely on a syntac-
tic characterization of satisfiability that involves a notion of
mutually consistent sets that we define later.

Consider an arbitrary formula φ ∈ Lw which is closed
w.r.t. a maximal equation block B. In this context, we define
the following notions:

– Let �[φ, B] be the set of all actions a ∈ � such that a
appears in some transition modality of type 〈a〉 or [a] in
φ or B.

– For any ei ∈ K and x ∈ Vi , let Qi [φ, B] ⊆ Q≥0 be the
set of all r ∈ Q≥0 such that r is in the label of some state
or transition modality of type x �� r that appears in the
syntax of φ or B.

– We denoted by gi the granularity of ei inφ, defined as the
least common denominator of the elements of Qi [φ, B].
Let RVi

pi /gi
[φ, B] be the set of all regions for resource ei ,

where pi
gi

= max Qi [φ, B]. Let

RV [φ, B] = {δ = (δ1, . . . , δk) |
δi ∈ RVi

pi /gi
[φ, B] for any i ∈ {1, . . . , k}}.

Observe that �[φ, B], Qi [φ, B], RVi
pi /gi

[φ, B] and RV
[φ, B] are all finite (or empty).

At this point, we can start our model construction. We
fix a formula φ0 ∈ Lw that is closed w.r.t. a given maximal
equation block B, and supposing that the formula admits a
model, we construct a model for it. Let

L[φ0, B] = {φ ∈ Lw |
�[φ, B] ⊆ �[φ0, B], Qi [φ, B] ⊆ Qi [φ0, B]}.

Here, we are going to construct a symbolic model first. To
construct the symbolic model, we will use as symbolic states
tuples of type (Γ, δ) ∈ 2L[φ0,B] × RV [φ0, B], which are
required to be maximal in a precise way. The intuition is that
a state (Γ, δ) ⊆ 2L[φ0,B] × RV [φ0, B] shall symbolically
satisfy the formula φ in our model, whenever φ ∈ Γ . From
this symbolic model, we can generalize an LWS—might be
infinite—which is amodel of the givenLw formula. Our con-
struction is inspired from the region construction proposed in
(Laroussinie et al. 1995) for timed automata, which adapts
of the classical filtration-based model construction used in
modal logics (Hughes and Cresswell 1996; Harel et al. 2001;
Walukiewicz 2000).

Let Ω[φ0, B] ⊆ 2L[φ0,B] × RV [φ0, B]. Since L[φ0, B]
and RV [φ0, B] are both finite, Ω[φ0, B] is finite.

Definition 8 (Maximal Pair of Lw) For any (Γ, δ) ∈
Ω[φ0, B], (Γ, δ) is said to be maximal iff:

1. � ∈ Γ,⊥ /∈ Γ ;
2. x �� r ∈ Γ iff for any w ∈ R≥0 s.t. w ∈ δ(x), w �� r ;
3. φ ∧ ψ ∈ Γ implies φ ∈ Γ and ψ ∈ Γ ;

φ ∨ ψ ∈ Γ implies φ ∈ Γ or ψ ∈ Γ ;
4. X ∈ Γ implies φ ∈ Γ , for X = φ ∈ B.

The following definition establishes the framework on
which we will define our model.

Definition 9 (Mutually Consistent Set of Lw ) Let C ⊆
2Ω[φ0,B].C is said to bemutually consistent if for any (Γ, δ) ∈
C, whenever 〈a〉ψ ∈ Γ , then there exists (Γ ′, δ′) ∈ C s.t.:

1. there exists δ′′ s.t. δ � δ′′ and δ′ = δ′′[Va �→ 0];
2. ψ ∈ Γ ′;
3. for any [a]ψ ′ ∈ Γ,ψ ′ ∈ Γ ′.

We say that (Γ, δ) is consistent if it belongs to somemutu-
ally consistent set.

The following lemma proves a necessary precondition for
the model construction.

Lemma 2 Let φ ∈ Lw be a formula closed w.r.t. a maximal
equation block B. Then, φ is satisfiable iff there exist Γ ⊆
L[φ0, B] and δ ∈ RV [φ0, B] s.t.

(Γ, δ) is consistent and φ ∈ Γ.

Proof (�⇒): Suppose φ is satisfied in the LWS

W = (M, �,K, θ)
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under the resource valuation l ∈ L , i.e. there exists m ∈ M
s.t.W, (m, l) |�B φ. We construct

C = {(Γ, δ) ∈ Ω[φ0, B] |
∃m ∈ M s.t. for any ψ ∈ Γ, ∃l ∈ δ s.t.W, (m, l) |�B ψ}.

It is not difficult to verify that C is a mutually consistent set.
(⇐�): Let C be a mutually consistent set.
We construct a symbolic LWS

Ws = (Π s, �s, θ s),

where Π s = C, �s = �[φ0, B] and for (Γ, δ), (Γ ′, δ′) ∈ C,
the transition relation (Γ, δ) −→a (Γ ′, δ′) is defined iff

1. there exists δ′′ s.t. δ � δ′′ and δ′ = δ′′[Va �→ 0];
2. whenever [a]ψ ∈ Γ then ψ ′ ∈ Γ ′.

Let ρs(X) = {(Γ, δ) | X ∈ Γ } for X ∈ X .

With this construction, we can prove the following impli-
cation by a simple induction on the structure of φ, where
(Γ, δ) ∈ Π s :

φ ∈ Γ implies Ws, (Γ, δ), ρs |�s φ.

We prove that ρs is a fixed point of B under the assumption
that X = φX ∈ B as follows:

Γ ∈ ρs(X) implies (X, δ) ∈ Γ by the construction of ρs ,
which implies (φX , δ) ∈ Γ by the definition ofΩ[φ0, B].
Then, Ws, Γ, ρs |�s φX by the implication we just
proved.

Thus, ρs is a fixed point of B. Since �B� is the maximal
fixed point, ρs ⊆ �B�.

Therefore, for any (φ, δ) ∈ Γ ∈ C, we have Ws, (Γ, δ),

ρs |�s φ, which implies Ws, (Γ, δ), �B� |�s φ because
ρs ⊆ �B�.

Hence, φ ∈ Γ and (Γ, δ) ∈ C implies Ws, Γ |�s
B φ.

By Lemma 1, there exists an LWS W = (M,K, �, θ)

and a resource valuation l ∈ L such that W, (m, l) |�B φ

with m ∈ M . ��
To summarize, the above lemmas allow us to conclude the

model constructions.

Theorem 1 For any satisfiable Lw formula φ closed w.r.t.
a maximal equation block B, there exists a finite symbolic
LWS Ws = (Π s, �s, θ s) such that Ws, π |�s

B φ for some
π ∈ Π s . Reversely, if a Lw formula φ is satisfied by a sym-
bolic model, then it is satisfiable, i.e. there exists an LWS
W = (M,K, �, θ) and a resource valuation l ∈ L such that
W, (m, l) |�B φ for some m ∈ M.

Lemma 2 and Theorem 1 provide a decision procedure
for the satisfiability problem of Lw. Given a Lw formula
φ0 closed w.r.t. a maximal equation block B, the algorithm
constructs the model

W = (M,K, �, θ).

To do this, we first construct the symbolic LWS

Ws = (Π s, �s, θ s)

with φ0 being satisfied in some state π ∈ Π s , i.e.Ws, π |�s
B

φ0, where �s = �[φ0, B].
Ifφ0 is satisfiable, then it is contained in somemaximal set

Γ , where (Γ, δ) is consistent with δ ∈ RV [φ0, B]. Hence, φ0

will be satisfied at some state π ofWs . If φ0 is not satisfiable,
then the attempt to construct a model will fail; in this case,
the algorithm will halt and report the failure.

We start with a superset of the set of states ofW and then
repeatedly delete states when we discover some inconsis-
tency. This will give a sequence of approximations

Ws
0 ⊇ Ws

1 ⊇ Ws
2 ⊇ . . .

converging to Ws .
The domains Π s

i , i = 0, 1, 2, . . ., of these structures are
defined below, and they are s.t.

Π s
0 ⊇ Π s

1 ⊇ Π s
2 ⊇ . . . .

The transition relation for Ws
i is defined as follows: for any

(Γ, δ), (Γ ′, δ′) ∈ Π s
i , (Γ, δ) −→a (Γ ′, δ′) iff

1. there exists δ′′ s.t. δ � δ′′ and δ′ = δ′′[Va �→ 0];
2. whenever [a]ψ ∈ Γ , ψ ∈ Γ ′.

The following is the algorithm for constructing the
domains Π s

i of Ws
i .

Algorithm

– Step 1: Construct Π s
0 = Ω[φ0, B].

– Step 2: Repeat the following for i = 0, 1, 2, . . . until no
more states are deleted.
Find a formula [a]φ ∈ L[φ0, B] and a state (Γ, δ) ∈ Π s

i
violating the following property

[∀(Γ ′, δ′) ∈ Π s
i , (Γ, δ) −→a (Γ ′, δ′) ⇒ φ ∈ Γ ′]

implies [a]φ ∈ Γ.

That is, there exists 〈a〉¬φ ∈ Γ , but for noΓ ′ and δ′ such
that (Γ, δ) −→a (Γ ′, δ′), it is the case that ¬φ ∈ Γ ′.
Pick such an [a]φ and (Γ, δ).
Delete (Γ, δ) from Π s

i to get Π s
i+1.
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Step 2 can be justified intuitively as follows. To say that
(Γ, δ) violates the above-mentioned condition, it means that
(Γ, δ) requires an a-transition to some state that does not
satisfy φ; however, the left-hand side of the condition above
guarantees that all the outcomes of an a-transition satisfy φ.
This demonstrates that (Γ, δ) cannot be in Π s , since every
state (Γ, δ) in Π s satisfies ψ , whenever ψ ∈ Γ .

The algorithmmust terminate, since there are only finitely
many states initially, and at least one state must be deleted
during each iteration of step 2 in order to continue. Then,
φ is satisfiable if and only if upon termination there exists
(Γ, δ) ∈ Π s such that φ ∈ Γ . Obviously, Π s is a mutually
consistent set upon termination.

The correctness of this algorithm follows from the proof
of Lemma 2. The direction (⇐) of the proof guarantees that
all formulas in any Γ with (Γ, δ) ∈ Π s are satisfiable. The
direction (⇒) of the proof guarantees that all satisfiable Γ

will not be deleted from Π s .
After we get the symbolic LWSWs , we can use the tech-

nique in Lemma 1 to generalize an LWSW = (M,K, �, θ),

which might be infinite.
Suppose φ is satisfied by (Γ, δ) ∈ Π s , i.e.Ws, (Γ, δ) |�s

B
φ0. Let � = �s,K be the set of the resources appearing in
RV [φ0, B] and l ∈ δ. The transition function is defined as:

(Γ1, δ1, l1)
u−→a (Γ2, δ2, l2) iff,

1. Γ1, δ1) −→a (Γ2, δ2),
2. for i = 1, 2, li ∈ δi ,
3. and l2 = (l1 + u)[Va �→ 0].

We define the transition relation starting from (Γ, δ, l).
Let M be the set of all the states in the form of (Γ ′, δ′, l ′)
defined for the transitions as above. Note that the model
defined according to this way might be infinite. It is easy
to verify that W, ((Γ, δ, l), l) |�B φ0.

Theorem 1, also supported by the above algorithm,
demonstrates the decidability of the B-satisfiability problem
for Lw.

Theorem 2 (Decidability of B-satisfiability) For an arbi-
trary maximal equation block B, the B-satisfiability problem
for Lw is decidable.

Example 4 Now we can discuss the satisfiability of the for-
mula φ in Example 3.

φ = 〈a〉X,

B =
{
X = xa < 1 ∧ 〈b〉(Y ∧ xc > 0),
Y = xa < 1 ∧ 〈c〉(X ∧ xb > 0)

}

In Fig. 3 is the symbolic LWS for the above formula φ

w.r.t B by applying our algorithm. Here, the details of using
the algorithm to get the model are not presented, limited by

Fig. 3 Symbolic LWS for φ

the length of the paper, which is very technical.

Γ0 = {φ, 〈a〉X}
Γ1 = {X, xa < 1, 〈b〉(Y ∧ xc > 0)}
Γ2 = {Y, xc > 0, xa < 1, 〈c〉(X ∧ xb > 0)}
Γ3 = {X, xb > 0, xa < 1, 〈b〉(Y ∧ xc > 0)}
δ0 = [xa = xb = xc = 0]
δ1 = [xa = 0, 0 < xb = xc < 1]
δ2 = [xb = 0, 0 < xa = xc < 1]
δ3 = [xb = 0, 0 < xa < xc < 1]
δ4 = [xc = 0, 0 < xb < xa < 1]
δ5 = [xb = 0, 0 < xc < xa < 1]

From the symbolic model in Fig. 3, one can generate an
LWS, which in this case is infinite, where φ is satisfied in
some state of it. In Fig. 4 (on the next page), we show part of
this infinite model.

l0 = (0, 0, 0) l5 = (0.2, 0, 0.3)
l1 = (0.1, 0.1, 0) l6 = (0.5, 0.2, 0)
l2 = (π

4 , π
4 , 0) l7 = (0.4, 0.2, 0)

l3 = (0.3, 0, 0.3) l8 = (0.6, 0, 0.1)
l4 = (π

4 , 0, π
4 ) l9 = (0.5, 0, 0.1)

. . . . . .

��

6 Extension of Lw

The recursive weighted modal logicLw introduced in Sect. 3
can be used to encode various interesting scenarios.However,
it is not adequate in the sense that bisimilarity of the mod-
els does not coincide with the semantic equivalence induced
by the logic over the class of models (Hennessy–Milner
property). For example, consider the following two simple
systems in Fig. 5 (on the next page). Both of them have one
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Fig. 4 Generalizing LWS from the symbolic model

m0

m1

n0

n1

10 a 1 a

Fig. 5 Counter example of Lw adequacy

type of resource e and one action a—therefore, only one
resource variable xea . It is not difficult to see that they cannot
be distinguished by any formula or theory (set of formulas)
of Lw.

In the following,we introduce the recursiveweighted logic
Lt , which extendsLw by allowing resource constraints in the
transition modalities. For Lt , the maximal equation blocks
are defined similarly to for Lw, on top of a class of basic for-

mulas. We show that Lt is adequate and that its satisfiability
problem is still decidable.

In Lt , the resource-variables are still event related, as in
Lw, i.e. after each action, the corresponding resource vari-
ables will be reset to zero. The same as Lw, we use Vi =
{xia | a ∈ �} to denote the set of the resource-variables asso-
ciated for the type of resource ei ,Va = {xia | i = 1, . . . , k}
to denote the set of the resource-variables associated with the
action a and V = ⋃

i=1,...,k Vi = ⋃
a∈� Va to denote the set

of all the resource-variables.

Definition 10 (Syntax of Lt Basic Formulas) For arbitrary
r ∈ Q≥0, a ∈ �, x ∈ V, �� ∈ {≤,≥,<,>}, I ⊆ {1, . . . , k}
and X ∈ X , let

Lt : φt := � | ⊥ | x �� r | φt ∧ φt | φt ∨ φt

| [∧i∈I (ei �� ri )]aφt | 〈∧i∈I (ei �� ri )〉aφt | X .

The semantics of Lt basic formulas is defined similar to
Lw except for that of the transition modalities, which are
defined as follows:
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W, (m, l), ρ |�t [∧i∈I (ei �� ri )]aφt iff for arbitrary
(m′, l ′) ∈ M × L such that (m, l) −→a (m′, l ′) and
(l ′ − l)(ei ) �� ri for any i ∈ I , we have W, (m′, l ′[Va �→
0]), ρ |�t φt ,

W, (m, l), ρ |�t 〈∧i∈I (ei �� ri )〉aφt iff there exists
(m′, l ′) ∈ M × L such that (m, l) −→a (m′, l ′),(l ′ − l)(ei ) ��
ri for any i ∈ I and W, (m′, l ′[Va �→ 0]), ρ |�t φt .

As forLw, we can define the semantics ofLt withmaximal
equation blocks Bt :

W, (m, l) |�Bt φt iffW, (m, l), �Bt � |�t φt .

6.1 Adequacy of Lt

It is clear thatLt is more expressive thanLw.Wewill show in
the following thatLt is sufficiently expressive to characterize
weighted bisimilarity, i.e. Lt enjoys the Hennessy–Milner
property. We do this by proving that the logic without fixed
points is already adequate. Since we do not consider the fixed
points, the environment is not necessary for the semantics.
So, in the following lemma, we only write |� instead of |�Bt

and we use Lt/X to denote Lt without fixed points.

Lemma 3 Let W = (M,K, �, θ) be an image-finite
labelled weighted transition system. Then, for any m,m′ ∈
M:

m ∼ m′ iff ∀φt ∈ Lt/X and l ∈ L
W, (m, l) |� φt ⇔ W, (m′, l) |� φt .

Proof (�⇒) Induction on φt .
The cases �,⊥ and φt ∧ ψ t , φt ∨ ψ t are easy.

– Case x �� r :
W, (m, l) |� x �� r implies l(x) �� r , which implies
W, (m′, l) |� x �� r .
Hence, W, (m, l) |� x �� r implies W, (m′, l) |� x ��
r .
SimilarlyW, (m′, l) |� x �� r impliesW, (m, l) |� x ��
r .

– Case [∧i∈I (ei �� ri )]aφt :
W, (m, l) |� [∧i∈I (ei �� ri )]aφt implies:
for any (m1, l1) ∈ M × L s.t.

1. (m, l) −→a (m1, l1) and
2. (l1 − l)(ei ) �� ri for any i ∈ I ,

then W, (m1, l1) |� φt .

(m, l) −→a (m1, l1) implies m
u−→a m1 and l1 = l + u.

Since m ∼ m′, for any m′
1 ∈ M s.t. m′ u−→a m′

1, there

exists m1 ∈ M s.t. m
u−→a m1 and m1 ∼ m′

1.
By inductive hypothesis,

W, (m1, l1) |� φt impliesW, (m′
1, l1) |� φt .

So for any (m′
1, l1) ∈ M s.t.

1. (m′, l) −→a (m′
1, l1) and

2. (l1 − l)(ei ) �� ri for any i ∈ I ,
we have W, (m′

1, l1) |� φt .
Then, W, (m′, l) |� [∧i∈I (ei �� ri )]aφt .
Hence, W, (m, l) |� [∧i∈I (ei �� ri )]aφt implies
W, (m′, l) |� [∧i∈I (ei �� ri )]aφt .
Similarly,W, (m′, l) |� [∧i∈I (ei �� ri )]aφt implies
W, (m, l) |� [∧i∈I (ei �� ri )]aφt .

– Case 〈∧i∈I (ei �� ri )〉aφt :
W, (m, l) |� 〈∧i∈I (ei �� ri )〉aφt implies:
there exists (m1, l1) ∈ M × L s.t.

1. (m, l) −→a (m1, l1),
2. (l1 − l)(ei ) �� ri for any i ∈ I and
3. W, (m1, l1) |� φt .

(m, l) →a (m1, l1) impliesm
u−→a m1 and l1 = l+u.

Since m ∼ m′, there exists m′
1 such that m′ u−→a m′

1
and
m1 ∼ m′

1.
By inductive hypothesis,
W, (m1, l1) |� φt implies W, (m′

1, l1) |� φt .

So we have that there exists (m′
1, l1) ∈ M × L s.t.

1. (m′, l) −→a (m′
1, l1),

2. (l1 − l)(ei ) �� ri for any i ∈ I and
3. W, (m′

1, l1) |� φt .

Therefore, W, (m′, l) |� 〈∧i∈I (ei �� ri )〉aφt .
Hence, W, (m, l) |� 〈∧i∈I (ei �� ri )〉aφt implies
W, (m′, l) |� 〈∧i∈I (ei �� ri )〉aφt .
Similarly, W, (m′, l) |� 〈∧i∈I (ei �� ri )〉aφt implies
W, (m, l) |� 〈∧i∈I (ei �� ri )〉aφt .

(⇐�) Let

R = {(m,m′) |
∀φt ∈ Lt/X,W, (m, l) |� φt ⇔ W, (m′, l) |� φt }.
We prove that R is a weighted bisimulation relation.

– If m
u−→a m1:

If for any I ⊆ {1, . . . , k} and for any i ∈ I, ri ∈ Q s.t.
u(ei ) �� r , there exists no m′

1 ∈ M s.t

m′ u−→a m′
1 and W, (m′, l) |� [∧i∈I (ei �� r)]a⊥.

Then, W, (m, l) |� [∧i∈I (ei �� r)]a⊥ since (m,m′) ∈
R.
This contradicts the premise! Hence, there exists at least

one m′
1 ∈ M s.t m′ u−→a m′

1.
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Suppose:

S = {m′
h | m′ u−→a m′

h} and (m1,m′
h) /∈ R for any h;,

i.e. for any h, there exists lh and φt
h s.t.

W, (m1, lh) |� φt
handW, (m′

h, lh) 	|� φt
h .

For any h and for any xib ∈ V(φt
h) with b ∈ � and

i ∈ {1, . . . , k}, we introduce one new action bh and one
new resource variable xibh .

Let φt
h
′ = φt

h{xibh/xib} for every φt
h .

Let l ′(xibh ) = lh(xib) for any xibh and l ′(xia) = 0 for any

xia with a ∈ �. Then, for all h, we have:
W, (m1, l ′) |� ∧

h φt
h
′ and W, (m′

h, l
′) 	|� φt

h
′.

Then, there exists l s.t.

1. l ′ = (l + u)[V �→ 0],
2. W, (m, l) |� []a ∧

h φt
h
′ and

3. W, (m′, l) 	|� []a ∧
h φt

h
′
. Contradiction!

Hence, there exists m′
1 ∈ M s.t. m′ u−→a m′

1 and m1 ∼
m′

1.

– If m′ u−→a m′
1: similar as above. ��

Theorem 3 (Adequancy of Lt ) Let

W = (M,K, �, θ)

be an image-finite labelled weighted transition system. Then,
for any m,m′ ∈ M:

m ∼ m′ iff for any φt ∈ Lt under Bt and l ∈ L ,

W, (m, l) |�Bt φt ⇔ W, (m′, l) |�Bt φt .

6.2 Satisfiability of Lt

We can use a similar technique to the one used in Sect. 5 for
checking satisfiability ofLw, to decide the satisfiability ofLt

by adding the requirements of the weights on the transitions.
More precisely, we define the symbolic semantics forLt and
add the requirements of the weights on the transitions and the
definitions ofmaximal pair (Γ, δ) andmutually consistent set
C as follows:

Ws, π, ρs |�s [∧i∈I (ei �� ri )]aφ iff:
for any π ′ = (m′, δ′) ∈ Π s s.t.

(1) π →a π ′ and
(2) w′ − w �� ri for any i ∈ I and w ∈ δ(ei ), w′ ∈ δ′(ei ),

we have Ws, π ′, ρs |�s φ,

Ws, π, ρs |�s 〈∧i∈I (ei �� ri )〉aφ iff:
there exists π ′ = (m′, δ′) ∈ Π s s.t.

(1) π →a π ′,
(2) w′ − w �� ri for any i ∈ I and w ∈ δ(ei ), w′ ∈ δ′(ei )

and
(3) Ws, π ′, ρs |�s φ.

Definition 11 (Maximal Pair of Lt ) For any (Γ, δ) ∈
Ω[φt

0, B
t ], (Γ, δ) is said to be maximal iff:

1. � ∈ Γ,⊥ /∈ Γ ;
2. x �� r ∈ Γ iff for any w ∈ R≥0 s.t. w ∈ δ(x), w �� r ;
3. φ ∧ ψ ∈ Γ implies φ ∈ Γ and ψ ∈ Γ ;

φ ∨ ψ ∈ Γ implies φ ∈ Γ or ψ ∈ Γ ;
4. 〈∧i∈I ei < ri 〉aφ ∈ Γ implies 〈∧i∈I ei ≤ ri 〉aφ ∈ Γ ,

〈∧i∈I ei > ri 〉aφ ∈ Γ implies 〈∧i∈I ei ≥ ri 〉aφ ∈ Γ ;
5. 〈∧i∈I ei ≤ ri 〉aφ ∈ Γ implies 〈∧i∈I ei < ri + si 〉aφ ∈

Γ ,
〈∧i∈I ei ≥ ri 〉aφ ∈ Γ implies 〈∧i∈I ei > ri − si 〉aφ ∈
Γ ,
for any si ∈ Q and si > 0;

6. X ∈ Γ implies φ ∈ Γ , for X = φ ∈ B.

Definition 12 (Mutually Consistent Set of Lt ) Let C ⊆
2Ω[φt

0,B
t ]. C is said to be mutually consistent if for any

(Γ, δ) ∈ C, whenever 〈∧i∈I (ei �� ri )〉aψ ∈ Γ , then there
exists (Γ ′, δ′) ∈ C s.t.:

1. there exists δ′′ s.t.

(1) δ � δ′′,
(2) δ′ = δ′′[Va �→ 0] and
(3) w′−w �� ri for any i ∈ I andw ∈ δ(ei ), w′ ∈ δ′(ei );

2. ψ ∈ Γ ′;
3. for any [∧ j∈J (e j �� r j )]aψ ′ ∈ Γ ,

(1) w′ − w �� r j for any j ∈ J and w ∈ δ(e j ), w′ ∈
δ′(e j ) and

(2) ψ ′ ∈ Γ ′.

Based on the above definitions, we can prove similar
lemma and theorem as Lemma 2 and Theorem 1. Therefore,
we prove that the satisfiability problem of Lt is decidable.

Alternatively, one can solve this problem in the following
way:

– firstly, encode this problem into a satisfiability problem
similar to that of Lw, by translating the given Lt formula
into Lw with a special 0-cost action;

– secondly, check the satisfiability of the new Lw formula
by using themodel construction algorithm of Sect. 5 with
a minor modification;
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– and thirdly, if the Lw formula is not satisfiable, then the
given Lt formula is not satisfiable either; otherwise, the
givenLt formula is satisfiable andwe can finally generate
the model for it according to the model for the corre-
sponding Lw formula.

In the following, we show how to do this in details.
Firstly, we define the function that translate a Lt formula

into Lw with a special 0-cost action (ε).
Let F : Lt → Lw be a function encoding Lt formulas

into Lw defined inductively. The basic cases are trivial. We
only encode the transition modalities as follows, where ε is
a newly introduced action which always cost 0 unit of all
types of resources and xiε for all i ∈ {1, . . . , k} are the newly
introduced resource variables:

F([
∧

i∈I
(ei �� ri )]aφt ) = [ε][a](

∧

i∈I
(xiε �� ri ) → F(φt )),

F(〈
∧

i∈I
(ei �� ri )〉aφt ) = 〈ε〉〈a〉(

∧

i∈I
(xiε �� ri ) ∧ F(φt )).

Based on these, we can also extend F to the maximal
equation blocks, defined as:

F(B) = {X = F(φX ) | X = φX ∈ Bt }.

Lemma 4 Let W = (M,K, �, θ) be an LWS and W ′ =
(M,K, �′, θ ′) be an LWS extended fromW , which is defined
by taking

�′ = � ∪ ε, θ ′ = θ ∪ {m 0−→ε m) | m ∈ M}.

Then, for any Lt formula φt closed w.r.t Bt , any m ∈ M and
l ∈ L,

W, (m, l) |�Bt φt iffW ′, (m, l ′) |�B F(φt ),

where F(φt ) is the corresponding Lw formula closed w.r.t
B = F(Bt ) and l ′ : V ′ = V ∪ {xiε | i ∈ {1, . . . , k}} → R≥0
is a variable valuation satisfying l ′(x) = l(x) for any x ∈ V .
Proof (⇒) Induction on the structure of φt .

The basic cases are trivial.

– Case (
∧

i∈I (ei �� ri ))aφt :
W, (m, l) |�Bt [∧i∈I (ei �� ri )]aφt implies:
for any (m1, l1) ∈ M × L such that

1. (m, l) −→a (m1, l1) and
2. (l1 − l)(ei ) �� ri for any i ∈ I ,

we have W, (m1, l1[Va �→ 0]) |�Bt φt .

By the construction of W ′,m 0−→ε m, which implies
(m, l ′) −→ε (m, l ′).

Suppose

1. (m, l ′[Vε �→ 0]) −→a (m1, l ′1) and
2. l ′1(xiε) �� ri for any i ∈ I .

(m, l ′[Vε �→ 0]) −→a (m1, l ′1) implies

m
u−→a m1 and l ′1 − l ′[Vε �→ 0] = u.

For any i ∈ I, l ′[Vε �→ 0](xiε) = 0,
so (l ′1 − l ′[Vε �→ 0])(ei ) �� ri .
Let l1 : V → R≥0 be a variable valuation defined as:
for any x ∈ V, l1(x) = l ′1(x).
Then, l1 − l = u and (l1 − l)(ei ) �� ri for any i ∈ I .

Hence, (m, l) −→a (m1, l1) and (l1 − l)(ei ) �� ri for any
i ∈ I , which implies W, (m1, l1[Va �→ 0]) |�Bt φt . By
inductive hypothesis,W ′, (m1, l ′1[Va �→ 0]) |�B F(φt ).
Hence, W ′, (m, l ′) |�B F([∧i∈I (ei �� ri )]aφt ).

– Case 〈∧i∈I (ei �� ri )〉aφt :

W, (m, l) |�Bt 〈∧i∈I (ei �� ri )〉aφt implies
there exists (m1, l1) ∈ M × L such that

1. (m, l) −→a (m1, l1),
2. (l1 − l)(ei ) �� ri for any i ∈ I and
3. W, (m1, l1[Va �→ 0]) |�Bt φt .

By the construction of W ′,m 0−→ε m, which implies
(m, l ′) −→ε (m, l ′).

(m, l) −→a (m1, l1) implies m
u−→a m1 and l1 − l = u.

Let l ′1 : V ′ → R≥0 be a variable valuation defined as:

(1) l ′1(x) = l1(x) for any x ∈ V and
(2) l ′1(xiε) = u(ei ) for any xiε ∈ V ′ − V .

Then, l ′1 − l ′[Vε �→ 0] = u.
So (m, l ′[Vε �→ 0]) −→a (m1, l ′1).

For any i ∈ I, l ′1[Va �→ 0](xiε) = l ′1(xiε) = u(ei ), which
implies l ′1[Va �→ 0](xiε) �� ri .
By inductive hypothesis W, (m1, l1[Va �→ 0]) |�Bt φt

implies W ′, (m1, l ′1[Va �→ 0]) |�B F(φt ).
Hence,W ′, (m1, l ′1[Va �→0]) |�B F(〈∧i∈I (ei ��ri )〉aφt ).

(⇐) Induction on the structure of φt .
The basic cases are trivial.

– Case [∧i∈I (ei �� ri )]aφt :

By the construction of W ′,m 0−→ε m, which implies
(m, l ′) −→ε (m, l ′).
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Hence, W ′, (m, l ′) |�B F([∧i∈I (ei �� ri )]aφt ) implies
for any (m1, l ′1) ∈ M × L such that

1. (m, l ′[Vε �→ 0]) −→a (m1, l ′1) and
2. l ′1(xiε) �� ri for any i ∈ I ,

we have W ′, (m1, l ′1[Va �→ 0]) |�B F(φt ).

Suppose

1. (m, l) −→a (m1, l1) with l1 − l = u and
2. u(ei ) �� ri for any i ∈ I .

(m, l) −→a (m1, l1) with l1 − l = u implies m
u−→a m1.

Let l ′1 : V ′ → R≥0 be a variable valuation defined as:

(1) l ′1(x) = l1(x) for any x ∈ V and
(2) l ′1(xiε) = u(ei ) for any xiε ∈ V ′ − V .

Then, l ′1 − l ′[Vε �→ 0] = u.
So (m, l ′[Vε �→ 0]) −→a (m1, l ′1).
And for any i ∈ I, l ′1(xiε) = u(ei ) �� ri .
So W ′, (m1, l ′1[Va �→ 0]) |�B F(φt ). By inductive
hypothesis, W, (m1, l1[Va �→ 0]) |�Bt φt .
Hene, W, (m, l ′) |�Bt [∧i∈I (ei �� ri )]aφt .

– Case 〈∧i∈I (ei �� ri )〉aφt :

By the construction of W ′,m 0−→ε m, which implies
(m, l ′) −→ε (m, l ′).
Hence, W ′, (m1, l ′1[Va �→ 0]) |�B F(〈∧i∈I
(ei �� ri )〉aφt ) implies there exists (m1,m′

1) ∈ M × L
such that:

1. (m, l ′[Vε �→ 0]) −→a (m1, l ′1),
2. l ′1[Va �→ 0](xiε) �� ri for any i ∈ I
3. and W ′, (m1, l ′1[Va �→ 0]) |�B F(φt ).

(m, l ′[Vε �→ 0]) −→a (m1, l ′1) implies

1. m
u−→a m1 and

2. l ′1 − l ′[Vε �→ 0] = u.
For any i ∈ I , because l ′[Vε �→ 0](xiε) = 0, so
l ′1[Va �→ 0](xiε) = l ′1(xiε) = (l ′1−l ′[Vε �→ 0])(xiε) ��
ri , which implies u(ei ) �� ri .

Let l1 : V → R≥0 be a variable valuation defined as:
for any x ∈ V, l1(x) = l ′1(x).
Then, l1− l = u and (l1− l)(ei ) �� ri for any i ∈ I .
By inductive hypothesis, W ′, (m1, l ′1[Va �→ 0]) |�B

F(φt ) implies W, (m1, l1[Va �→ 0]) |�Bt φt .

Hence, W, (m, l) |�Bt 〈∧i∈I (ei �� ri )〉aφt . ��

In the following, we show how to construct the symbolic
model ofφt . Firstly,we construct a symbolicmodel for F(φt )

by using the algorithm of Lw with a minor modification in
the definition of mutually consistent set as follows.

Definition 13 (εMutually Consistent of Lw) Let C ⊆
2Ω[F(φt ),H(Bt )]. C is said to be εmutuallyconsistent if C
is mutually consistent (Definition 9) and for any (Γ, δ) ∈ C,
whenever 〈ε〉ψ ∈ Γ , then there exists (Γ ′, δ′) ∈ C s.t.:

1. δ′ = δ[Vε �→ 0];
2. ψ ∈ Γ ′;
3. for any [ε]ψ ′ ∈ Γ,ψ ′ ∈ Γ ′.

It is not difficult to prove similar results as the ones stated
in Lemma 2 and Theorem 1. If F(φt ) is not satisfiable, then
by Lemma 4, φt is not satisfiable either.

Otherwise, we get a symbolic model Ws for F(φt ). In
the following, we construct a symbolic model for φt without
ε-transitions according to Ws .

Given a symbolic LWSWs = (Π s, �s, θ s)which is con-
structed according to the definition of ε-mutually consistent
set, we generate

Ws
t = (Π s

t , �
s
t , θ

s
t )

with �s
t = �s/ε. Π s

t and θ st are defined according to the
following three steps that must be applied, consecutively, in
the order they are described:

1. as shown in Fig. 6, for any π1
0−→ε π2

0−→ε π3

let π ′ = {π2, π3} and
(1) π ′

2 −→a π2 implies π ′
2 −→a π ′, π ′

3 −→b π3 implies
π ′
3 −→b π ′, a, b ∈ �s

t ,
(2) π2 −→a π ′′

2 implies π ′ −→a π ′′
2 , π3 −→b π ′′

3 implies
π ′ −→b π ′′

3 , a, b ∈ �s
t ;

2. as shown in Fig. 7, for any π1
0−→ε π2

for any π1 −→a π ′
1, delete this transition, a, b ∈ �s

t ;

3. as shown in Fig. 8 (on the next page), for any π1
0−→ε

π2, . . . , π1
0−→ε πn

let π ′ = {π1, π2, . . . , πn} and
(1) π0 −→a π1 implies π0 −→a π ′, a ∈ �s

t ,
(2) for any π j with j = {2, . . . , n}, π j −→a π ′

j implies
π ′ −→a π ′

j , a ∈ �s
t .

Notice that: for any π ′ = {π1, . . . , πn} ∈ Π s
t /Π and for

any xia ∈ V = V ′ − {xiε | i = 1, . . . , k},

δ1(x
i
a) = · · · = δn(x

i
a).

Hence, we denote the region related to π ′ as δ′ which asso-
ciates the same region to each resource-variable in V .
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Fig. 6 Step 1

Fig. 7 Step 2

Lemma 5 Given anyLt formula φt closed w.r.t Bt . If F(φt )

is satisfiable in symbolic LWSWs = (Π s, �s, θ s), i.e. there
exists π = (Γ, δ) ∈ Π s s.t. Ws, π |�F(Bt ) F(φt ). Then,
there exists symbolic LWS Ws

t = (Π s
t , �

s
t , θ

s
t ) constructed

as above, with π ′ ∈ Π s
t s.t. either π ′ = π or π ∈ π ′ and

Ws
t , π

′ |�Bt φt .

Proof Induction on the structure of φt .

The cases ⊥,�, φt ∧ ψ t , φt ∨ ψ t and X are trivial.

– Case xia �� r :
Ws, π |�F(Bt ) F(xia �� r) implies that for any w ∈
δ(xia), w �� r .

If π ∈ Π s
t , then it is obvious that Ws

t , π |�Bt xia �� r .

Otherwise, there exists π ′ ∈ Π s
t s.t. π ∈ π ′.

As you mentioned above, δ′(xia) = δ(x) for any xia ∈ V .

Hence, Ws
t , π

′ |�Bt xia �� r also holds for this case.
– Case [∧i∈I (ei �� ri )]aφt :

F([∧i∈I (ei �� ri )]aφt ) = [ε][a](∧i∈I (xiε �� ri ) →
F(φt )).

Suppose there exist π ′, π ′
1 ∈ Π s

t s.t.

(1) π ′ −→a π ′
1, and

(2) w′
1 − w′ �� ri for any i ∈ I , w′

1 ∈ δ′1(ei ) and w′ ∈
δ′(ei ).

Then, there exists
π = (Γ, δ), π1 = (Γ1, δ1), π2 = (Γ2, δ2) ∈ Π s s.t.

1. π
0−→ε π1 −→a π2 and

2. w2 − w1 �� ri for any i ∈ I, w2 ∈ δ2(ei ) and w1 ∈
δ1(ei ).

π
0−→ε π1 implies that δ1(xiε) = 0 for any xiε ∈ Vε.

Hence, for any xiε ∈ Vε and any w2 ∈ δ2(xiε), we have
w2 �� ri .

That is equivalent to that for any w2 ∈ δ2(ei ) and w1 ∈
δ1(ei ), we have w2 − w1 �� r .

Fig. 8 Step 3
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Since Ws, π |�F(Bt ) F([∧i∈I (ei �� ri )]aφt ), we have
that Ws, π2 |�F(Bt ) F(φt ).

By inductive hypothesis, there exists π ′
2 ∈ Π s

t s.t.

1. either π ′
2 = π2 or π2 ∈ π ′

2 and
2. Ws

t , π
′
2 |�Bt φt .

Hence, Ws
t , π

′ |�Bt [∧i∈I (ei �� ri )]aφt .
– Case 〈∧i∈I (ei �� ri )〉aφt :

F(〈∧i∈I (ei �� ri )〉aφt ) = 〈ε〉〈a〉(∧i∈I (xiε �� ri ) ∧
F(φt )).

Ws, π |�F(Bt ) F(〈∧i∈I (ei �� ri )〉aφt ) implies that
there exist π1 = (Γ1, δ1), π2 = (Γ2, δ2) ∈ Π s s.t.

1. π
0−→ε π1 −→a π2,

2. for any i ∈ I, δ2(xiε) �� ri and
3. Ws, π2 |�F(Bt ) F(φt ).

π
0−→ε π1 implies that δ1(xiε) = 0 for any xiε ∈ Vε.

Hence, w2 − w1 �� ri for any xiε ∈ Vε, w2 ∈ δ2(xiε) and
w1 ∈ δ1(xiε).

That is equivalent to that w2 − w1 �� ri for any w2 ∈
δ2(ei ) and w1 ∈ δ1(ei ).

There exists π ′ ∈ Π s
t s.t. π, π1 ∈ π ′, according to the

construction of Ws
t .

By inductive hypothesis, Ws, π2 |�F(Bt ) F(φt ) implies
there exists π ′

2 ∈ Π s
t s.t.

1. either π ′
2 = π2 or π2 ∈ π ′

2 and
2. Ws

t , π
′
2 |�Bt φt .

Hence, Ws
t , π

′ |�Bt 〈∧i∈I (ei �� ri )〉aφt . ��

By the above-introduced method, one can construct the
symbolic model for a givenLt formula—if satisfiable. Then,
we can use the technique in Lemma 1 to generalize an LWS
W = (M,K, �, θ), which is a model for the given Lt for-
mula.

Theorem 4 (Decidability of Bt -satisfiability for Lt ) For an
arbitrary maximal equation block Bt , the Bt -satisfiability
problem for Lt is decidable.

7 Conclusion

In this paper, we developed two recursive versions of the
weighted modal logic (Larsen and Mardare 2014) Lw and
Lt . They use a semantics based on labelled weighted transi-
tion systems (LWSs). This type of transition systems is used
to describe systems involving various types of quantitative
information. These models involve a number of resources
that label both transitions and states. In particular, the transi-
tions are labelled simultaneously with both actions and real
values representing the costs of the corresponding transitions
in term of resources.

The twoRWLs,Lw andLt , encode qualitative and quanti-
tative properties of LWSs.With respect to theweighted logics
studied before, Lw and Lt make use of recursive variables
that allow us to encode circular properties and infinite behav-
iours, including safety and cost-bounded liveness properties.
TheRWLs use first-order resource-variables tomeasure local
costs. The main syntactic operators are similar to the ones of
timed logics for real-time systems. Lw has operators that
constrain the value of resource-variables at the current state.
Lt extendsLw by having quantitative constraints on the tran-
sition modalities as well. This extension makes sure that Lt

is adequate (while Lw is not), i.e. the semantic equivalence
induced by Lt coincides with the weighted bisimilarity of
LWSs.

Even though Lw is the least expressive of the two log-
ics discussed in this paper, it fails to enjoy the finite model
property. However, we proved that the satisfiability prob-
lem for Lw is still decidable. By applying a variant of the
region construction technique developed for timed automata,
we obtained symbolic LWSs of the satisfiable Lw formu-
las. These symbolic LWSs provide an abstract semantics for
LWSs, allowing us to reason about satisfiability by investigat-
ing the symbolic models that are finite. We have proposed a
model construction algorithm, which constructs a symbolic
LWS for a given satisfiable (consistent) Lw formula. The
symbolicmodel can be eventually used to determine the exis-
tence of the concrete LWSs and generate them. The systems
are possibly infinitely.

The satisfiability problem of Lt can be solved in a similar
waywithLw. However, we provided an attractive alternative:
firstly, encode the problem for Lt into one similar to that
of Lw by translating the given Lt formula into Lw with a
special 0-cost action; secondly, use the model construction
algorithmwith aminormodification to check the satisfiability
of this Lw formula; and finally, if the Lw formula is not
satisfiable, then the givenLt formula is not satisfiable either;
otherwise, the given Lt formula is satisfiable and the model
for it can be eventually generated according to the model for
the corresponding Lw formula.
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