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Abstract The hybridization of evolutionary algorithms and
local search techniques as, e.g., mathematical programming
techniques, also referred to as memetic algorithms, has
caught the interest of many researchers in the recent past.
Reasons for this include that the resulting algorithms are
typically robust and reliable since they take the best of both
worlds. However, one crucial drawback of such hybrids is
the relatively high cost of the local search techniques since
many of them require the gradient or even theHessian at each
candidate solution. Here, we propose an alternative way to
compute search directions by exploiting the neighborhood
information. That is, for a given point within a population
P , the neighboring solutions in P are used to compute the
most greedy search direction out of the given data. The
method is hence particularly interesting for the usage within
population-based search strategies since the search directions
come ideally for free in terms of additional function evalu-
ations. In this study, we analyze the novel method first as a
stand-alone algorithm and show further on its benefit as a
local searcher within differential evolution.
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1 Introduction

Set-based heuristics such as evolutionary algorithms (EAs)
have been widely used for the numerical treatment of scalar
optimization problems in the last decades (Schwefel 1993;
Beyer and Schwefel 2002; Bäck and Schwefel March 1993;
Eiben and Smith 2003; Osyczka andKrenich 2006). Reasons
for this include the general applicability and robustness of
suchmethods and that they are inmany cases able to reach the
global solution of a given problem. Several different variants
of eas have been proposed. Among them, differential evolu-
tion (DE) (Storn and Price 1995; Kukkonen and Lampinen
2006) is an efficient variant initially designed for continuous
optimization. From its inception, it has yielded remarkable
results in several optimization competitions (Das and Sug-
anthan 2011; Qin and Suganthan 2005; LaTorre et al. 2011)
and in practical demanding applications (Junhua et al. 2014;
Shiwen andAnyong 2005), which is whywe decided to work
with this specific variant of ea.

In spite of the numerous advantages of eas (Eiben and
Smith 2003), one drawback is that in many cases, they
can suffer from slow convergence rates (Gong et al. 2006;
Sivanandam andDeepa 2007). As a remedy, researchers have
considered memetic strategies (Moscato 1989; Neri et al.
2012), i.e., EAs (or other set-based heuristics) coupled with
local search strategies coming, e.g., from (but not limited
to) mathematical programming (Caraffini et al. 2013, 2014).
The latter ensures that every non-local optimal solution x0
can be further improved in each step due to the existence
of descent directions (i.e., a direction in which the objective
can be improved from x0) but comes with a certain addi-
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tional cost. If, for instance, the gradient (those negative is
the most greedy descent direction) is computed via forward
differences (FD), the cost to obtain this vector is given by
O(n) additional function evaluations, where n is the dimen-
sion of the problem. Several different ways of integrating
strategies have been devised. For this reason, different tax-
onomies to classify them have been proposed. Among them,
the one presented by Talbi (2002) is probably one of the
most popular one. In this taxonomy, the high-level teamwork
hybrid (hth) term refers to schemes where several self-
contained algorithms perform a search in parallel, whereas
the high-level relay hybrid (hrh) term refers to schemes
where several self-contained algorithms are executed in a
sequence. In this work, we have adopted the multiple off-
spring sampling (mos) framework (LaTorre 2009). The mos
framework allows the development of both hth and hrh
schemes.

Here, we present a novelmethod of themost greedy search
direction that can be computed via exploiting the existing
neighborhood information. More precisely, given points xi ,
i = 1, . . . , r , that are near x0, whose function values are
known, the idea is not only to perform a search into one of
the discrete directions νi := (xi − x0) as done, e.g., in DE
or particle swarm optimization (PSO), but to compute the
most promising (here: most greedy) direction within W :=
span{ν1, . . . , νr }, i.e., within the subspace spanned by the
νi ’s. As we will see further on, this direction is equal to
the orthogonal projection of the gradient onto W , whereby
the gradient is not explicitly computed. Thus, already for
r ≥ 1 neighboring solutions, one typically obtains a descent
direction and for r = n an approximation for the gradient.
The latter is as for FD; however, the advantage of the gradient
subspace approximation (GSA) is that there is a higher degree
of freedom for the choice of the neighboring solutions xi ,
whereas for FD, the difference vectors xi − x0 have to be
coordinate directions. Another advantage is that the GSA
can be directly adapted to constrained problems as we will
show in this paper.

The new approach to obtain greedy search directions
is particularly advantageous when integrating it into set-
based heuristics since such methods provide the required
neighborhood information, and thus, an approximation of
the descent direction comes ideally ‘for free’ in terms of
additional function evaluations. Figure 1 shows the aver-
aged number of neighboring solutions r of the ten best
found individuals within a run of DE/rand/1/bin (averaged
over 30 independent runs). In the top, we see the num-
ber of evaluations versus r for the Rosenbrock function,
whereas in the bottom, the Ackley function (both for n = 10)
is considered. In both cases, we show the values for the
neighborhood sizes δ ∈ {0.05, 0.1, 0.2, 0.3, 0.4} (here, we
have used the 2-norm to define the neighborhood). Since
the number of neighbors quickly increases, it is hence pos-

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

No. of generations

r

 = 0.05
 = 0.1
 = 0.2
 = 0.3
 = 0.4

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

100

No. of generations

r

 = 0.05
 = 0.1
 = 0.2
 = 0.3
 = 0.4

(a)

(b)

Fig. 1 Number r of neighbors of the ten best individuals within a DE
run for different neighborhood sizes on two benchmark problems with
dimension n = 10 of the decision space. Results are averaged over 30
independent runs. a Rosenbrock b Ackley

sible to obtain for both problems approximations of the
gradients of the best found individuals via GSA without
additional function evaluations after only a few genera-
tions.
The focus of this work is (a) to introduce GSA and (b) to
show its potential as a local search engine within a memetic
algorithm. As demonstrator for the latter, we have made a
first attempt to integrateGSA intoDE. The resultingmemetic
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strategy already shows significant improvements over its base
algorithm.
The remainder of this paper is organized as follows: In
Sect. 2, we briefly state the required background and give
an overview of the related work. In Sect. 3, we present the
GSA for both unconstrained and constrained problems, and
the related stand-alone algorithm. In Sect. 4, we present a
memetic variant ofDE, calledDE/GSA. InSect. 5,wepresent
some numerical results on the GSA stand-alone algorithm
and DE/GSA. Finally, we conclude and give paths for future
research in Sect. 6.

2 Background and related work

In the following, we consider scalar optimization problems
of the form

min
x

f (x)

s.t. gi (x) ≤ 0, i = 1, . . . , p

h j (x) = 0, i = 1, . . . ,m, (1)

where f : R
n → R is called the objective function, the

functions gi : Rn → R are inequality constraints, and the
functions h j : Rn → R are equality constraints. A feasible
point x (i.e., x satisfies all inequality and equality constraints)
is called a solution to (1) if there exists no other feasible point
y that has a lower objective value.
Throughout this paper, we will consider the gradients of the
objective as well as of the constraint functions, e.g.,

∇ f (x) =
(

∂ f

∂x1
(x), . . . ,

∂ f

∂xn
(x)

)T

∈ R
n (2)

denotes the gradient of f at x . However, we stress that this
is for purpose of the analysis of the approach. The resulting
algorithms are gradient-free, and it is not required that the
gradients of the objective or the constraint functions are given
in analytic form.
A vector ν ∈ R

n is called a descent direction for f at x0 if
〈∇ f (x0), ν〉 < 0. In that case, it holds for sufficiently small
step sizes t > 0 that f (x0 + tν) < f (x0).

The idea to compute/approximate the gradient—which is
themost greedydirection amongall searchdirections inRn—
is clearly not new. The most prominent way to approximate
the gradient via sampling is the finite difference (FD)method
(e.g., Nocedal and Wright 2006). GSA also uses a certain
finite difference approach, but the difference is that GSA
accepts in principle samples in all directions, whereas ‘clas-

sical’ FD requires samples in coordinate directions. Thus,
GSA is more suited to population-based algorithms since
neighboring individuals are typically not aligned in coordi-
nate directions.
There exist some works where these difference vectors do
not have to point in orthogonal directions to estimate the
gradients. In the response surface methodology (RSM), for
instance, the objective f is replaced by low-order polyno-
mials f̃ (typically of degree one and two); those gradients
are approximated using least-squares techniques (Kleijnen
2015). If a first-order model is chosen, the match of the
gradients ∇ f (x) and ∇ f̃ (x) is typically quite good for a
nonlinear function f only if x is sufficiently far away from
the optimum. For second-order models, the match is in gen-
eral much better, and however, it comes with the cost that
n2 parameters have to be fitted at every point x . Further
works that can utilize scattered samples can be found in
Hazen and Gupta (2006), Segovia Domínguez et al. (2014).
In Hazen and Gupta (2006), a least-squares regression is
performed, while in Segovia Domínguez et al. (2014), statis-
tical expectation is used. In both works, the authors restrict
themselves to unconstrained problems. The same approxi-
mation idea as for GSA can be found in Brown and Smith
(2005), where the authors use the technique to approxi-
mate the Jacobian of the objective map of a multi-objective
optimization problem. This work is also restricted to the
unconstrained case, and no discussion is given on details
as step size control and integration into global search heuris-
tics. Further, neighborhood exploration similar to GSA is
used in Lara et al. (2010), Schütze et al. (2015), again in
the context of multi-objective optimization. In these works,
the method is not used to approximate the Jacobian of the
objective map, but to compute a search direction with a
certain steering property. Next, there is the possibility to
use automatic differentiation (AD) to numerically evaluate
the gradient if the function is specified by a computer pro-
gram (Griewank 2000). These methods, however, can not be
applied if the objective is only provided in form of binary
computer code.
The resulting GSA stand-alone algorithm—obtaining a
greedy search direction via sampling together with a line
search in that direction—can be seen as a variant of the well-
known pattern search method (Hooke and Jeeves 1961). The
difference is also here the choice of the samplingpointswhich
makes GSA more flexible and cheaper (in terms of function
evaluations) as local searcherwithin population-based search
algorithms.
Finally, pattern search has already been used as local
searchers within MA. For instance, in Zapotecas Martínez
and Coello Coello (2012) in the context of memetic multi-
objective optimization and in Bao et al. (2013) for the
parameter tuning of support vector machines.
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Fig. 2 Basic idea of the GSA: to exploit the neighborhood information
out of a given population

3 Gradient subspace approximation

In the following, we present the GSA for both unconstrained
and constrained SOPs. The general idea behind the method
is as follows (compare to Fig. 2): Given a point x0 that is
designated for local search as well as a further point xi in
the current population (i.e., its objective value is known) that
is in the vicinity of x0, the given information can be used to
approximate the directional derivative in direction

νi := xi − x0
‖xi − x0‖2 (3)

without any additional cost (in terms of function evaluations).
To be more precise, it holds

f ′
νi

(x0) = 〈∇ f (x0), νi 〉 = f (xi ) − f (x0)

‖xi − x0‖2 +O(‖xi −x0‖2),
(4)

where O denotes the Landau symbol. The above estimation
can be seen by considering the forward difference quotient
on the one-dimensional line search function fνi (t) = f (x0+
tνi ).

3.1 Unconstrained problems

Assume we are given a problem

min
x∈Rn

f (x), (5)

where f : Rn → R, and a point x0 ∈ R
n with ∇ f (x0) �= 0.

It is known that the greedy search direction at x0 is given by

g := − ∇ f (x0)

‖∇ f (x0)‖2 , (6)

i.e., the direction ν ∈ R
n in which the strongest decay with

respect to f can be obtained. For our purpose, it is advanta-
geous to write g as the solution of the following problem:

min
ν∈Rn

〈∇ f (x0), ν〉
s.t. ‖ν‖22 = 1. (7)

Now,we examine the situation thatwewish to compute the
most greedy direction by exploiting the neighborhood infor-
mation. For this, we will first consider the idealized case.
That is, assume we are given in addition to x0 the direc-
tions ν1, . . . , νr ∈ R

n , r ∈ N, and the directional derivatives
〈∇ f (x0), νi 〉, i = 1, . . . , r . The most greedy search direc-
tion in the span of the given directions,

ν ∈ span{ν1, . . . , νr }, (8)

can be obtained by solving the following problem:

min
λ∈Rr

(
〈∇ f (x0),

r∑
i=1

λiνi 〉 =
r∑

i=1

λi 〈∇ f (x0), νi 〉
)

s.t.

∥∥∥∥∥
r∑

i=1

λiνi

∥∥∥∥∥
2

2

− 1 = λT V T Vλ − 1 = 0, (9)

where

V = (ν1, . . . , νr ) ∈ R
n×r . (10)

If λ∗ ∈ R
r is a solution of (9), then we set

ν∗ :=
r∑

i=1

λ∗
i νi = Vλ∗ (11)

as associated search direction.
The Karush–Kuhn–Tucker (KKT) system of (9) reads as

∇λL(λ, μ) =
⎛
⎜⎝

〈∇ f (x0), ν1〉
...

〈∇ f (x0), νr 〉

⎞
⎟⎠ + 2μV T Vλ = 0 (12)

h(λ) = λT V T Vλ − 1 = 0. (13)

Apparently, Eq. (13) is only used for normalization. If we
omit this equation and the factor 2µ in (12), we can rewrite
(12) as the following normal equation system

V T Vλ = −V T∇ f (x0), (14)

and directly obtain the following result.
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Proposition 1 Let ν1, . . . , νr ∈ R
n, r ≤ n, be linearly inde-

pendent and

λ̃∗ := −(V T V )−1V T∇ f (x0). (15)

Then,

λ∗ := λ̃∗

‖Vλ∗‖22
(16)

is the unique solution of (9), and thus,

ν∗ = −1

‖Vλ∗‖22
V (V T V )−1V T∇ f (x0) (17)

is the most greedy search direction in span{νi , . . . , νr }.
Proof Follows by the above discussion setting 2μ =
‖Vλ∗‖22 and since the Hessian of the Lagrangian

∇2
λλL(λ, μ) = V T V (18)

is positive definite. 
�
Before we come to a realization of (9) without explicitly

using ∇ f (x0), we first discuss some properties of (9).

• Let λ∗ be a solution of (9) and

ξ(λ) :=
r∑

i=1

λi 〈∇ f (x0), νi 〉, (19)

then ξ(λ∗) ≤ 0. To see this, assume that for a solution λ∗
it holds ξ(λ∗) > 0. Then, λ̃ := −λ∗ is also feasible, and
it holds ξ(λ̃) = −ξ(λ∗) < 0.
Thus, if there exists a direction νi , i ∈ {1, . . . , r}, such
that 〈∇ f (x0), νi 〉 �= 0, then ξ(λ∗) < 0, and hence,
the related direction ν∗ is a descent direction. Further,
note that for a randomly chosen direction νi ∈ R

n the
probability is zero that 〈∇ f (x0), νi 〉 = 0. Hence, the
probability is one to obtain a descent direction via (9)
using randomly chosen directions.

• The more directions are incorporated into (9), the bet-
ter (i.e., more greedy) the resulting search direction gets.
To be more precise, let λ∗

r be the solution of (9) using
the directions ν1, . . . , νr , and λ∗

r+l be the solution of (9)
where the search directions ν1, . . . , νr , νr+1, . . . , νr+l

are used, then ξ(λ∗
r+l) ≤ ξ(λ∗

r ). For r = n and if the
νi ’s are linearly independent, then ν∗ coincides with g.

• The normal equation system (14) helps to understand
the numerics of the problem. For the condition number
of the matrix in (14), it holds if the rank of V is maxi-
mal that κ2(V T V ) = κ(V )2. That is, when choosing (or
selecting) directions νi , the condition number has to be

checked. In particular, directions that point nearly in the
same direction have to be avoided.

• Theabove consideration shows that orthogonal directions
are strongly preferred. In that case, we obtain

ν∗ = −1

‖λ∗‖22
VV T∇ f (x0), (20)

i.e., the orthogonal projection of ∇ f (x0) onto
span{ν1, . . . , νr }. Hence, ν∗ can be seen as the best
approximation of the most greedy search direction g in
the subspace span{ν1, . . . , νr }.

Now, we come to the gradient-free realization of (9).
Assume we are given next to x0 further sample points
x1, . . . , xr in a neighborhood of x0 whose objective values
f (xi ), i = 1, . . . , r , are known. Following the above discus-
sion, we can thus use

ν̃i := xi − x0
‖xi − x0‖2 , di := f (xi ) − f (x0)

‖xi − x0‖2 , i = 1, . . . , r.

(21)

Hence, instead of (9), we can solve

min
λ∈Rr

λT d

s.t. λT Ṽ T Ṽλ − 1 = 0, (22)

where Ṽ = (ν̃i , . . . , ν̃r ). The normal equation system (14)
gets

Ṽ T Ṽ λ̃ = −d, (23)

and the most greedy search direction can be approximated as

ν̃∗ = −1

‖Ṽ λ̃‖22
Ṽ (Ṽ T Ṽ )−1d. (24)

For the particular case that distinct coordinate directions
are chosen, i.e.,

xi = x0 + ti e ji , i = 1, . . . , r, (25)

where e j denotes the j-th unit vector, we obtain for the ji -th
entry of ν̃∗ (without normalization)

ν̃∗
ji = f (x0 + ti e ji ) − f (x0)

|ti | . (26)

That is, for xi = x0 + ti ei , i = 1, . . . , n, the search direction
coincides with the result of the forward difference method.
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Example 1 Consider the problem f : R5 → R,

f (x) =
5∑

i=1

x2i (27)

and the point x0 = (1, 1, 1, 1, 1)T . It is ∇ f (x0) =
(2, 2, 2, 2, 2)T and g = −1√

20
(2, 2, 2, 2, 2)T with 〈∇ f (x0), g〉

= −4, 4721.Choosing the three orthogonal search directions

V T =
⎛
⎝ 1 2 0 0 0
0 0 1 0 2
0 0 0 1 0

⎞
⎠ (28)

we obtain 〈∇ f (x0),
ν1‖ν1‖ 〉 = 2.683, 〈∇ f (x0),

ν2‖ν2‖ 〉 =
2.683, and 〈∇ f (x0),

ν3‖ν3‖ 〉 = 2. When solving problem (9)
via (17), we obtain ν∗ = (−0, 2798,−0, 5595,−0, 2798,
−0, 4663,−0, 5595)T with 〈∇ f (x0), ν∗〉 = −4.2895.
When discretizing the above setting via choosing

xi = x0 + 0.1νi , i = 1, 2, 3, (29)

we obtain via (23) the search direction ν̃∗ = (−0, 2816,
−0, 5632,−0, 2816,−0, 4549,−0, 5632)T leading to
〈∇ f (x0), ν̃∗〉 = −4.2892which is very close to the value for
ν∗. Next, we consider the non-orthogonal search directions

V T =
⎛
⎝ 1 2 0 0 0
1 2 2 1 0
0 1 2 2 1

⎞
⎠ (30)

with 〈∇ f (x0),
ν1‖ν1‖ 〉 = 2.683, 〈∇ f (x0),

ν2‖ν2‖ 〉 = 3.795, and
〈∇ f (x0),

ν3‖ν3‖ 〉 = 3.795. These search directions lead to
ν̃∗ = (−0, 1640,−0, 6558,−0, 5902,−0, 2951,
−0, 3279)T with 〈∇ f (x0), ν∗〉 = −4.0661 for the ideal-
ized problem and to ν̃∗ = (−0, 1757,−0, 6571,−0, 5960,
−0, 2980,−0, 3056)T with 〈∇ f (x0), ν̃∗〉 = −4.0647 for
the discretized problem.

3.2 Constrained problems

One advantage of the approach in (9) is that it can be extended
to constrained problems. In the following, we will separately
consider equality and inequality constrained problems.

First, we assume we are given p equality constraints, i.e.,
the problem

min
x∈Rn

f (x)

s.t. hi (x) = 0, i = 1, . . . , p, (31)

where each constraint hi : Rn → R is differentiable. Hence,
the greedy direction at x0 can be expressed as

min
ν∈Rn

〈∇ f (x0), ν〉
s.t. ‖ν‖22 = 1

〈∇hi (x), ν〉 = 0, i = 1, . . . , p, (32)

and given the directions νi , i = 1, . . . , r , the subspace opti-
mization problem can be written as

min
λ∈Rr

r∑
i=1

λi 〈∇ f (x0), νi 〉

s.t. λT V T Vλ − 1 = 0
r∑

i=1

λi 〈∇h j (x0), νi 〉 = 0, j = 1, . . . , p. (33)

The KKT system of (33) reads as follows

V T∇ f (x0) + 2μ0V
T Vλ + (HV )Tμ = 0 (34)

HVλ = 0 (35)

λT V T Vλ − 1 = 0, (36)

where

H =
⎛
⎜⎝

∇h1(x0)T

...

∇h p(x0)T

⎞
⎟⎠ ∈ R

p×n . (37)

If we apply the same ‘normalization trick’ as for (14), we can
transform the KKT equations into

(
V T V HT V T

HV 0

) (
λ

μ

)
=

(−V T∇ f (x0)
0

)
(38)

which leads to the following result.

Proposition 2 Let ν1, . . . , νr ∈ R
n be linearly independent

where p ≤ r ≤ n, let rank(H) = p, and

(
λ̃∗
μ̃∗

)
=

(
V T V HT V T

HV 0

)−1 (−V T∇ f (x0)
0

)
, (39)

then

λ∗ := λ̃∗

‖Vλ∗‖22
(40)

is the unique solution of (33), and thus,

ν∗ = −1

‖Vλ∗‖22
V (V T V )−1V T∇ f (x0) (41)
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is the most greedy search direction in span{νi , . . . , νr }.
Proof To show that the matrix in (39) is regular, let y ∈ R

r

and z ∈ R
p such that

(
V T V HT V T

HV 0

)(
y
z

)
= 0. (42)

It follows that HV y = 0 and hence that

0 =
(
y
z

)T (
V T V HT V T

HV 0

)(
y
z

)
= yV T V y. (43)

Thus, it is y = 0 since V T V is positive definite. Further, by
(42), it follows that V T HT z = 0. Since V T ∈ R

n×r has rank
r ≥ p, it follows that V T HT has rank p. This implies that
also z = 0, and thus, that the matrix in (39) is regular.
The rest follows by the discussion above setting 2μ0 =
‖∑r

i=1 λ̃∗
i νi‖22 and since the Hessian of the Lagrangian

∇2
λλL(λ, μ) = V T V is positive definite. 
�
Now, we come to the gradient-free realization: Assume

we are given next to x0 the sample points x1, . . . , xr together
with their objective values. Define ν̃i , i = 1, . . . , r , and Ṽ
as above and

mi j := hi (x j ) − hi (x0)

‖x j − xi‖2 , i = 1, . . . , p, j = 1, . . . , r.

(44)

Note that mi j is an approximation of the entry (HV )i j .
Hence, by defining M̃ := (mi j ) ∈ R

p×r , the KKT equa-
tion (38) gets

(
Ṽ T Ṽ M̃T

M̃ 0

) (
λ

μ

)
=

(−d
0

)
(45)

which has to be solved.
Next, we consider inequality constrained problems of the

form

min
x∈Rn

f (x)

s.t. gi (x) ≤ 0, i = 1, . . . , l, (46)

where m ≤ l constraints are active at x0. The greedy search
direction of this problem is—after a re-enumeration of the
constraints—hence given by

min
ν∈Rn

〈∇ f (x0), ν〉
s.t. ‖ν‖22 = 1

〈∇gi (x), ν〉 ≤ 0, i = 1, . . . ,m. (47)

Thus, given the directions νi , i = 1, . . . , r , the subspace
optimization problem can be written as

min
λ∈Rr

r∑
i=1

λi 〈∇ f (x0), νi 〉

s.t. λT V T Vλ − 1 = 0
r∑

i=1

λi 〈∇g j (x0), νi 〉 ≤ 0, j = 1, . . . ,m. (48)

One way to solve (48) numerically is to use active set
methods (e.g., Nocedal and Wright 2006) together with the
results on equality constrained problems. Another possible
alternative would be to introduce slack variables. Doing so,
Equation (48) can be re-formulated as

min
(λ,s)∈Rr+m

r∑
i=1

λi 〈∇ f (x0), νi 〉

s.t. λT V T Vλ − 1 = 0
r∑

i=1

λi 〈∇g j (x0), νi 〉 + s2j = 0, j = 1, . . . ,m. (49)

The resulting KKT equations read as

V T∇ f (x0) + 2μ0V
T Vλ + V TGT ν = 0 (50)

Sμ = 0 (51)

λT V T Vλ − 1 = 0 (52)

GVλ + S2e = 0, (53)

where

G =
⎛
⎜⎝

∇g1(x0)T

...

∇gm(x0)T

⎞
⎟⎠ ∈ R

m×n, (54)

S = diag(s1, . . . , sm) ∈ R
m×m, and (55)

e = (1, . . . , 1)T ∈ R
m . (56)

Hence, one can try to solve the above equation system of
dimension 2r + 2m using, e.g., a Newton method.
Another possibility to find a solution to (48) is to utilize
gradient projection methods. This works in particularly well
if m is small and r � m. We first assume that we are given
one inequality constraint (i.e., m = 1) and will consider the
general case later. The classical approach is to perform an
orthogonal projection of the solution ν∗ of the unconstrained
problem (9) to the orthogonal space of ∇g(x0) as follows
(compare to Fig. 3): given a QR decomposition of ∇g(x0),
i.e.,

∇g(x0) = QR = (q1, . . . , qn)R, (57)
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Fig. 3 Gradient projection in case one inequality constraint g is active
at x0

then the vectors q2, . . . , qn build an orthonormal basis of
∇g(x0)⊥. Defining Qg = (q2, . . . , qn), the projected vector
is hence given by

νnew = QgQ
T
g ν∗. (58)

The problem that we have, however, is that ∇g(x0) is not
at hand. Instead, we propose to perform the following steps:
define

M :=∇g(x0)
T V = (〈∇g(x0), ν1〉, . . . , 〈∇g(x0), νr 〉)

∈ R
1×r . (59)

Thus, if a vector w is in the kernel of M , this is equivalent
that Vw is orthogonal to ∇g(x0). Hence, we can compute
the matrix

K = (k1, . . . , kr−1) ∈ R
r×(r−1), (60)

where its column vectors build an orthonormal basis of the
kernel of M . If the search directions νi are orthogonal, then
also the vectors Vk1, . . . , Vkr−1 are orthogonal which are
the column vectors of V K ∈ R

n×(r−1) (else V K has to be
orthogonalized via another QR decomposition). Doing so,
the projected vector to the kernel of M is given by

ν̃new = V K (V K )T ν∗ = V K KT V T ν∗. (61)

The above method can be extended to general values ofm as
follows: define

M = GV = (〈∇gi (x0), ν j 〉)i=1,...,m j=1,...,r , (62)

then

1. compute an orthonormal basis K ∈ R
r×(r−m) of the ker-

nel of M
2. compute V K = QR = (q1, . . . , qr−m, . . . , qn)R and

set O := (q1, . . . , qr−m) ∈ R
n×(r−m)

3. ν̃new = OOT ν∗

The gradient-free realization is as above, using the approx-
imations

〈∇gi (x0), ν j 〉 := gi (x j ) − gi (x0)

‖x j − xi‖2 , i = 1, . . . ,m,

j = 1, . . . , r, (63)

which can be obtained by the samples.

Example 2 We reconsider problem (27) fromExample 1, but
impose the constraints

g1(x) = −x1 − 1 ≤ 0

g2(x) = −x2 + 1 ≤ 0

g3(x) = −x3 + 1 ≤ 0 (64)

Choosing x0 = (−1, 1, 1, 2, 2)T , we have ∇ f (x0) =
(−2, 2, 2, 4, 4)T and all three inequality constraints are
active. We select the orthogonal search directions

V T =

⎛
⎜⎜⎝

1 1 0 0 0
0 0 1 1 1

−1 1 0 0 0
0 0 −1 0 1

⎞
⎟⎟⎠ . (65)

When solving (47) using the idealized data, we obtain ν1 =
(0.35, 0, 0,−0.42,−0.84)T and the value 〈∇ f (x0), νnew〉 =
−5.72 for the directional derivative in direction ν1. Using
the discretized problem via choosing the points xi as in
(29), we obtain ν̃1 = (0.37, 0,−0.09,−0.45,−0.81)T with
〈∇ f (x0), ν2〉 = −5.94 (i.e., even a slightly better value
which is, however, luck).
When using the gradient projection as described above,
we obtain for the idealized problem the search direction
ν2 = (0, 0, 0,−0.45,−0.89)T with a corresponding direc-
tional derivative value of 〈∇ f (x0), νnew〉 = −5.36. For the
discretized problem, we obtain

ν̃2 = (0, 0,−0.09,−0.48,−0.87)T and 〈∇ f (x0), ν̃2〉 =
−5.58.

4 GSA as stand-alone algorithm

In the following, we discuss some aspects for the efficient
numerical realization of line searchmethods that use a search
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direction obtained via GSA. Line search methods generate
new candidate solutions x(i+1) via

x(i+1) = xi + t(i)ν(i), (66)

where x(i) is the current iterate, t(i) the step size, and ν(i) the
search direction (here obtained via an application of GSA).
Further on, we present a possible GSA stand-alone algorithm
that shares some characteristics with the widely used pattern
search algorithm (Hooke and Jeeves 1961).

Sampling further test points Crucial for the approximation
of the gradient is the choice of the test points xi . If the func-
tion values of points in a neighborhood N (x0) are already
known, it seems to bewise to include them to build thematrix
V . Nevertheless, it might be the case that further test points
have to be sampled to obtain a better search direction. More
precisely, assume that we are given x0 ∈ R

n as well as l
neighboring solutions x1, . . . , xl ∈ N (x0). According to the
discussion above, it is desired that all further search direc-
tions are both orthogonal to each other and orthogonal to the
previous ones. In order to compute the new search directions
νl+1, . . . , νr , r > l, one can proceed as follows: compute a
QR-factorization of V = (ν1, . . . , νl), i.e.,

V = QR = (q1, . . . , ql , ql+1, . . . , qn)R, (67)

where Q ∈ R
n×n is an orthogonal matrix and R ∈ R

n×r is
a right upper triangular matrix with nonvanishing diagonal
elements, i.e., rii �= 0 for all i = 1, . . . , r . Then, it is by
construction νi ∈ span{q1, . . . , qi } for i = 1, . . . , l, and
hence

〈νi , q j 〉 = 0, ∀i ∈ {1, . . . , l}, j ∈ {l + 1, . . . , r}. (68)

One can thus, e.g., set

νl+i = ql+i , i = 1, . . . , r − l

xl+i = x0 + νl+1, i = 1, . . . , r − l. (69)

Since the cost for the QR-factorization is O(n3) in terms of
flops, one may alternatively use the Gram–Schmidt proce-
dure (e.g., Nocedal andWright 2006) to obtain the remaining
sample points (e.g., if r − l is small and n is large). This
leads to a cost of O((r − l)2n) flops. For the special case that
ν1 = x1 − x0 and ν̃2 = x2 − x0 are given such that {ν1, ν̃2}
are linearly independent, the second search vector ν2 can be
computed by

ν2 = ν̃2 − 〈ν1, ν̃2〉ν1. (70)

Step size control It is important to note that even if no sam-
ple in direction ν∗ exists, the directional derivative in this
direction can—by construction of the approach—be approx-
imated as

〈∇ f (x0), ν
∗〉 =

r∑
i=1

λ∗
i 〈∇ f (x0), ν̃i 〉 ≈

r∑
i=1

λ∗
i di . (71)

This might be advantageous for the step size control, and in
particular, backtracking methods can be used (e.g., Nocedal
andWright 2006;Dennis andSchnabel 1983)which is not the
case for most direct search methods [e.g., the ones reviewed
in Brent (1973)].

In order to handle equality constraints, we proceed as in
Polak andMayneChao andDetong (2011), and use the secant
method to backtrack to a solution x with |h j (x)| < ε for
j = 1, . . . ,m and for a predescribed tolerance ε > 0.

Stopping criterion If gradient information is at hand, one
can simply stop when ‖g‖2 ≤ tol for a given small tolerance
value tol > 0. We have adapted this to our context. Note,
however, that there is a certain risk that the process is stopped
by mistake if simply ν(i) is monitored for one iteration step:
If all search directions νi in V are orthogonal to ∇ f (x(i)),
then ν(i) obtained via GSA is zero regardless of the value of
‖g‖2. To avoid this potential problem, we test whether the
condition is satisfied for several iteration steps. That is, we
stop the process if

‖ν(i)‖2 ≤ tol, i = i0, i0 + 1, . . . , i0 + s, (72)

for a number s. In our computations, we have taken s = 2.

GSA stand-alone algorithm Now, we are in the position to
state the GSA-based line search algorithm. The pseudocode
of the procedure for unconstrained problems can be found
in Algorithm 1. Note that the resulting algorithm shares
some characteristics with the pattern search algorithm: First,
a sampling is performed around a given point, and then, a
line search is performed in direction of the most promis-
ing (greedy) search direction ν computed from the given
data.
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Algorithm 1 Pseudocode of the stand-alone GSA for uncon-
strained problems.
Require: Initial point x(0)
Ensure: Sequence x(k) of candidate solutions
1: k := 0
2: while Stopping criteria is not met do
3: Select neighbors x(k),1, . . . , x(k),r of x(k),0 := x(k)

4: di := f (x(k),i )− f (x(k),0)

‖x(k),i−x(k),0‖2 i = 1, . . . , r

5: d := (d1, . . . , dr )T

6: ν̃i := x(k),i−x(k),0
‖x(k),i−x(k),0‖2 i = 1, . . . , r

7: Ṽ := (ν̃1, . . . , ν̃r )

8: Solve Ṽ T Ṽ λ̃ = −d to obtain λ̃

9: ν̃∗ := −1
‖Ṽ λ̃‖22

Ṽ λ̃

10: Compute step size tk ∈ R+
11: x(i+1) := x(i) + tk ν̃∗
12: Set k := k + 1
13: end while

Under mild assumptions, we can expect global conver-
gence toward a local solution of the given SOP: If the angle

cos	k = −∇ f (xk)T ν(k)

‖∇ f (xk)‖‖ν(k)‖ (73)

between the search direction ν(k) and the steepest descent
direction −∇ f (xk) is bounded away from 90 ◦, i.e., there
exists a d > 0 s.t.

cos	k ≥ d, ∀k, (74)

and the step size satisfies the Wolfe conditions, then it holds
by the theorem of Zoutendijk (e.g., Nocedal and Wright
2006) that limk→∞ ‖∇ f (xk)‖ = 0. Condition (74) is quite
likely satisfied for ν(k) which is obtained via GSA at least if
the νi ’s are chosen uniformly at random.

Algorithms 2 and 3 show the GSA for constrained prob-
lems which incorporate the adaptions discussed above. In
order to handle constraint violations, we adopt a penaliza-
tion function to incorporate the objective and the restrictions
into a single value. In particular, we use

pen(x) = f (x) + C
m∑
i=1

Hi (x) + C
p∑

q=1

gi (x), (75)

where gi (x) denotes the inequality constraints and Hi (x)
denotes the equality constraints transformed into inequalities
(i.e., the i-th function is given bymax(0, |hi (x)|−ε)), where
C = 1e7 and ε = 1e − 4.

Algorithm 2 Pseudocode of the stand-alone GSA for con-
strained problems.
Require: Initial point x(0)
Ensure: Sequence x(k) of candidate solutions
1: k := 0
2: while Stopping criteria is not met do
3: Select the neighbors x(k),1, . . . , x(k),r of x(k),0 := x(k)

4: ν̃i := x(k),i−x(k),0
‖x(k),i−x(k),0‖2 , i = 1, · · · , r

5: Ṽ := (ν̃1, · · · , ν̃r )

6: if ∃ j ∈ {1, · · · , p} : |h j (x(k),0)| > ε then
7: Let j1, · · · , jl s.t. |h js (x(k),0)| > ε, js ∈ {1, · · · , p}
8: di := f (x(k),i )− f (x(k),0)

‖x(k),i−x(k),0‖2 , i = 1, · · · , r

9: m̃is := h js (x(k),i )−h js (x(k),0)

‖x(k),i−x(k),0‖2 , i = 1, · · · , r, s = 1, · · · , l

10: d := (d1, · · · , dr )T

11: Solve

(
Ṽ T Ṽ M̃T

M̃ 0

) (
λ̃

μ̃

)
=

( −d
0

)
to obtain λ̃

12: else
13: di := pen(x(k),i )−pen(x(k),0)

‖x(k),i−x(k),0‖2 , i = 1, · · · , r

14: d := (d1, · · · , dr )T

15: Solve Ṽ T Ṽ λ̃ = −d to obtain λ̃

16: end if
17: ν̃∗ := −1

‖Ṽ λ̃‖22
Ṽ λ̃

18: Compute step size tk ∈ R+
19: x(k+1) := x(i) + tk ν̃∗
20: if ∃ j ∈ {1, · · · ,m} : g j (x(k+1)) > 0 then
21: Let j1, · · · , jl s.t. g jl (x(k+1)) > 0, jl ∈ 1, · · · ,m

22: GVi jl := g jl (x(k),i )−g jl (x(k+1))

‖x(k),i−x(k+1)‖2 , i = 1, · · · , r, j = 1, · · · ,m

23: Calculate kernel O from (GV )T

24: ν̃new := OOT ν̃∗
25: Compute step size tk ∈ R+
26: x(k+1) := x(k) + tk ν̃new
27: end if
28: x(k+1) = correctionStep(x(k+1), tk )
29: Set k := k + 1
30: end while
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Algorithm 3 xnew =correctionStep(x0, t)
Require: Initial point x(0), Initial step size t
Ensure: Candidate solution xnew
1: Select the neighbors xN1 , . . . , xNr of x(0)
2: Let j1, · · · , jl s.t. |h js (x(k+1))| > ε, js ∈ {1, · · · , p}
3: νH := 0 ∈ R

n

4: mi j := h js (xNi )−h js (x0)
‖xxNi −x0‖2 s = 1, . . . , l, i = 1, . . . , r

5: ν̃i := xNi −x0
‖xNi −x(0)‖2 , i = 1, · · · , r

6: Ṽ := (ν̃1, · · · , ν̃r )

7: M := (m1, · · · ,ml )

8: for j = 1,…, l do
9: d := m j

10: Solve Ṽ T Ṽ λ̃ = −d to obtain λ̃

11: ν̃H := −1
‖Ṽ λ̃‖22

Ṽ λ̃

12: if h j (x0) < 0 then
13: ν̃H := −ν̃H
14: else
15: ν̃H := ν̃H
16: end if
17: νH := νH + ν̃H
18: end for
19: νH = νH‖νH ‖2
20: tmin := t
21: for j = 1,…, l do
22: ta := 0
23: ha := h j (x0)
24: tb := t
25: hb := h j (x0 + tνH )

26: tc := ta − ha (tb−ta )
hb−ha

27: if tc < tmin then
28: tmin := tc
29: end if
30: end for
31: xnew := x0 + tminνH

5 GSA within DE

In this section, we detail a novel memetic strategy called
de/gsa that combines de and GSA. Since the two combined
strategies are so different—with one being more explo-
rative and the other more exploitative—the most promising
approach might depend both on the optimization stage and
on the problem at hand. As a result, we decided to apply a
framework that allows adaptively granting more resources to
the more promising scheme. Given the high-quality results
obtained with the mos framework (LaTorre 2009; LaTorre
et al. 2011), we decided to apply this procedure. In mos,
the improvement achieved by each of the combined strate-
gies is measured at each stage of the optimization. Then, the
resources given to the schemes are adapted by taking these
measurements of quality into account.

The pseudocode of our proposal is given in Algorithm 4.
This scheme belongs to the hth class, and is thus based on

sharing the resources among the different strategies involved
(de and GSA in our case) in each generation. Specifically, a
participation ratio is evolved for eachof the schemes.Thepar-
ticipation ratio is used to set the number of offspring created
by each strategy. In the pseudocode, ODE and OGSA repre-
sent the offspring created by de and GSA, QDE and QGSA

represent the quality of each set of individuals, and 
DE and

GSA refer to the participation ratios of each technique. The
way used to calculate the quality of each schemewas adopted
from LaTorre et al. (2011). Specifically, the quality of each
improved individual new is defined by

Q(new) :=
∣∣∣∣ pen(new) − pen(old)

pen(old)

∣∣∣∣ , (76)

where old denotes the old individual. The quality of each
method is calculated using its offspring. For instance, if the
offspring of GSA is O, it is calculated as

QGSA := 1

|O|
∑
o∈O

Q(o). (77)

Algorithm 4 Pseudocode of the DE/GSA.
1: Randomly create initial population P0.
2: Set 
DE := 
GSA := 0.5.
3: Set k := 0.
4: while Stopping criteria is not met do
5: Select |Pi | 
GSA random individuals from Pi .
6: Create subpopulation OGSA by using GSA.
7: Calculate quality QGSA from OGSA.
8: Select |Pi | 
DE random individuals from Pi .
9: Create subpopulation ODE by using DE.
10: Calculate quality QDE from ODE .
11: Update the participation ratios 
GSA and 
DE using the quali-

ties of each technique.
12: Select the best individuals from Pi ∪ ODE ∪ OGSA and save

them into Pi+1
13: Set k := k + 1
14: end while

Algorithm 5 describes the way to calculate the partic-
ipation ratios. This procedure is similar to the one used
in LaTorre et al. (2011). The basic principle is to update
the participation ratio by taking into account the relationship
between the quality of the schemes considered. Two differ-
ent parameters must be set: the reduction factor (r f ), which
is used to tune the velocity of adaptation, and the minimum
participation ratio (rmin) that can be assigned to any of the
strategies used. In our study, we set both r f and rmin to 0.05.
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Algorithm 5 Pseudocode of the participation ratio calcula-
tion.
Require: Initial ratios 
GSA, 
DE , qualities QGSA, QDE
Ensure: New ratios 
GSAn , 
DEn
1: if QGSA > QDE then

2: ra := r f
(
QGSA−QDE

QGSA

)

GSA.

3: if (
DE − r1) < rmin then
4: ra := 
DE − rmin .
5: end if
6: Set 
GSAn := 
GSA + ra .
7: Set 
DEn := 
DE − ra .
8: else if QDE > QGSA then

9: ra := r f
(
QDE−QGSA

QDE

)

DE .

10: if (
GSA − ra) < rmin then
11: ra := 
GSA − rmin .
12: end if
13: Set 
DEn := 
DE + ra .
14: Set 
GSAn := 
GSA − ra .
15: else
16: Set 
GSAn := 
GSA.
17: Set 
DEn := 
DE .
18: end if

6 Numerical results

6.1 GSA as stand-alone algorithm

Here, we make a small comparison of the GSA stand-alone
algorithm against the classical pattern search method and the
Nelder–Mead downhill simplex method (e.g., Nocedal and
Wright 2006) on two illustrative examples. For the pattern
searchmethod,we have taken the routinepatternsearch
fromMatlab1, and fminsearch (using penalty search to
handle constraints) for the Nelder–Mead algorithm.

First, we consider the following box-constrained problem

min
2∑

i=1
x2i

s.t. −11 ≤ x1 ≤ 7
2 ≤ x2 ≤ 10

. (78)

The initial point for all algorithms has been chosen as x0 =
(6, 6)T . For the realization of GSA, we have chosen r = 2.
The first search direction has been chosen at random using
an initial point in the neighborhood defined by the 2-norm
and a radius of 0.2. The second search direction was obtained
via (67). In all the experiments, we measure the number of
function calls required to achieve an error , which is given
by |pen(xi ) − pen(x∗)|, less or equal than 5e − 3. Table 1
presents the total cost of the algorithms in terms of function
calls, and Fig. 4 shows the trajectories for each algorithm.

Second, we consider again problem (78), but replace the
box constraints by the linear constraint

1 http://mathworks.com.

Table 1 Number of function calls required for each algorithm on prob-
lem (78), compare to Fig. 4

Algorithm Function calls

Pattern search 219

Nelder–Mead with penalty search 149

GSA 38

Fig. 4 Trajectories obtained by the different algorithms on problem
(78)

Table 2 Number of function calls required for each algorithm on objec-
tive (78) subject to the constraint (79), compare to Fig. 5

Algorithm Function calls

Pattern search 182

Nelder–Mead with penalty search 182

GSA 47

x1 + x2 ≥ 1. (79)

As initial solution, we have chosen x0 = (6,−1)T . Table 2
presents the total cost, and Fig. 5, the trajectories for each
algorithm. In both cases, the GSA stand-alone algorithm
clearly outperforms the other methods.

The above impression gets confirmed when solving both
problems taking 1000 randomly chosen feasible starting
points. Table 3 shows the averaged number of function calls
required for each algorithm on both problems.
Next, we consider dimension n = 10 and consider the fol-
lowing five SOPs:
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Fig. 5 Trajectories obtained by the different algorithms on objective
(78) subject to the constraint (79)

min
10∑
i=1

x2i

s.t. − 1 ≤ x1 ≤ 7

2 ≤ x2 ≤ 10

1 ≤ x3 ≤ 9. (80)

min
10∑
i=1

x2i

s.t. x1 + x2 + x3 ≥ 1. (81)

min
10∑
i=1

x2i

s.t.
10∑
i=1

xi ≥ 1. (82)

min
10∑
i=1

x2i

s.t.
10∑
i=1

xi = 1. (83)

min
10∑
i=1

x2i

s.t. (x1 + 1)2 +
10∑
i=2

x2i = 4. (84)

Table 3 Required number of function calls (#FC) for each solver

Problem Algorithm #FC

(78) Pattern search 263.73

Nelder–Mead w. penalty search 173.46

GSA 35.33

(78)+ (79) Pattern search 302.36

Nelder–Mead w. penalty search 161.73

GSA 38.36

The values are averaged over 1000 runs coming from different starting
points

Table 4 Required number of function calls (#FC) for each solver

Problem Algorithm #FC

(80) Pattern search 4218.9

Nelder–Mead w. penalty search 1285.9

GSA 377.7

(81) Pattern search 3461.5

Nelder–Mead w. penalty search 1558.3

GSA 339.8

(82) Pattern search 4015.8

Nelder–Mead w. penalty search –

GSA 310.3

(83) Pattern search 3818.3

Nelder–Mead w. penalty search –

GSA 271.0

(84) Pattern search –

Nelder–Mead w. penalty search –

GSA 1277.8

The values are averaged over 1000 runs coming from different starting
points

For the realization of the GSA, we have proceeded as
above, albeit using r = 5. Table 4 shows the result of all three
algorithms on these five problems. The values are again aver-
aged over 1000 runs coming from different feasible starting
points. In all cases, the GSA line searcher requires about one
order ofmagnitude less function evaluations to reach its goal.

Finally, Fig. 6 presents the graphical results of the compar-
ison between the three algorithms. On this, it is presented the
number of function calls against the error which is defined
as the 2-norm of the best found solution to the solution,
‖xbest−x∗‖. By this, it becomes clear that theGSA algorithm
(presented in black) overpasses the convergence rate of the
two other algorithms.

6.2 GSA within DE

In this section, the experiments conducted with the newly
designed hybrid de scheme are described. First, we consider
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(b)

(c) (d)

(e)

(a)

Fig. 6 Convergence plot for the stand-alone algorithms for SOPs (80) to (84). a SOP (80) b SOP (81) c SOP (82) d SOP (83) e SOP (84)
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Table 5 Average function calls needed to find the optimum

Problem Algorithm FC

SOP (80) DE 29315.1

DE/GSA 16123.3

SOP (81) DE 46692.3

DE/GSA 22315.2

SOP (82) DE 51214.2

DE/GSA 20031.1

SOP (83) DE 43100.5

DE/GSA 12266.7

SOP (84) DE 68166.7

DE/GSA 27200.2

the SOPs (80) to (84) from the previous section and compared
the averaged performance between the stand-alone DE and
the algorithm coupled with the GSA. Table 5 presents the
number of function calls that both algorithms required to
archive an error of 5e − 3.

Moreover, Fig. 7 presents the convergence plot for both
algorithms. From these plots, it is possible to compare the
algorithms involved. The memetic strategy yields the best
convergence behavior for all the problems. As the objective
is quadratic in all cases, inferiority of DE can be expected
(Auger et al. 2009).

Next, we analyzed the performance of the DE/GSA using
the benchmarks devised for the competition on constrained
real-parameter optimization (Liang et al. 2006) held at the
congress on evolutionary computation. They comprise 24
problems of varying complexity which have different fea-
tures involving modality and separability, which is why we
selected this set of problems 2.

In addition, in order to test our proposal on unconstrained
problems, the happy cat function (HC,Beyer andFinck 2012)
was also used. In this case, two different dimensionalities
(D = 10 and D = 20) were considered. This last func-
tion was selected because most current eas fail at solving
it. In order to analyze the schemes, two different sets of
experimentswere carried out. In both experiments, the fitness
function defined in Eq. 75 was used to compare the results.
In every case, three different de variants were considered.
The first one (de- 1) is the well-known de/target-to-best/1
variant Das and Suganthan (2011). The second one (de/ls1)
incorporates the use of the ls1 strategy that was defined
in Tseng and Chen (2008). The basic principle of this strat-
egy is to search along each of the dimensions and adapt the
step sizes depending on the requirements of the problem at
hand. It was parameterized as recommended by the authors.
Note that ls1 had previously been successfully combined

2 Problem g12 was discarded since it is not a continuous problem.

with de (LaTorre et al. 2011), yielding high-quality results
for a large number of unconstrained optimization problems.
However, to the best of our knowledge, it had not been
tested previously with constrained optimization problems.
The local search ls- 1was incorporated into de- 1 following
the guidelines described in Sect. 5. Finally, the last scheme
(de/gsa) incorporates the gsa approach. The same parame-
terization was used in every de variant. Specifically, N P , F
and CR were set to 100, 0.8 and 0.95, respectively.

Since stochastic algorithms were considered in this study,
each execution was repeated 30 times for every case. More-
over, comparisons were made by applying a set of statistical
tests. A similar guideline to the one applied in Durillo
et al. (2010) was considered. Specifically, the following tests
were applied, assuming a significance level of 5%. First, a
Shapiro–Wilk test was performed to check whether or not
the values of the results followed a Gaussian distribution. If
so, the Levene test was used to check for the homogeneity
of the variances. If samples had equal variance, an anova
test was done; if not, a Welch test was performed. For non-
Gaussian distributions, the nonparametric Kruskal–Wallis
test was used to determinewhether samples were drawn from
the same distribution.

6.2.1 First set of experiments: quality of results

The aim of the first experiment was to analyze the bene-
fits contributed by de/gsa in terms of the quality of the
solutions obtained. Since the relative behavior among the
different schemes might depend on the stopping criterion
established, the schemes were analyzed for both short and
long periods. For the short period, the stopping criterion was
set to 50,000 function evaluations. For the long period, it was
set to 500,000 function evaluations.

Table 6 shows the mean and median obtained by the three
models in question for 50,000 function evaluations. More-
over, in the columns corresponding to de/ls1 and de/gsa,
we show the results of the statistical tests when compared
with the results provided by de- 1. The ↑ symbol indicates
the superiority of the model given in the column, whereas
the ↓ symbol indicates its inferiority. In those cases where
the differences were not statistically significant, the ↔ sym-
bol is used. Among the models considered, the superiority of
de/gsa is clear. In fact, the statistical tests show that de/gsa
was superior to de1 in 13 out of the 25 cases, whereas it was
inferior in only 2 cases. In the case of de/ls1, its benefits are
not as clear. de/ls1 was superior to de1 in 7 cases; however,
in another 7 cases, it was inferior. In light of these results, we
may state that using a local search, such as gsa, that profits
from the content of the population to estimate the gradient
seems more promising than applying some of the simpler
schemes that have been successfully used for unconstrained
problems.

123



6346 O. Schütze et al.
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Fig. 7 Convergence plot for DE and DE/GSA for SOPs (80) to (84). a SOP (80) b SOP (81) c SOP (82) d SOP (83) e SOP (84)
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Table 6 Solutions obtained by the different de variants in 50,000 evaluations

de- 1 de/ls1 de/gsa

Mean Median Mean Median St. Mean Median St.

g01 −1.49 × 101 −1.49 × 101 −1.49 × 101 −1.49 × 101 ↓ −1.49 × 101 −1.49 × 101 ↑
g02 −4.90 × 10−1 −4.87 × 10−1 −6.34 × 10−1 −6.32 × 10−1 ↑ −4.75 × 10−1 −4.79 × 10−1 ↓
g03 −4.84 × 10−2 −1.90 × 10−2 −2.00 × 10−1 −1.84 × 10−1 ↑ −3.95 × 10−1 −3.54 × 10−1 ↑
g04 −3.06 × 104 −3.06 × 104 −3.06 × 104 −3.06 × 104 ↔ −3.06 × 104 −3.06 × 104 ↔
g05 5.25 × 103 5.21 × 103 5.29 × 103 5.25 × 103 ↔ 5.12 × 103 5.12 × 103 ↑
g06 −6.96 × 103 −6.96 × 103 −6.96 × 103 −6.96 × 103 ↔ −6.96 × 103 −6.96 × 103 ↔
g07 2.67 × 101 2.66 × 101 2.59 × 101 2.59 × 101 ↑ 2.44 × 101 2.44 × 101 ↑
g08 −9.58 × 10−2 −9.58 × 10−2 −9.58 × 10−2 −9.58 × 10−2 ↔ −9.58 × 10−2 −9.58 × 10−2 ↔
g09 6.80 × 102 6.80 × 102 6.80 × 102 6.80 × 102 ↓ 6.80 × 102 6.80 × 102 ↑
g10 2.10 × 103 2.10 × 103 2.10 × 103 2.10 × 103 ↔ 2.10 × 103 2.10 × 103 ↔
g11 7.49 × 10−1 7.49 × 10−1 7.49 × 10−1 7.49 × 10−1 ↔ 7.49 × 10−1 7.49 × 10−1 ↔
g13 9.90 × 10−1 9.99 × 10−1 7.77 × 10−2 7.50 × 10−2 ↑ 8.13 × 10−1 9.90 × 10−1 ↔
g14 −4.27 × 101 −4.27 × 101 −4.25 × 101 −4.25 × 101 ↔ −4.77 × 101 −4.77 × 101 ↑
g15 9.62 × 102 9.61 × 102 9.63 × 102 9.62 × 102 ↓ 9.61 × 102 9.61 × 102 ↑
g16 −1.90 −1.90 −1.90 −1.90 ↓ −1.90 −1.90 ↓
g17 8.94 × 103 8.94 × 103 8.95 × 103 8.94 × 103 ↔ 8.87 × 103 8.86 × 103 ↑
g18 −7.89 × 10−1 −7.90 × 10−1 −8.23 × 10−1 −8.24 × 10−1 ↑ −8.55 × 10−1 −8.56 × 10−1 ↑
g19 5.07 × 101 5.11 × 101 5.69 × 101 5.73 × 101 ↓ 4.67 × 101 4.73 × 101 ↑
g20 1.82 × 10−1 1.84 × 10−1 1.91 × 10−1 1.83 × 10−1 ↔ 1.70 × 10−1 1.63 × 10−1 ↔
g21 3.14 × 102 3.26 × 102 4.50 × 102 3.42 × 102 ↓ 3.37 × 102 3.25 × 102 ↔
g22 1.17 × 104 1.17 × 104 1.01 × 104 1.03 × 104 ↔ 7.53 × 103 5.94 × 103 ↔
g23 5.05 × 101 −4.76 1.09 × 102 −6.26 × 10−2 ↓ −2.16 × 102 −2.23 × 102 ↑
g24 −5.50 −5.50 −5.50 −5.50 ↔ −5.50 −5.50 ↔
HC-10 3.98 × 10−1 4.04 × 10−1 3.84 × 10−1 3.76 × 10−1 ↑ 2.88 × 10−1 2.91 × 10−1 ↑
HC-20 5.67 × 101 5.54 × 101 2.64 × 100 2.91 × 100 ↑ 3.88 × 101 3.72 × 101 ↑

Similar information is shown in Table 7 for 500,000 func-
tion evaluations. In this case, the differences are not as large.
For instance, de/gsa is superior to de1 in only 5 cases. The
reason is that in several test cases, every approach is able to
reach solutions that are very close to optimal. Thus, when
considering a very long period, the advantage of incorpo-
rating an effective local search, such as gsa, diminishes,
showing that the real advantage of de/gsa is a reduction
in the resources required to obtain high-quality solutions.
In any case, in some of the most complex problems, some
advantages appear in both the short and long terms.

6.2.2 Second set of experiments: saving resources

Theprevious analyses show thebenefits of the newscheme
in terms of the quality of the results. In the short period,
the results obtained by de/gsa are clearly better than those
obtained by the rest of the schemes. However, in the long
term, the differences are not as large. Thus, it is very inter-
esting to estimate the amount of resources that can be saved

when using the de/gsa approach. Performing a direct com-
parison between the final results obtained by the different
models is not helpful; instead, the run-length distribution can
be used.

Run-length distributions show the relationship between
success ratios and number of evaluations, where the suc-
cess ratio is defined as the probability of achieving a certain
quality level. In order to establish said quality level, we
considered, for each of the problems, the highest median
obtained by any of the three models considered in 500,000
function evaluations. Since showing the run-length distrib-
utions for each problem would require too much space, we
show in Table 8 the number of evaluations required by each
of the models to attain a success ratio equal to 50%. In
addition, we show the percentage of evaluations that were
saved by using de/ls1 and de/gsawith respect to de1. Neg-
ative values indicate that the corresponding model required
a larger number of function evaluations than de1. Note that
in those cases where de/gsa required more function evalu-
ations, the penalty was not very large. However, in several
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Table 7 Solutions obtained by the different de variants in 500,000 evaluations

de- 1 de/ls1 de/gsa

Mean Median Mean Median Stat. Mean Median Stat.

g01 −1.5 × 101 −1.5 × 101 −1.5 × 101 −1.5 × 101 ↔ −1.5 × 101 −1.5 × 101 ↔
g02 −7.883 × 10−1 −7.898 × 10−1 −6.645 × 10−1 −6.660 × 10−1 ↓ −7.754 × 10−1 −7.808 × 10−1 ↓
g03 −1.791 × 10−1 −1.569 × 10−1 −2.039 × 10−1 −1.845 × 10−1 ↔ −5.938 × 10−1 −5.695 × 10−1 ↑
g04 −3.066 × 104 −3.066 × 104 −3.066 × 104 −3.066 × 104 ↔ −3.066 × 104 −3.066 × 104 ↔
g05 5.126 × 103 5.126 × 103 5.127 × 103 5.126 × 103 ↔ 5.126 × 103 5.126 × 103 ↔
g06 −6.961 × 103 −6.961 × 103 −6.961 × 103 −6.961 × 103 ↔ −6.961 × 103 −6.961 × 103 ↔
g07 2.430 × 101 2.430 × 101 2.434 × 101 2.433 × 101 ↓ 2.430 × 101 2.430 × 101 ↑
g08 −9.582 × 10−2 −9.582 × 10−2 −9.582 × 10−2 −9.582 × 10−2 ↔ −9.582 × 10−2 −9.582 × 10−2 ↔
g09 6.806 × 102 6.806 × 102 6.806 × 102 6.806 × 102 ↔ 6.806 × 102 6.806 × 102 ↔
g10 2.100 × 103 2.100 × 103 2.100 × 103 2.100 × 103 ↔ 2.100 × 103 2.100 × 103 ↔
g11 7.499 × 10−1 7.499 × 10−1 7.499 × 10−1 7.499 × 10−1 ↔ 7.499 × 10−1 7.499 × 10−1 ↔
g13 4.587 × 10−1 4.609 × 10−1 7.786 × 10−2 7.506 × 10−2 ↑ 3.790 × 10−1 4.388 × 10−1 ↔
g14 −4.776 × 101 −4.776 × 101 −4.776 × 101 −4.776 × 101 ↓ −4.776 × 101 −4.776 × 101 ↑
g15 9.617 × 102 9.617 × 102 9.617 × 102 9.617 × 102 ↔ 9.617 × 102 9.617 × 102 ↔
g16 −1.905 −1.905 −1.905 −1.905 ↔ −1.905 −1.905 ↔
g17 8.907 × 103 8.930 × 103 8.923 × 103 8.941 × 103 ↔ 8.866 × 103 8.856 × 103 ↑
g18 −8.659 × 10−1 −8.659 × 10−1 −8.659 × 10−1 −8.660 × 10−1 ↑ −8.659 × 10−1 −8.659 × 10−1 ↓
g19 4.009 × 101 4.008 × 101 4.487 × 101 4.573 × 101 ↓ 4.007 × 101 4.007 × 101 ↑
g20 1.987 × 10−1 1.985 × 10−1 1.736 × 10−1 1.757 × 10−1 ↑ 2.016 × 10−1 2.014 × 10−1 ↓
g21 2.810 × 102 3.247 × 102 2.766 × 102 3.247 × 102 ↔ 2.592 × 102 2.592 × 102 ↔
g22 1.060 × 104 1.124 × 104 3.653 × 103 3.995 × 103 ↑ 6.901 × 103 6.797 × 103 ↔
g23 −3.690 × 102 −3.989 × 102 −2.919 × 102 −2.743 × 102 ↓ −3.897 × 102 −3.950 × 102 ↔
g24 −5.508 −5.508 −5.508 −5.508 ↔ −5.508 −5.508 ↔
HC-10 1.73 × 10−1 1.81 × 10−1 6.25 × 10−2 6.26 × 10−2 ↑ 1.39 × 10−1 1.32 × 10−1 ↑
HC-20 5.08 × 10−1 5.16 × 10−1 3.50 × 10−1 3.41 × 10−1 ↑ 3.15 × 10−1 3.25 × 10−1 ↑

cases, the number of function evaluations that was saved by
using de/gsa was very significant. For instance, there were
ten cases where the percentage of function evaluations saved
by de/gsawith respect tode- 1was larger than 50%. In none
of the cases, however, did the opposite happen. Moreover,
the benefits are clear both in the constrained and uncon-
strained cases. Furthermore, taking into account the mean
of the evaluations required by each problem, the percentage
of evaluations saved was 43.27%, demonstrating once again
the benefits of the new scheme.

In the case of de/ls1, the advantages are not as clear. There
were several caseswherede/ls1provided important benefits.
However, in other cases, the negative impact of incorpo-
rating ls1 was also significant. Specifically, in the case of
de/ls1 there were three cases where the penalty was larger
than 100% and taking into account the mean of the evalua-
tions required by each problem, the percentage of evaluations
saved was −1.32%; in other words, when all the problems
were considered, de/ls1 required a larger number of evalu-
ations than de1. This shows, once again, the importance of

using a proper local search scheme. It is also worth noting
that in the case of constrained problems, the benefits provided
by de/gsa are more significant.

7 Conclusions and future work

In this paper,wehaveproposed the gradient subspace approx-
imation (GSA), a newmethod that computes themost greedy
search direction at a point x out of a given set of samples
which can be located (in principle) in any direction from
x . This feature makes it an interesting candidate as a local
searcher within set-based heuristics such as evolutionary
algorithms since then the computation of the search direc-
tion comes ideally for free in terms of function evaluations.
For unconstrained SOPs, a particular normal equation sys-
tem has to be solvedwhichmakes theGSA for such problems
very similar to existing gradient approximation approaches.
The key difference, however, is that the ansatz of the GSA
allows to directly incorporate constraints, i.e., to find themost
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Table 8 Evaluations required by the different de variants to obtain a
fixed quality level and percentage of saved resources

de- 1 de/ls1 de/gsa

Eval. Eval. Saved (%) Eval. Saved (%)

g01 221250 281738 −27.33 274679 −24.18

g02 223200 438630 −96.51 185456 16.91

g03 378600 34205 90.96 7862 97.92

g04 66900 74409 −11.22 63274 5.42

g05 343000 417438 −21.70 143974 58.02

g06 35650 39905 −11.93 39424 −10.58

g07 188550 469315 −148.90 60750 67.78

g08 56550 49020 13.31 55824 1.28

g09 290400 343752 −18.37 235126 19.03

g10 32450 37468 −15.46 9062 72.07

g11 37700 42292 −12.18 32702 13.25

g13 494550 25001 94.94 265106 46.39

g14 327350 496336 −51.62 101196 69.08

g15 134700 222260 −65.00 98313 27.01

g16 147500 164214 −11.33 246482 −67.10

g17 226900 364715 −60.73 10194 95.50

g18 440850 96543 78.10 480413 −8.97

g19 75450 482225 −539.13 58110 22.98

g20 162550 143728 11.57 58079 64.27

g21 485950 497234 −2.32 286394 41.06

g22 256400 482546 −88.20 55090 78.51

g23 110300 366143 −231.95 133544 −21.07

g24 33150 36641 −10.53 43808 −32.15

HC-10 454200 77384 82.96 206230 54.59

HC-20 489900 106768 78.20 89969 81.63

Mean 228560 231596 −1.32 129642 43.27

greedy vector within the set of feasible directions which is
still an issue in evolutionary computation.

Based on this idea, we have first developed and dis-
cussed the GSA as stand-alone algorithm which has some
similarities with the pattern search method. Second, we
have integrated GSA as local search engine within differ-
ential evolution. We have finally shown the strengths of both
approaches on some numerical examples.

We think that the GSA opens a door for more sophisti-
cated gradient-free memetic strategies. Though the variant
proposed here already showed the potential of the novel
method, we think that more powerful algorithms based on
GSA can be designed that yield a more efficient interleaving
of local and global search. Further, due to the relation of GSA
and pattern search, an application to mixed-integer problems
seems to be appealing which we also leave for future work.
Another problem which we have to leave for future inves-
tigations is that GSA is only applicable to problems with
moderate dimensions n of the decision space. In our compu-

tations, we have chosen r = 5 test points for problems with
up to n = 20 decision variables. When considering that r
grows linear proportional to n, it is apparent that for growing
n the problems arise to (1) obtain the required neighboring
solutions as well as (2) to solve the related normal equation
systems which may get problematic for, say, n � 100. As
a remedy, we conjecture that a combination of dimension
reduction techniques as in Omidvar et al. (2014), Li and Yao
(2012) with GSA may be effective.
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