
Soft Comput (2017) 21:3147–3165
DOI 10.1007/s00500-016-2185-z

FOUNDATIONS

Two new meta-heuristics for no-wait flexible flow shop scheduling
problem with capacitated machines, mixed make-to-order and
make-to-stock policy

Sana Abdollahpour1 · Javad Rezaian1

Published online: 24 May 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract This paper focuses on solving no-wait flexible
flow shop scheduling problemwith capacitatedmachines and
mixedmake-to-order andmake-to-stock productionmanage-
ment policy restrictions. The considered objective function is
minimization of the sum of tardiness cost, weighted earliness
cost, weighted rejection cost and weighted incomplete cost.
Considering the literature, this problem is known asNP-hard.
Hence, the cloudy-based simulated annealing (CSA) and arti-
ficial immune system are developed to solve the considered
problem. Due to the fact that the parameters may influence
the meta-heuristic algorithms, the parameters tuning is per-
formed by Taguchi method. Finally, the performances of
algorithms are evaluated by solving the randomly generated
problems. Computational experiments show that the CSA
algorithm obtains higher-quality solutions than another one.

Keywords No-wait flexible flow shop · Sequence-
dependent setup times · Make-to-order · Make-to-stock ·
Cloudy-based simulated annealing · Artificial immune
system

1 Introduction

Scheduling is an integral part of advanced manufacturing
systems (Davendra et al. 2013). In the most manufacturing
systems, it is required that for completion of a job, a set of
processes needs to be performed serially (Javadi et al. 2008).
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In scheduling, this system is called flow shop. Emergence
of advanced manufacturing systems such as computer-aided
design/computer-aided manufacturing (CAD/CAM), flexi-
ble manufacturing system (FMS) and computer-integrated
manufacturing (CIM) has increased the importance of flow
shop scheduling (Solimanpur et al. 2004).

The goal of flow shop scheduling problems is deter-
mination of a job sequence that optimizes one or more
performance measures such as maximum completion time
(makespan), total tardiness and work in process. In the flow
shop environments, where the processing route is the same
for all jobs, the problem is called permutation flow shop. On
the other hand, where the jobs sequence may be different
on each machine, the problem is known as non-permutation
flow shop.

The general assumption in flow shop applications is that
the sequencing of jobs relies on buffers, which are assigned
in consecutive machines. However, in many scheduling envi-
ronments, some or all jobs need to be proceeded continuously
through all machines. This situation is commonly known as
“no-wait” (Seido Nagano and Almeida da Silva 2012). A
typical example of no-wait condition is steel-making pro-
duction where the molten steel must be carried out between
production stages continuously to reduce its energy loss.
Since, in the no-wait flow shop environments, the jobs are not
allowed tobe idle betweenmachines, the jobs sequenceon the
machines cannot be changed. So this problem is necessarily
a permutation flow shop (Ruiz and Allahverdi 2007). These
types of problems are reviewed in detail in Hall and Sriskan-
darajah (1996), Framinan and Nagano (2008) and Framinan
et al. (2010).

From the viewpoint of production management policy,
products canbeproduced according tomake-to-stock (MTS),
make-to-order (MTO) or mixed MTS/ MTO strategy in
industrial environments. Under make-to-order policy, a pro-
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duction order is released to the manufacturing facility only
after a firm demand has been received (Hadj Yousssef et al.
2004). Unlike, under make-to-stock policy, products are
manufactured based on anticipation of future market demand
and stored in warehouses.

In this study, a manufacturing system that can produce a
number of specific products is considered. The jobs, which
must be proceed in this system, can be divided into two
categories: a set of MTS jobs and a number of MTO job
sets (orders), which are released to system in a deterministic
times and have certain due dates. Since the available time of
each machine is limited, some of the MTO job sets may be
rejected. Due to this situation, the goal is to find a sequence
of jobs, which are either belong to accepted MTO sets or
MTS jobs.

As an example, in a steel factory, production rate of each
product is determined by studying on market behavior in
past periods. In addition, some customers may release their
orders to this factory. In this situation, to optimize the goals
of system, decision makers determine which order should be
accepted and which one will be rejected.

Due to the time restriction of machines and possibility of
rejection one or more MTO job sets, in this study, objective
function is included of three parts: costs of rejected orders,
costs of earliness and tardiness of each order and the costs
of incomplete orders. This objective function can adapt to
the philosophy of just-in-time production, which emphasizes
producing goods only when they are needed since jobs are
scheduled to complete as close as possible to their due dates
(Valente Jorge and Alves Rui 2005).

The no-wait flow shop is usually used to some of the
important industries such as plastic industries, steel facto-
ries and chemical processes. On the other hand, the mixed
MTO/MTS strategy can be used to everymanufacturing envi-
ronment which its goal is achieving to a balance between
keeping market portion and on-time delivery to customer.

According to the literature, there is no research for com-
bining mixed MTO/MTS policy and no-wait flow shop
scheduling. To reduce the gap between scheduling theories
and practical applications in industrial environments, two
newmeta-heuristic algorithms, cloud theory-based simulated
annealing (CSA) and artificial immune system (AIS), are pro-
posed for solving the considered problems.

Cloud theory is a model of the fuzzy theory, which relates
to quality concepts and quantity data (Deyi et al. 1995).Cloud
theory can help to generate a group of continuous tempera-
tures close to a fixed temperature in simulated annealing.
Generating random temperature based on cloud theory can
preserve diversity and prevents algorithm from being trapped
in a local optimum acceptability (Torabzadeh and Zandieh
2010).

Artificial immune system algorithm is a new population
based on meta-heuristic approach, which is inspired of bio-

logical immune system (BIS). In comparison with other
meta-heuristics, the AIS has the lower complexity, so it is
simple to code.

The rest of the paper is organized as follows: In Sect. 2,
a literature review of no-wait flow shop scheduling problem,
MTO and MTS policies, cloud theory and artificial immune
algorithm is presented. Section 3 describes the problem and
presents mathematical model. In Sect. 4, the principles of
meta-heuristic approaches are described. The computational
results and evaluation of proposed algorithm performances
are presented in Sect. 5. Finally, conclusions are provided in
Sect. 6.

2 Literature review

A highly prominent class of job scheduling problems is iden-
tified by a no-wait production environment, in which there
is no storage between the machines. Thus, jobs must be
processed from start to finish, without any interruptions in
the machines or between them (Jolai et al. 2013).

The no-wait flow shop scheduling problem with sin-
gle objective was proved strongly NP-hard by Rock (Hadj
Yousssef et al. 2004) when the number of machines is more
than two. Therefore, the efforts have been devoted to find-
ing high-quality solutions in reasonable time by using the
heuristic and meta-heuristic approaches.

Some heuristic approaches were proposed to solve the
no-wait flow shop scheduling problem. For instance, Reddi
and Rama-moorthy (1972), King and Spachis (1980) pro-
posed their methods. In addition, in the 1990s, Gangadharan
and Rajendran (1993) and Rajendran (1994) proposed two
heuristic methods GAN-RAJ and RAJ, which were shown
by experiments that these methods outperformed the previ-
ous heuristic approaches reported in the literature. In recent
years, Seido Nagano et al. (2015) proposed a constructive
heuristic methods named QUARTS that breaks the problem
to quartets in order to minimize the total flow time. Liu et al.
(2013) proposed six heuristics approaches for no-wait flow
shops with total tardiness criterion and proved that the mod-
ified NEH algorithm (MNEH) is the best.

Several meta-heuristic algorithmswere proposed for solv-
ing this problem. Qian et al. (2009) proposed an effective
hybrid differential evolution (HDE) for the no-wait flow
shop scheduling problem with the makespan restriction.
Tavakkoli-Moghaddam et al. (2008) presented the immune
algorithm approach for solving multi-objective no-wait flow
shop. Pan et al. (2009) applied a novel differential evolu-
tion algorithm for bi-criteria no-wait flow shop scheduling
problem. Wang et al. (2010) proposed a new accelerated
tabu search algorithm for no-wait flow shop problem with
maximum lateness criterion. Tseng and Lin (2011) pre-
sented a hybrid genetic algorithm for no-wait flow shop
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with makespan as objective function. More recently, Seido
Nagano and Almeida da Silva (2012) applied a new cluster-
ing search for this problem with total flowtime criterion. Ch
et al. (2012) studied on no-wait flow shopmanufacturing cell
with sequence-dependent family setup times and presented a
number of meta-heuristics for this problem. Davendra et al.
(2013) also solved no-wait makespan flow shop by using
discrete self-organizing migrating algorithm. Arabameri and
Salmasi (2013) used several meta-heuristic approaches for
solving Fm

∣
∣nwt, Si jk

∣
∣
∑

W ′
j E j + W ′′

j Tj . As newest stud-
ies, Shabtay et al. (2014) defined a combined robot selection
and scheduling problem (RSSP) for a set of Q nonidentical
robots characterized by different costs and job transfer and
empty movement times. Laha and Sapkal (2014) presented
a constructive heuristic based on the assumption that the pri-
ority of a job in the initial sequence is given by the sum of its
processing times on the bottleneck machines to minimize
total flowtime criterion for no-wait flow shop scheduling
problem.

It is more realistic to assume that at least one stage has
more than one machine in flow shop environments. So in
recent years, the flexible flow shop has attracted wide atten-
tion in both of academic and industrial societies. As an
example of the no-wait flexible flow shop, Jolai et al. (2009)
proposed a genetic algorithm for no-wait flexible flow shop
with due window and job rejection. Jolai et al. (2013) also
applied bi-objective simulated annealing approaches for no-
wait two-stage flow shop problems. Wang and Liu (2013)
studied on this problem and proposed the genetic algorithm
for solving it. Ramezani et al. (2013) considered the no-wait
flow shop with uniform parallel machines in each stage with
sequence-dependent setup time constraint. In addition, Pang
(2013) presented a genetic algorithm (GA)-based heuristic
approach to solve the problem of two-machine no-wait flow
shop scheduling problems that the setup times of machines
are class dependent, and the objective is to minimize the
maximum lateness. Liu and Feng (2014) studied on two-
machine no-wait flow shop scheduling problems in which
the processing times of jobs are functions of their positions
in the sequence and solved it by using the classic KM (Kuhn–
Munkres) algorithm.

According to the above MTO and MTS definitions, an
important problem in MTS systems is the high inventory
holding costs. On the other hand, an important drawback in
MTO policies is the challenge of products on-time delivery,
so in recent years the combination strategies attracted wide
attention in both academic and industrial fields. For example,
Adan and Wall (1998), Federgruen and Katalan (1999) and
Soman et al. (2004).

Corresponding to the characteristics of producible prod-
ucts, the MTO and MTS strategy are implemented by
different methods. As examples, Eivazy et al. (2009) used
hybrid MTO/MTS policy for semiconductor manufacturing

systems. Hadj Yousssef et al. (2004) studied on efficient
scheduling rules in combined MTO/MTS strategy in manu-
facturing systems.Zaerpour et al. (2009) combined analytical
hierarchy process (AHP) and technique for order perfor-
mance by similarity to ideal solution (TOPSIS) methodolo-
gies.

Cloud theory is an expansion of membership function
of fuzzy theory (Deyi and Yi 2005) so many scientists
use its applications like intelligence control (Deyi et al.
1998; Feizhou et al. 1999), knowledge representation (Cheng
et al. 2005; Deyi et al. 2000), data mining (Di et al. 1999;
Kaichang et al. 1998; Shuliang et al. 2003; Yingjun and
Zhongying 2004), spatial analysis (Cheng et al. 2006; Hai-
jun and Yu 2007), target recognition (Fang et al. 2007),
intelligent algorithm improvement (Yunfang et al. 2005)
and so on (Torabzadeh and Zandieh 2010). As an exam-
ple, Torabzadeh and Zandieh (2010) used cloudy simulated
annealing approach for solving two-stage assemblyflowshop
and the could theory obtained good solutions, so in this study
cloudy simulated annealing with various sizes of solutions is
proposed to solve the considered problem.

The field of immunological computation (IC) or artificial
immune system (AIS) has been evolving steadily (Nunes de
castro and Von Zuben 1999) since 1985. In recent years,
several researchers have developed computational models
of the immune system that attempt to capture some of its
most remarkable features such as its self-organizing capabil-
ity (Coello Coello and Cruz Cort’es 2005).

Recently, theAIS algorithm has been appliedwith success
for different variants of scheduling problems, for exam-
ples Lin and Ying (2013) proposed revised version of the
AIS algorithm for flow shop with limited buffer schedul-
ing problem. Zandieh et al. (2006) applied clonal selection
principle to solve flow shop with sequence-dependent setup
times.

3 Problem description and mathematical model

In this section, at first the problem statement is described.
Then, assumptions and mathematical model are presented.

The flexible no-wait flow shop with mixed MTO/MTS
production management policy and time limitation of
machines is defined as follows:

Let n be the number of product types (J=1, 2… n) which
each of themhas a deterministic processing time in each stage
(p js). This system must be produced a set of jobs, which is
calledMTS jobs (i = 1). In addition, a given number of order
sets (i = 2, …, N) are released to system as MTO sets. Both
MTS and MTO sets are presented by Oi = {h1i , . . . , hni }
where hni is the request number of product type n in order
set i .
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Due to the time limitation of machines, some of the MTO
sets may be rejected and even some of the accepted orders
may be incomplete.

From the above definition if N = 5 and n = 3 and
the accepted order sets are {O1, O3, O4}, the jobs must fol-
low though the systems are {(h11, h13, h14) , (h21, h23, h24) ,

(h31, h33, h34)} and Z = (h11 + h13 + h14) + (h21 + h23 +
h24) + (h31 + h33 + h34).

All accepted jobs must be produced in flexible no-wait
flow shop system, which has ms identical parallel machines
at stages. Each machine is available at time zero to cask and
after that gets unavailable (for example maintenance).

In no-wait flow shop, each job may be delayed to sat-
isfy the no-wait condition. So, some of available time of
machines will be idled and some of accepted jobs may be
incomplete.

After determination of accepted orders, all of them and
MTS jobs are sequenced (q = 1, . . . , Z , where Z is the
total of jobs will be scheduled) to flow through the man-
ufacturing system. To follow the no-wait restriction, all of
consecutive operations of each job must be done continu-
ously.

The schematic definition of the considered problem is
depicted in Fig. 1.

It is remarkable that the proposed nonlinear mathematical
model in this study is a developed version of the presented
mathematical model by Jolai et al. (2013).

Following assumptions are taken into account for the con-
sidered problem:

• All machines are available at time zero.
• In each stage, there is one machine at least, and one stage
must have more than one machines at least.

• Each machine can process at most one job, and each job
must be processed only by one machine at each stage.

• Machines of all stages are identical.
• A deterministic release date and due date are defined for
each order. The release dates and due dates of make-
to-stock jobs are equal to zero and a large number,
respectively.

• If two consecutive jobs are from different types on a
machine, the setup time must be considered.

• Travel times between stages are negligible.

The parameters, decision variables and the mathematical
model are as follows:

Parameters:
k: Index of machines at stage s s = 1, . . . , S, k =

1, . . . , ms
j : Index of product types that can be
processed in manufacturing system

j = 1, . . . , n

i : Index of order set i = 1, . . . , N
t : Index of job in each order set t = 1, . . . , sumi , i =

1, . . . , N
(sumi : The summation of the number of
jobs in each order set)
q: Index of location of each job in
sequence

q = 1, . . . , Z

Ri : Release date of order i i = 2, . . . , N
(TheMTS jobs are available at time zero)
Di : Due date of order i i = 2, . . . , N
(The MTS jobs are delivered at the end
of time horizon)
W ti : The tardiness penalty of order i for
each time unit of tardiness

i = 2, . . . , N

W ei : The earliness penalty of order i for
each time unit of earliness

i = 2, . . . , N

Wri : The rejection cost of order i i = 2, . . . , N
Wgi : The incompleteness cost of order
i for each job of it

i = 1, . . . , N

cask : Time constraint of machine k on
stage s

s = 1, . . . , S, k =
1, . . . , ms

p js : Processing times of job type j on
stage s

j = 1, . . . , n, s =
1, . . . , S

h ji : The number of job type j in order i i = 1, . . . , N , j =
1, . . . , n

s j j ′sk : Setup time of job type j ′ when j ′
is processed immediately after job type j
on stage s on machine k

j, j ′ = 1, . . . , n, j �=
j ′s = 1, . . . , S, k =
1, . . . , ms

Decision variables:
xtiq : 1 if tth job from order i is located in
position q of job sequence. 0 otherwise

t = 1, . . . , sumi , i =
1, . . . , N , q = 1, . . . , Z

yqsk : 1 if the job where is located in
position q is processed on machine k at
stage s. 0 otherwise

q = 1, . . . , Z , , s =
1, . . . , S, k = 1, . . . , ms

vq j : 1 if the job where is located in posi-
tion q is type of j . 0 otherwise

q = 1, . . . , Z , j =
1, . . . , n

Oi : 1 if order i is accepted. 0 otherwise. i = 1, . . . , N
stqs :Start timeof the jobwhere is located
in position q at stage s

q = 1, . . . , Z , s =
1, . . . , S

cqs : Completion time of the job where is
located in position q at stage s

q = 1, . . . , Z , s =
1, . . . , S

deq : Delay value of the job where is
located in position q

q = 1, . . . , Z

avqs : Available time of the job where is
located in position q at stage s

q = 1, . . . , Z , s =
1, . . . , S

atqsk : Available time of the job where is
located in positionq at stage s onmachine
k

q = 1, . . . , Z , s =
1, . . . , S, k = 1, . . . , ms

gq : 1 if the job where is located in posi-
tion q is completed. 0 otherwise

q = 1, . . . , Z

nondi : The number of incomplete jobs
in order i

i = 1 . . . , N
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Fig. 1 Presentation of a flexible no-wait flow shop problem with capacity restriction and mixed MTO/MTS policy

The nonlinear mathematical model:

minZ =
(

N
∑

i=2

tardii × Oi × W ti

)

+
(

N
∑

i=2

earlii × Oi × W ei

)

+
(

N
∑

i=2

Wri × (1 − Oi )

)

+
(

N
∑

i=1

(sumi − nondi ) × Oi × Wgi

)

(1)

Subject to:

atqsk yqsk +
n

∑

j=1

vq j p js ≤ cask, q = 1, . . . , Z ,

s = 1, . . . , S, k = 1, . . . , ms (2)

O1 ≥ 1 (3)

sumi =
n

∑

j=1

h ji , i = 1, . . . , N (4)

Z =
N

∑

i=1

sumi Oi , i = 1, . . . , N (5)

sumi∑

t=1

xtiq = 1, q = 1, . . . , Z and i = 1, . . . , N (6)

Z
∑

q=1

xtiq = 1, t = 1, . . . , sumi and i = 1, . . . , N (7)

ms∑

k=1

yqsk ×atqsk ≤avqs, q =1, . . . , Z and s =1, . . . , S

(8)

ms∑

k=1

yqsk ≤ 1, q = 1, . . . , Z and s = 1, . . . , S (9)

deq = max

(
N

∑

i=1

sumi∑

t=1

ri Oi xtiq ,

(

avqs − avqs−1
)

, . . . ,
(

avq2 − avq1
)

)

,

q = 1, . . . , Z (10)

stq1 = max(deq + avq1), q = 2, . . . , Z (11)

stqs = cqs−1, s = 2, . . . , S and q = 2, . . . , Z (12)

cqs = stqs +
n

∑

j=1

vq j p js, s = 1, . . . , S (13)

atqks = max1≤q ′≤q−1
(

Cq ′s yq ′sk
)

, s = 1, . . . , S,

q = 2, . . . , Z , k = 1, . . . , ms (14)

avqs = min1≤k≤ms

(

atqsk
)

, s = 1, . . . , S and

q = 2, . . . , Z (15)

tardii = max

(

0,

(

max
1≤q≤z

(sumi∑

t=1

xtiqcqs

)

− di

))

,

i = 2, . . . , N and s = S (16)

earlii = max

(

0,

(

di − max
1≤q≤z

(sumi∑

t=1

xtiqcqs

)))

,

i = 2, . . . , N and s = S (17)

S −
S

∑

s=1

ms∑

k=1

yqsk ≥ (

1 − gq
)

, q = 1, . . . , Z and

s = 1, . . . , S (18)

nondi = sumi −
sumi∑

t=1

Z
∑

q=1

gq xtiq i = 1, . . . , N (19)
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The objective function, as presented in Eq. (1), is minimiza-
tion of the total weighted earliness, tardiness, missed orders
and incomplete orders. Constraint (2) ensures that a machine
cannot be assigned to a given job unless its time limitation
is satisfied by that job. Constraint (3) ensures that the MTS
jobs are processed. Constraint (4) calculates the number of
jobs which are requested by each order set. Constraint (5)
determines the summation of jobs which are requested by
accepted order sets. Constraints (6) and (7) determine the
job sequence. Constraint (8) ensures that each job is allo-
cated to a machine which will be available sooner than the
other ones at each stage. Constraint (9) completes the process
of assigning machines to jobs and ensures each job at each
stage is allocated to one machine at most. Constraint (10)
calculates the minimum delay on the first machine before
the job processes are started in order to satisfy the no-wait
condition. Constraints (11) and (12) compute the start time
of jobs at each stage. Constraint (13) calculates the comple-
tion times of jobs at each stage. For each job, constraint (14)
computes the available time of each machine. In addition,
available time of each stage for each job is determined by
constraint set (15). Since the goal of this problem is on-time
delivery of orders, constraints (16) and (17) compute the ear-
liness and tardiness of each order set. Constraint (18) counts
the number of completed jobs in each order set. For a job, if
a machine is assigned at each stage, so the job is called com-
pleted job. Constraint (19) computes the incomplete jobs of
each accepted order set. If the nound value for each order
set is greater than zero, the order set is known as incomplete
order set.

We use the following example to illustrate how the above
model works. Suppose there are 3 types of products (n = 3),
two stage (m1 = 3, m2 = 2) and 4 order sets are released
to system (N = 4). According to the previous agreement,
the first-order set contains the MTS jobs and the other ones
are MTO job sets. If we suppose that the third-order set is
accepted (O3 = 1) and the others are rejected, one possible
sequence of accepted jobs is shown below (Q).

r3 = 5

d3 = 50

W ti = W ei = Wri = Wgi = 5, i = 1, . . . , N

p =
⎡

⎣

24
53
45

⎤

⎦

O1 = {1, 2, 1} → sum1 = 4 →
⎧

⎨

⎩

number : {1, 2, 3, 4}
t ype : {1, 2, 2, 3}
order : {1, 1, 1, 1}

O3 = {1, 1, 1} → sum3 = 3 →
⎧

⎨

⎩

number : {1, 2, 3}
t ype : {1, 2, 3}
order : {3, 3, 3}

Z = sum1 + sum2 = 7

Q =

⎧

⎪⎪⎨

⎪⎪⎩

q : {1, 2, 3, 4, 5, 6, 7}
t : {1, 3, 3, 1, 4, 2, 2}
t ype : {1, 2, 3, 1, 3, 2, 2}
i : {3, 1, 3, 1, 1, 3, 1}

⎫

⎪⎪⎬

⎪⎪⎭

→ x131 = 1, v11 = 1

Based on sequence Q, the equations of the model are calcu-
lated in Table 1.

Based on the results of Table 1, it is clear that earli3 =
25, tardi3 = 0 and the objective function is 135. The Gantt
chart of this example is shown in Fig. 2.

4 Solution approaches

In this section, the solution approaches are proposed. As well
known, the meta-heuristic algorithms have significant role in
tackling all category of combinatorial problems. Schedul-
ing problems are kind of optimization problems, which was
solved by meta-heuristic algorithms in recent years (Li et al.
2012).

As far as we know, the considered problem in this paper
is not solved before this, and this study presents two newest
meta-heuristic algorithms for solving it.

The cloudy simulated annealing (CSA) represents the
single-point methods and the artificial immune system (AIS)
as a population-based algorithm is applied to solve the con-
sidered problem.

In this part of paper, each algorithm is briefly described
and then is implemented for the considered problem.

4.1 Cloud theory-based simulated annealing algorithm

4.1.1 Simulated annealing algorithm in general

Simulated annealing algorithm (SA) is a random optimiza-
tion method that is based on Monte Carlo iterative strategy
(Laarhoven and Aarts 1987). SA is inspired of the physi-
cal annealing process, which minimizes potential energy in
a solid object. This algorithm starts with a primary solu-
tion (S0) and primary temperature (T0), and this improving
mechanism consists of the following steps: T0 is decreased
according to specific cooling schedule function, and a new
solution (S1) is found in the neighborhood of the current solu-
tion (S0). If the value of objective function ( f (S1)) is less
than the value of objective function ( f (S0)) in minimization
problems, the new solution will be accepted, otherwise it will

be accepted with probability p = e
−�
T (Boltzmann distribu-

tion function), where � = f (S1)− f (S0)
f (S1)

and T is the current
temperature. This process is continued until the termination
criterion is met.
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Fig. 2 The Gant chart of numerical example

4.1.2 Basic concept of cloud theory

The cloud theory is a model that contains the transferring
procedure of uncertainty between quality concept and quan-
tity data representation by using natural language (Valente
Jorge and Alves Rui 2005). Cloud theory is innovation and
development of membership function of fuzzy theory (Di
et al. 1999).

Let D be the language value of domain u and mapping
CD (x) : u → [0, 1] ,∀x ∈ u, x → CD (x), if the distribu-
tion of CD (x) is normal, it is named a normal cloud model
(Deyi et al. 1995).

Cloud theory generates a group of random numbers which
have a same distribution, usually normal distribution. These
numbers are determined by expectationEx , entropy En and
super entropy He. They reflect the quantitative characteris-
tics of the generated cloud (Fig. 3).

A generatorY , condition cloud generator can gener-
ate a drop of cloud (drop (xi , u0)) with three characters
Ex , En, He and a certain u0 as follows (Deyi and Yi 2005):

1. Input: {Ex , En, He} , n, u0

2. Output: {(x1, u0) , (x2, u0) , . . . , (xn, u0)}
3. For i = 1 to n
4. E ′

n = randn (En, He)
5. xi = Ex ± E ′

n
√−2ln (u0)

6. drop(xi , u0)

7. End

Fig. 3 Three digital characteristics of a normal cloud (Adan and Wall
1998)

Where randn (En, He) will produce a random number with
normal distribution which expectation is En and standard
deviation is He (Deyi et al. 1995) (Fig. 3).

4.1.3 Cloud theory-based simulated annealing algorithm

Based on the SA concept, since the algorithm accepts deteri-
orate solutions easily, it has not good convergence rate with
high temperature; on the other hand, SA accepts good solu-
tions hardly with low temperature, so it may drop to local
minimum trap. Therefore, it is necessary to find other cool-
ing mechanism that improves searching ability and obtains
better solutions.
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Fig. 4 The numerical example of how consider all of combinations of orders

In the cloud theory-based simulated annealing algorithm,
random numbers by same normal distribution which are gen-
erated by Y generator normal cloud are used for continuous
annealing process. The cloud theory has the characteristics
of randomness and stable tendency, so the annealing temper-
ature changes randomly, and it can preserve the diversity of
searching and therefore avoid being trapped in local mini-
mum (Valente Jorge and Alves Rui 2005).

At first, the initial temperature (T0) has to be unified. Then,
all possibility combination of orders as accepted orders are
determined (2N−1). It is noticeable that the make-to-stock
jobs are always considered as the accepted orders. Therefore,
CSA algorithm is applied for all of combination of accepted
orders by the following manner:

T0 is decreased according to specific cooling schedule. For
each temperature which is generated according to the cloud
theory function, a random permutation of accepted orders is
determined as an initial solution (S0). A new solution (S1)
is generated by the mutation methods, and then, the new
solution will be accepted if the objective function value of
new solution is better than the objective value of the current
solution, otherwise the new solution will be accepted with
certain probability. These steps are repeated until the termi-
nation conditions are satisfied.

In order to explain how the all combination of orders is
considered, the following example is provided.

According to the previous example (Table 1), by consider-
ing a 4-order (N = 4) and 3-producible job (n = 3) problem,
all combination of orders are shown in Fig. 4.

As shown in Fig. 4, O1 represent the MTS jobs and other
sets are referred to the MTO order sets. Since the MTS order

is always accepted, the number of all combination of orders
as accepted orders is 23 = 8.

According to Fig. 4, if only order 3 is accepted, order 3
and order 1 (MTS jobs) must be processed. So, the number
of jobs is equal to (1 + 1 + 1) + (1 + 2 + 1) = 7.

Solution representation In order to represent the solution of
the problem, a matrix with three rows is generated. The first
row represents the number of each job in each accepted order.
In the second row, the type of each job is determined and the
third row includes the order numbers of jobs.

As an example of solution representation, the job sequence
of previous example (Q in Table 1) is shown in Fig. 5.

In both of CSA and AIS algorithms, the solutions are rep-
resented similarly.

Neighborhood solution generation The purpose of generat-
ing neighborhood solutions is to find the better solutions from
the neighborhood space of a solution. The neighborhood of
S0 is defined as the set of all solutions that can be generated by

Fig. 5 The numerical example of solution representation
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Cloud theory-based simulated annealing algorithm: 
1. Input: define all of the possibility combinations of accepted order and the make to stock jobs. 
2. Select the first combination of orders and define a permutation job of it as initial solution 

( ). 
3. For all order combinations. 
4. Let 1, determine the  value according to 

 ; 
5.
6. While
7. Repeat 
8. ; 
9. ; 

10. ; 
11.  value of the objective function with current sequence; 
12. For
13.  mutated the current sequence; 
14.  value of the objective function with mutated sequence; 
15. If then
16.
17. Else 

18. Accept  as new solution with probability , where  (Boltzmann 

distribution function); 
19. End if 
20. End for 
21. End repeat 
22. ; 
23. T= ; 
24. End while
25. Store the obtained best objective function value and its sequence for each of combination of 

the orders; 
26. End for

Fig. 6 The pseudo-code of the proposed cloud theory-based simulated annealing algorithm

applying a specific operator to S0. In this study, two common
insertion and swap operators are designed for generating the
neighborhood solutions.

Insertion operator will be selected and eliminated a job
randomly, and then, the solution is reproduced by rein-
serting the eliminated job in a new randomly selected
location.

For swap operator, at first, two jobs of the S0 are randomly
selected. Then, they are swapped in their positions.

The advantage of CSA algorithm is neighborhood search
(local search) ability. In each iteration (temperature) of algo-
rithm, a set of temperature is produced by the cloud model.
These temperatures will create an inner loop that its task is
local search.

Annealing process In general SA, the annealing temperature
is a fixed value at each step and the searching process is
completed between neighbors (Framinan et al. 2010).

In proposed CSA algorithm, the temperature is updated
by using an exponential function, which is shown in Eq. 20.

T = T0λ
k k = 1, 2, . . . , 0 < λ < 1 (20)

where λ is the annealing index and k is the step counter.
In addition by using Y generator and current temperature,

a set of new temperatures which are distributed around the
current temperature is generated. This set is called “cloud.”

Termination criterion In this study, the proposed CSA algo-
rithm is terminated if T is lower than the pre-specified final
temperature T f .

The pseudo-code of the proposedCSA algorithm is shown
in Fig. 6.

It is necessary to notice that the value of i teration is
depended on the number of jobs in the current sequence;
in other words, where the size of sequence is increased, the
number of temperatures which are generated by Y genera-
tor is increased too. The i teration for each combination of
accepted orders is calculated by Eq. 21.

iteration = size of considered combination × 10 (21)
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4.2 Artificial immune system

The biological immune system (BIS) is a robust and adap-
tive system that its duty is defending the body from foreign
elements that called pathogens. BIS is able to recognize
both body cells and non-body cells. The immune defense
mechanisms include either nonspecific (innate) or specific
(acquired) (Khoo and Situmdrang 2003).

The algorithms that are inspired of BIS are called artifi-
cial immune systems (AISs). AIS includes three branches:
clonal selection, negative selection and immune network.
The clonal selection principles explain how the BIS recog-
nizes the pathogens and can generate the best antibodies for
eliminating them. For applying clonal selection method of
AIS algorithm for the considered problem, all possibility
combination of orders as accepted orders are determined.
Then, AIS algorithm is applied for all combination of
accepted orders by the following steps:

1. Generate a fixed number (pop size) of antibodies as a
primarily antibody population.

2. Calculate affinity function values (based on objective
function) for each antibody.

3. Select the best fixed number (nc) of antibodies.
4. Clone each selected antibody according to its affinity

value.
5. All antibodies in the clone population are mutated (based

on their affinity values).
6. The worst nc antibodies in the current population are

replaced by the best nc mutated antibodies.

These steps are repeated until the termination criterion is
satisfied.

4.2.1 Initial population

The initial population consists of popsi ze randomly gener-
ated solutions. The antibody representation of AIS algorithm
is similar to the solution representation (4.1.3.1) ofCSAalgo-
rithm (Fig. 5).

4.2.2 Affinity calculation

Each antibody has an affinity value, which is referred to its
objective function value. The affinity value for each anti-
body is calculated by the (−objective f unction). From this
value, it is clear that a solution with a higher affinity value is
better than a solution with lower one.

4.2.3 Cloning phase

During the AIS algorithm, nc antibodies with highest affinity
values are selected for cloning step. Based on the idea of

Wang and Liu (2013), the clone number of each nc selected
antibody is calculated by (nc − k + 1), where k denotes the
antibody with the kth highest affinity function value in the
antibody population (Lin and Ying 2013). So the antibodies
with higher affinity values have a higher number of clones.

4.2.4 Mutation phase

In proposed AIS algorithm, two mutation operators (swap
and insertion) are considered. Based on the AIS algorithm
concepts, for each antibody the replication number of muta-
tion step (i teration) is increased where the k value of its
antibody is increased.

4.2.5 Stopping criterion

In this study, themaximumnumber of generations (maxgen)

is considered as the termination condition. Since in each com-
bination of accepted orders the number of jobs is changed,
the maxgen for each combination is calculated by Eq. 22.

maxgen = size of considered combination × 10 (22)

The pseudo-code of AIS algorithm is shown in Fig. 7.

5 Computational experiments

In this section, to examine the effectiveness of the proposed
algorithms, after tuning parameters, their performances are
evaluated by solving the randomly generated test problems
and the results of this evaluation are described.

In addition, apart fromwhat algorithm is better, some tests
are performed to show the effects of management decisions
to the performance measurements.

5.1 Test instance generation

Due to the unavailability of the standard test problems for
the considered problem, to evaluate the effectiveness of the
proposed algorithms, test problems are generated randomly.

The data that are required to generate the random prob-
lems are: the number of orders, the number of producible
jobs, the maximum number of jobs which can be ordered
by each order family, the number of stages, the number of
machines in each stage, processing time of each job at each
stage, time limitation of machines, release date and due date
of eachorder family andweights of earliness, tardiness, rejec-
tion and incompletion of each order family. Table 2 shows
the generated problem. It is remarkable that in order to gen-
erate the parameter values, we used Ramezani et al. (2013)
benchmark problems. These values are adopted for a flexible
no-wait flow shop system such as a steel factory.
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Artificial immune system algorithm: 
1. Input: define all of the possibility combinations of accepted order and the make to stock jobs. 
2. Select the first combination of orders and define a permutation job of it as initial solution 

( ). 
3. For all order combinations 
4. Generate the of the  permutation randomly as initial population, determine the 

 value according to size of ; 
5. Calculate the affinity function of these antibodies; 
6. For 
7. Select the best  of the antibodies; 
8. Make  copies of each antibodies (clone); 
9. Mutate all of the cloned antibodies; 
10. Calculate the affinity function value for all of the mutated antibodies; 
11. The  of the worse antibodies in current population are replaced by the  of the best 

mutated antibodies; 
12. End for 
13. Store the obtained best affinity function value and its sequence for each of combination of the 

orders; 
14. End for

Fig. 7 The pseudo-code of the proposed artificial immune system algorithm

Table 2 Problem parameters
and their values

Parameters Values

Number of family orders Small: 1, 2

Large: 3, 5

Number of product able jobs Small: 2, 4

Large: 3, 5

Maximum number of each producible job
can be ordered by each order family

Small: 5, 10

Large: 25, 35

Number of stages Small: 2, 4

Large: 2, 4

Number of machines Small: U(2,4)

Large: U(2,4)

Processing times Small: U(10,50)

Large: U(10,100)

Release dates U(1,100)

Due dates

∑No. job
i=1 No. jobi ×∑No.stage

s=1 pi j +round

(

U
(

1,
∑No.stage

s=1 pi j

)

∑No.stage
s=1 No.machines

)

∑No. job
i=1 No. jobi

Time limitation of machines Small: U(50,100)

Large: U(1000,10,000)

Weight of earliness U(1,5)

Weight of tardiness U(1,5)

Weight of rejection U(30,100)

Weight of incompletion U(1,5)

It is necessary to notice that the defined formula for gen-
erating due dates in Table 2 is an adopted version of the
presented formula by Jolai et al. (2013) for the same goal.

To conduct the experiments, one problem which is ran-
domly generated is selected and is run five times to reduce
the error (Table 5).
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Table 3 CSA algorithm factors and their levels

Parameters A B C

Name γ T0 T f

0.8 1 0.0001

Levels 0.9 0.1 0.00001

0.95 0.01 0.000001

Table 4 The orthogonal array
L9

A B C

1 1 1 1

2 1 2 2

3 1 3 3

4 2 1 2

5 2 2 3

6 2 3 1

7 3 1 3

8 3 2 1

9 3 3 2

5.2 Algorithm calibration

Parameters may influence on the algorithm performance.
Considering the effect of parameters, in recent years the
algorithm configuration is attracted wide attention. There
are many ways to design experiments (Wang and Liu
2013), but the most frequency used approach is Taguchi
method. In this study, the factors of CSA algorithm are
γ, T0, T f , respectively, which their levels are given in
Table 3. The considered orthogonal array with three fac-
tors and three levels of Taguchi method (L9) is presented
in Table 4.

As shown in Fig. 8 and Table 5, the optimal levels of the
factors are 1, 3 and 2, respectively.

Table 5 Average S/Nratio table

Level A B C

1 −54.97200526 −54.84013317 −54.94168776

2 −54.94745099 −54.88471646 −54.95008187

3 −54.92747033 −55.12207695 −54.95515696

Table 6 Small-scale test problems

Problem Number of
families

Number of
producible
jobs

Maximum jobs
can be ordered

Number of
stages

1 1 2 5 2

2 1 2 5 4

3 1 2 10 2

4 1 2 10 4

5 1 4 5 2

6 1 4 5 4

7 1 4 10 2

8 1 4 10 4

9 2 2 5 2

10 2 2 5 4

11 2 2 10 2

12 2 2 10 4

13 2 4 5 2

14 2 4 5 4

15 2 4 10 2

16 2 4 10 4

Fig. 8 The mean S/N ratio plot
for each level of CSA factors
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Table 7 Large-scale test problems

Problem Number of
families

Number of
producible
jobs

Maximum jobs
can be ordered

Number of
stages

1 3 3 25 2

2 3 3 25 4

3 3 3 35 2

4 3 3 35 4

5 3 5 25 2

6 3 5 25 4

7 3 5 35 2

8 3 5 35 4

9 5 3 25 2

10 5 3 25 4

11 5 3 35 2

12 5 3 35 4

13 5 5 25 2

14 5 5 25 4

15 5 5 35 2

16 5 5 35 4

5.3 The results

In this section, two evaluations are presented. At first,
to examine the effectiveness of the proposed solution
approaches (AIS and CSA), 32 benchmark problems are
run by each algorithm. Then, to analysis the influences
of each parameter, one of the test problems is selected
and the sensitive of percentage of MTS/MTO and order

f amily (N ) /SU M (number of orders/number of jobs in
each order) on performance measurements are evaluated.

It is remarkable that in this study the algorithms are coded
in MATLAB 2012 and the mathematical model is coded by
Lingo 9. All of them are run on a PCwith an Intel Core 4 Duo
2.5GHz CPU with 4GB of RAM under a Windows 8 envi-
ronment. Based on suggested approach by Ramezani et al.
(2013), algorithms are run under their termination condition
and their average of computational time is saved. Since the
average computational time of AIS is bigger than the average
computational time of CSA, to compare the performances,
AIS algorithm is run for each test problem 5 times and then
the CSA algorithm is run at the average of these times. The
relative percentage deviation (RPD) is used as the perfor-
mancemeasurement. For each test problem, these algorithms
are run 5 times for each instance. The best solution is denoted
by Bestsol . So RPD is calculated by following formula:

RPD = Algsol − Bestsol

Bestsol
× 100 (23)

Where Algsol is the objective function value obtained for a
given algorithm and test problem. The average relative per-
centage error is defined according to Eq. 24.

ARPD =
∑Number of runs

i=1 RPDi

Number of runs
(24)

The effectiveness of the algorithms is evaluated by solving
32 different problems. These problems are given in Tables 6
and 7. In addition, the solutions obtained for these problems

Table 8 The ARPD results of the small-scale problems

Problem Bestsol BestAI S AIS BestC S A CSA Time spent (s) Lingo Time spent of lingo (s)

1 50 50 0.356 50 0.004 0.4730794 4 3610

2 8 48 7.75 8 4.2 1.275652 14 4025

3 8.66 56 7.38 8.66 3.03 2.9911912 – –

4 3.77 4 18.15 3.77 7.78 4.3755882 – –

5 3.57 51.14 37.83 3.57 8.83 2.5293084 26.17 42,030

6 2.37 30.33 67.76 2.37 9.34 7.2843404 83.38 4218

7 9.5 45.57 6.42 9.5 3.32 15.364154 – –

8 7.33 40 9.61 7.33 3.94 39.135422 – –

9 25.9 25.9 0.50 56.4 2.01 1.4850138 – –

10 64.5 75.5 0.75 64.5 0.35 8.8557552 – –

11 61 91.33 1.27 61 0.59 25.572245 – –

12 70 87.57 0.96 70 0.37 14.375928 – –

13 65 121 1.24 65 0.43 24.645037 – –

14 81 116 1.64 81 0.17 110.08146 – –

15 59 97 1.52 59 0.39 115.061568 – –

16 71 139 1.19 71 0.23 158.16730 – –

Bold values are the best obtained solutions by the presented algorithms
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Table 9 The ARPD results of
the large-scale problems

Problem Bestsol BestAI S AIS BestC S A CSA Time spent

1 81 81 152.1975309 116 73.77777778 757.0815828

2 149 149 59.43624161 195 35.27516779 836.0687778

3 60 60 102.1333333 266 29.2 2161.440536

4 65 69 158.6461538 65 119.0153846 4359.864051

5 158 158 30.43037975 306 4.405063291 648.3888726

6 224 224 24.85714286 315 1.178571429 1169.933452

7 82 82 119.6097561 309 12 4715.734246

8 165 165 31.56363636 303 3.345454545 7535.91165

9 57 57 266.3859649 120 107.5087719 1341.900605

10 54 60 830.0740741 54 161.1851852 1765.831126

11 44 44 107.6363636 101 251.4545455 9413.971643

12 47 47 132.9361702 48 520.3404255 11634.75708

13 156 156 47.12820513 201 107.4358974 8469.997937

14 236 286 118.2033898 236 60.40677966 12917.0801

15 192 192 56.41666667 246 103.3333333 9019.580586

16 286 286 64.95104895 489 70.34965035 11228.37623

Bold values are the best obtained solutions by the presented algorithms

Fig. 9 The comparison between theARPDofCSAandAIS algorithms
in small-scale problems

by the proposed algorithms are summarized in Tables 8 and
9 and Figs. 9 and 10.

Table 8 and Fig. 9 show that for small-scale problems,
CSA algorithm has been yielded the better results ( 1516 ×
100 = 93.75%) than another algorithm.

Table 9 and Fig. 10 illustrate the results of experiments
for the large-scale problems. As can be seen, CSA algo-
rithm has been yielded the better results in 11

16 × 100 =
68.75% of the problems. Also, AIS algorithm is obtained
the better solutions in 5

16 × 100 = 31.25% of the prob-
lems.

It is clear from Tables 8 and 9 the performance of CSA
algorithm for small-scale problems is better than its perfor-

Fig. 10 The comparison between the ARPD of CSA and AIS algo-
rithms in large-scale problems

mance for large-scale problems. Unlikely, by increasing the
size of the problems, the performance of AIS algorithm will
be improved.

Tables 8 and 9 show that for 93.75% of small-scale prob-
lems the obtained Bestsol is equal to the BestC S A. For
81.25% of the large-scale problems, the Bestsol of algo-
rithms is equal to the BestAI S . It means that for small-scale
problems CSA performs better than AIS and for large-scale
problemsAIS performs better thanCSA. In addition, Figs. 11
and 12 show that the proposed meta-heuristic algorithms are
sensitive to the number of stages and themaximumnumber of
jobs. Moreover, Fig. 13 demonstrates the convergence speed
of algorithms in the same iteration. As shown in Fig. 13,

123



3162 S. Abdollahpour, J. Rezaian

Fig. 11 The interaction between stage and performance of algorithms

Fig. 12 The interaction between maximum number of jobs and performance of algorithms

AIS has higher convergence speed and is obtained the bet-
ter solutions than the CSA algorithm in the same iteration
number.

One of the important factors that affect decisions is the
ratio of MTS/MTO. Generally, in order-based industries, the
demand of orders from MTS policy is considered less than
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Fig. 13 The convergence speed of algorithms for problem 1 of large-
scale problems

Fig. 14 The influence of MTS/MTO ratio on the objective function

MTO policy. Here, for analyzing the impact of MTS/MTO
ration, a test problem is selected and the results are shown in
Figs. 14 and 15.

According toFig. 14, by increasing the ratio ofMTS/MTO,
because of limitation of machines capacity some of MTO
jobs will be accepted and most of them should be rejected,
and the value of objective function will be dropped.

Another factor that could be effect on performance mea-
surements is the percentage of order family(N)/SUM. It will
be asked that accepting more orders with less jobs is appro-
priate or accepting less orders with more jobs. This is one of
the most important problems to achieve the balance between
keeping market portion and on-time delivery of orders. Fig-
ure 16 illustrates the selection of the second approach.

Figure 16 shows clearly that in the same number of orders
when the number of jobs is increased, the objective function
will be increased. On the other hand, in the same number
of jobs, increasing the number of orders can be improved
the objective function value. These results are predictable.
Because, as mentioned above, the available time of machines
is constant. So, when the number of orders is increased while

Fig. 15 The influence of MTS/MTO ration on the number of accepted
order

Fig. 16 The influence of order family(N)/SUM ratio on the objective
function

the number of ordered jobs becomes constant or less, the
number of accepted orders becomes increased and the objec-
tive function gets better. Unlikely, increasing the number
of jobs when the number of orders becomes constant, the
number of accepted orders becomes less, and in result, the
objective function value gets worse.

Due to the above results, for every manufacturing system
acceptingmore orders with less number of jobsmay be better
than accepting fewer orders with more number of jobs. It is
obviously because increasing the accepted orders not only
has more financial profit but also improves the company’s
image. It is remarkable note that this approach can be useful
in the specified situationwhich the rejection costs of all orders
are nearly equal to it.

It is important note that in Figs. 14, 15 and 16 the AVER-
AGE curve illustrates the average of obtained results by both
algorithms.
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6 Conclusion

This paper considered the no-wait hybrid flow shop with
time limitation of machines and mixed MTO/MTS produc-
tion management strategy. Due to the wide application of
different variants of no-wait flow shop system in the various
industries such as steel factories, plastic industries and chem-
ical processes, studying on this system is very important.
This study can be useful and valid for all above-considered
industries. A new mathematical model is proposed, and as
the solution approaches, two new meta-heuristics are pro-
posed for this problem: the artificial immune system (AIS)
as a population-based method and the cloudy-based simu-
lated annealing (CSA) as a single-point approaches.

The results of experiments revealed that, however, CSA
is obtained the better results but AIS has higher convergence
speed.

In this study, all jobs are divided intoMTOorMTSgroups.
The results show that increasing the MTO jobs decreases the
MTS jobs production rate and this matter may reduce the
market portion of company. In addition, increasing the pro-
duction rate ofMTS jobs causes the more orders are rejected,
and in result their financial profits are lost and the worth of
brand becomes less. So, to achieve balance between keep-
ing market portion and increasing the financial and spiritual
worth of company accepting the orders which have less jobs
may be good approach.

This study can be useful for every industries which use
flexible no-wait flow shop production line and produceMTO
and MTS jobs separately or in a same time.

Several ideas deserve further investigation. First, the com-
bined MTO/MTS policy is rarely studied, but it has great
potential to develop this idea in other manufacturing sys-
tems. Second, in this study theMTO andMTS products have
the same characteristics. But, in many modern industries the
custom products may have different characteristics.
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