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Abstract This paper aims to develop a hybrid genetic algo-
rithm (HGA) to solve the resource constrained assembly
line balancing problem (RCALBP) in the sewing line of a
footwear manufacturing plant. Sewing, which is the most
critical process in footwear manufacturing, has a series of
processes, such as punching, trimming, attaching shoelaces.
RCALBP in the sewing line considers not only the prece-
dence constraints of product assembly but also the resource
constraints, such as operators and equipment. A novel HGA
that includes two stages is proposed to optimize the resources
in the sewing line. The first stage uses the priority rule-
based method (PRBM) to determine the feasible solutions
of assigning tasks and machines to workstations. The solu-
tions of PRBM are used to construct the initial population of
genetic algorithm (GA) in the second stage. To ensure that
the solution of GA is feasible, a two-point-order crossover
with the new technique of searching feasible solution pat-
terns is proposed. Moreover, the mutation procedure of GA
is modified to avoid the building block from breaking, which
may cause unfeasible solutions in RCALBP. A self-tuning
method is also applied recursively to exclude unfeasible
solutions. The proposed HGA is compared with the man-
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ual procedure adopted practically in factories, the existing
heuristic model in the literature, and the traditional GA.
Based on actual data from a footwear factory, computational
results demonstrate that the proposed HGA can achieve bet-
ter results than the other algorithms.
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1 Introduction

The footwear industry is rapidly expanding. According
to the 2014 Global Footwear Market Analysis published
by Research and Markets, the total revenue of the world
footwear market in 2013 was US$ 258.5 billion, which rep-
resented a compound annual growth rate of 4.4% between
2009 and 2013. The value of the footwear market is expected
to reach US$ 329.8 billion in 2016 (Marketline 2014).

Similar to other industries, the footwear industry faces
various challenges because of the market trend of low-
volume orders and design variations. Nowadays, footwear
is considered as a fashion item and its design style changes
frequently. The footwear industry must adapt to these fast-
paced changes. Thus, their assembly lines need to quickly
respond to new footwear designs. Moreover, major footwear
brands, such as Nike and Adidas, shortened their product life
cycles to reflect market trends. As a result, footwear manu-
facturers have faced relatively low-volume orders.

Footwear manufacturing is known to depend mostly on
considerable labor operations. Thus, the factories of major
footwear manufacturers are located in countries with low
labor cost, such as China, Vietnam, and Indonesia. How-
ever, the labor cost in these countries increased recently,
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and robot-assisted manufacturing is not yet widely applied
in the footwear industry. Thus, cost reduction is critical in
this industry, particularly in the manufacturing sector in the
supply chain.

The footwear manufacturing process includes several
stages, and each stage specifies a product attribute, such as
gender, size, color, sole type, andmaterial. In all these stages,
the sewing stage accounts for a high proportion of labor cost.
This stage consists of a series of processes, such as punch-
ing, trimming, attaching shoelaces. The tasks are assigned
to workstations (WSs) depending not only on precedence
relations but also on resource constraints such as varying
machine types. If workloads among the WS in the sewing
line are unbalanced, the work-in-process and waiting time
tend to increase. This process increases cost and production
time. Therefore, balancing task loadings ofWS in the sewing
line is necessary. A factory that is more capable of balancing
its assembly line in the sewing process has a more efficient
sewing process and lower labor cost.

The mathematical formalization of the assembly line bal-
ancing problem (ALBP) was first introduced by Salveson
(1955). ALBP assigns various tasks toWS and achieves spe-
cific objectives without violating certain constraints. Many
methods have been developed to solve various forms of
ALBPs. ALBP has numerous assumptions. Thus, Baybars
(1986) proposed a classification for ALBP under the basic
problems called simple assembly line balancing problem
(SALBP). Becker and Scholl (2006) conducted a survey that
focused on generalizing ALBP. In their study, all the char-
acteristics of assembly line systems with both simple and
generalized problems were surveyed to further exploit real-
istic problems. Boysen et al. (2007) proposed a classification
of ALBP under the basic problem of SALBPwithmore com-
plex assumptions, such as subsequent works, u-shaped line,
parallel stations, and processing alternatives, which were
classified to the general assembly line balancing problems.
Boysen et al. (2008) summarized many methods, which can
be categorized into exact and heuristic methods, to solve the
various forms of ALBP.

Over the past decades, many researchers have developed
exact solution approaches to determine the optimal solution
to the task arrangement in ALBP. The two most popu-
lar approaches are the algorithm-based branch-and-bound
method and dynamic programming, such as the FABLE algo-
rithm (Johnson 1988), adapted general sequencing algorithm
(Sprecher 1999), bidirectional branch-and-bound algorithm
(Scholl and Klein 1997), and graph-based dynamic program-
ming (Bautista and Pereira 2009). However, in most cases,
the exact solution approaches cannot provide an efficient
solution to large-scale problems because of computational
complexity.

Aside from exact methods, heuristic approaches are also
used to solveALBP, which is considered as anNP-hard prob-

lem. Heuristic approaches cannot produce optimal solutions,
but their procedures are applicable to general problems. Sev-
eral evolutionary computation and meta-heuristic method-
ologies, including genetic algorithm (GA) (Chen et al. 2002;
Ghosh andGagnon 1989;Kim et al. 1996; Levitin et al. 1995;
Rekiek et al. 2001; Sabuncuoglu et al. 2000; Triki et al. 2014),
tabu search, ant colony algorithm, particle swarm optimiza-
tion, simulated annealing, and scatter search (Azadeh et al.
2015; Cano-Belmán et al. 2010; Chica et al. 2015; Delice
et al. 2014; Özcan and Toklu 2009; Rada-Vilela et al. 2013;
Rahimi-Vahed et al. 2007; Roshani et al. 2012, 2013; Zha
andYu 2014), were proposed. According to Tasan and Tunali
(2008), among the meta-heuristic approaches, GA gained
research attention because of its directed random searches
to determine optimal solutions in complicated contexts as a
new alternative to traditional optimization techniques. Many
studies employed the GA method to solve manufacturing
optimization problems not only in ALBP but also in various
areas, such as facility layout and location design, production
planning and control, supply chain management (Tasan and
Tunali 2008).

Thus, the present study focuses on GA as the main tech-
nique to solve the resource constrained ALBP (RCALBP).
RCALBPwas first proposed byAğpak andGökçen (2005) to
consider not only the precedence relationships among tasks
but also the resource constraints that limit the assigned tasks
in theWS. Chen et al. (2012) solved RCALBP in the garment
industry with the workers’ skill level as a resource constraint.
In the present study, we consider the type of machines as the
resource constraint that limits only one type of machine in
one WS. Kao et al. (2011) also addressed this problem using
a bidirectional heuristic with the ranked positional weight
(RPW) rule to assign tasks into WS (Kao’s heuristic model).
However, the solution of Kao’s heuristic model is ineffective
particularly to large-sized problems because the RPW rule
can generate only an initial balance for the assembly line.
Thus, Kao et al. only provided feasible solutions for large
problems, and the results may be in the local optimum.

In this study, the proposed hybrid genetic algorithm
(HGA) consists of the heuristic approach-based priority rule
as the first stage based on the work of Kao et al. to establish a
feasible initial solution. GAwith a self-tuningmethod is used
in the second stage to identify effective solutions. The novelty
of the proposed HGA lies in the combination of two heuristic
stages with new crossover and mutation techniques, and this
algorithm is expected to improve the solutions of RCALBA
in footwear factories.

The rest of this paper is organized as follows: Sect. 2
discusses the characteristics of the production line, partic-
ularly the sewing line, in footwear manufacturing. Section 3
presents a mathematical model of RCALBP. Section 4 intro-
duces the proposedHGA,which is used to solve the problem.
Section 5 presents the computational results vis-à-vis those of
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themanual process,Kao’s heuristicmodel, and the traditional
GA. Section 6 summarizes the conclusions and provides
directions for future research.

2 Characteristics of production line in footwear
manufacturing

This section introduces the footwear production process. A
shoe consists of twomain components: the upper part and the
sole. The upper part contains all the parts above the sole, such
as toe box, vamp, foxing, lining, tongue, and quarter. These
components are highly diverse in terms of styles and designs.
The upper parts are produced through cutting, preparation,
and sewing processes. Sole manufacturing consists of the
outsole and midsole processes. The upper and sole parts are
assembled in the final assembly process. The sewing line
under this study belongs to the manufacturing process of
the upper part as a case study, which exhibits the following
specific characteristics:

2.1 Workstation arrangement

The completion of each task requires a specific piece of
equipment that needs an operator with a particular skill level
to operate. A WS is assigned to process a task after the
equipment and operator are arranged to perform the assigned
tasks. WSs are lined up near and adjacent to each other
on the work floor. Workstations may have different sewing
machines and operators with varying skill levels. One task
cannot be assigned to a WS that does not have the appropri-
ate resources. Only when the required task on a workpiece
is completed on the current WS the workpiece can be trans-
ferred to the next station. Thus, a sewing line is considered
an “un-paced asynchronous line.” These requirements are
fundamental in designing a sewing line.

2.2 Resource assignment

Different kinds of machines can be arranged in one sewing
line, such as shaping or needle stitching machines. An opera-
tor with a certain skill level is required to operate a particular
machine. Different processes can be assigned to a WS, such
as gluing and inserting shoelaces.One station can be assigned
to operate only one machine type, and one machine can be
assigned to only one WS. This arrangement builds up a one-
to-one relationship between WS and machine type.

2.3 Processing times and parallel station

At present, the sewing process still needs human operators
because of its limits in automation, although machines are

provided and used. Thus, sewing operating time is regarded
as stochastic deviations. The sources of deviations may be
one of thousands of possible factors, such as machine set-
ting, environment, and complexity of tasks. In practice, the
smoothness of a sewing line ismaintained by frequent adjust-
ments when a possible risk of imbalance occurs. Thus, the
assumption that processing time is static and deterministic
is acceptable. A few tasks have a longer processing time
than the production cycle time. These tasks are divided into
short tasks with similar precedence constraints and sewing
characteristics. Thus, more than one WS is required for the
mentioned task.

2.4 Structure of precedence graph

The process of a sewing line typically contains one main
branch where the entire task is to assemble components into
the main component. All the processes end at one final point,
which is usually shoelace insertion (except when the shoe is
lace-less).

The sewing process is illustrated by the precedence graph
relationship. One task can have more than one precedence
task but only one follower. This arrangement ensures that the
shape has a convergent look. The shape is usually classified
into three categories: sequence, middle, and assembly. The
assembly shape has several subgroups, each standing for a
set of tasks required to produce the component.

The detailed task description of the sewing line of a simple
model is shown in Table 1.

Based on a review of the production line characteristics
in footwear manufacturing, the specific sewing line under
investigation can be formulated by RCALBP. The next sec-
tion introduces the mathematical model of RCALBP, which
was proposed by Ağpak and Gökçen (2005).

3 Mathematical model

The aforementionedproblem is knownasRCALBP.We iden-
tify the problem in a sewing assembly line based on a decent
classification system proposed by a recent study by Boysen
et al. (2007), which is presented in Table 2. The problem
notation is presented in the three elements [α|β|γ ], where
α represents the characteristics of the precedence graph, β

denotes the station and line characteristics, and γ indicates
the objective function.

The following notations are used for the mathematical
model, which is based on the study by Ağpak and Gökçen
(2005):

Index: i (task), j (workstation), r (type of resources)
N : number of tasks (i = 1, . . ., N )
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Table 1 Detailed task description of a sewing line

No. Task name Task time Machine ID Machine type Predecessors

1 Press and shape tip 40 2 Shaping machine

2 Stitch quarter in and quarter out 56 3 Zigzag stitching machine

3 Stitch collar logo 35 4 Computer stitching machine (small)

4 Stitch zigzag quarter with collar 47 3 Zigzag stitching machine 2, 3

5 Stitch collar with heel 102 10 Needle stitching machine 2 4

6 Stitch collar lining 38 5 Needle stitching machine 1 5

7 Spray glue and paste vamp 15 7 Spray glue machine

8 Stitch quarter and vamp 89 5 Needle stitching machine 1 6, 7

9 Stitch quarter and tip 174 5 Needle stitching machine 1 1, 8

10 Edge stitching 42 5 Needle stitching machine 1 9

11 Insert shoelace 137 101 Manual 10

Table 2 Classification of
RCALBP

Attribute Characteristics of problem Tuple

Precedence graph characteristics

Product specific Single product α1 = 0

Structure of precedence graph Converging graph α2 = spec

Processing time Static and deterministic α3 = 0

Sequence-dependent task time increments Disregarded α4 = 0

Assignment restrictions No restriction α5 = 0

Processing alternatives Disregarded α6 = 0

Station and line characteristics

Movement of workpiece Un-paced asynchronous β1 = unpacλ = 0

Line layout Production flow line, not specific β2 = 0

Parallelization Parallel workstations and tasks β3 = pstatλ, ptaskλ

One workstation—many tasks

Resource assignment One workstation—one/no machine β4 = resλ

Station-dependent time increments Disregarded β5 = 0

Additional aspects of line configuration Disregarded β6 = 0

Objective

Objective Minimized number of workstations γ = m

mmax: maximum number of workstations
( j = 1, . . ., mmax)

R: number of types of resources (r = 1, . . ., R)

W j : set of tasks that can be assigned to station j
C : cycle time
ti : processing time of task i
Ei : earliest station that task i can be assigned to, given
the precedence graph
Li : latest station that task i can be assigned to, given the
precedence graph
P: set of tasks that precedes a task
K jr : set of tasks that can be processed in station j using
resource r
||K jr ||: number of tasks in set K jr

Decision variables

xi j =
{
1: if task i is assigned to workstation j
0: otherwise

z j =
{
1: if any task is assigned to workstation j
0: otherwise

M jr =
{
1: if resource r is assigned to workstation j
0: otherwise

Objective function

Minimum
R∑

r=1

mmax∑
j=1

M jr (1)
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Subject to

Li∑
j=Ei

(
xi j

) = 1, i = 1, . . . , N , (2)

∑
i∈W j

ti (xi j ) ≤ C, j = 1, . . . , mmax, (3)

La∑
j=Ea

j (xaj ) −
Lb∑

j=Eb

j (xbj ) ≤ 0, ∀ (a, b) ∈ P, (4)

∑
i∈K jr

xi j − K jr M jr ≤ 0, r = 1, . . . , R, (5)

mmax∑
j=1

M jr = 1, r = 1, . . . , R, (6)

mmax∑
j=1

z j ≤ mmax (7)

xi j , z j , M jr ∈ {0, 1} ∀i, j, r

The original objective of ALBP is tominimize the number
of WS. However, in RCALBP, the objective can be stated
as minimizing the number of resources assigned to the WS
(Ağpak and Gökçen 2005). The constraints are described as
follows: Equation (2) is a constraint of decision variables for
the task assignment. The model guarantees that each task is
assigned to only oneWS.Equation (3) ensures that the station
time ofWS m does not exceed the cycle time. Equation (4) is
a precedence constraint, given that the processing sequence
of tasks is subject to precedence restriction. This constraint
guarantees that task a cannot be assigned later than task b
if task a is a precedence of task b. Equation (5) is subject
to the type of resource assignment. This model ensures that
if one task is performed in WS j with resource r , the M jr

value obtains 1. Equation (6) guarantees that only one type
of resource is assigned to each WS. Equation (7) indicates
that all tasks have to be assigned to the WS.

As mentioned, RCALBP is an NP-hard problem. Thus,
this study develops a heuristic algorithm to solve RCALBP.
More information on the proposed algorithm is presented in
Sect. 4.

4 Proposed hybrid genetic algorithm

The proposed HGA includes the priority rule-based method
(PRBM) in the first stage and the proposed GA in the second
stage. PRBM is one of the heuristic approaches to identify
the feasible solutions of ALBP. However, PRBM is insuf-
ficient in solving large-scale problems. By contrast, GA is
a very popular approach for solving relatively large-scale
optimization problems. The initial solution in GA is highly

critical because of its effect on the performance of GA. Thus,
the integration of PRBM and GA aims to enhance the per-
formance of the proposed method. The first stage employs
PRBM to obtain the initial balance, and the second stage
uses GA, which adopts the result of the first stage as the
initial population. In the GA procedure, the two-point-order
crossover with varied crossover length and feasible pattern
is designed to ensure good inheritance among the offspring
and to prevent unfeasible solutions in a set of offspring. The
self-tuning method is applied to remedy the unfeasible solu-
tions caused by the precedence and resource constraints. The
mutation process is developed to prevent the building block,
which may cause unfeasible solutions. Figure 1 presents the
general procedure for the proposed HGA. Essentially, the
first stage initially uses PRBM to identify a feasible initial
solution to the second stage where GA is used to determine
the optimal solution of RCALBP.

4.1 Stage 1: PRBM

PRBM is proposed to identify the feasible solutions of NP-
hard optimization problems. Several studies were conducted
on the priority rules of ALBP (Helgeson and Birnie 1961;
Scholl 1999; Scholl et al. 2010). The priority rules are divided
into two groups: minimization rules (high rank for small
priority value) and maximization rules (high rank for great
priority value). The factors employed to identify the priority
rules, including processing time, cycle time, and precedence
diagram. The most popular priority rule in ALBP is ranked
positionalweight (RPW),whichwas introduced byHelgeson
andBirnie (1961).Kao et al. (2011) constructed theRPWrule
as an efficient method to solve RCALBP. In their work, the
task time divided by latest workstation (TLW) rule is chosen
to conduct feasible solutions in PRBM based on a study by
Otto and Otto (2014). This priority rule is selected for two
reasons. First, the TLW rule is in a group that depends on
the information on both task time and precedence relations.
The TLW rule is already aggregated in the latest workstation
rule. Second, TLW is in the group of five priority rules that
were proven to potentially perform in terms of computation
efficiency.

Aside from the notations used in the mathematical model,
a few more notations are introduced to describe the heuristic
approach in PRBM, including the total time of aWS (t (Sm)),
set of feasible tasks assigned to (FS), set of assigned tasks
(A), set of unassigned tasks (U ), set of feasible tasks operated
by a similar type of resource in WS m (WRm,), set of feasi-
ble tasks with predecessors assigned to previous WS m − 1
and using similar types of resource as those of predecessors
(WRir ), and set of feasible tasks with predecessors assigned
to previousWS m −1 but not using a similar type of resource
as those of predecessors (PUSir ). The procedure is shown in
Fig. 2.
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Initial Chromosomes

Output Solution

Input Data 

Genetic Algorithm
Operation

Priority Rule-based 
Method (PRBM)

• Using the task time divided by 
latest workstation (TLW) rule to 
find the feasible solutions

• The result is used as the initial 
population in the GA stage

Evaluation of fitness value

Selection

Mutation process 
(preserve building block)

Adjustment of 
chromosomes list

Termination criteria met?

Output Solution

Yes

No

Crossover process

Self-tuning process

Fig. 1 HGA procedure

4.2 Stage 2: Proposed GA

4.2.1 Encoding and decoding

Choosing the chromosome representation is the first and
most important step in forming the GA. Chromosome rep-
resentation clearly describes the real problem and affects
the diversity of the quality of the solutions. Goldberg
(1989) introduced several methods to construct chromo-
some representations that were applicable in ALBP, such
as WS-oriented, sequence-oriented, and partition-oriented
representation. In the present study, sequence-oriented repre-
sentation is selected because this method offers a number of
advantages. First, this representation is adequate for ALBP,
whose number of WS is not pre-delimitated. Moreover,
this representation is more tractable in the genetic operator
because all tasks are arranged in the order of their alloca-
tions to the WS. The number of genes in the chromosome is
defined by a number of tasks.

Figure 3 illustrates the encoding and decoding of the chro-
mosome expression. We suppose that 10 tasks are assigned
to seven WSs. The chromosome representation is {1 1 3 2 7
4 5 5 6 4}, which means that tasks {1, 2} are assigned to WS
1, task {4} to WS 2, task {3} to WS 3, tasks {6, 10} to WS
4, tasks {7, 8} to WS 5, task {9} to WS 6, and task {5} to
WS 7.

4.2.2 Initial population

Initial solutions significantly affect the quality of the solu-
tion in heuristic approaches. In the proposed GA, the result
from the first stage is used to construct the initial popula-
tion. When the produced initial solutions are more diverse,
heuristic approaches that perform better can be obtained.
In this study, the proposed PRBM heuristic with TLW rule
can enhance the initial population diversity by increasing the
number of feasible solutions. First, the heuristic PRBM con-
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Fig. 2 PRBM procedure
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Fig. 3 Encoding and decoding of chromosome expression in HGA

siders the tasks without a predecessor task in the precedence
relation. Each task from the set of tasks without a predeces-
sor task is sequentially selected as the first task to assign to
WS. The remaining tasks are assigned based on the TLW
rule. The number of feasible solutions can be equal to the
number of tasks in the set of tasks without a predecessor
task.

All the feasible solutions generated are employed to con-
struct the initial population. The quality of feasible solutions
that are evaluated based on the fitness value is considered to
identify the number of initial elements that should be gen-
erated from each feasible solution. The initial elements are
constructed according to the probability distribution of fit-
ness values. The initial elements from each feasible solution
are calculated by multiplying the number of population by
the corresponding probability of each feasible solution. For
example, PRBM found three feasible solutions at the first
stage. The fitness values of the three feasible solutions are
8, 10, and 11, and the corresponding probabilities are 27.6,
34.5, and 37.9%, respectively. If the population size is 150,
the initial elements from each feasible solution are 41, 52,
and 57, correspondingly.

4.2.3 Fitness function

A fitness value is a function that identifies how well an allo-
cation performs. Only one machine can be assigned to one
WS. Thus, minimizing the number of resources is equiva-
lent to minimizing the number of WS. With the given cycle
time, a smaller number of WS produces a better result than
a larger one. Thus, chromosomes with a small fitness value
have ahighprobability of being chosen in the next generation.
However, chromosomes with recessive genes can produce a
particular feature in a child in a few cases. If we choose only
the best solution from an initial population, we can omit the
chromosome with recessive genes. By defining the adjusted
fitness value (AFV) to adjust the number of WS, we can
increase the probability of an offspring being chosen for the
next generation.

AFV = m + η, (8)

where m, number of workstations; η, line balance efficiency

η = Total task time

No. of stations × Cycle time
=

(
N∑

i=1

ti

)
/ (m × C)

(9)

The line balance efficiency measures the percentage of
WS time, which is used effectively to assign the appropriate
tasks to the WS. According to the formulation of AFV, η

becomes larger as m becomes smaller and vice versa. Thus,
the chromosomeswith a large fitness valuemaynot be chosen
in the next generation,which can be selected after performing
the AFV.

4.2.4 Selection

Selection in GA is a procedure of selecting individuals for
reproduction. The two most popular methods are roulette
wheel and tournament selection. In the roulette wheel
method, the selection of parents is based on the probability
distribution of the AFV. Tournament selection includes run-
ning a few tournaments among a few individuals randomly
chosen from the population and selecting the winner. The
roulette wheel method is chosen, and its procedure is based
on AFV.

4.2.5 Crossover operator: two-point-order crossover

The crossover phase is the main genetic operator in GA.
This phase mates two chromosomes to produce the next
generation using the information of the parents. The parent
chromosomes are selected in the selection procedure. This
step encounters difficulties in designing a favorable crossover
operator to mix the fitting characteristics of the parent solu-
tions into valid offspring solutions.

The traditional one-point or two-point crossover can gen-
erate an unfeasible solution because it disregards the prece-
dence and resource constraints. To expend the possibility of
feasible patterns inherited from the parent chromosomes, the
two-point crossover is used and a new method of choosing
crossover points is proposed in this study. The new crossover
procedure includes two steps. The first step is searching
the two crossover points from two parents. Second, the pat-
tern of genes within crossover points is reordered to create
diverse solutions. The resources and precedence constraints
are checked, and the self-tuning method is applied to guar-
antee that the solutions of the new chromosome are feasible.

In the proposed method, all possible crossover points are
evaluated. The chromosomes that violate the precedence
and resource constraints are excluded. The procedure of
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Fig. 4 Crossover procedure in proposed HGA

choosing the crossover points is demonstrated in Fig. 4a.
A few definitions for the crossover procedure are listed as
follows:

• u: index of gene in parent A;
• v: index of gene in parent B;
• l: crossover length; l = 2 : [g − 2] with g: number of
genes.

The process starts with the first gene in parent A (u = 1) and
crossover length l = 2. All the feasible crossover lengths
in parent B are checked and placed in the feasible crossover
set. The crossover length is increased, and the process in
parent B is repeated. The loop is repeated until the length

reaches the last gene in parent A, and the next gene in A is
chosen.
For u = 1 (start with the first point in parent A)

l= 2 (the shortest length (initial value))

v = 1,…, g

Reject all the chromosomes that violate the precedence and resource

constraints

The remaining solutions are in a set of feasible pattern crossover

l = l + 1 (increase crossover length)

u = u+ 1

End
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The crossover procedure includes the following steps:

Step 1 Select two chromosomes using the roulette wheel
method.

Step 2 Select two crossover points from a set of feasible
pattern crossovers. Thus, all cases are placed in the
feasible pattern. The procedure will scan all and pick
the best one.

Step 3 Do crossover.

• The offspring maintain the part on the left and right sides
of the cross points.

• For offspring A, choose the genes within two crossover
points of parent B, and preserve the relative order. Off-
springA inherits all the geneswithin two crossover points
of parent A with the order derived from parent B.

• Repeat the same procedure for offspring B.

Figure 4a illustrates the two crossover points in differ-
ent locations with the crossover length that is selected
from the feasible pattern crossover equal to 4 (l = 4) as
an example. The procedure of taking the gene’s order is
described in Fig. 4b. Two selected parents are denoted as
{1 1|2 7 3 5|4 9 6 8 9} and {1 3 4 7|6 7 5 2|8 9 2} with the cut-
point for l = 4. For offspring A and B, “x” indicates the
genes waiting for the crossover process. Thus, offspring A
and B are temporarily presented as {1 1|x x x x|4 9 6 8 9} and
{1 3 4 7|x x x x|8 9 2}, respectively. Based on the genes within
two crossover points, the waiting genes of offspring A are
determined by identifying the sequence of these genes in
parent B and vice versa. In this case, the genes {2}, {7}, {3},
and {5} appear as sequentially at the sequence 3-7-7-5-2-
2 in parent B ({1 3 4 7|6 7 5 2|8 92}). Note that the sequence
3-7-7-5-2-2 has some repeated numbers because two tasks
are assigned in the same WS in parent B. After the dupli-
cation in 3-7-7-5-2-2 is removed, the sequence is 3-7-5-2.
Offspring A takes this sequence and fills in the “x” spots as
{1 1|3 7 5 2|4 9 6 8 9} in Fig. 4c. Based on the same proce-
dure, the “x” spots in offspring B can be filled with 2-7-5-6,
which is the presenting sequence of 6-7-5-2 in parent A. The
offspring after crossover are presented in Fig. 4c.

4.2.6 Self-tuning method

The self-tuning method is applied to correct the unfeasible
solutions caused by the constraints. Chen et al. (2002) used
the self-tuningmethod inmulti-objective assembly planning.
In their study, the self-tuning method was employed after
generating the initial solution to fix the unfeasible solutions.
However, in the present study, the initial solutions are already
feasible because they are derived fromPRBM. Thus, the self-
tuning method is used to check the unfeasible solutions after

conducting crossover. The procedure of thismethod is shown
in Fig. 5. To validate the chromosome, the genes are checked
whether they satisfy the constraints or not. If they satisfy
the constraints and the corresponding tasks have not been
assigned to WS, the corresponding tasks are assigned to WS
and recorded in the correct gene record. The genes that do
not satisfy the constraints are placed in the backlog record for
further checking. After considering all the genes that satisfy
the constraints, the genes in the backlog record are checked. If
no gene is listed in the backlog record, the correct gene record
returns the feasible chromosomes. If the backlog record is not
empty, the algorithm checks the constraints of genes in the
backlog record. The corresponding tasks of the genes that
satisfy the constraints are assigned to the WS. The assigned
genes are removed from the backlog record, and the result
is stored in the correct gene record. This process is repeated
recursively until all the chromosomes are finished.

4.2.7 Mutation operator

Themutation operation can create new feasible solutions and
reproduce offspring. This operation can be used to increase
the diversity of the population and prevent local optimal solu-
tions. The mutation procedure is modified to avoid breaking
building blocks and to prevent unfeasible solutions.

The mutation procedure includes the following steps, as
shown in Fig. 6:

• Identify a set of available elements to conduct the muta-
tion (SA).

• Randomly select the first element from a set of available
elements according to the selection procedure.

• Identify a set of building block elements (SBB) based on
the constraints.

• Set of mutation feasible elements = {set of available
tasks}/{set of building block tasks}(SMF = {SA}/{SB
B}).

• Randomly select the second element from a set of muta-
tion feasible elements.

• Generate a random number r ∼ U(0, 1).
• If r < pm (mutation rate): swap the two elements.

To enhance the exploitation of local optima, 10% of the
population is replaced by very good solutions when the iter-
ation exceeds 90% of the total iterations, allowing a dense
search around the very best solutions of the population.

The proposed HGA method was performed to test real-
world data from a footwear manufacturer in China. The
experimental result of HGA was compared with the results
of the manual method applied on site, Kao’s bidirectional
heuristic method, which is the representative method for
solving RCALBP in the footwear assembly line, and the
traditional GA with conventional heuristic procedure. In the
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Validate the gene
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chromosome processed

Satisfy the constraints?
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The corresponding task
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Check the constraints of genes in 
the backlog record
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Remove it from the backlog record
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Check the primary chromosomes
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Yes

No

No

Yes

No
Yes

No

Yes

No

Yes

Start

End

Fig. 5 Self-tuning method to correct the unfeasible solutions

following section, additional details on the results of the com-
parison are discussed.

5 Result and discussion

In this study, all the methods were coded in the C# pro-
gramming language and run on a computer with Intel Core
i7 and a 2.93-GHz processor with 4GB RAM. The initial
parameter setting for the proposed HGA was set as follows:
generation = 100, population = 100, crossover rate = 0.8,
and mutation rate = 0.1.

Two factors, namely problem size and shape of the prece-
dence graph, were adopted in the experiments to compare

Fig. 6 Mutation procedure in proposed HGA

the quality of algorithm and computational efficiency. These
two factors were categorized according to manufacturing
processes in actual situations. The problem size in terms of
the number of tasks can be divided into threemain categories:
small, medium, and large scale. The small-scale problems
deal with operations involving children’s shoes or slippers
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Fig. 7 Precedence graph of assembly line

with approximately 30 tasks. The medium-scale problems
are for running shoes or outdoor-activity shoes with approxi-
mately 70 tasks. The large-scale problems include functional
shoes with up to 100 complicated design tasks. The prece-
dence graphs were divided into three categories: sequence,
middle, and assembly. The shapes of the precedence graphs
demonstrate the differences and complexity in the assembly
processes (Fig. 7).

The optimal solutions of the problems are unknown. To
evaluate the efficiency of the proposed HGA, a compari-
son was conducted between the proposed HGA and (1) the
current manual procedure in the footwear factory, (2) the
existing Kao’s heuristic model, which was adjusted to meet
the resource constraint requirement of the mentioned prob-
lems, and (3) the traditional GAwithout considering feasible
solution remedy. The proposed HGAwas compared with the
traditional GA based on the work of Chen et al. (2002). The
experiments were first tested in the traditional GA where all
the procedures were processed conventionally without the

self-tuning method. The improvement in the quality of solu-
tion using the proposed HGA was addressed.

A total of 18 models, which were derived from the
real-world sewing line of an athletic and casual footwear
manufacturer in southern China, were used in the experi-
ments. The experimentwas repeated 30 times for eachmodel,
and the average of the best solution was considered to rep-
resent the result. The initial parameter settings for GA were
mentioned at the beginning of this section. The number of
generations was adopted as the termination criteria of both
traditional GA andHGA. Table 3 indicates the representative
results of the experiments in terms of WS of these meth-
ods.

The number of WS and the relative deviation (RD) were
used to measure the improvement of the proposed HGA rel-
ative to that of the manual process, Kao’s heuristic model,
and the traditional GA. RD was calculated based on the
differences between the two methods to demonstrate the
improvement in percentage points. The higher RD value
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results in greater improvement of the proposed HGA. The
formula for calculating RD is as follows:

RD = (m X − mY )

m X
× 100%, (10)

where m X is the number of WS of the existing method and
mY is the number of WS of the proposed method.

According to the results in Table 3, HGA outperforms
other methods in terms of WS and RD. However, the
improvements vary among the comparisons of HGA with
different methods. Thus, the comparisons between HGA and
other methods are analyzed as follows:

First, based on the comparison of the manual process
with the proposed HGA, HGA yields improvements on 17
models with a total of 103 WS improvements in 18 tested
models. The improvements aremore significant inmore com-
plicated models, such as the medium-scale and large-scale
problem with a complex precedence graph. In terms of RD,
the proposed HGA achieves the best performance at 12.8%
improvement for the medium-scale problem and assembly-
shaped model on average.

Second, the result shows that the HGA performs better
than Kao’s heuristic model in terms of WS and RD values.
HGA achieves an improvement of 78% of the total models
(14/18 models) with 78 WS improvement in total. Similar
to the preceding comparison, the improvements obtained by
HGA are more significant on the tested models that combine
themediumand large scaleswithmiddle and assembly shape.
The best performance is at 12.82% improvement in terms of
RD in one model, which combines the medium scale and
assembly graph. In terms of saving WS, the proposed HGA
achieves the best performance at the large-scale problem and
assembly-shaped model where 13 WSs are saved in total.

Finally, the results of the HGA and traditional GA were
compared. As mentioned, this comparison aims to determine
the improvement of the proposed HGA compared with the
conventional heuristic GA. According to the results shown
in Table 3, the proposed HGA is enhanced in 15 models,
saving a total of 131 WSs compared with the traditional
GA. This improvement by HGA is significant in the models
that combine medium-scale and large-scale problems with
middle-shaped and assembly-shaped models.

According to the experimental results, the proposed
HGA exhibited significant improvement on medium- and
large-scale problems. Table 3 indicates that among the six
small-scale models, HGA can obtain better solutions in only
three small-scale models with the best RD at 3.33%. By
contrast, a significant improvement can be achieved by the
proposed HGA in terms of WS and RD for medium- and
large-scale problems. The HGA exhibits the best perfor-
mance in the model with large scale and assembly shape
at 22.5% improvement in terms of RD and 25 WSs.

Figure 8 shows the differences of HGA and the three
methods in terms of WS based on the two mentioned fac-
tors. A larger difference implies greater improvement. HGA
exhibits better improvement for the medium- and large-scale
problem than for the small problem. This outcome is rea-
sonable because small problems are almost optimal, and
achieving significant improvement is more difficult than that
in medium- and large-scale problems. The HGA can achieve
the best performance with the large-scale problems. Simi-
larly, in terms of the shapes of precedence graphs, the HGA
works more effectively on the middle and assembly graphs.
The best improvement can be obtained using a model that
has a precedence graph with a middle shape.

The computational time is also compared in Table 4.
The manual model and Kao’s heuristic model can produce
the feasible solutions in seconds, whereas the traditional
GA and HGA take a longer time to obtain the solutions.
This result is reasonable because Kao’s heuristic model
is a simple heuristic procedure based on the priority rule.
Although Kao’s method is faster, the solution quality is com-
promised. HGA and the traditional GA require the longest
time to obtain the results because of the conventional heuris-
tic procedure. However, the quality of improvement of the
conventional heuristic procedure is significantly better than
that using Kao’s method. HGA has significantly better com-
putational time than the traditional GA because generating
initial solutions, designing crossover and mutation, and cor-
recting unfeasible solutions are improved. The traditional
GA searches the entire feasible space. Thus, it may generate
unfeasible solutions without any remedy, such as apply-
ing self-tuning method to correct them. These unfeasible
solutions can entail additional time in reproducing the chro-
mosomes for the next generation. In general, HGA takes
around1min to produce solutions for themedium-scale prob-
lem. The twomost complicated large-scale problems can also
be solved at around 600s (10min) by HGA. This computa-
tional time is acceptable on site because the current manual
method takes more than 30min for the large-scale problems
without any guarantee in terms of the quality of the solu-
tions.

The experimental results demonstrate that the proposed
HGA outperforms the manual procedure, Kao’s heuristic
model, and the traditional GA in terms of the quality of the
solutions. The manual procedure is currently used by facto-
ries to balance the workload on the sewing line. Although
the rule of the manual method is simple, this method takes
a longer time to obtain the results without guaranteeing
the quality of the results. Kao’s heuristic model seems to
exhibit a slight improvement compared with the manual pro-
cedure. The traditional GA with the conventional heuristic
procedure does not seem to provide better solutions. The
proposed HGA with the novelty outperforms other methods
with an acceptable running time in generating the initial solu-
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Fig. 8 Difference between HGA and other models based on size of problem and precedence graph

tions, designing the crossover and mutation procedure, and
correcting the unfeasible solutions by using the self-tuning
method.

The contribution to the manufacturing process using the
proposed HGA is critical. With a given cycle time, reducing
the number of WS implies that the WSs perform the tasks
with the better-balanced loading. Labor time is also maxi-
mized on the field. Saving a few seconds for each item in the
process can definitely reduce labor requirements because of
the large-scale throughput with thousands of shoes produced
per day in the factory. Reduced labor caused by the improved

load balance eventually leads to significant cost reduction by
accumulating the total reduction of manufacturing time.

6 Conclusion and future research directions

This study investigates RCALBP in the sewing line in
footwear manufacturing. The problem considers not only
the constraints of WS capacity and precedence graph but
also the resources. The main innovation of this study is
that the proposed HGA combines the PRBM and GA with
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Table 4 Experimental result of
computational time

Size category No. of task Shape Computation time (in s)

Kao’s heuristic Traditional GA HGA

Small 28 Sequence 0.8 21.6 0.5

Small 31 Sequence 0.7 24.1 0.5

Small 33 Middle 0.8 24.5 0.5

Small 27 Middle 0.9 19.0 0.6

Small 32 Assembly 0.7 22.7 1.2

Small 29 Assembly 0.7 20.8 1.2

Medium 67 Sequence 1.9 83.5 32.3

Medium 71 Sequence 1.9 99.3 51.8

Medium 65 Middle 1.3 80.1 36.1

Medium 75 Middle 1.6 99.6 45.5

Medium 74 Assembly 1.6 178.6 68.9

Medium 68 Assembly 2.1 187.0 55.5

Large 101 Sequence 4.4 308.3 111.0

Large 98 Sequence 2.8 299.4 203.6

Large 106 Middle 4.4 346.6 256.3

Large 108 Middle 5.4 355.7 268.9

Large 98 Assembly 5.5 620.4 587.4

Large 100 Assembly 6.1 689.5 600.2

redesigned crossover and mutation techniques. The results
proved that this proposedHGAcould provide improved solu-
tions for RCALBP in the sewing line of an athletic and casual
footwear manufacturer. The PRBM result is used to gener-
ate the initial population that can determine better starting
points for further GA. Moreover, the proposed GA devel-
ops a new technique to search the two crossover points at
different gene locations on two chromosomes. All feasible
crossover cases are placed in the feasible pattern, and the
selection for crossover can choose the best pattern. Besides,
the self-tuning method is applied to correct unfeasible solu-
tions quickly. The mutation operator is redesigned to avoid
breaking a building block that may cause unfeasible solu-
tions. Finally, this study was applied on the sewing line of
the athletic and casual footwear factory of Pou Chen Interna-
tional Group, which is one of major footwear manufacturers
in the world. The experimental results show that the pro-
posed HGA outperforms the current manual procedure in
the factory, the existing Kao’s heuristic model, and the tra-
ditional GA in terms of quality of solution (WS and RD)
with acceptable computation time. HGA could provide sig-
nificantly improved results, particularly for a combination of
medium-scale or large-scale problems with middle type or
assembly type of precedence graph.

Some suggestions for future research are as follows: First,
the better priority rules in the first stage should be further
studied because the initial solutions have an important role in
identifying good solutions in heuristic approaches. To diver-
sify the initial population, the initialization stage can consider

including the solutions generated by other heuristics. More-
over, the objective function can be extended using multiple
objective functions with the stochastic model in terms of
processing time. In addition, RCALBP can be enlarged with
additional resource constraints, such as types of tools and
labor skills.
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