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Abstract The nearest neighbor rule is one of the most con-
sidered algorithms for supervised learning because of its
simplicity and fair performance in most cases. However,
this technique has a number of disadvantages, being the low
computational efficiency the most prominent one. This paper
presents a strategy to overcome this obstacle in multi-class
classification tasks. This strategy proposes the use of Pro-
totype Reduction algorithms that are capable of generating
a new training set from the original one to try to gather the
same information with fewer samples. Over this reduced set,
it is estimated which classes are the closest ones to the input
sample. These classes are referred to as promising classes.
Eventually, classification is performed using the original
training set using the nearest neighbor rule but restricted to
the promising classes. Our experiments with several datasets
and significance tests show that a similar classification accu-
racy can be obtained compared to using the original training
set, with a significantly higher efficiency.

Keywords Nearest neighbor classification · Prototype
Reduction · Promising classes

1 Introduction

The nearest neighbor (NN) rule is the most representative
instance-based method for supervised classification. Most of
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its popularity in classification tasks comes from its concep-
tual simplicity and straightforward implementation.

This method just requires to work over a metric space,
i.e., that in which a distance between two instances can be
defined.More precisely, given an input x , theNN rule assigns
to x the label of the nearest prototype of the training set. An
interesting theoretical property of this rule is that its prob-
ability of error is bounded above by twice the Bayes error
rate (Cover and Hart 1967). An additional advantage of this
classifier is that it is well suited to problems facing multi-
class classifications, that is, those in which the set of possible
labels contains more than two elements (Bishop 2006). In
this sense, unlike other algorithms such as support vector
machines, which have to choose some kind of strategy to
adapt to this scenario (Hsu and Lin 2002), the NN rule does
not have to make any adjustment since it is naturally multi-
class.

In turn, a NN classifier needs to examine all the training
data each time and a new element has to be classified. As a
consequence, it does not only depict considerable memory
requirements in order to store all these data, which in some
cases might be a very large number of elements, but also
shows a low computational efficiency as all training informa-
tion must be checked at each classification query (Mitchell
1997). If we assume that the number of instances per class
does not change, because there is a minimum number of pro-
totypes needed to achieve a fair accuracy, these problems
become particularly uncomfortable. The complexity, both in
time and space, grows linearly with the number of classes of
the task.

One possibility to improve the time efficiency ofNNwhen
dealing with a multi-class problem is narrowing the search
space to a smaller set of classes. Given an input, if the cmost
promising classes could be known, the NN rule restricted
only to those classes would significantly reduce the computa-
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tional cost of the process. This idea was preliminary studied
in Calvo-Zaragoza et al. (2015), when a set of promising
classes was used to alleviate the accuracy drop produced by
Prototype Selection methods.

It is obvious that both the efficiency and the effective-
ness of this process would be closely related to the problem
of finding which classes are the most promising ones. Very
often, however, these two criteria involve a mutual worsen-
ing: Finding a fast way to retrieve the most promising classes
might lead to a poor accuracy, whereas using a more compre-
hensive approach might involve greater computational cost.

That is why we seek for a method that aims at optimizing
both issues at the same time. To this end, the training set is
used as a seed to create a smaller set that is able to represent
broadly the same knowledge with far fewer data. In classi-
fying time, this reduced set will be used to predict which c
classes are the most promising following neighboring crite-
ria. Note that this is a fast process since the set can be reduced
in advance. Once this c classes are known, the original train-
ing set is used with the NN rule to make the final decision.
The key step in this process is how to create this reduced set,
for which we use data generation algorithms.

Data generation algorithms can be broadly divided into
two groups according to their main goal. First, there exist
oversampling algorithms whose main intention is to gen-
erate data to fill the search space where no information is
available. The best representative of this kind of algorithm is
the SMOTE family (Chawla et al. 2002; Han et al. 2005)—
designed to work with imbalanced sets—which consist in
generating data of the minority class to balance the training
set.

On the other hand, data generation algorithms can be seen
as a subset of Prototype Reduction algorithms. It comprises
the set of techniques aimed at obtaining a reduced set which,
if provided to the system, would produce the same output
as the original one (García et al. 2015). In those cases, gen-
eration methods, usually called Prototype Generation (PG),
are devoted to creating a new set of labeled prototypes that
replace the initial training set. Obviously, this new set is
expected to be smaller than the original one since the decision
boundaries can be defined more efficiently. A particular case
of these techniques is referred to as Prototype Selection (PS),
which just select the most representative instances of the set
instead of generating new ones. The idea behind PS methods
is that an optimal set can be composed by samples of the
original training set. For a more comprehensive understand-
ing of the difference between these two approaches, reader
is referred to the work of Nanni and Lumini (2011).

In this paper, it is proposed an approach that uses the train-
ing set to generate a new reduced set from which to retrieve
fast and accurately the most promising classes. These classes
are used to classify the input instance with the original train-
ing set. The intention is to obtain a similar accuracy than

that obtained with a conventional NN applied directly on the
whole set, but with a much greater efficiency.

The rest of the paper is structured as follows: Sect. 2
describes the intrinsics of our approach; Sect. 3 presents the
experimental setup and the results obtained; and Sect. 4 con-
cludes the present work, draws the main conclusions and
introduces some ideas for future work.

2 Selecting promising classes from generated data
for an efficient NN classification

Let T be a training set which consists of pairs {(xi , yi ) |xi ∈
X , yi ∈ Y}|T |

i=1 drawn from an unknown function f : X →
Y . Typically, X is a feature space and Y is a discrete set of
labels or classes. The main goal in supervised classification
is to approximate this function f from labeled data.

Given an input x ∈ X , the NN rule hypothesizes about
f (x) by choosing the label of the nearest prototype to x from
T , based on a dissimilarity function d : X ×X → R

+ ∪{0}.
This algorithm is usually described as a lazy learner which,
in opposition to eager learners, does not build a classification
model out of the training data.

Despite the popularity of the NN in classification tasks,
this method suffers from several drawbacks, one of which
clearly limits its application (Bhatia 2010): As an instance-
based classifier, it depicts a rather poor efficiency since many
distance computations are repeated each time an input has to
be classified due to the aforementioned lack of model. This
paper proposes a strategy to alleviate this high computational
complexity in tasks involving multi-class classification.

Our strategy is based on three main steps. Given an input
x ∈ X to be classified:

1. Estimate a subset of the possible labels C ⊂ Y , which
correspond to those that are more likely to be the actual
label of x . This subset is called promising classes.

2. Consider a subset of the original training set, restricted to
those samples that represent any of the promising classes.
That is, TC = {(xi , yi ) ∈ T |xi ∈ X , yi ∈ C}.

3. Classify input x following the NN rule using TC as train-
ing set.

Clearly, the interesting (and challenging) part of this
strategy is to find the so-called promising classes, without
significantly increasing the computation needed. Assuming
that this stage always selected the actual label of query x
within the set of promising classes, the classifier would have
no accuracy loss whereas time savings would indeed be rel-
evant. Alas, this condition seems hard to fulfill in practice
and, therefore, appropriate strategies must be considered.

Our proposal is to make use of Prototype Reduction algo-
rithms, which are devoted to generating a reduced training
set out of the original one by either generating new samples
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appropriately located in the space (PG) or selecting the most
representative ones (PS). Over this set, the c nearest classes
to the input x are proposed as promising classes.

Let R be the reduced set resulting from the reduction
method. Given an input x , the set of the c (parameter to
be fixed) most promising classes Cc ⊂ Y contains the first c
labels that appear if we query the prototypes of the set R in
ascendant order to the distance to x .

If the reduced set R is compact enough (high reduction but
keeping the most relevant knowledge), this search should be
fast and accurate. Moreover, our next step would also serve
to alleviate the accuracy drop that these algorithms might
cause, as has been reported in other works (Garcia et al.
2012; Triguero et al. 2012). Note that obtaining this reduced
set has to be computed just once, and it can be done before
classification time so that its computation would not increase
the complexity of the classification itself.

2.1 Prototype Reduction methods

This section presents thePrototypeReduction techniques that
have been considered for this work. In order to get a more
comprehensive experimentation, both PG and PS methods
have been considered.

2.1.1 Prototype generation

Let us consider the following PG algorithms for the task of
building this reduced artificial set:

– Reduction by Space Partitioning is a set of heuristics
proposed by Sánchez (2004). Among the number of
strategies considered, the third one (RSP3) consists in
dividing the space until a number of class-homogeneous
subsets are obtained; a prototype is then generated from
the centroid of each subset.

– Evolutionary Nearest Prototype Classifier (ENPC) algo-
rithm was proposed by Fernández and Isasi (2004). It
performs an evolutionary search using a set of prototypes
that can improve their local quality by means of genetic
operators.

– Decaestecker (1997) proposed amethod that made use of
gradient descent and simulated annealing, usually called
mean squared error (MSE). The name of the algorithm
comes from the use of a mean squared error as cost func-
tion for the stochastic search.

The choice of these algorithms has been decided in order
to cover the different types of algorithms: MSE as a classical
method, ENPC as evolutionary search and RSP3 as heuristic
approach.

2.1.2 Prototype Selection

A set of representative PS techniques has also been consid-
ered in this work:

– Fast Condensing Nearest Neighbor (FCNN) was pro-
posed by Angiulli (2007). It computes a fast, order-
independent condensing strategy based on seeking the
centroids of each label.

– The Nearest to Enemy (NE) rule (Rico-Juan and Iñesta
2012) gives a probability mass value to each prototype
following a voting heuristic based on neighboring cri-
teria. Prototypes are selected according to a parameter
(fixed to 0.3 in our case) that indicates the probability
mass desired for each class in the reduced set.

– Decremental Reduction Optimization Procedure 3
(DROP3) (Wilson and Martinez 1997) applies an ini-
tial noise filtering step so as to eliminate the dependency
on the order of presentation of the instances; after that,
these instances are ordered according to the distance to
their nearest neighbors and then, starting from the farthest
ones, instances which do not affect the generalization
accuracy are removed.

– The Iterative Case Filtering Algorithm (ICF) algorithm
(Brighton andMellish 1999) bases its performance on the
coverage and reachability premises to select the subset
of instances able to maximize the classification accuracy
following the NN rule.

As in the previous case, the choice is expected to cover
typical searching methodologies of PS.

3 Experimentation

The main goal of our experiments is to test whether the ben-
efits of our proposal are fulfilled: On the one hand, whether
or not the efficiency classification is improved with respect
to the conventional NN classifier; on the other hand, it is
important to assess if our process carries any accuracy loss.
Additionally, it is interesting to check how accurate the pro-
cedure to get the most promising classes is, in order to know
whether misclassifications are produced due to this search or
due to the NN classification itself.

3.1 Corpora

Five different datasets of isolated symbols have been con-
sidered: the National Institute of Standards and Technol-
ogy DATABASE 3 (NIST3), from which a subset of the
upper case characters was randomly selected, a subset of
the Mixed National Institute of Standards and Technology
dataset (MNIST) (LeCun et al. 2001) of handwritten dig-
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Table 1 Description of the datasets used in the experimentation

Name Instances Classes Features

NIST3 6500 26 520

MNIST 9000 10 650

USPS 9298 10 680

MPEG-7 1400 70 210

HOMUS 15,200 32 1760

its, the United States Postal Office handwritten digits dataset
(USPS) (Hull 1994), the MPEG-7 shape silhouette dataset
Latecki et al. (2000) and the Handwritten Online Musi-
cal Symbol (HOMUS) dataset (Calvo-Zaragoza and Oncina
2014). In terms of class representation, these datasets can be
considered as being balanced. Note that we focus on datasets
with many class labels because our approach is useless oth-
erwise.

Given the difference in the nature of the corpora, we are
going to follow an approach that allows us to map them all
onto a similar feature-based representation. One of the best
representations studied by Pekalska and Duin (2005) is Edi-
Con, which uses the training data itself for building a feature
vector from each instance. Once feature vectors are obtained,
the Euclidean distance is used as dissimilarity function wher-
ever it is needed.

Table 1 summarizes the details of the datasets considered
for this work.

A fivefold cross-validation process has been applied to
each dataset to provide more robust figures with respect to
the variance of the training data.

3.2 Results

Three metrics of interest are considered: as a theoretical
efficiency measure, the ratio of distances that is needed in
the whole process, with respect to the distances computed
by the conventional NN rule (Distances); the accuracy of
the classification process (Accuracy); finally, we include a
metric for assessing the goodness of the most promising
classes, calculated as the ratio of times the actual class of
the input element to be classified is among this set. This
latter figure represents a bound on the accuracy that can
be obtained considering only the set of promising classes
(Bound).

Table 2 shows results obtained by the different schemes,
where the number of promising classes is 2 or 3. The ALL
row represents the results obtained by considering the ini-
tial training set. It can be used for comparison purposes
because its efficiency and accuracy are the same that would
be obtained with the conventional NN rule. We now present
the average results obtained in all datasets to analyze the gen-

Table 2 Average results obtained considering a fivefold cross-
validation in each dataset

Algorithm Distances Accuracy Bound

c = 2 c = 3 c = 2 c = 3 c = 2 c = 3

ALL 100 100 88 88 94.5 96.5

MSE 25.2 30.6 86.3 86.8 91.1 93.7

ENPC 24.7 29.9 87.7 87.9 93.6 96.2

RSP3 40.9 45.1 87.2 87.5 92.8 95.4

FCNN 34.9 39.3 87.5 87.9 93.4 95.9

NE 20.2 25.5 83.9 85.3 88.2 91.6

DROP3 25.1 30.2 84.3 86.1 89.1 93.2

ICF 34.4 39.3 84.5 86.5 89.1 93.4

Normalized distances results (%) of the different algorithms are
obtained referring to the ALL method with the same c value. Accu-
racy of the final classification and the maximum accuracy that could be
obtained with the promising classes are also included

eral trend in the results. Statistical analysis will be presented
in the next section.

An initial remark to begin with is that, although the
accuracy of conventional NN classification cannot be out-
performed by the other schemes, the differences observed
are not very high, especially when the number of promising
classes is fixed to 3.

Reduction configurations achieve a remarkable decrease
of the number of distances computed in all cases consid-
ered. Specifically, ENPC shows an interesting behavior when
dealing with this task: Its accuracy is just 0.3 and 0.1 %
away from the ALL scheme for c = 2 and c = 3, respec-
tively, while it also depicts one of the highest reduction
rates (24.7 and 29.9 % of the total number of distances
computed). FCNN results are also of great interest but less
pronounced in this case. In spite of showing very similar
figures, FCNN is worse or equal than ENPC in all metrics
considered.

Regarding other algorithms, it can be checked that their
performances might be competitive against ENPC or FCNN,
but just in one criterion. On the one hand, MSE, NE or
DROP3 show similar reduction capabilities, but with lower
accuracy figures; on the other hand, RSP3maintains the clas-
sification figures at the cost of computing a larger amount of
distances (close to a 15 %). In general, ICF depicts the worst
behavior: Its reduction is one of the less pronounced without
achieving competitive classification results.

Moreover, the classification accuracy seems to be strongly
related to the bound obtained: The higher the bound, the
higher the accuracy. However, it should be noted that the
bound of the reduction schemes is always higher than the
accuracy of the NN classifier. This implies that the proce-
dure to select the promising classes is quite accurate, and the
accuracy drop is caused by the last classification step.
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Table 3 Results obtained for the statistical significance tests comparing
our approach against using the original training set

Algorithm c ALL

Distances Accuracy Bound

MSE 2 ✓ ✗ ✗

3 ✓ ✗ ✗

ENPC 2 ✓ = ✗

3 ✓ = ✗

RSP3 2 ✓ = ✗

3 ✓ = =
FCNN 2 ✓ ✗ ✗

3 ✓ = ✗

NE 2 ✓ ✗ ✗

3 ✓ ✗ ✗

DROP3 2 ✓ ✗ ✗

3 ✓ ✗ ✗

ICF 2 ✓ ✗ ✗

3 ✓ ✗ ✗

For each comparison, distances computed, accuracy and bound are
assessed. Symbols ✓, ✗ and= state that results achieved by elements in
the rows significantly improve, decrease or do not differ, respectively,
to the results by the elements in the columns. Significance has been set
to p < 0.05

3.2.1 Statistical analysis

The previous section presented the average results obtained
in our experiments. It allowed us to analyze the general trend
of our proposal. However, as commented above, these figures
must not be used to draw strong conclusions.

In this section, statistical tests are used for comparing the
results objectively (Demsar 2006). Specifically, Wilcoxon
rank-sum tests shall be used in this work, which allow com-
paring results obtained by pairs.

Our main intention is to check whether our approach is
fulfilling the objective of keeping the accuracy of a NN clas-
sifier with a significant reduction of its computational cost.
To this end, Table 3 shows the results of this test in the three
metrics considered above, comparing our different schemes
against the ALL configuration (equal to NN classifier). The
significance of p has been established to 0.05. The c value
considered for ALL is the same that the one depicted in the
corresponding row.

Not surprisingly, every reduction scheme entails a sig-
nificantly lower number of distances computed than a NN
classifier, so it is more interesting to focus on the accuracy
figures. It is clear that no configuration is able to signifi-
cantly improve that metric. Nevertheless, it can be seen that
some of them are able to depict a significantly equal per-
formance. Specifically, ENPC and RSP3 with both 2 and 3
promising classes, and FCNN only when 3 promising classes
are considered. Therefore, our initial premise is fulfilled in
these cases: It is possible to achieve a similar accuracy of
that obtained with the conventional NN rule with a higher
efficiency. The rest of configurations cannot be objectively
compared because they improve accuracy at the cost of los-
ing classification accuracy. With respect to the bound, only
RSP3 with c = 3 is able to retrieve the same information
than using the original set for the task of retrieving the most
promising classes.

We shall now perform pairwise comparisons among the
different configurations. In order to provide a compact inter-
pretation, andhaving already concluded that somealgorithms
are not competitive, we restrict ourselves to the ones improv-
ing theNN rule in some sense. In this regard,we have selected
ENPC,RSP3 and FCNN schemeswith both c = 2 and c = 3.
Table 4 shows the results of such comparison, considering the
three metrics of interest. Note that the table is inversely diag-
onal, since the value in the cell (i, j) is the opposite of the
value in ( j, i).

Table 4 Results obtained for
the statistical significance tests
comparing the best
configurations of our approach

Algorithm c ENPC RSP3 FCNN

c = 2 c = 3 c = 2 c = 3 c = 2 c = 3

D A B D A B D A B D A B D A B D A B

ENPC 2 − − − ✓ = ✗ ✓ = = ✓ = = ✓ ✓ = ✓ = ✗

3 ✗ = ✓ − − − ✓ = ✓ ✓ = = = ✓ ✓ ✓ = =
RSP3 2 ✗ = = ✗ = ✗ − − − ✓ = ✗ = = = = = ✗

3 ✗ = = ✗ = = ✗ = ✓ − − − ✗ = ✓ = = =
FCNN 2 ✗ ✗ = = ✗ ✗ = = = ✓ = ✗ − − − ✓ = ✗

3 ✗ = ✓ ✗ = = = = ✓ = = = ✗ = ✓ − − −
For each comparison, distances computed (D), accuracy (A) and bound (B) are assessed. Symbols ✓, ✗ and
= state that results achieved by elements in the rows significantly improve, decrease or do not differ,
respectively, to the results by the elements in the columns. Symbol − is used for the case in which a
particular method is compared to itself. Significance has been set to p < 0.05
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For the sake of compactness, let us use SCHc to denote
the scheme SCH when considering c promising classes.

The first thing to emphasize is that ENPC algorithm is
clearly the best scheme taking into account efficiency and
efficacyof the classification:ENPC2 significantly reduces the
number of distances computed with respect to any other con-
figuration, while maintaining—or even improving (against
FCNN2)—the accuracy of the classification; ENPC3 either
improves the efficiency (against RSP3 and FCNN3) or the
accuracy (against FCNN2). It is also important to highlight
its goodness by taking into account that ENPC is capable
of showing a similar or better performance in some met-
rics under less favorable conditions. For instance, ENPC2

achieves a similar accuracy thanRSP33 andFCNN3,whereas
ENPC3 needs less distances than RSP32.

On the other hand, RSP3 and FCNN are reported to be
very similar in a general sense:When considering the same c,
they are always significantly equal in all metrics considered.
However, FCNN3 can boast about having the same efficiency
than RSP32, despite having to seek within a larger number
of classes.

With respect to the bound, it seems that it is more relevant
the number of promising classes than the reduction method
chosen, because schemes with c = 3 obtain a significantly
better bound than any other scheme with c = 2. The only
exception is ENPC2 being equal to RSP33. In addition, the
configurations with the same number of promising classes
are always significantly equal in this metric.

4 Conclusions

This paper proposes a procedure that aims at improving the
efficiency of theNN rulewithout decreasing its classification.
Due to the lack of amodel, this rule has to compute a distance
between the input query and every sample of the training set,
which usually entails a high computational cost.

This procedure is designed to deal with tasks involving
multi-class classification. Our main hypothesis assumes that
it is possible to get a reliable estimation of the most proba-
ble classes that could represent the input query (promising
classes), and restrict the NN search to the samples of those
classes in the training set. This would reduce the time com-
plexity of the classification without compromising accuracy.

Our approachusesPrototypeReduction algorithms,which
are expected to maintain the most relevant information from
the training set but with far fewer samples, for the task of
making a fast and accurate proposal of promising classes. To
this end, we selected a representative set of techniques of this
kind.

Our results, supported by the use of several datasets and
statistical significant tests, report that it is possible to obtain a
significantly similar accuracy of that using the conventional

NN rule but computing a lower number of distances. In this
regard, ENPC reduction algorithm has shown a remarkable
ability to cope with this task. It is able to achieve, on average,
just a 0.3 or 0.1 % lower accuracy with around 24 and 30 %
of total number of distances needed by the conventional NN
rule, when the set of promising classes is restricted to 2 or 3,
respectively.

Another interesting outcome of our results is that the per-
centage of times that any of the promising classes is the
actual label of the input is noticeably higher than the accuracy
achieved by the classifier. Therefore, themost interesting line
for futurework is to try to fill this gap by providing away to be
more accurate in the classification when the set of promising
classes is estimated.
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