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Abstract Restarting automata have been introduced as a
formal model for the linguistic technique of analysis by
reduction, which can be used to check the correctness of
natural language sentences. In order to study quantitative
aspects of restarting automata, we introduce the concept of a
weighted restarting automaton. Such an automaton is given
through a pair (M, ω), where M is a restarting automaton
on some input alphabet �, and ω is a weight function that
assigns an element of a given semiring S to each transition
of M . Thus, (M, ω) defines a function f Mω : �∗ → S that
associates an element of S to each input word over �. By
looking at different semirings S and different weight func-
tions ω, various quantitative aspects of the behavior of M
can be expressed through these functions. We are interested
in the syntactic and semantic properties of these functions,
e.g., their growth rates and the closure properties under var-
ious operations.

Keywords Restarting automaton · Weight function ·
Semiring · Closure property · Upper bound

1 Introduction

Analysis by reduction as described by Straňáková (2000) is
a linguistic technique used to verify the syntactic correct-
ness of sentences of a natural language through sequences
of local simplifications. During the process of simplifying a
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given sentence, each step preserves the correctness or incor-
rectness of the sentence. After a finite number of steps, either
a correct simple sentence is obtained, or an error is detected.
In addition, by this process the structure of the given sen-
tence can be analyzed and information on dependencies and
independencies between certain parts of the sentence can be
derived.

The restarting automaton was presented by Jančar et al.
(1995) as a formal model of analysis by reduction. Such an
automaton consists of a finite-state control and a flexible tape
with end markers, on which a read/write window of a fixed
positive size operates. Based on the state and the window
content, the automatonmayperformamove-right step, which
shifts the window one position to the right and changes the
state. It may also execute a rewrite step, which replaces the
content of thewindowby aword that is strictly shorter, places
the window immediately to the right of the newly written
word, and changes the state. Finally, it may perform a restart
step, which moves the window back to the left end of the
tape and resets the automaton to its initial state, or it may
make an accept step. Observe that a rewrite step shortens
the content of the tape, and it is assumed that the length of
the tape is shortened accordingly. In addition, it is required
that before a restart operation can be executed, exactly one
rewrite must have taken place, that is, the automaton can
be seen as working in cycles, where each cycle begins with
the window at the left end of the tape and the finite-state
control being in the initial state, then some move-right steps
are executed, then a single rewrite step is performed, then
again some move-right steps may be executed, and finally
the cycle is completed by a restart step. Thus, a computation
consists of a finite sequence of cycles that is followed by a
tail computation, which consists of a number of move-right
steps, possibly a single rewrite step, and which is completed
by an accept step or ends by reaching a configuration for
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which no further step is defined. In the latter case we say that
the current computation halts without acceptance.

Many different types and variants of restarting automata
have been introduced and studied since 1995 (see, e.g., Jančar
et al. 1997, 1998, 1999). In particular, many well-known
classes of formal languages, like the regular languagesREG,
the deterministic context-free languages DCFL, the context-
free languages CFL, the Church–Rosser languages CRL,
and the growing context-sensitive languages GCSL have
been characterized by various types of restarting automata.
A recent overview on restarting automata is given by Otto
(2006).

Just as finite automata, also restarting automata accept or
reject their inputs. Therefore, such an automaton can be seen
as computing a Boolean function. Weighted automata were
introduced by Schützenberger (1961). In these automata each
transition gets a quantitative value from some semiring S as
a weight. These weights can model the cost involved when
executing a transition such as the needed resources or time,
or the probability or reliability of its successful execution.
By forming the product of all weights along a computation,
a weight can be assigned to that computation, and by form-
ing the sum of all weights of all accepting computations for
a given input, an element of S is associated with that input.
For example, by using appropriate weights, we can deter-
mine the number of ways that a word can be accepted by a
finite automaton. Weighted automata and their properties are
described in detail in the recent handbook by Droste et al.
(2009).

After their introduction, weighted automata have been
applied in many areas like natural-language processing,
speech recognition, optimization of energy consumption, and
probabilistic systems. Alsomany applications of them can be
found in digital image compression andmodel checking.Due
to these applications, many different variants of weighted
automata have been invented and studied (see, e.g., Chat-
terjee et al 2009; Bollig et al 2010; Droste and Meinecke
2011; Droste and Götze 2013). Following this develop-
ment, we introduce weighted restarting automata in order
to study quantitative aspects of computations of restarting
automata.

Aweighted restarting automaton is given by a pair (M, ω),
whereM is a restarting automaton on some input alphabet�,
and ω is a weight function that assigns a weight from some
semiring S to each transition ofM . As outlined above, (M, ω)

defines a value f Mω (w) from S for each input word w ∈
�∗. Thus, (M, ω) defines a function f Mω : �∗ → S. If
the semiring S is linearly ordered, then we can abstract this
function to a function from N into S by taking f̂ Mω (n) =
max{ f Mω (w) | w ∈ �∗, |w| = n }, where |w| denotes the
length of the word w.

By looking at different semirings S and different weight
functions ω, various quantitative aspects of the behavior of

M can be expressed through these functions. For example, by
taking S to be the semiring of natural numbers with addition
and multiplication, we can count the number of accepting
computations for each input, or by using the tropical semi-
ring, we can determine the minimal number of cycles in an
accepting computation for each input. Further, if S is the
semiring of formal languages over a finite alphabet �, then
f Mω is a transformation from �∗ into the languages over �.
In fact, it is easily seen that the transformations computed by
the restarting transducers introduced by Hundeshagen and
Otto (2012) occur as a special case.

Which functions f : �∗ → S or f̂ : N → S can be
realized in this way? We are interested in the syntactic and
semantic properties of these functions, e.g., their growth rates
and the closure properties under various operations. It is eas-
ily seen that the recognizable functions SREC〈〈�∗〉〉 occur
as special cases. Here we will prove that, for the semiring
(N,+, ·, 0, 1) of natural numbers with addition and multi-
plication, the functions of the form f̂ : N → N are bounded
from above by 2O(n2). Exactly which functions obeying
this bound can be realized by weighted restarting automata
over N? Ideally we would like to derive characterizations
of these functions in terms of other machines or syntactic
properties.

This paper is structured as follows. In the next section
we recall some notions on monoids and semirings in short,
and we introduce the basic notions and results on restarting
automata. Then we define the weighted restarting automata
and the functions defined by them in detail, illustrating these
definitions by examples. Finally, Sect. 4 presents our result
on the upper bound for the functions of the form f̂ : N → S
mentioned above, and it contains the results that the classes
of functions of the form f Mω : �∗ → S are closed under
pointwise addition, scalar multiplication, and Cauchy prod-
uct, if the restarting automataM considered can use auxiliary
symbols. The paper closes with a short summary and some
problems for future work.

2 Preliminaries

Here we restate some definitions that we will use below.

2.1 Monoids and semirings

First we recall the notions of monoid and semiring and
present some examples of semirings.

Definition 1 A monoid M = (M, ◦, iM ) is a non-empty set
M with a binary operation ◦ : M × M → M and an element
iM ∈ M such that
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– ◦ is associative, that is, (a ◦ b) ◦ c = a ◦ (b ◦ c) for all
a, b, c ∈ M , and

– iM is a neutral element for ◦, that is, iM ◦a = a ◦ iM = a
for all a ∈ M .

The monoid M is called commutative if a ◦ b = b ◦ a
holds for all a, b ∈ M . It is called ordered if there exists a
partial order ≤ on M that is compatible with the operation ◦,
that is, if a ≤ b, then (a ◦ c) ≤ (b ◦ c) and (c ◦ a) ≤ (c ◦ b)
for all a, b, c ∈ M . Finally, it is called linearly ordered if it
is ordered with respect to a linear order.

Let N denote the set of all non-negative integers, let
Z be the set of all integers, let Q be the set of all ratio-
nal numbers, and let R be the set of all real numbers.
Obviously, (N,+, 0) and (N, ·, 1) are commutative monoids
that are linearly ordered, while the commutative monoids
(Z, ·, 1), (Q, ·, 1), and (R, ·, 1) are not ordered with respect
to the standard order relation ≤, as in general, a ≤ b
does not imply a · c ≤ b · c. Further, let N

∞ = N ∪
{∞} and N = N ∪ {−∞,∞}. Then (N∞,min,∞) and
(N,max,−∞) are commutative monoids that are linearly
ordered.

If � is a finite alphabet, then, for each n ≥ 0, �n is the
set of all words of length n over �. Further, �+ denotes the
set of all non-empty words over � and �∗ = �+ ∪ {λ},
where λ denotes the empty word, which is the only word of
length 0. The operation of concatenation · : �∗ ×�∗ → �∗
is defined by taking u ·v = uv for all words u, v ∈ �∗. Then
(�∗, ·, λ) is a monoid, the free monoid generated by �. It is
not commutative unless |�| = 1 holds. It is linearly ordered
with respect to the length-lexicographical ordering (see, e.g.,
Book and Otto 1993).

Finally, for any set S, we use P(S) to denote the power
set of S, and Pfin(S) to denote the set of all finite subsets
of S. Then (P(S),∪,∅), (P(S),∩, S), and (Pfin(S),∪,∅) are
commutative monoids for any set S, and (P(�∗), ·, {λ}) and
(Pfin(�

∗), ·, {λ}) are monoids, where U · V = { u · v | u ∈
U, v ∈ V } denotes the extension of the concatenation oper-
ation from words to languages. These monoids are ordered
with respect to the inclusion relation, which, however, is not
a linear order.

Definition 2 A semiring S = (S,+, ·, 0, 1) is a non-empty
set S together with two binary operations + : S × S → S
and · : S × S → S and two elements 0, 1 ∈ S such that the
following conditions are satisfied:

1. (S,+, 0) is a commutative monoid,
2. (S, ·, 1) is a monoid,
3. the distributive laws

(a + b) · c = (a · c) + (b · c) and
c · (a + b) = (c · a) + (c · b)

hold for all a, b, c ∈ S, and
4. 0 · a = a · 0 = 0 holds for all a ∈ S.

The semiring S is called commutative if (S, ·, 1) is a com-
mutative monoid. It is (linearly) ordered with respect to an
order ≤, if (S,+, 0) is a (linearly) ordered monoid with
respect to≤ and ifmultiplication by elements s ≥ 0preserves
the order, that is, if s ≥ 0 and a ≤ b, then (s · a) ≤ (s · b)
and (a · s) ≤ (b · s).

Obviously, (N,+, ·, 0, 1) and (R,+, ·, 0, 1) as well as
(B,∨,∧, 0, 1), where B = {0, 1}, are commutative semi-
rings that are linearly ordered with respect to the standard
order. (N∞,min,+,∞, 0) is the tropical or min-plus semi-
ring and (N,max,+,−∞, 0) is the arctic or max-plus
semiring, which are also commutative and linearly ordered
under the standard order. Further,

(P(�∗),∪, ·,∅, {λ}) and (Pfin(�
∗),∪, ·,∅, {λ})

are semirings that are not commutative unless |�| = 1, and
the same holds for

(REG(�),∪, ·,∅, {λ}) and (CFL(�),∪, ·,∅, {λ}),

where REG(�) and CFL(�) denote the classes of regu-
lar and context-free languages over �. These semirings are
ordered with respect to the inclusion relation. More infor-
mation on and further examples of semirings can be found
in Golan (1999) or Hebisch and Weinert (1998).

We complete this subsection by restating the notions of
weighted automaton and recognizable function in short.

Definition 3 Let S = (S,+, ·, 0, 1) be a semiring, and let�
be a finite alphabet. A weighted automaton is given through
a four-tuple A = (Q, in, ω, out), where

– Q is a finite set of states,
– in : Q → S assigns an entrance weight to each state,
– out : Q → S assigns an exit weight to each state,
– and ω : Q × � × Q → S assigns a weight to each
possible transition.

A path in A is any sequence

P = (q0, a1, q1, a2, q2, . . . , an, qn),

where q0, q1, . . . , qn ∈ Q and a1, a2, . . . , an ∈ �, and the
word a1a2 . . . an ∈ �∗ is called its label. The run weight of
P is the product
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rweight(P) =
∏

0≤i<n

ω(qi , ai+1, qi+1),

where rweight((q0)) = 1 is taken, and the weight of P is

ω(P) = in(q0) · rweight(P) · out(qn).

Finally, let Path(w) denote the set of all paths in A that have
labelw. Then the behavior of A is the function ||A|| : �∗ →
S that is defined by

||A||(w) =
∑

P∈Path(w)

ω(P)

for all w ∈ �∗. The set of recognizable functions over S and
� is the set SREC〈〈�∗〉〉 of all functions that are the behavior
of some weighted automaton over S.

For more information on these notions see, e.g., Droste
and Kuich (2009).

2.2 Restarting automata

As described above a restarting automaton is a nondeter-
ministic machine model that has a finite-state control and a
read/write window that works on a flexible tape that is delim-
ited by end markers.

Formally, a restarting automaton, an RRWW-automaton
for short, is a one-tape machine that is described by an 8-
tuple M = (Q, �, �, c| , $, q0, k, δ), where Q is a finite set
of states,� is a finite input alphabet,� is a finite tape alphabet
containing �, the symbols c| , $ /∈ � serve as markers for the
left and right border of thework space, respectively,q0 ∈ Q is
the initial state, k ∈ N+ is the size of the read/write window,
and

δ ⊆ Q × PC(k)

×((Q × ({MVR} ∪ PC≤(k−1))) ∪ {Restart,Accept})

is the transition relation. Here PC(k) is the set of possible
contents of the read/write window of M , where

PC(0) = {λ} and, for i ≥ 1,

PC(i) := (c| · �i−1) ∪ �i ∪ (�≤i−1 · $) ∪ (c| · �≤i−2 · $),

and

�≤i :=
i⋃

j=0

� j , and PC≤(k−1) :=
k−1⋃

i=0

PC(i).

The relation δ describes four different types of transition
steps:

(1) A move-right step has the form (q, u, q ′,MVR), where
q, q ′ ∈ Q and u ∈ PC(k), u �= $. If M is in state q and
sees the string u in its read/write window, then this move-
right step causes M to shift the read/write window one
position to the right and to enter state q ′. However, if the
content u of the read/write window is only the symbol $,
then no move-right step is possible.

(2) A rewrite stephas the form (q, u, q ′, v),whereq, q ′ ∈ Q,
u ∈ PC(k), u �= $, and v ∈ PC≤(k−1) such that |v| < |u|.
It causes M to replace the content u of the read/write
window by the string v, and to enter state q ′. Further, the
read/write window is placed immediately to the right of
the string v. However, some additional restrictions apply
in that the border markers c| and $ must not disappear
from the tape nor that new occurrences of these mark-
ers are created. Further, the read/write window must not
move across the right bordermarker $, that is, if the string
u ends in $, then so does the string v, and after performing
the rewrite operation, the read/write window is placed on
the $-symbol.

(3) A restart step has the form (q, u,Restart), where q ∈
Q and u ∈ PC(k). It causes M to move its read/write
window to the left end of the tape, so that the first symbol
it contains is the left border marker c| , and to reenter the
initial state q0.

(4) An accept step has the form (q, u,Accept), whereq ∈ Q
and u ∈ PC(k). It causes M to halt and accept.

For some q ∈ Q and u ∈ PC(k), if there is no operation
op such that (q, u, op) ∈ δ, then M necessarily halts in a
corresponding situation, and we say that M rejects in this
case. Further, the letters in��� are called auxiliary symbols.

A configuration of M is a string αqβ, where q ∈ Q,
and either α = λ and β ∈ {c| } · �∗ · {$} or α ∈ {c| } · �∗
and β ∈ �∗ · {$}; here q ∈ Q represents the current state,
αβ is the current content of the tape, and it is understood
that the read/write window contains the first k symbols of β

or all of β when |β| ≤ k. A restarting configuration is of
the form q0c| w$, where w ∈ �∗; if w ∈ �∗, then q0c| w$
is an initial configuration. Thus, initial configurations are a
particular type of restarting configurations. Further, we use
Accept to denote the accepting configurations, which are
those configurations that M reaches by executing an accept
instruction. A configuration of the form αqβ such that δ does
not contain any triple of the form (q, β1, op), where β1 is the
current content of the read/write window, is a rejecting con-
figuration. A halting configuration is either an accepting or
a rejecting configuration. By �M we denote the single-step
computation relation that M induces on the set of config-
urations, and its reflexive and transitive closure �∗

M is the
computation relation of M .

In general, the automaton M is nondeterministic, that is,
there can be two ormore instructions for the same pair (q, u),
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and thus, there can be more than one computation for an
input word. If this is not the case, the automaton is determin-
istic. We use the prefix det- to denote deterministic classes
of restarting automata.

We observe that any finite computation of a restarting
automaton M consists of certain phases. A phase, called a
cycle, starts in a restarting configuration, the head moves
along the tape performing move-right operations and a
rewrite operation until a restart operation is performed and
thus, a new restarting configuration is reached. If no further
restart operation is performed, any finite computation nec-
essarily finishes in a halting configuration—such a phase is
called a tail. We require that M performs exactly one rewrite
operation during any cycle—thus each new phase starts on
a shorter word than the previous one. During a tail at most
one rewrite operation may be executed. By �c

M we denote
the execution of a complete cycle, and �c∗

M is the reflexive
transitive closure of this relation. It can be seen as the rewrite
relation that is realized by M on the set of restarting config-
urations.

An input w ∈ �∗ is accepted by M , if there exists a
computation of M which starts with the initial configura-
tion q0c| w$, and which finally ends with executing an accept
instruction. The language L(M) accepted byM is the set that
consists of all input strings that are accepted by M .

In the following, we introduce some restricted types of
restarting automata. A restarting automaton is called an
RWW-automaton if it makes a restart immediately after per-
forming a rewrite operation. In particular, this means that it
cannot perform a rewrite step during the tail of a computa-
tion. An RRWW-automaton is called an RRW-automaton if
its tape alphabet� coincideswith its input alphabet�, that is,
if no auxiliary symbols are available. It is anRR-automaton if
it is an RRW-automaton such that, for each rewrite transition
(q, u, q ′, v) ∈ δ, v is a scattered subword of u. Analogously,
we obtain the RW-automaton and the R-automaton from the
RWW-automaton.

For a type X of restarting automata, let L(X) denote
the class of languages that are accepted by the restarting
automata of type X. As shown by Niemann and Otto (2000),

CRL = L(det-RWW) = L(det-RRWW),

where CRL denotes the class of Church–Rosser languages
introduced by McNaughton et al. (1988), and that

GCSL ⊆ L(RWW),

where GCSL denotes the class of growing context-sensi-
tive languages introduced byDahlhaus andWarmuth (1986).
Jurdziński et al. (2004) proved that the language classes
L(RWW) and L(RRWW) are closed under union, concate-

nation, and reversal, but not under projection, and that

GCSL � L(RWW) ⊆ L(RRWW).

In passing we remark that it is still open whether or not the
latter inclusion above is proper. Next we present a simple
example of a restarting automaton.

Example 1 Let M1 = (Q, �, �, c| , $, q0, k, δ) be the RR-
automaton that is defined by taking Q := {q0, qc, qd , qe},
� := � := {a, b, c, d}, and k := 3, where δ contains the
following transitions:

(q0, c| c$,Accept), (qc, bbb, qc,MVR), (q0, abc, qe, c),
(q0, c| d$,Accept), (qc, bbc, qc,MVR), (q0, abb, qc, b),
(q0, c| ab, q0,MVR), (qc, bc$, qc,MVR), (q0, abb, qd , λ),

(q0, c| aa, q0,MVR), (qd , bbb, qd ,MVR), (qc, c$,Restart),
(q0, aab, q0,MVR), (qd , bbd, qd ,MVR), (qd , d$,Restart),
(q0, aaa, q0,MVR), (qd , bd$, qd ,MVR), (qe, $,Restart).

For example, M1 can execute the following computations on
the input aabbc, where we write � for �M1 :

q0c| aabbc$ � c| q0aabbc$ � c| aq0abbc$ �
{
c| aqdc$,
c| abqcc$.

The configuration c| aqdc$ does not admit any transition step
anymore, that is, M1 halts without accepting. However, from
the configuration c| abqcc$, M1 can continue as follows:

c| abqcc$ � q0c| abc$ � c| q0abc$ � c| cqe$ � q0c| c$
� Accept.

Accordingly, M1 accepts on input aabbc. It is easily seen
that the language L(M1) that is accepted by M1 is

L(M1) := { anbnc, anb2nd | n ≥ 0 }.

3 Definitions and examples

A restarting automaton M is a language accepting device:
Given awordw ∈ �∗ as input, it either accepts or rejects. But
in case of acceptance, one may be interested in the number
of accepting computations of M on input w, or one may be
interested in the least number of steps (or cycles) in such an
accepting computation.

For answering such quantitative questions in the setting of
finite automata, the notion of weighted finite automaton was
introduced by Schützenberger (1961) (see also, e.g., Droste
and Kuich 2009). Such an automaton consists of a finite
automaton A and a weight function ω that associates ele-
ments of a semiring S to the transitions of A. Following the
same fundamental idea, we define the notion of weighted
restarting automaton.
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Definition 4 (a) Let M = (Q, �, �, c| , $, q0, k, δ) be a
restarting automaton. A weight function ω from M into
a semiring S = (S,+, ·, 0, 1) is a function ω : δ → S,
that is, ω assigns an element of S as a weight to each
tuple (q, u, op) ∈ δ.

(b) A weighted restarting automaton of type X, a wX-
automaton for short, is a pair (M, ω), where M is a
restarting automaton of type X, and ω is a weight func-
tion from M into a semiring S.

(c) Let (M, ω) be a weighted restarting automaton, where
ω is a weight function from M into the semiring S =
(S,+, ·, 0, 1). If c1 and c2 are configurations of M
such that c1 �M c2 holds, then there exists a transi-
tion (q, u, op) ∈ δ such that c2 is obtained from c1
by applying this transition. By t (c1, c2) we denote this
transition, and accordingly, ω(t (c1, c2)) is the weight
that is associated with this computational step of M .
IfC = (c0 �M c1 �M c2 �M · · · �M cn−1 �M cn) is a
computation of M , then ω(C) ∈ S denotes the product

ω(t (c0, c1)) · ω(t (c1, c2)) · . . . · ω(t (cn−1, cn)),

which is the weight of this computation. Finally, for
each input word w ∈ �∗, let CM (w) be the set of all
accepting computations of M on input w. Then

f Mω (w) :=
⎛

⎝
∑

C∈CM (w)

ω(C)

⎞

⎠ ∈ S

is the element of S that is associated to w by (M, ω),
that is, f Mω is a function from �∗ into S.

Observe that each computation C of M is of finite length,
and so ω(C) is defined as a finite product in S. Further, for
each w ∈ �∗, the set CM (w) of accepting computations of
M on input w is also finite, which implies that f Mω (w) is
obtained as a finite sum in S. These observations imply that
indeed f Mω is a well-defined function from �∗ into S. If w /∈
L(M), then CM (w) is empty, which means that f Mω (w) = 0
holds.

For a typeX of restarting automata, we are interested in the
class of functions that are induced bywX-automata. Accord-
ingly, we introduce the following notion.

Definition 5 For a type X of restarting automata, a finite
alphabet �, and a semiring S, let F(X, �, S) denote the set
of all functions of the form f Mω : �∗ → S, where M is a
restarting automaton of type X with input alphabet �, and ω

is a weight function from M into the semiring S.

We continue with some examples that are obtained from
the RR-automaton M1 of Example 1 by combining it with
different weight functions.

Example 2 Let M1 = (Q, �, �, c| , $, q0, k, δ) be the RR-
automaton from Example 1 that accepts the language
L(M1) = L1 = { anbnc, anb2nd | n ≥ 0 }.

(a) Let B = (B,∨,∧, 0, 1) be the Boolean semiring, and let
ω1 be the weight function that assigns weight 1 to each
transition of M1. Then ω1(C) = 1 for each computation
of M1, and

f M1
ω1

(w) =
{
1, for w ∈ L1

0, for w /∈ L1

}
,

that is, f M1
ω1 : �∗ → B is simply the characteristic func-

tion of the language L1.
(b) Let N∞ = (N∞,min,+,∞, 0) be the tropical semiring,

and let ω2 be the weight function that assigns weight 1 to
each restart transition of M1, and that assigns weight 0 to
all other transitions of M1. Then ω2(C) = |C |rs for each
computation C of M1, where |C |rs denotes the number
of restart steps in C . Although M1 is nondeterministic
(see its rewrite transitions), it has only a single accepting
computation C(w) for each word w ∈ L1. Accordingly,

f M1
ω2

(w) =
{ |C(w)|rs, for w ∈ L1

∞, for w /∈ L1

}
.

(c) Let (Pfin(�
∗),∪, ·,∅, {λ}) be the semiring of finite lan-

guages over the finite alphabet � = {c, d}, and let ω3 be
the weight function that assigns the set {c} to the transi-
tions (qc, c$,Restart) and (qe, $,Restart), that assigns
the set {dd} to (qd , d$,Restart), and that assigns the set
{λ} to all other transitions. It can now be checked easily
that, for all n ≥ 0,

f M1
ω3

(anbnc) = {cn}

and

f M1
ω3

(anb2nd) = {d2n},

and that f M1
ω3 (w) = ∅ for all w /∈ L1. Hence, using

weight functions of this form, the restarting transducers
of Hundeshagen (2013) can be simulated.

(d) Let N = (N,max,+,−∞, 0) be the arctic semiring. Let
ω4 be the weight function that assigns weight 2 to the
transitions (q0, abc, qe, c) and (q0, abb, qc, b), weight 3
to (q0, abb, qd , λ), and weight 0 to all other transitions.
Then ω4(C) is the number of symbols that are deleted in
the course of the computation C , and accordingly,

f M1
ω4

(w) =
⎧
⎨

⎩

2n, for w = anbnc,
3n, for w = anb2nd,

−∞, for w /∈ L1.
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Wecontinuewith an example of a nondeterministicRWW-
automaton.

Example 3 Let L2 := { w1w
R
1 w2w

R
2 . . . wnw

R
n | n ≥

1, wi ∈ {a, b}+, |wi | ≡ 0 mod 2, i = 1, . . . , n }, and let
M2 = (Q, �, �, c, $, q0, k, δ) be the RWW-automaton that
is defined by taking

– Q := {q0, qr }, � := {a, b}, k := 4,
– � := {a, b, #} ∪ { [c, d] | c, d ∈ � },
– and by defining the transition relation δ as follows, where
c, d, e, f, g, h, x ∈ �:

(1) (q0, ccde, qr , c[c, d]e),
(2) (q0, c[c, d]e f, qr , c[c, d][e, f ]),
(3) (q0, c[c, d]dc, qr , c#),
(4) (q0, c#cd, qr , ccd),

(5) (q0, c#$,Accept),
(6) (q0, c[c, d][e, f ]g, q0,MVR),

(7) (q0, c[c, d][e, f ][g, h], q0,MVR),

(8) (q0, [c, d][e, f ]gh, qr , [c, d][e, f ][g, h]),
(9) (q0, [c, d][e, f ] f e, qr , [c, d]#),
(10) (q0, c[c, d]#d, q0,MVR),

(11) (q0, [e, f ][c, d]#d, q0,MVR),

(12) (q0, [c, d]#dc, qr , #),
(13) (q0, c[c, d][e, f ]#, q0,MVR),

(14) (q0, [c, d][e, f ][g, h]x, q0,MVR),

(15) (q0, [c, d][e, f ][g, h]#, q0,MVR),

(16) (qr , z,Restart) for all z ∈ �4 ∪ �≤3 · {$}.

For example, M2 can execute the following computation:

q0c| aabaabaaabba$ �2
(1,16) q0c| [a, a]baabaaabba$

�2
(2,16) q0c| [a, a][b, a]abaaabba$

�(6) c| q0[a, a][b, a]abaaabba$
�2

(9,16) q0c| [a, a]#aaabba$
�(10) c| q0[a, a]#aaabba$
�2

(12,16) q0c| #abba$
�2

(4,16) q0c| abba$
�2

(1,16) q0c| [a, b]ba$
�2

(3,16) q0c| #$
�(5) Accept.

In fact, it can be shown that L(M2) = L2 holds, and that on
input w ∈ �+, M2 has an accepting computation for each
factorization of w of the form w = w1w

R
1 w2w

R
2 . . . wnw

R
n

such thatwi ∈ �+ and |wi | ≡ 0 mod 2 for all i = 1, . . . , n.

(a) Let N∞ = (N∞,min,+,∞, 0) be the tropical semiring,
and let ω1 be the weight function that assigns weight 1
to each transition of the groups (3) and (9) of M2, and
that assigns weight 0 to all other transitions of M2. Then,
for each computation C of M2, ω1(C) is the number of

times the symbol # is introduced during C , and hence, if
C is an accepting computation on inputw, then this is the
number n of factorswiw

R
i in the factorization ofw that is

guessed in the course of this computation. Accordingly,
f M2
ω1 (w) =

{
minimal number of factors of w, for w ∈ L2

∞, for w /∈ L2

}
.

(b) Let (Pfin(�
∗),∪, ·,∅, {λ}) be the semiring of finite lan-

guages over the finite alphabet � = {a, b, #}, and let ω2

be a weight function that assigns the set {cd} to the tran-
sitions of group (1), {e f } to the transitions of group (2),
and {gh} to the transitions of group (8), that assigns the
set {#} to the transitions of the groups (3) and (9), and
that assigns the set {λ} to all other transitions. It can now
be checked that ω2(C) = {aaba#ab#} for the computa-
tion C on input w = aabaabaaabba presented above.
It follows that

f M2
ω2

(w) =
{

w1# . . . #wn# | w = w1w
R
1 . . . wnw

R
n

}
,

that is, f M2
ω2 (w) is the set of possible factorizations that

witness that w belongs to L2.

Examples 2 and 3 clearly show that weighted restart-
ing automata can be used to express interesting quantitative
aspects of computations and of languages of restarting
automata. We close this section with the following inclusion
relation.

Proposition 1 For each semiring S, each alphabet �, and
each type of restarting automaton X,

SREC〈〈�∗〉〉 ⊆ F(X, �, S).

If S is a commutative semiring that is zero-sum free, then this
inclusion is proper.

Proof Let A = (Q, in, ω, out) be a weighted automaton
with input alphabet� over the semiring S. To prove the state-
ment above, it suffices to construct a weighted R-automaton
M = (Q′, �,�, c, $, q0, 1, δ) and a weight function ω′
such that ||A||(w) = f M

ω′ (w) holds for all w ∈ �∗. We
define the weighted R-automaton (M, ω′) by taking

– Q′ := Q ∪ {q0}, where q0 is a new state,
– and by defining δ and ω′ as follows, where p, q ∈ Q and
a ∈ �:

tq0,p : (q0, c, p,MVR), ω′(tq0,p) = in(p),
tq,a,p : (q, a, p,MVR), ω′(tq,a,p) = ω(q, a, p),
tq,$ : (q, $,Accept), ω′(tq,$) = out(q).
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Then, for all w ∈ �∗, the paths in A with label w are in one-
to-one correspondence to the accepting computations of M
on inputw. From the definition of the weight functionω′ and
the fact that each accepting computation of M begins with a
transition of type tq0,p and ends with a transition of type tq,$,
it now follows immediately that ||A||(w) = f M

ω′ (w) holds.
Now let S = (S,+, ·, 0, 1) be a commutative semiring

that is zero-sum free, that is, s + t �= 0 for all s, t ∈ S�{0}.
Then the support { w ∈ �∗ | ||A||(w) �= 0 } of each recog-
nizable series ||A|| ∈ SREC〈〈�∗〉〉 is a regular language
by Kirsten (2009) (see also Kirsten 2011). As already R-
automata accept non-regular languages (see, e.g., Otto 2006),
it is clear that in this case the inclusion SREC〈〈�∗〉〉 ⊆
F(X, �, S) is strict. ��

4 Results

In this section, we present our results on the properties of the
functions that are induced by weighted restarting automata.

4.1 Growth rates

In a linearly ordered semiring S (see Sect. 2.1), themaximum
and the minimum of a finite subset T of S can be defined.

Definition 6 If S = (S,+, ·, 0, 1) is a semiring that is
ordered with respect to a linear order ≤, then

min(T ) = a ∈ T such that a ≤ t for all t ∈ T

and

max(T ) = b ∈ T such that t ≤ b for all t ∈ T

for each finite non-empty subset T of S.

Definition 7 Let S = (S,+, ·, 0, 1) be a linearly ordered
semiring, let M be a restarting automaton of type X with
input alphabet �, and let ω be a weight function that maps
the transitions of M into S. As �n is finite for all n ≥ 0,
we can extend the function f Mω : �∗ → S to a function
f̂ Mω : N → S as follows:

f̂ Mω (n) = max{ f Mω (w) | w ∈ �n }.

By F̂(X, �, S) we denote the set of all functions of the form
f̂ Mω : N → S, where M is a restarting automaton of type X
with input alphabet �.

In the following, we provide an upper bound for a large
subclass of functions in F̂(X, �, S). For s ∈ S and k ∈ N, we
use the notation sk to denote the k-fold product s ·s · . . . ·s. In
addition, k · s is used to denote the k-fold sum s+ s+· · ·+ s.

Theorem 1 Let S = (S,+, ·, 0, 1) be a semiring that is
ordered with respect to a linear order≤, let M be a restarting
automaton, and let ω be a weight function that maps the
transitions of M into the subset S+ = { s ∈ S | s ≥ 0 } of S.
Further, let sM = max({ ω(t) | t is a transition of M }∪{1}).
Then there exist constants c1, c2 ∈ N such that, for all n ≥ 1,

f̂ Mω (n) ≤ cn
2

1 · sc2·n2M holds.

Proof In order to derive the intended upper bound for the
function f̂ Mω : N → S, we have to answer the following two
questions:

(1) What is the maximal length of a computation of M on an
input of length n? For n ≥ 0, let

l̂M (n) = max{ |C | | C ∈ CM (w),w ∈ �n },

where |C | denotes the number of steps in the compu-
tation C , that is, its length, and CM (w) is the set of
accepting computations of M on input w.

(2) What is the maximal number of accepting computations
of M for any input of length n? For n ≥ 0, let

r̂M (n) = max{ |CM (w)| | w ∈ �n },

where |CM (w)| denotes the cardinality of the setCM (w).

Then we obviously have

f̂ Mω (n) ≤ r̂M (n) · sl̂M (n)
M

for all n ≥ 1. Hence, it suffices to derive upper bounds for
the numbers l̂M (n) and r̂M (n).

First, we consider the former number. For an integer
n ≥ 1, let mclM (n) denote the maximal number of steps
in any cycle of M on any input of length at most n. From
the definition of the restarting automaton it follows that
mclM (n) ≤ n + 2, as a cycle of M that begins with a
tape inscription of the form cw$, where |w| = n, contains
exactly one rewrite operation, one restart operation, and up
to at most n move-right steps. Analogously, a tail computa-
tion that begins with the above tape inscription consists of
at most n + 2 steps, where an accept step may replace the
restart step. Further, the rewrite operation that M executes
within a cycle shortens the length of the tape inscription, and
so, each new cycle starts on a shorter word than the previous
one. Hence, for any input w of length at most n, the length
of any computation of M on input w is bounded from above
by the number

n∑

i=0

(i + 2) =
n+2∑

i=2

i = 1

2
(n + 2)(n + 3) − 1 ≤ 5 · n2,
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that is, we see that l̂M (n) ≤ 5 · n2 holds for all n ≥ 1.
Now, we turn to the number r̂M (n). Let dM denote the

maximal number of instructions of the form (q, u, op) of
M for any state q of M and any possible window content u.
Then any configuration ofM has atmost dM many immediate
successor configurations. Hence, it follows that

r̂M (n) ≤ d5·n2M =
(
d5M

)n2

for all n ≥ 1. Thus, we obtain that

f̂ Mω (n) ≤ r̂M (n) · sl̂M (n)
M ≤

(
d5M

)n2 · s5·n2M

for all n ≥ 1, that is, the statement in the theorem holds with
the constants c1 = d5M and c2 = 5. ��

Our next result shows that the upper bound given in the
theorem above is actually sharp.

Theorem 2 Let S = (S,+, ·, 0, 1) be a linearly ordered
semiring, let s ∈ S such that s ≥ 0, let� be a finite alphabet,
and let c1, c2 ∈ N+. Then there exist a det-R-automaton M
with input alphabet � and a weight function ω for M such
that

f̂ Mω (n) = cn
2+5n+2

1 · sc2·(n2+5n+2)

holds for all n ≥ 0.

Proof We define a det-R-automaton
M = (Q, �,�, c, $, q0, 2, δ), where Q := {q0, q1, qr } and
δ contains the following transitions:

(q0, ca, q1,MVR) for all a ∈ �,

(q0, c$,Accept),
(q1, ab, q1,MVR) for all a, b ∈ �,

(q1, a$, qr , $) for all a ∈ �,

(qr , $,Restart).

For example, M executes the following computation given
w = aabb as input, where a, b ∈ �:

q0 caabb$ �M cq1aabb$ �M caq1abb$ �M caaq1bb$
�M caabq1b$ �M caabqr$ �M q0 caab$
�M cq1aab$ �M caq1ab$ �M caaq1b$
�M caaqr$ �M q0 caa$ �M cq1aa$
�M caq1a$ �M caqr$ �M q0 ca$
�M cq1a$ �M cqr$ �M q0 c$
�M Accept.

As M is deterministic, it only has a single computation for
each input. Actually, it is easily seen that L(M) = �∗, and
that, for each word w ∈ �n , the accepting computation of

M on input w consists of n cycles. For a tape inscription
x of length k > 0, the cycle starting from the restarting
configuration q0 cx$ consists of k move-right steps, a single
rewrite step that deletes the last symbol of x , and a restart
step, that is, it has length k + 2. As the tail computation
consists of a single accept step, we see that

|C | =
n∑

k=1

(k + 2) + 1 = 1

2
(n2 + 5n + 2)

for each computation C of M on any input of length n, that
is, l̂M (n) = 1

2 (n
2 + 5n + 2) in the notation of the proof of

the previous theorem.
Now we define the weight function ω by taking

ω(t) = c21 · s2c2 = (s2c2 + · · · + s2c2) (c21 times)

for each transition t of M . It follows that

f Mω (w) =
(
c21 · s2c2

)l̂M (n)

for each word w ∈ �n , which implies that

f̂ Mω (n) = (
c21 · s2c2) 1

2 (n2+5n+2)

= cn
2+5n+2

1 · sc2·(n2+5n+2)

for all n ≥ 0. ��
In the remaining part of this section, we restrict our atten-

tion to the semiring N = (N,+, ·, 0, 1) with the standard
order, and we present some families of functions from N

into that semiring that are contained in the class of growth
functions F̂(RWW, {a}, N).

Theorem 3 For all constants c1, c2 ∈ N+, there exist a det-
R-automaton M with input alphabet � = {a} and a weight
function ω such that f̂ Mω (n) = c1 · cn2 holds for all n ≥ 0.

Proof We define a det-R-automaton
M = (Q, �,�, c, $, q0, 3, δ), where Q := {q0, qr } and
δ contains the following transitions:

(q0, caa, qr , ca), (q0, c$,Accept),
(q0, ca$, q0,MVR), (q0, a$,Accept),
(qr , x,Restart) for all x ∈ {a3, a2$, a$, $}.

Then it is easily seen that L(M) = �∗. Each cycle of any
computation of M consists of exactly two steps, that is, a
rewrite and a restart step, the tail computation for the tape
inscription ca$ consists of two steps, that is, a move-right
step and an accept step, and the tail computation for the tape
inscription c$ consists of a single accept step. Thus, it fol-
lows that l̂M (n) = 2n for all n ≥ 1, and l̂M (0) = 1.
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Let c1, c2 ∈ N+, and let ω be the weight function that
assigns weight c1 to the two accept transitions, that assigns
weight c2 to all rewrite and move-right transitions, and that
assigns weight 1 to all restart transitions. For n ≥ 1, the
computation of M on input an contains n − 1 rewrite steps,
n − 1 restart steps, a single move-right step, and a single
accept step, and hence, we see that f Mω (an) = c1 · cn2 for
n ≥ 1, and f Mω (a0) = f Mω (λ) = c1 = c1 · c02. ��
Theorem 4 For all constants c, k ∈ N+, there exist a det-
RWW-automaton M with input alphabet � = {a} and a
weight function ω such that

f̂ Mω (n) =
{
c · nk, if n = 2m for some m ≥ 0,
0, otherwise.

Proof Let M = (Q, �, �, c| , $, q0, 3, δ) be the det-RWW-
automaton that is defined by taking Q := {q0, qr } and � :=
{a, b, A}, andbydefining δ as follows,where x ∈ �3∪�≤2·$:

(1) (q0, caa, q0,MVR), (9) (q0, bbA, qr , AA),

(2) (q0, cbb, q0,MVR), (10) (q0, bb$, qr , A$),
(3) (q0, cAA, q0,MVR), (11) (q0, AAb, qr , bb),
(4) (q0, aaa, q0,MVR), (12) (q0, AA$, qr , b$),
(5) (q0, bbb, q0,MVR), (13) (qr , x,Restart),
(6) (q0, AAA, q0,MVR), (14) (q0, ca$,Accept),
(7) (q0, aab, qr , bb), (15) (q0, cb$,Accept),
(8) (q0, aa$, qr , b$), (16) (q0, cA$,Accept).

For example, M can execute the following computation
given w = aaaa as input:

q0 caaaa$ �M cq0aaaa$ �M caq0aaa$ �M caaq0aa$
�M caabqr$ �M q0 caab$ �M cq0aab$
�M cbbqr$ �M q0 cbb$ �M cq0bb$
�M cAqr$ �M q0 cA$ �M Accept.

It is easily seen that L(M) = { a2n | n ≥ 0 }.
Now let c, k ∈ N+. We define the weight function ω by

assigning weight 2k to transitions (8), (10), and (12), by
assigning weight c to transitions (14), (15), and (16), and
by assigning weight 1 to all other transitions. Given a2

m
as

input,M first executes 2m−1 cycles, in which a2
m
is rewritten

into b2
m−1

. In the first of these cycles, rewrite transition (8) is
used, while in the other cycles, rewrite transition (7) is used.
Thus, this part of the computation has weight 2k . Next the
tape inscription b2

m−1
is rewritten into A2m−2

within 2m−2

cycles, where in the first cycle rewrite transition (10) is used,
while in the other cycles, rewrite transition (9) is used. Thus,
also this part of the computation has weight 2k . Finally, the
tape inscription A2m−2

is rewritten into b2
m−3

within 2m−3

cycles, where in the first cycle rewrite transition (12) is used,
while in the other cycles, rewrite transition (11) is used. Thus,

also this part of the computation has weight 2k . The latter two
types of sequences of cycles alternate until tape inscription
b or A is reached, which is then accepted by using transition
(15) or (16). It follows that, if n = 2m for some m ≥ 0, then

f Mω (an) = f Mω (a2
m
) = c ·

(
2k

)m = c ·
(
2k

)log n = c · nk,

and f Mω (an) = 0, if n is not a power of 2. ��
Exploiting nondeterminism, we can generalize the above

result as follows.

Theorem 5 For each polynomial P(x) over N, there exist
an RWW-automaton M with input alphabet � = {a} and a
weight function ω such that

f̂ Mω (n) =
{
P(n), if n = 2m for some m ≥ 0,
0, otherwise.

Proof Let P(x) be a polynomial over N, that is,

P(x) = c1 · xk1 + c2 · xk2 + · · · + cr · xkr + d,

where r ≥ 0, c1, k1, c2, k2, . . . , cr , kr ≥ 1, and d ≥ 0.
For the proof we use an RWW-automaton M that essen-

tially consists of r + 1 copies of the RWW-automaton from
the proof of the previous theorem. Accordingly, we define
M = (Q, �, �, c, $, q0, 3, δ) by taking Q := {q0, qr } and
� := { a, bi , Ai | i = 1, . . . , r + 1 }, and by defining δ as
follows:

(1) (q0, caa, q0,MVR),

(2) (q0, aaa, q0,MVR),

(3.i) (q0, aabi , qr , bibi ) for i = 1, . . . , r + 1,
(4.i) (q0, aa$, qr , bi$) for i = 1, . . . , r + 1,
(5) (q0, ca$,Accept),
(6) (qr , x,Restart) for all x ∈ �3 ∪ �≤2 · $,
(7.i) (q0, cbibi , q0,MVR) for i = 1, . . . , r + 1,
(8.i) (q0, bibi bi , q0,MVR) for i = 1, . . . , r + 1,
(9.i) (q0, bibi Ai , qr , Ai Ai ) for i = 1, . . . , r + 1,
(10.i) (q0, bibi$, qr , Ai$) for i = 1, . . . , r + 1,
(11.i) (q0, cbi$,Accept) for i = 1, . . . , r + 1,
(12.i) (q0, cAi Ai , q0,MVR) for i = 1, . . . , r + 1,
(13.i) (q0, Ai Ai Ai , q0,MVR) for i = 1, . . . , r + 1,
(14.i) (q0, Ai Aibi , qr , bibi ) for i = 1, . . . , r + 1,
(15.i) (q0, Ai Ai$, qr , bi$) for i = 1, . . . , r + 1,
(16.i) (q0, cAi$,Accept) for i = 1, . . . , r + 1.

Then L(M) = { a2n | n ≥ 0 }, and it is easily seen that,
for each n ≥ 1, M has r + 1 accepting computations on
input a2

n
, one for each choice of auxiliary symbols bi and Ai

(1 ≤ i ≤ r+1) that are used in the course of the computation
(see instructions (4.i)).
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Now we define a weight function ω as follows, where t
denotes an instruction of δ according to the above definition:

ω(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2ki for t ∈ {(4.i), (10.i), (15.i)} (1 ≤ i ≤ r),
ci for t ∈ {(11.i), (16.i)} (1 ≤ i ≤ r),
d for t = (4.r + 1),
P(1) for t = (5),
1 for all other cases.

As in the proof of Theorem 4, it now follows that the compu-
tation of M on input a2

m
(m ≥ 1) that uses the auxiliary

symbols bi and Ai for some i ∈ {1, . . . , r} has weight
ci ·

(
2ki

)m
. Further, the corresponding computation that uses

the auxiliary symbols br+1 and Ar+1 has weight d. Accord-
ingly, it follows that, if n = 2m for some m ≥ 1, then

f Mω (an) = c1 · nk1 + c2 · nk2 + · · · + cr · nkr + d = P(n).

Further, we have f Mω (a) = P(1), and f Mω (an) = 0, if n is
not a power of two. This completes the proof of Theorem 5.

��
By combining the RWW-automaton from the proof of the

last theoremwith the det-R-automaton from the proof of The-
orem3, it can be shown thatweighted restarting automata can
also represent functions that can be expressed as a sum of a
polynomial and exponential functions. Thus, we see that the
class of functions F̂(RWW, {a}, (N,+, ·, 0, 1)) is quite rich.

4.2 Closure Properties

Jurdziński et al. (2004) proved that the language classes
L(RWW) and L(RRWW) are closed under the operations
of union and concatenation. Here we extend these results to
weighted RWW- and RRWW-automata by showing that the
classes of functions F(RWW, �, S) and F(RRWW, �, S)

are closed under the operations of addition, scalar multipli-
cation, and Cauchy product, that is, if f, g : �∗ → S belong
toF(RWW, �, S) (orF(RRWW, �, S)), then also the func-
tions ( f + g), (s · f ) (for s ∈ S), and ( f · g) : �∗ → S
belong to this class of functions, where, for all w ∈ �∗,

( f + g)(w) = f (w) + g(w),

(s · f )(w) = s · f (w),

and

( f · g)(w) =
∑

w=uv

( f (u) · g(v)) .

Hence, if M1 and M2 are two restarting automata of type
RWW (or RRWW) with input alphabet �, and if ω1 and ω2

are weight functions for M1 and M2, respectively, then there
exist restarting automata of the same type as M1 and M2, say

M+, Ms , and Mc, and weight functions ω+, ωs , and ωc such
that f M+

ω+ = f + g, f Ms
ωs = s · f , and f Mc

ωc = f · g. We begin
with the operation of addition.

Theorem 6 For all alphabets � and semirings S, the
classes of functions F(RWW, �, S) and F(RRWW, �, S)

are closed under the operation of addition.

Proof Let S = (S,+, ·, 0, 1) be a semiring, let � be a finite
alphabet, let M1 = (Q1, �, �1, c, $, q(1)

0 , k1, δ1) and M2 =
(Q2, �, �2, c, $, q(2)

0 , k2, δ2) be RWW-automata with input
alphabet �, and let ω1 and ω2 be weight functions that map
the transitions of M1 and of M2 to S. In order to prove that
F(RWW, �, S) is closed under the operation of addition, we
construct anRWW-automatonM+ with input alphabet� and
a weight function ω+ such that

f M+
ω+ (w) = f M1

ω1
(w) + f M2

ω2
(w)

holds for all w ∈ �∗.
On inputw ∈ �∗, the automaton M+ will have the option

to either simulate a computation of M1 or a computation
of M2 on input w. However, as M+ is reset to its initial
state by each restart operation, it will not be able to store
its choice within its finite-state control. Therefore, it has to
store this information on the tape in such a way that it can
read this information right after performing a restart step.
Accordingly,M+ will store it in thefirst field to the right of the
left sentinel c. Unfortunately, this causes another problem,
as each rewrite step must be strictly length-reducing. The
solution consists in rewriting the prefix ca1a2 of length three
of the tape content cw$ by c[a1, a2, i], where [a1, a2, i] is
a new symbol that encodes the input symbols a1 and a2 and
the information (i = 1 or i = 2) about the automaton that
M+ has chosen to simulate.

This solves the problem above, but it causes still another
technical problem. In some later transition, the automaton
M1 (or M2) being simulated may just delete the symbol a1
or a2 without changing any other symbol, which means that
M+ would have to replace the symbol [a1, a2, i] by some
symbol encoding the remaining symbol a2 (or a1) together
with the indicator i , that is, this rewrite step of M+ would
not be length-reducing. To overcome this problem, M+ will
combine the pair (a2, i) (or (a1, i)) with the next symbol,
say x , into the new symbol [a2, x, i] (or [a1, x, i]), which
means that M+ needs a read/write window that is larger than
those of M1 and M2. Thus, we see that in order to realize
the above idea, the construction of M+ is quite involved. We
now present the details of this construction. Together with
M+, we also describe the weight function ω+.

Let M+ = (Q, �, �, c, $, q0, k, δ) be the RWW-auto-
maton that is defined as follows:
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– Q := {q0, qr } ∪ { q(1) | q ∈ Q1 } ∪ { q(2) | q ∈ Q2 }
∪ { q(i)

MVR, q(i)
a , q(i)

a′ , q(i)
0′ , q(i)

0′′ | i = 1, 2 },
– � := �1 ∪ �2

∪ { [a1, a2, 1], [a1, 1], [1] | a1, a2 ∈ �1 }
∪ { [a1, a2, 2], [a1, 2], [2] | a1, a2 ∈ �2 },

– k := max{k1, k2} + 1, and
– the transition relation δ and the weight function ω+ are

as described below.

We now present the definition of δ step by step. Here we
only consider the case that k1, k2 ≥ 3, which means that
k ≥ 4, as it is easily seen how to simulate an automaton with
window size 1 or 2 by an automaton with window size 3. For
example, each transition of the form t : (q, u, q ′,MVR) of
Mi , where u ∈ �, can be replaced by the set of transitions
{ tx : (q, ux, q ′,MVR) | x ∈ �2 ∪ � · {$} ∪ {$} }, where all
these transitions are assigned the weight ωi (t), and analo-
gously for the other types of transitions and for |u| = 2.

1. First we define some transitions that enable M+ to deal
with those inputs w ∈ �∗ that satisfy the condition
|w| ≤ k − 2 by introducing, for all w ∈ �≤k−2, the
following transition, if w ∈ L(M1) ∪ L(M2):

(tw) : (q0, cw$,Accept).

In addition, we define ω+(tw) = f M1
ω1 (w) + f M2

ω2 (w).
Then it is immediate that, for all inputwordsw of length
at most k − 2, f M+

ω+ (w) = f M1
ω1 (w) + f M2

ω2 (w) holds.
2. Next we define those transitions that allow M+ to

process restarting configurations of the form q0 cz$,
where z ∈ �+

��∗ is of length at most k−2, that is, the
complete tape content cz$ is contained in the window
of M+. By our strategy described above, the first let-
ter z1 of z encodes the choice of which automaton M+
currently simulates, that is, z1 ∈ ��(�1∪�2). Accord-
ingly, z1 = [a1, a2, i] (or z1 = [a1, i] or z1 = [i]) for
some a1, a2 ∈ �i and some i ∈ {1, 2}. Then M+ has an
accepting transition

(tz) : (q0, cz$,Accept)

with weightω+(tz) = si , where si ∈ S is the sum of the
weights of all accepting computations of Mi that start
from the restarting configuration q(i)

0 ca1a2z′$ (respec-
tively, q(i)

0 ca1z′$ or q(i)
0 cz′$), where z = z1z′. During

its simulation of M1 or M2, whenever M+ reaches a
restarting configuration q0 cz$ such that |z| ≤ k − 2,
then the corresponding transition tz is used, which ends
the current computation. Hence, in what follows we
only need to consider the case that the length of the
tape content exceeds the size k of the window of M+.

3. Now we define those transitions that allow M+ to make
and fix the choice between simulating M1 or M2 on a
given input word that is of length at least k − 1 ≥ 3:

(t(a1,a2,i)) : (q0, ca1a2x, qr , c[a1, a2, i]x),
(tr ) : (qr ,−,Restart),

where a1, a2 ∈ �, i ∈ {1, 2}, and x ∈ �k−3. Further,
we take ω+(t(a1,a2,i)) = ω+(tr ) = 1 for all a1, a2 ∈ �

and i ∈ {1, 2}.
4. Here we define those transitions that allow M+ to sim-

ulate move-right steps of M1 and M2, where we must
distinguish between several cases.

(4.1) If δi (i ∈ {1, 2}) contains a transition of the form

t : (q(i)
0 , ca1a2u, ql ,MVR)

for some ql ∈ Qi , a1, a2 ∈ �i , and u ∈ �∗
i satisfying

| ca1a2u| = ki , then δ contains the following transitions
for all admissible choices of x ∈ �∗

i ∪ (�∗
i · $):

t̂1 : (q0, c[a1, a2, i]ux, q(i)
l ,MVR),

t̂2 : (q0, c[a1, i]a2ux, q(i)
l ,MVR),

t̂3 : (q0, c[i]a1a2ux, q(i)
MVR,MVR),

t̂4 : (q(i)
MVR, [i]a1a2ux, q(i)

l ,MVR).

For these transitions the weight function ω+ is defined
by taking

ω+(t̂1) = ω+(t̂2) = ω+(t̂4) = ωi (t)

and ω+(t̂3) = 1. Then ω+(t̂3) · ω+(t̂4) = ωi (t), which
corresponds to the fact that together t̂3 and t̂4 simulate
the effect of t on a tape content of the form c[i]a1a2w$.

(4.2) If δi (i ∈ {1, 2}) contains a transition of the form

t : (qm, a1a2u, ql ,MVR)

for some qm, ql ∈ Qi , a1, a2 ∈ �i , and u ∈ �∗
i sat-

isfying |a1a2u| = ki , then δ contains the following
transitions for all admissible choices of x ∈ �∗

i ∪(�∗
i ·$):

t̂1 : (q(i)
m , a1a2ux, q

(i)
l ,MVR),

t̂2 : (q(i)
m , [a1, i]a2ux, q(i)

l ,MVR),

and we take ω+(t̂1) = ω+(t̂2) = ωi (t).

In order to simulate the transition t correctly on a tape con-
tent of the form c[a1, a2, i]w$, we need to combine this
transition with those transitions that Mi can perform in the
configuration ca1qla2w$. Based on the latter transitions, we
have various options:
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(a) If δi contains a transition of the form

t ′1 : (ql , a2ua, ql ′ ,MVR)

for some ql ′ ∈ Qi , a ∈ �i , and u ∈ �∗
i satisfying

|a2ua| = ki , then δ contains the following additional
transitions for all admissible choices of x ∈ �∗

i ∪(�∗
i ·$):

t̂ ′1 : (q(i)
m , [a1, a2, i]uax, q(i)

l ′ ,MVR),

where ω+(t̂ ′1) = ωi (t) · ωi (t ′1), as t̂ ′1 simulates the
sequence of transitions (t, t ′1) of Mi .

(b) If δi contains a transition of the form

t ′2 : (ql , a2ua, ql ′ , v)

for some ql ′ ∈ Qi , a ∈ �i , u, v ∈ �∗
i such that |a2ua| =

ki and |v| < ki , then δ contains the following additional
transitions for all admissible choices of x ∈ �∗

i ∪(�∗
i ·$):

t̂ ′2 : (q(i)
m , [a1, a2, i]uax, q(i)

l ′ , v′x),

where

v′ =
{ [a1, i]v, if |v| < |ua|,

[a1, a3, i]ṽ, if |v| = |ua| and v = a3ṽ.

Further, we take ω+(t̂ ′2) = ωi (t) · ωi (t ′2), as t̂ ′2 simulates
the sequence of transitions (t, t ′2).

(c) If δi contains a transition of the form

t ′3 : (ql , a2ua,Accept)

for some a ∈ �i and u ∈ �∗
i satisfying |a2ua| = ki ,

then δ contains the following additional transitions for
all admissible words x ∈ �∗

i ∪ (�∗
i · $):

t̂ ′3 : (q(i)
m , [a1, a2, i]uax,Accept),

and the weight function ω+ is extended by taking
ω+(t̂ ′3) = ωi (t) · ωi (t ′3).

(4.3) The case that δi (i ∈ {1, 2}) contains a transition of
the form

t : (qm, a1a2u$, ql ,MVR)

for some qm, ql ∈ Qi , a1, a2 ∈ �i , and u ∈ �∗
i

satisfying |a1a2u$| ≤ ki is dealt with in the same
way as (4.2). However, observe that here we do not
need to consider the case of a symbol of the form
[a1, a2, i], as by our construction such a symbol can
only occur immediately to the right of the left sentinel
c, and k > ki .

5. Here we present those transitions that allow M+ to
simulate rewrite steps of M1 and M2. Again we must
distinguish between several cases.

(5.1) If δi (i ∈ {1, 2}) contains a transition of the form

t : (q(i)
0 , ca1a2u, ql , cv)

for some ql ∈ Qi , a1, a2 ∈ �i , and u, v ∈ �∗
i satisfy-

ing | ca1a2u| = ki and |v| ≤ |u| + 1, then δ contains
the following transitions for all admissible choices of
x ∈ �∗

i ∪ (�∗
i · $):

t̂1 : (q0, c[a1, a2, i]ux, q(i)
l , cαx), where

α =
⎧
⎨

⎩

[i]v, if |v| < |u|,
[a3, i]ṽ, if |v| = |u|, v = a3ṽ,

[a3, a4, i]ṽ, if |v| = |u| + 1, v = a3a4ṽ,

t̂2 : (q0, c[a1, i]a2ux, q(i)
l , cαx), where

α =
{ [i]v, if|v| ≤ |u|,

[a3, i]ṽ, if |v| = |u| + 1, v = a3ṽ,

t̂3 : (q0, c[i]a1a2ux, q(i)
l , c[i]vx).

Further, ω+(t̂1) = ω+(t̂2) = ω+(t̂3) = ωi (t) is cho-
sen.

(5.2) If δi (i ∈ {1, 2}) contains a transition of the form

t : (qm, a1a2u, ql , v),

where qm, ql ∈ Qi , a1, a2 ∈ �i , u, v ∈ �∗
i satisfying

|a1a2u| = ki and |v| ≤ |u| + 1, then δ contains the
following transitions for all admissible choices of x ∈
�∗
i ∪ (�∗

i · $):

t̂1 : (q(i)
m , [a1, a2, i]ux, q(i)

l , αx), where

α =
⎧
⎨

⎩

[i]v, if |v| < |u|,
[a3, i]ṽ, if |v| = |u|, v = a3ṽ,

[a3, a4, i]ṽ, if |v| = |u| + 1, v = a3a4ṽ,

t̂2 : (q(i)
m , [a1, i]a2ux, q(i)

l , αx), where

α =
{ [i]v, if |v| ≤ |u|,

[a3, i]ṽ, if |v| = |u| + 1, v = a3ṽ,

t̂3 : (q(i)
m , a1a2ux, q

(i)
l , vx).

Further, we take

ω+(t̂1) = ω+(t̂2) = ω+(t̂3) = ωi (t).

(5.3) If δi (i ∈ {1, 2}) contains a transition of the form

t : (qm, a1a2$, ql , v$),

where qm, ql ∈ Qi , a1, a2 ∈ �i , v ∈ �
≤1
i , then δ

contains the following transitions:

t̂3 : (q(i)
m , a1a2$, q

(i)
l , v$),
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where we take ω+(t̂3) = ωi (t). Observe that by our
assumption (see the remark at the end ofCase 2 above)
we do not need to consider the cases that M+ must
simulate transition t on a tape content of the form
[a1, i]a2$ or [a1, a2, i]$.
Analogously, a transition t : (qm, a1$, ql , $) of Mi

just yields the transition t̂3 : (q(i)
m , a1$, q

(i)
l , $) for

M+ with weight ω+(t̂3) = ωi (t).
6. Now we consider the restart transitions. For RWW-

automata, each rewrite operation is immediately fol-
lowed by a restart step. Hence, if a state q of Mi

(i ∈ {1, 2}) is entered through a rewrite step, then
in state q, Mi must restart immediately, that is, δi
contains the transitions

tu : (q, u,Restart)

for each possible window content u. Accordingly, δ

contains the following transitions for all admissible
words x ∈ �∗

i ∪ (�∗
i · $):

t̂u,x : (q(i), ux,Restart),

and ω+(t̂u,x ) = ωi (tu). Recall that a restart operation
is only performed after a rewrite step has been exe-
cuted, which means that at this point the read/write
window of M+ does not contain any symbol from
��(�1 ∪ �2).

7. Finally, we consider the accept transitions of M1

and M2, where we distinguish between two cases.
(7.1) If δi (i ∈ {1, 2}) contains a transition of the form

t : (q(i)
0 , ca1a2u,Accept)

for some a1, a2 ∈ �i and u ∈ �∗
i such that

| ca1a2u| = ki , then δ contains the following tran-
sitions for all admissible words x ∈ �∗

i ∪ (�∗
i · $):

t̂1 : (q0, c[a1, a2, i]ux,Accept),
t̂2 : (q0, c[a1, i]a2ux,Accept),
t̂3 : (q0, c[i]a1a2ux,Accept),

and ω+(t̂1) = ω+(t̂2) = ω+(t̂3) = ωi (t).
(7.2) If δi (i ∈ {1, 2}) contains a transition of the form

t : (qm, a1a2u,Accept)

for some qm ∈ Qi , a1, a2 ∈ �i , and u ∈ �∗
i such that

|a1a2u| = ki , then δ contains the following transitions
for all admissible choices of x ∈ �∗

i ∪ (�∗
i · $):

t̂1 : (q(i)
m , [a1, a2, i]ux,Accept),

t̂2 : (q(i)
m , [a1, i]a2ux,Accept),

t̂3 : (q(i)
m , a1a2ux,Accept),

and ω+(t̂1) = ω+(t̂2) = ω+(t̂3) = ωi (t). This com-
pletes the proof for the case that M1 and M2 are
RWW-automata.

Finally, we turn to the case that M1 and M2 are RRWW-
automata. First, in order to simplify the discussion, we
observe that we can assume without loss of generality that
M1 andM2 only perform restart operations at the right end of
their tapes, that is, when the read/write window only contains
the right sentinel $. This is easily achieved by replacing every
other restart transition by a move-right step (with the same
weight as the corresponding restart step), which enters a spe-
cial state qmv, and in state qmv, the RRWW-automatonmoves
all the way to the right end of its tape and performs a restart
step on the $-symbol, where all these additional transitions
have weight 1.

8. Under this assumption we now describe the construc-
tion of M+ from M1 and M2. The transitions of
M+ for making the choice between simulating M1 or
M2 and the transitions for simulating move-right and
accept steps of M1 and M2 are defined as for RWW-
automata (see above). Because of the above assumption
on the restart operations, these are also easily simu-
lated by M+. Hence, it remains to deal with the rewrite
transitions of M1 and M2, where we have to solve the
following technical difficulty:
Whenever Mi (i ∈ {1, 2}) applies a rewrite oper-
ation (qm, u, ql , v) to a configuration of the form
cw1qmuw2$, then the configuration cw1vqlw2$ is
obtained. As the size k of the read/write window of
M+ is strictly larger than that of the read/write win-
dow of Mi , the above operation is simulated by rewrite
operations of the form (q(i)

m , ux, q(i)
l ′ , vx) for all admis-

sible words x ∈ �+
i . This, however, means that, from

the configuration cw1q
(i)
m uw2$ = cw1q

(i)
m uxw′

2$, the

configuration cw1vxq
(i)
l ′ w′

2$ is obtained in a single
step, that is, the window of M+ skips across the pre-
fix x of w2 of length k − ki , while the window of Mi

must be shifted across x by applying |x | many move-
right steps. Unfortunately, we cannot simply define the
weights of the above transitions of M+ as the prod-
uct of the weights of the rewrite transition of Mi and
the corresponding move-right transitions of Mi , as the
latter will in general also depend on the next ki − 1
symbols following the factor x .
To overcome this problem, we proceed as follows.
For i = 1, 2, let Qrw

i denote the set of states of Mi

that are reached through a rewrite step. Further, for
q ∈ Qrw

i , x ∈ �
k−ki
i , and y ∈ �

ki−1
i ∪ �

≤ki−2
i · $, let

Ci (q, x, y) be the set of computations of Mi that con-
sist of |x | move-right steps that take a configuration of
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the form cwqxyw′$ into a configuration of the form
cwxq ′yw′$ for some state q ′ ∈ Qi . We introduce the
following additional states for M+:

Qrw := { q(1)
l,x,y,C | ql ∈ Qrw

1 , x ∈ �
≤k−k1
1 ,

y ∈ �
k1−1
1 ∪ �

≤k1−2
1 · $,C ∈ C1(ql , x, y) }

∪{ q(2)
l,x,y,C | ql ∈ Qrw

2 , x ∈ �
≤k−k2
2 ,

y ∈ �
k2−1
2 ∪ �

≤k2−2
2 · $,C ∈ C2(ql , x, y) }.

Now we can proceed by replacing the rewrite transi-
tions introduced in Case 5 above as follows, where
again we distinguish between several cases.

(8.1) If δi (i ∈ {1, 2}) contains a transition of the form
t : (q(i)

0 , ca1a2u, ql , cv)

for some ql ∈ Qrw
i , a1, a2 ∈ �i , and u, v ∈ �∗

i satisfy-
ing | ca1a2u| = ki and |v| ≤ |u| + 1, then δ contains
the following transitions for all admissible choices of
x ∈ �∗

i ∪ (�∗
i · $), y ∈ �

ki−1
i ∪ (�

≤ki−2
i · $), and

C ∈ Ci (ql , x, y):

t̂1,x,y,C : (q0, c[a1, a2, i]ux, q(i)
l,x,y,C , cαx), where

α =
⎧
⎨

⎩

[i]v, if |v| < |u|,
[a3, i]ṽ, if |v| = |u|, v = a3ṽ,

[a3, a4, i]ṽ, if |v| = |u| + 1, v = a3a4ṽ,

t̂2,x,y,C : (q0, c[a1, i]a2ux, q(i)
l,x,y,C , cαx), where

α =
{ [i]v, if |v| ≤ |u|,

[a3, i]ṽ, if |v| = |u| + 1, v = a3ṽ,

t̂3,x,y,C : (q0, c [i]a1a2ux, q(i)
l,x,y,C , c[i]vx).

Further, ω+(t̂ j,x,y,C ) = ωi (t), j = 1, 2, 3.
(8.2) If δi (i ∈ {1, 2}) contains a transition of the form

t : (qm, a1a2u, ql , v),

where qm ∈ Qi , ql ∈ Qrw
i , a1, a2 ∈ �i , u, v ∈ �∗

i sat-
isfying |a1a2u| = ki and |v| ≤ |u| + 1, then δ contains
the following transitions for all admissible choices of
x ∈ �∗

i ∪ (�∗
i · $), y ∈ �

ki−1
i ∪ (�

≤ki−2
i · $), and

C ∈ Ci (ql , x, y):

t̂1,x,y,C : (q(i)
m , [a1, a2, i]ux, q(i)

l,x,y,C , αx), where

α =

⎧
⎪⎨

⎪⎩

[i]v, if |v| < |u|,
[a3, i]ṽ, if |v| = |u|, v = a3ṽ,

[a3, a4, i]ṽ, if |v| = |u| + 1, v = a3a4ṽ,

t̂2,x,y,C : (q(i)
m , [a1, i]a2ux, q(i)

l,x,y,C , αx), where

α =
{

[i]v, if |v| ≤ |u|,
[a3, i]ṽ, if |v| = |u| + 1, v = a3ṽ,

t̂3,x,y,C : (q(i)
m , a1a2ux, q

(i)
l,x,y,C , vx).

Further, we take ω+(t̂ j,x,y,C ) = ωi (t) for all j =
1, 2, 3.

(8.3) For each state q(i)
l,x,y,C ∈ Qrw, we have to add some

transitions to δ. From the definition above we see that
C is a computation of Mi that takes a configuration of
the form cwql xyw′$ to the configuration cwxq ′yw′$
for some q ′ ∈ Qi . For b ∈ �i , let

tq ′,yb : (q ′, yb, q j ,MVR)

be a transition ofMi that is applicable to a configuration
of the form cwxq ′ybw′$. Then we add the transition

t̂l,x,y,C,b,z : (q(i)
l,x,y,C , ybz, q(i)

j ,MVR)

to M+ for all admissible choices of z ∈ �∗
i ∪ (�∗

i · $).
Further, we take

ω+(t̂l,x,y,C,b,z) = ωi (C) + ωi (tq ′,yb),

where ωi (C) is the weight associated to the computa-
tion C of Mi .

Finally, if Mi contains the transition

tq ′,$ : (q ′, $,Restart),

then we add the transitions

t̂l,x,$,C : (q(i)
l,x,$,C , $,Restart)

to M+, where we take

ω+(t̂l,x,$,C ) = ωi (C) + ωi (tq ′,$).

This completes the proof also for the case that M1 and M2

are RRWW-automata. ��
While the proof above is technically quite involved, the

next result is rather obvious.

Theorem 7 For all alphabets �, all commutative semirings
S, and all types X of restarting automata, the class of func-
tions F(X, �, S) is closed under the operation of scalar
multiplication.

Proof Let S be a semiring, let M be a restarting automaton
of some type X with input alphabet �, and let ω be a weight
function for M . For each input w ∈ �∗, we have

f Mω (w) =
⎛

⎝
∑

C∈CM (w)

ω(C)

⎞

⎠ ,
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where CM (w) is the set of all accepting computations of M
on input w, and ω(C) is the product of the weight of all
transitions that are used in the accepting computation C .

For s ∈ S, we define a new weight function ωs as follows:

ωs(t) =
{
s · ω(t), if t is an accept transition,
ω(t), otherwise.

As each computation C ∈ CM (w) uses exactly one accept
transition, and as S is commutative, we see that ωs(C) = s
· ω(C), which implies that f Mωs

(w)=s · f Mω (w) holds. ��
ForRWW-andRRWW-automata, Theorem7 also extends

to semirings that are not commutative. This can be shown
using the technique from the proof of Theorem 6. From this
observation and from Theorem 6 we see that the sets of
functions F(RWW, �, S) and F(RRWW, �, S) are semi-
modules over S (see, e.g., Salomaa and Soittola 1978).
Finally, we derive the following additional closure property.

Theorem 8 For all alphabets � and all semirings S,
F(RWW, �, S) and F(RRWW, �, S) are closed under the
operation of Cauchy product.

Proof Let S = (S,+, ·, 0, 1) be a semiring, let � be a
finite alphabet, let M1 = (Q1, �, �1, c, $, q(1)

0 , k1, δ1) and

M2 = (Q2, �, �2, c, $, q(2)
0 , k2, δ2) be RWW- or RRWW-

automata with input alphabet�, and let ω1 and ω2 be weight
functions that map the transitions of M1 and of M2 to S.
In order to prove that F(RWW, �, S) is closed under the
operation of Cauchy product, we construct an RWW- or
RRWW-automaton Mc with input alphabet � and a weight
function ωc such that

f Mc
ωc

(w) = ( f M1
ω1

· f M2
ω2

)(w) =
∑

w=uv

(
f M1
ω1

(u) · f M2
ω2

(v)
)

holds for all w ∈ �∗. To simplify this construction we can
assume that M1 and M2 perform accept transitions only on
the right sentinel $, which is easily achieved by using special
states and additional move-right steps.

On inputw ∈ �∗, the automatonMc first guesses a factor-
ization w = u · v of w. This will be done in the first cycle by
replacing the last symbol a of the prefix u and the first sym-
bol b of the suffix v by an auxiliary symbol of the form [a, b].
For choosing the factorization w = λ · w or w = w · λ, the
first two symbols a1 and a2 or the last two symbols b1 and
b2 of w are replaced by the auxiliary symbol [ c, a1, a2] or
[b1, b2, $], respectively. AsMc restarts in its initial state after
performing this rewrite step, it will not remember that it has
already chosen a factorization ofw; however, if at a later point
in the computation, Mc realizes that two (or more) factoriza-
tions have been chosen, then the corresponding computation
halts immediately without accepting.

After having guessed a factorization w = u · v, Mc simu-
lates a computation of M1 on the prefix u, where the special
symbol of the form [a, b] serves as the right end marker. If
this computation of M1 is accepting, then Mc replaces the
special symbol [a, b] by a new symbol of the form [+, b],
it deletes all letters to the left of this symbol in subsequent
cycles, and then it simulates a computation of M2 on the suf-
fix v. Finally, Mc accepts if this computation of M2 is also
accepting.

As in the proof of Theorem 6 we need auxiliary symbols
and additional transitions for Mc to enable it to perform the
above simulations, as the special symbols of the form [a, b],
[+, b], [ c, a1, a2], or [b1, b2, $] must be dealt with appro-
priately. However, this can be realized using essentially the
same techniques.

It follows that, for each factorization w = u · v, for each
accepting computation ofM1 on input u, and for each accept-
ing computation of M2 on input v, the automaton Mc has
exactly one accepting computation. By assigning weight 1
to all the transitions that are used in the guessing phase and
to all transitions that are used in the phase between the sim-
ulation of M1 and the simulation of M2, by assigning weight
ω1(t1) to all transitions of Mc that correspond to a transition
t1 of M1, and by assigning weight ω2(t2) to all transitions of
Mc that correspond to a transition t2 of M2, it can be shown
that indeed the equality

f Mc
ωc

(w) = ( f M1
ω1

· f M2
ω2

)(w) =
∑

w=uv

(
f M1
ω1

(u) · f M2
ω2

(v)
)

holds for all input words w ∈ �∗. ��

5 Conclusion

We have introduced the weighted restarting automaton in
order to express and study quantitative aspects of restarting
automata and their computations. For each semiring S, each
input alphabet�, and each typeXof restarting automaton, the
class of functions F(X, �, S) extends the class SREC〈〈�∗〉〉
of recognizable functions over S and �, and for RWW- and
RRWW-automata, the corresponding class of functions is
a semi-module over S that is additionally closed under the
operation of Cauchy product. Further, for the special case
of S = (N,+, ·, 0, 1), we have also studied the extended
functions of the form f̂ Mω : N → S, establishing an upper
bound for their growth. In addition, we have seen that all
polynomials and finite sums of polynomials and exponential
functions can be realized by RWW-automata.

It remains open whether the classes F(X, �, S) are closed
under addition and/or Cauchy product also for those types
of restarting automata that cannot use auxiliary symbols.
Further, for all types of restarting automata, it remains to char-
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acterize the classes of functions F(X, �, S) and F̂(X, �, S)

in a syntactic manner.
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