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Abstract To solve the problems of convergence speed in the
ant colony algorithm, an improved ant colony optimization
algorithm is proposed for path planning of mobile robots in
the environment that is expressed using the grid method. The
pheromone diffusion and geometric local optimization are
combined in the process of searching for the globally optimal
path. The current path pheromone diffuses in the direction
of the potential field force during the ant searching process,
so ants tend to search for a higher fitness subspace, and the
search space of the test pattern becomes smaller. The path that
is first optimized using the ant colony algorithm is optimized
using the geometric algorithm. The pheromones of the first
optimal path and the second optimal path are simultaneously
updated. The simulation results show that the improved ant
colony optimization algorithm is notably effective.
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1 Introduction

Creating collision-free trajectories for mobile robots, which
is known as the path-planning problem, is considered one of
combination optimal problems. Many approaches have been
suggested in the literatures (Gu et al. 2015; Ma et al. 2015;
Wen et al. 2015; Zhao et al. 2015; Xie andWang 2014; Geng
et al. 2012; Peng et al. 2015) to solve different optimization
problems in a wide variety of application domains including
engineering, biology, economics, industry and many more
other complex real world problems. In general, the path-
planning problem is considered one of the basic problems in
robotics and it addresses the creation of a continuous motion
that connects a starting point and a goal point in the configu-
ration area of a robot while avoiding collisions with present
obstacles (Cheng et al. 2010; Botzheim et al. 2012).

At present, the methods proposed to solve the path-
planning problem are divided into two categories: the tra-
ditional method based on a mathematical model [such as
the grid method (Borenstein and Koren 1991) and artificial
potential field method (Khatib 1986; Brooks 1986)] and a
bionic optimization algorithm that is suitable for a complex
environment [such as the artificial fish algorithm (Xu and
Zhu 2012), genetic algorithm (Castillo et al. 2007), particle
swarm algorithm (Wu et al. 2009), and ant colony algo-
rithm (Mavrovouniotis and Yang 2011)]. The grid method
is a method of global path planning in a large-scale envi-
ronment. It has some disadvantages, such as large storage
space, and low calculation efficiency. The artificial potential
field method is a mature robot local path-planning method
and is suitable for real-time control, but it is easy to fall into
the local optimum and deadlock phenomena. The disadvan-
tages of bionic optimization methods are a large searching
space, complicated algorithm, and low searching efficiency.
The method easily falls into a local optimal path, and it can-
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not find a feasible path in some cases (Cheng et al. 2010).
Therefore, the search for an effective path-planning method
for a mobile robot in a complicated environment has become
a subject of significant interest and a currently active research
field (Savsani et al. 2014).

In optimization, bionic optimization is probably best
known for ant colony optimization (ACO) (Wang 2015).
It is a global optimization algorithm. A central concern in
this algorithm is the balance between exploration of the
search space, and exploitation of the knowledge that can
be considered representing the collective knowledge of the
group (Parpinelli and Lopes 2015). The main problem of this
method is how to improve the global search ability and con-
vergence speed of the algorithm. To quickly find the global
optimal path, the ant colony algorithm must make the search
space as large as possible and take advantage of prior knowl-
edge. The essence is to solve contradictions between the
algorithm’s randomness and the pheromone update intensity.
This problem causes many researchers to perform in-depth
research on this topic from two directions: search strategy
and pheromone update strategy, such as bidirectional differ-
ent search strategies and taboo table optimization strategy
(Kang et al. 2014), turn-back search strategy (Wang et al.
2008) and Max–Min ant system (Sttzle and Hoos 1997).
Additionally, in the past few years, many hybrid intelligent
optimization algorithms were proposed as solutions to the
path-planning problem. A fusion algorithm of ant colony and
particle swarm (Shuang et al. 2011) was introduced to navi-
gate a mobile robot in an environment filled with obstacles.
In addition, (Liu et al. 2010) proposed a combination of an
ant colony algorithm with an immune algorithm to solve the
TSP problem.

The main characteristics of our proposed algorithm are
that the artificial potential field and geometric local opti-
mization are combined in the process of searching for the
global optimal path. It can effectively generate good solutions
quickly, and lowers the risks of trapping in a local optimum.
First, the path pheromone diffuses in the direction of the
potential field force during in the ant searching process; thus,
the ants tend to search for a higher fitness subspace, and the
algorithm changes the “blind” search into a “bias” search. It
reduces the cross paths to a certain extent, and the first path
is obtained. The modified ACO is named as ACO-PD. Sec-
ond, using the geometrical optimizationmethod, the searched
paths are optimized, and the cross paths, circular paths and
saw tooth paths are completely eliminated. The pheromones
of both paths are simultaneously updated. ThemodifiedACO
is named as ACO-PDG. The difference between the method
in this paper and the literature (Luo andWu 2010) is the way
in which pheromone diffusion modes and the pheromone
updating strategy. The farmer pheromone has higher smooth-
ness and its pheromone updating speed is faster than that of

the latter algorithm; thus, the collaborative capability of ant
is enhanced greatly.

The rest of the paper is structured as follows. In Sect.
2, the problems that affect the convergence speed in ACO
algorithm are mentioned. All the theoretical background for
the proposed algorithm is presented in Sect. 3. The pro-
posed algorithm, which was derived from a combination
of the ACO, based on the diffusion of local pheromones,
and the geometric method, is presented in Sects. 3.2
and 3.3. The implementation of the method is described
in full details in Sect. 3.4. The effects of the proposed
method on the pheromone distribution are illustrated in
Sect. 4. The corresponding simulation results are pre-
sented in Sect. 5. Finally, the conclusions are provided in
Sect. 6.

2 The standard ACO

The ant colony optimization is a pheromone-mediated com-
munication between individual activities. The ants randomly
walk and find the path to the destination while laying down
chemical trails that are called pheromones. The pheromone
trail transmits a message to other members of the colony. The
other ants are likely to follow the trail instead of randomly
traveling. If they eventually find the path to the destination,
they reinforce the trail by depositing more pheromone (Lim
et al. 2008). Simultaneously, the pheromone trail starts to
evaporate and reduce its attraction. Obviously, the longer
paths have a highermagnitude of evaporation than the shorter
paths. Thus, by comparison, the intensity of lain pheromone
on the shortest path, gradually increases to the level that bal-
ances with the evaporation rate, which causes the quantity of
pheromone on the shorter path to grow faster than the cor-
responding longer one. Through pheromone accumulation,
which is called the autocatalytic process (positive feedback),
the probability that any single ant chooses the path to follow
is quickly biased towards the shorter one (Erin et al. 2010;
Shi et al. 2014).

The ACO has the following defects. First, the ACO is
a heuristic bionic optimization method. To find the global
optimal path, the searching space must be sufficiently large.
Second, the ants avoid obstacles and navigate themselves to
the goal by reducing the pheromone concentration near the
obstacles after several encounters with the obstacle. Third,
the ACO is a random search algorithm; particularly in the
initial stage, the random search makes it inevitably produce
a large number of local cross paths, circular paths and saw-
tooth paths. Many ants lose their bearings and cannot find
the full paths. All aforementioned defects are characterized
by high computational costs, premature convergence and low
search efficiency.
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3 Proposed methods

3.1 Environment model

This article uses the two-dimensional grid method to repre-
sent the robot environment, and the grid squares are divided
into two types: free grid square, which is represented by zero,
and obstacle grid square, which is represented by one. The
robot can only move in the free grid. The goal of robot path
planning is to look for a grid set that contains the starting
grid, ending grid and an orderly grid subset and to avoid the
obstacle grids when encountering them

3.2 Local pheromone diffusion model

The robot motion can be interpreted as the motion of a parti-
cle in a gradient vector field, which is generated by positively
and negatively charged electric particles. In this analogy, the
robot is a positive charge, and the goal is a negative particle
that generates attractive forces to attract the robot to the goal.
The obstacles act as positive charges that generate repulsive
forces that force the robot away from the obstacles. The com-
bination of an attractive force and repulsive forces drives the
robot in a safe path to the goal (Wei et al. 2013). The resultant
force is closely related to the layout of the obstacles and target
in the environment. In this paper, considering the overall lay-
out of the obstacles and target in the environment, a diffusible
pheromone of the current path point is used to improve the
pheromone concentration along the direction of the artificial
potential field force. The potential function Utotal(p) given
by (1) comprises two parts, the attractive potential function
Uatt(p) given by (2), and the repulsive potential function
Urep(p) given by (3). The mobile robot is driven by the total
force f (p) given by (4) to the goal along the safe path.

Utotal(p) = Uatt(p) +Urep(p) (1)

Uatt(p) = 1

2
Ka(p − pe)

2 (2)

Urep(p) =
{

1
2Kr (

1
ρ

− 1
ρ o

)2, if ρ ≤ ρo;
0, if ρ < ρo

(3)

f (p) = −∇Utotal(p) =
m∑
i=1

fre(i) + fat (4)

where p and pe present the positions of the mobile robot
and the goal of the system, Ka and Kr are scalar variables
that represent the attractive and repulsive proportional gains
of the functions, ρo is the limit distance of influence of the
potential field, and ρ is the shortest distance to the obstacle,
fre(i) (i = 1, 2, . . ., m) is the repulsive forces, and fat is the
attractive force. The repulsive forces fre1, fre2, fre3 and the
attractive force fat are shown in Fig. 1. The resultant force

Fig. 1 Resultant force direction

Fig. 2 Pheromone diffusion
direction

Fig. 3 Pheromone diffusion model

is f (θ), and its direction is determined by θ . Because of the
potential field repulsive force, the pheromone concentration
of the areas near the obstacles is low, and the ants have a
decreased risk of visiting these areas (such as area one). The
ants tend to explore the path along trajectory one.

There are eight grids around the ant, and the grid numbers
run from one to eight as shown in Fig. 2. Their angle range is
θ j ⊂ [( j −1)× π

4 − π
8 , ( j −1)× π

4 + π
8 ], ( j = 1, 2, . . . , 8).

When the angle θ of the combination force is within a given
angle range θ j , the grid number j to visit is described by (5).

θ j = ( j − 1) × π

4
− π

8

j = round

(
8θ + π

2π
+ 1

)
(5)

Assume that the diffusion of pheromone in any direction
obeys an approximately Gaussian distribution. The simpli-
fied model is shown in Fig. 3. The amount of diffusion
pheromone at a given position is described by (6).

τ
′′
i j

ϕ(i)
= ga

eo
= ab

ob
= r − ξ

r

τ
′′
i j = γ ϕ(i)

r − ξ

r
(6)

where γ is the diffusion coefficient, ϕ(i) is the amount of
pheromone diffusion source, r is the pheromone diffusion
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Fig. 4 Analysis of the intersection of two line segments

radius, ξ is the distance between two grids, and τ
′′
i j is the

amount of diffused pheromone from grid i to j . Assume that
the edge length of the grid is one. When pheromone ϕ(i) of
the current grid spreads to the diagonal grid, the amount of
diffused pheromone at a given grid n is described by (7).

r = ob = √
2 +

√
2

2

ξ = oa = √
2

τ
′′
in =

{
γ ϕ(i) 3

√
2/2−√

2
3
√
2/2

= 0.33γ ϕ(i), n ∈ B

0, n /∈ B
(7)

where B is the set of free grids.
When the pheromoneϕ(i)of the current grid spreads to the

vertical or horizontal grid, the amount of diffused pheromone
at a given position (i, k) is described by (8).

τ
′′
ik =

{
γ ϕ(i) 3

√
2/2−1

3
√
2/2

= 0.53γ ϕ(i), k ∈ B

0, n /∈ B
(8)

3.3 Geometry optimization path method

The aforementionedmethod for robot path planning can opti-
mize the local path to some extent and can improve the
searching efficiency of the path. The remaining local paths
that require optimization are optimized using the geometric
method. According to the characteristics of the local path,
different measures are used.The relationships between two
straight lines given by equation sets (9) and (10) are two
situations in a two-dimensional coordinate system: parallel
and intersecting. The end coordinates of the segments are
A(x1, y1), B(x2, y2), C(x3, y3) and D(x4, y4), as shown in
Fig. 4.

Line AB:

{
x = x1 + kAB(x2 − x1)
y = y1 + kAB(y2 − y1)

(9)

Fig. 5 Analysis of saw tooth

Line CD:{
x = x3 + kCD(x4 − x3)
y = y3 + kCD(y4 − y3)

(10)

If the lines AB and CD intersect at E, the equation set (11)
satisfies formula (12) and has a unique solution, which is
described by (13) and (14).{
kAB(x2 − x1) + kCD(x4 − x3) = x3 − x1
kAB(y2 − y1) + kCD(y4 − y3) = y3 − y1

(11)

	 =
∣∣∣∣ x2 − x1 x3 − x4
y2 − y1 y3 − y4

∣∣∣∣ �= 0 (12)

kAB = 1

	
=

∣∣∣∣ x2 − x1 x3 − x4
y2 − y1 y3 − y4

∣∣∣∣ (13)

kCD = 1

	
=

∣∣∣∣ x2 − x1 x3 − x1
y2 − y1 y3 − y1

∣∣∣∣ (14)

If the line segments AB and CD intersect at E, the solution
of the equation set satisfies formula (15).

{
0 ≤ kAB ≤ 1
0 ≤ kCD ≤ 1

(15)

Intersection E satisfies formula (16).

{
Max(x1, x4) ≤ x ≤ Min(x2, x3)
Max(y1, y3) ≤ y ≤ Min(y2, y4)

(16)

If the end coordinates of path segments AB and CD sat-
isfy formulas (12), (13), (14) and (15), the path ABCD is
optimized to path AD. The angle between two adjacent path
segments satisfies formula (17), as shown in Fig. 5.


 =
∣∣∣ arctan( yi−yi−1

xi−xi−1
) − arctan( xi−xi+1

yi−yi+1
)
∣∣∣ (17)

If angle 
 equals 45◦, path DABCE is optimized to path
DACE. In Fig. 6, the solid line trajectory P ( 13© → 10© → 6©
→ 2© → 3© → 4© → 8© → 12© → 15© → 16©) is a part of the
global path, and the circular path L( 10© → 6© → 2© → 3©
→ 4© → 8© → 12© → 15©) can be removed. Then the path P
can be optimized to path P1( 13© → 10© → 15© → 16©).
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Fig. 6 Analysis of circular path

Optimization steps:

Step 1:Obtain the numbers of the current grid and its adjacent
grids, i.e., 10©, and the grid subset �( 5© 6© 7© 9© 10© 11© 13© 14©
15©).
Step 2: Remove grid 13© in the taboo list and obstacle grid 5©
from subset �. Obtain the free grids �1( 6© 7© 9© 10© 11© 14©
15©).
Step 3: In turn, look for the position of grid 10© that belong to
�1 in the grid set P. Take grid 15© that is adjacent to current
grid 10©, whose place is at the end of the position list, as the
next grid.
Step 4: Connect the current grid 10© to grid 15©. Path P is
optimized to path P1( 13© → 10© → 15© → 16©).
Step 5: Repeat the above steps for all remaining paths.

3.4 Description of the algorithm

The ACO-PD has the following operating steps:
Step 1: Extract the environment land feature and build an
environment map, which is represented by grids.
Step 2: The ACO and potential field method are initialized
with the required arguments.
Step 3: According to the general formulas (6), (7) and (8), the
local pheromone of the current grid spreads to the adjacent
grids along the direction of the combination force.

τi j (t) = τi j (t) + τ
′′
i j (t)

where τi j is the amount of pheromone at the given grid j . Step
4: The ant k moves from grid i to grid j with the following
probability:

pki j = τα
i j (t)η

β
i j (t)∑

s⊂allowed τα
is(t)η

β
is(t)

Where α and β are positive real parameters whose val-
ues determine the relative importance of pheromone versus
heuristic information. Furthermore, τα

i j and η
β
i j (t) are the

pheromone value and heuristic value that are associated with
an available solution route, respectively.
Step 5: Add grid j to the taboo list Bj .
Step 6: Carry out step three if the ant k does not arrive the
goal grid.
Step 7: Save the path T

′
k that the ant k searched and its length

L
′
k .

Step 8: The pheromone is updated according to the equation

	τ
′
i j (t, t + 1) =

m∑
k=1

	τ
′k
i j (t, t + 1)

τi j (t + 1) = (1 − ρ)τi j (t) + 	τ
′
i j (t, t + 1) (18)

where ρ is the rate of pheromone evaporation, 	τ
′
i j is the

amount of deposited pheromone, and 	τ
′k
i j is the amount of

pheromone deposited by ant k, which is typically given by:

	τ
′k
i j =

{
Q
L

′
k

, if ant k traveles on edge (i, j)

0, otherwise

Step 9: Optimize path T
′
k to Tk according to the general for-

mulas (12), (13), (14), (15) and (17). Then, save path Tk and
its length Lk .
Step 10: The amount of pheromone is updated again accord-
ing to the following equation:

	τ ki j =
{

Q
Lk

, if edge (i, j) is a part of path Tk
0, otherwise

Fig. 7 Pheromone distribution of the ACO at 6, 8 10 times
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Fig. 8 Pheromone distribution of the ACO-PD at 6, 8 10 times

Fig. 9 Comparison of the numbers of lost ants

	τi j (t, t + 1) =
m∑

k=1

	τ ki j (t, t + 1)

τi j (t + 1) = (1 − ρ)τi j (t) + 	τi j (t, t + 1) (19)

Step 11: Select the optimal path in this cycle and save it.

4 Pheromone distribution

The artificial potential field is a common local path-planning
method for the mobile robot. The superposition of locally
diffused pheromone based on artificial potential force and
global pheromone increases the pheromone concentration of
a high fitness solution space and, consequently, enhances the
probability of searching such subspace. It strengthens the
search process guidance (Wang et al. 2008) and updates the
global pheromone intensity, as shown in Figs. 7 and 8.

The impacts of local diffusion pheromone on the number
of lost ants, iterative times and path length are shown in the
bottom part of Figs. 9, 10 and 11. (Without getting into too

Fig. 10 Comparison of the iterations

Fig. 11 Comparison of the global optimal paths

much detail because of the space constraints). These figures
showonly the relationships in these cases, and the pheromone
volatilization coefficient ρ is 0.5. The graph shows that,
in comparison to the standard ACO solution, the algorithm
ACO-PD reduces the number of lost ants number, iterative
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Fig. 12 Pheromone distribution of the ACO-PDG at 6, 8, 10 times

Fig. 13 Local path optimization

times and improves the searching efficiency. Thus, the algo-
rithm ACO-PD diffusion can strongly improve the quality of
the standard ACO.

When an ant finishes building a path using thefirstmethod,
the path is optimized to another better path using the geo-
metric method. In each iteration, each ant generates two
candidate solutions; meanwhile, the amount of pheromone
on the two paths is updated by (18) and (19) which further
increases the intensity of the pheromone of the global path.
These results are shown in Fig. 12.

5 Experimental results and analysis

In this paper, the simulationprocess is basedon theAnt-Cycle
model.The simulation environment is shown in Fig. 13. The
first grid is the starting point, and the 400th grid is the target
point. The optimal path length is 30.3848. The parameters
are: heuristic factor α = 1.1, expected heuristic factor β =
12, pheromone evaporation coefficient ρ = 0.5, ant number
m = 10, diffusion coefficient γ = 0.01, and cycle number
K = 200.

Fig. 14 Simulation diagram of path planning

Fig. 15 Feature parameters

The blue solid line is the path that the ant searched using
the ACO-PD method, which is near the global optimal path
(as shown in Fig. 13), and its length is 51.1127. The red heavy
line is the local optimal path (A and B are crossed paths; C,
F, G and H are saw-tooth paths; D and E are circular paths.).
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Table 1 Comparison of the iteration times, path length for the three
methods

Algorithm x1 l1 x2 l2 x3

10 30.3848 19 33.7990 29

14 30.3848 33 33.7990 35

7 30.3848 7 30.3848 7

15 30.3848 15 33.7990 22

10 30.3848 60 33.7990 61

Standard ACO 10 30.3848 40 33.7990 45

13 30.3848 16 33.7990 30

9 30.3848 9 30.3848 9

12 30.3848 23 33.7990 33

10 30.3848 10 30.3848 10

Average result 11 30.3848 23.2 32.7747 28.1

10 30.3848 28 33.7990 35

6 30.3848 6 30.3848 6

7 30.3848 15 33.7990 22

8 30.3848 8 30.3848 8

ACO-PD 6 30.3848 9 30.3848 9

9 30.3848 12 33.7990 19

8 30.3848 8 30.3848 8

7 30.3848 7 30.3848 7

10 30.3848 15 33.7990 20

8 30.3848 8 30.3848 8

Average result 7.9 30.3848 11.6 31.7505 14.2

2 30.3848 2 30.3848 2

2 30.3848 2 30.3848 2

3 30.3848 3 30.3848 3

2 30.3848 2 30.3848 2

ACO-PDG 3 30.3848 3 30.3848 3

2 30.3848 2 30.3848 2

4 30.3848 4 30.3848 4

3 30.3848 3 30.3848 3

3 30.3848 3 30.3848 3

2 30.3848 2 30.3848 2

Average result 2.6 30.3848 2.6 30.3848 2.6

The red line is the optimal path using ACO-PDGmethod. Its
length is 41.4558, as shown in Fig. 14.

It can be seen from the figures that the ACO-PD algo-
rithm strengthens the search process guidance and reduces
the number of lost ants with incomplete paths. The path from
this algorithm is near the global optimal path. It is optimized
further using the geometry method to avoid crossed paths,
circular path and saw tooth path. Each ant generates two
candidate solutions and its search efficiency is improved.

Three feature points, A(x1, l1), B(x2, l1) and C(x3, l2) on
the simulation diagram, are used to compare the perfor-
mances of the three algorithms (standard ACO,ACO-PD and
ACO-PDG) in the paper in detail, as shown in Fig. 15. Para-

Fig. 16 a Standard ACO convergence curves. bACO-PD convergence
curves. c ACO-PDG convergence curves

meter x1 is the iteration time to first find the global optimal
path, and l1 is the length of the path. Parameter x2 is the min-
imum iteration time to continuously find the global optimal
path. Parameter x3 is the iteration time of the convergence
path, and l2 is the length of the convergence path.

To verify the feasibility of the proposed approach, a num-
ber of simulation experiments were performed. For each
algorithm, ten simulation trialswere performed, and the aver-
age result was taken. The results are compared in Table 1.

In Table 1, every algorithm can search for the global opti-
mal path at 30.3848. The standard ACO takes 11 iterations
on average to find the global optimal path. Seven simula-
tion trials converge to a local optimum at 33.7990, and the
standard ACO converges to the global optimum only three
times. The difference between the x1 and x2 group data from
the experiment is large, which significantly affects the con-
vergence rate. The ACO-PD averages 7.9 iterations to find
the global optimum, and it converges to the global optimum
six times. As the difference between the x1 and x2 group
data decreases, the convergence rate is enhanced. The sec-
ond, fourth, fifth ,seventh eighth and tenth convergent curves
are better. Compared with the standard ACO solution, the
ACO-PD provides better performance and lowers the risks
of trapping in a local optimum. After 2.6 iterations, on aver-
age, the ACO-PDG reaches its best solution at 30.3848. Each
ant can search two candidate solutions (the red and the blue
trajectories shown in Fig. 13) per loop iteration and, conse-
quently, enhance the update intensity of pheromone. x1, x2
and x3 are equal, and the convergence rate is significantly
enhanced. Otherwise, the ACO-PDG can lower the risks of
trapping in a local optimum, and every simulation trial can
converge to a global optimum at 30.3848. The convergent
curves of the three algorithms in the same environment are
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Table 2 Comparison of the iteration times, path length for the three
methods

Algorithm x1 l1 x2 l2 x3

5 35.0711 32 36.8284 34

4 35.6569 12 37.6569 25

6 35.6569 13 36.8284 14

2 35.0711 6 38.8285 8

Standard ACO 5 35.0711 15 35.0711 18

6 35.0711 20 36.8284 23

4 35.6569 8 37.6569 17

6 35.6569 4 36.8284 14

5 35.0711 15 35.0711 15

4 35.6569 8 38.8285 12

Average result 4.7 35.3640 13.3 37.0427 18

4 35.0711 4 35.0711 4

3 35.0711 3 35.0711 3

4 35.6569 21 38.8284 27

3 35.0711 16 63.3137 33

ACO-PD 5 35.0771 5 35.0711 5

4 35.6569 16 38.8284 20

3 35.0711 3 35.0711 3

3 35.0711 16 38.8284 18

4 35.0711 4 35.0711 4

4 35.0771 4 35.0711 4

Average result 3.7 35.1883 9.2 39.0226 12.1

2 35.0711 2 35.0711 2

1 35.0711 1 35.0711 1

1 35.0711 1 35.0711 1

1 35.0711 1 35.0711 1

ACO-PDG 1 35.0711 1 35.0711 1

1 35.0711 1 35.0711 1

1 35.0711 3 35.0711 5

2 35.0711 2 35.0711 2

1 35.0711 1 35.0711 1

1 35.0711 1 35.0711 1

Average result 1.2 35.0711 1.4 35.0711 1.6

shown in Fig. 16. The third convergent curve is better than
the others.

To verify the feasibility of the proposed approach, some
simulation experiments were performed in the environment
of the literature (Luo andWu2010). The results are compared
in Table 2, and the simulation diagram is shown in Fig. 17.
The convergent curves of the three algorithms in the same
environment are shown in Fig. 18.

In Table 2, the standard ACO find the global optimal path
at 35.0711 only five times, and eight simulation trials con-
verge to a local optimum. The difference between the x1 and
x2 group data from the experiment is large. TheACO-PDfind
the global optimal path eight times, and it converges to local

Fig. 17 Simulation diagram of path planning

Fig. 18 a Standard ACO convergence curves. bACO-PD convergence
curves. c ACO-PDG convergence curves

Table 3 Comparison of the performance for the two methods

Algorithm Environment 1 Environment 2
nc l n nc l n

ACO-PF 10 32.1421 11 10 35.0711 12

ACO-PDG 10 32.1421 2 10 35.0711 2.2

optimum five times. As the difference between the x1 and
x2 group data decreases, the convergence rate is enhanced.
Comparedwith the standardACOsolution, theACO-PDpro-
vides better performance and lowers the risks of trapping in
a local optimum. After 1.2 iterations, on average, the ACO-
PDG reaches its best solution at 35.0771. The conclusion is
that the ACO-PDG performs better than the two other algo-
rithms.

In Table 3, simulation experiments were performed ten
times to compare this approach with another previously
developed approachACO-PF (Luo andWu2010) in the same
environment. nc is the number of simulations that search for
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the global optimum; l is the average length of the convergence
path; n is the average number of searches for the global opti-
mum. The experimental results show that both algorithms
can search the global optimum, but the proposed approach in
this article reduces the iteration from 11 and 12 to 2 and 2.2,
respectively, and obviously accelerates the rate of iteration
convergence.

6 Conclusion

This article has shown that the proposed technique is an inter-
esting new approach to solving the path planning problem.
The approach is a combination of the artificial intelligence
algorithm and the geometry optimization method, i.e., an
ACO based on the diffusion of local pheromone and a
local path optimum based on geometry. The local diffu-
sion pheromone is applied to the ACO for problems that
are represented in a large search space. The method ACO-
PD strengthens the search process guidance and reduces the
number of ants with incomplete paths. The path from the first
algorithm is optimized using the geometry method to avoid
crossed paths; thus, in each iteration, each ant generates two
candidate solutions. The method ACO-PDG enhances the
update intensity of pheromones by updating the pheromones
twice per iteration loop. To test the effectiveness of the
approach, a number of simulation experiments were per-
formed to compare this approachwith other previously devel-
oped approaches. The experimental results show that the
proposed approach can effectively generate good solutions
quickly, and lowers the risks of trapping in a local optimum.
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