
Soft Comput (2017) 21:2801–2820
DOI 10.1007/s00500-016-2159-1

FOCUS

Efficiently mining uncertain high-utility itemsets

Jerry Chun-Wei Lin1 · Wensheng Gan1 · Philippe Fournier-Viger2 ·
Tzung-Pei Hong3,4 · Vincent S. Tseng5

Published online: 2 May 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Data mining consists of deriving implicit, poten-
tially meaningful and useful knowledge from databases such
as information about the most profitable items. High-utility
itemset mining (HUIM) has thus emerged as an important
research topic in data mining. But most HUIM algorithms
can only handle precise data, although big data collected in
real-life applications using experimental measurements or
noisy sensors is often uncertain. In this paper, an efficient
algorithm, named Mining Uncertain High-Utility Itemsets
(MUHUI), is proposed to efficiently discover potential high-
utility itemsets (PHUIs) in uncertain data. Based on the
probability-utility-list (PU-list) structure, the MUHUI algo-
rithm directly mines PHUIs without generating candidates,
and can avoid constructing PU-lists for numerous unpromis-
ing itemsets by applying several efficient pruning strategies,
which greatly improve its performance. Extensive experi-

Communicated by C.-H. Chen.

B Jerry Chun-Wei Lin
jerrylin@ieee.org

1 School of Computer Science and Technology, Harbin
Institute of Technology Shenzhen Graduate School, HIT
Campus Shenzhen University Town, Xili, Shenzhen 518055,
People’s Republic of China

2 School of Natural Sciences and Humanities, Harbin Institute
of Technology Shenzhen Graduate School, HIT Campus
Shenzhen University Town, Xili, Shenzhen 518055,
People’s Republic of China

3 Department of Computer Science and Information
Engineering, National University of Kaohsiung, Kaohsiung,
Taiwan, ROC

4 Department of Computer Science and Engineering, National
Sun Yat-sen University, Kaohsiung, Taiwan, ROC

5 Department of Computer Science, National Chiao Tung
University, Hsinchu, Taiwan, ROC

ments conducted onboth real-life and synthetic datasets show
that the proposed algorithm significantly outperforms the
state-of-the-art PHUI-List algorithm in terms of efficiency
and scalability, and that the proposed MUHUI algorithm
scales well when mining PHUIs in large-scale uncertain
datasets.

Keywords Large-scale dataset ·Data mining ·Uncertainty ·
High-utility itemset · Pruning strategies

1 Introduction

In the context of the rapid growth of wireless and informa-
tion technologies, “big data” has become a very popular issue
in recent years as it can provide useful insights for business
services and sales strategies. The main issues of interest in
research on “big data” are how to handle databases with high
volume, velocity, variety, value and veracity.KnowledgeDis-
covery in Database (KDD) aims at finding meaningful and
useful information inmassive amounts of data (Agrawal et al.
1993a, b; Agrawal and Srikant 1994a; Chen et al. 1996; Han
et al. 2004). Two fundamental issues in KDD, having numer-
ous applications in various domains, are frequent itemset
mining (FIM) and association rule mining (ARM) (Agrawal
et al. 1993b; Agrawal and Srikant 1994a).

In contrast with traditional FIM and ARM, high-utility
itemset mining (HUIM) (Chan et al. 2003; Liu et al. 2005;
Yao et al. 2004; Yao and Hamilton 2006) considers both
quantities and unit profits of items to measure how “useful”
or interesting an item or itemset is. An itemset is said to
be a high-utility itemset (HUI) if its utility in a database is
no less than a user-specified minimum utility count. In gen-
eral, the “utility” of an item/set can be interpreted as how
interesting an item/set is to users in real-life applications,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-016-2159-1&domain=pdf

2802 J.C.-W. Lin et al.

in terms of factors such as weight, cost, risk, and profit.
Chan et al. first proposed the concept of HUIM (Chan et al.
2003). Yao et al. then defined a unified framework for min-
ing high-utility itemsets (HUIs) (Yao et al. 2004). The goal
of HUIM is to identify items or itemsets in customer trans-
actions that may be rare, but yield a high profit. HUIM plays
a critical role in data analysis and has been widely utilized to
discover knowledge and mine valuable information in data-
bases.Many algorithms have been developed for HUIM such
as Two-Phase (Liu et al. 2005), IHUP (Ahmed et al. 2009),
HUP-growth (Lin et al. 2011),UP-growth (Tseng et al. 2010),
UP-growth+ (Tseng et al. 2013), HUI-Miner (Liu and Qu
2012), and FHM (Fournier-Viger et al. 2014).

In real-life applications, a massive amount of incomplete
data is collected from uncertain data sources such as wireless
sensor network, RFID, GPS, and WiFi systems (Aggarwal
and Yu 2009; Aggarwal 2010), and the size of the col-
lected uncertain data may be very large. However, traditional
data mining technologies for handling precise data cannot
be directly applied to incomplete, uncertain, or inaccurate
data for discovering information required by businesses. In
recent years, numerous algorithms have been developed to
discover useful knowledge in uncertain data such asUApriori
(Chui et al. 2007), UFP-growth (Leung et al. 2008), UH-
mine (Aggarwal et al. 2009), CUFP-growth (Lin and Hong
2012), and MBP (Wang et al. 2010). Mining frequent item-
sets in uncertain data is currently a very active research area
(Aggarwal and Yu 2009; Liu et al. 2013; Tong et al. 2012;
Wang et al. 2012).

In real-life applications, utility and probability are two
different measures for assessing the interestingness of an
object (e.g., how useful a pattern is). The utility is a subjec-
tive semantic measure (the “utility” represents the interest
that the user has in a pattern based on his a priori knowl-
edge and goals), while probability is an objective measure
(the probability of a pattern represents how likely it is to
exist) (Geng and Hamilton 2006). In real-life situations, an
item/set may not only be present or absent from a transac-
tional database but it can also be associatedwith an existential
probability. This is especially the casewhendata are collected
using experimental measurements or wireless equipment. In
market basket analysis, each transaction recorded by wire-
less equipment contains several items, annotated with their
purchase quantities and existence probabilities. In risk pre-
diction, the risk that events may occur is also indicated by
occurrence probabilities. For example, the event < (A, 1);
(D, 5); (E , 3); 90%> indicates that this event consisting of
three sub-events {A, D, E} with occurrence frequencies {1,
5, 3} has a 90% probability of occurring. Since the “util-
ity” of a pattern measures the importance of the pattern to
the user (i.e., risk, weight, cost, and profit), HUIM can be
used as an efficient method to discover interesting patterns
in uncertain data, for many real-life applications. But up to

now, most HUIM algorithms have been developed to handle
precise data, and hence are not suitable for mining patterns in
uncertain data. If a traditional HUIM algorithm is applied on
uncertain data, it may discover several useless or misleading
patterns since the discovered HUIs may have low existen-
tial probabilities. To the best of our knowledge, PHUIM (Lin
et al. 2015c) is the first algorithm to address the issue of
mining HUIs in uncertain data. However, the task of mining
high-utility itemsets in uncertain data, especially large-scale
uncertain databases, remains very costly in terms of execu-
tion time. Therefore, it is a non-trivial task and an important
challenge to design more efficient algorithms to solve the
limitations of previous work (Lin et al. 2015c).

In this paper, an efficient mining algorithm namedMining
Uncertain High-Utility Itemsets (MUHUI) in uncertain data
is proposed to effectively discover the high Potential and
High-Utility Itemsets (PHUIs). The major contributions of
this paper are summarized as follows:

1. Few studies on HUIM have addressed the problem of
mining HUIs in uncertain data by considering both the
semantic utility measure and the objective probability
measure. In this paper, an algorithm named MUHUI is
designed to successfully and directlymineHUIs in uncer-
tain databases, without generating candidates.

2. Based on the utility and probability measures, several
strategies are developed to prune the search space early
and thus efficiently reduce the number of unpromising
itemsets. These strategies can greatly reduce the search
space for mining HUIs and considerably improve the
mining performance.

3. Extensive experiments show that the results obtained by
mining HUIs in uncertain data and precise data are quite
different, and that the proposed algorithm is more effi-
cient than the state-of-the-art PHUI-List algorithm for
mining uncertain HUIs in terms of runtime, effective-
ness of its pruning strategies and scalability. In particular,
the MUHUI algorithm shows better scalability than the
PHUI-List algorithm for very large uncertain databases.

2 Related work

Mining frequent itemsets in uncertain data (UFIM) has been
extensively studied and has emerged as an important issue in
recent years (Aggarwal andYu 2009; Chui et al. 2007; Leung
et al. 2008;Liu et al. 2013;Tonget al. 2012;Wanget al. 2012).
Approaches for UFIM can be generally viewed as based on
either the expected support-based model (Aggarwal et al.
2009; Chui et al. 2007; Leung et al. 2008) or the probabilis-
tic frequency model (Bernecker et al. 2009; Sun et al. 2010).
Most algorithms for UFIM, such as UApriori (Chui et al.
2007), UFP-growth (Leung et al. 2008), UH-mine (Aggarwal

123

Efficiently mining uncertain high-utility itemsets 2803

et al. 2009), and CUFP-Miner (Lin and Hong 2012), belong
to the expected support-based model. Recently, Tong et al.
proposed a novel representation for mining frequent item-
sets in uncertain data using uniform measures (Tong et al.
2012), which combines the two above models. Novel algo-
rithms for mining uncertain frequent itemsets are frequently
proposed. However, none of them considers the utility mea-
sure. High-utility itemset mining (HUIM) is different from
FIM andARM, as it considers both the local transaction utili-
ties (occurrence quantities) and external utilities (unit profits)
of items to discover profitable itemsets in quantitative data-
bases.

The concept of HUIM was first proposed by Chan et al.
(2003). Yao et al. then defined a strict unified framework for
HUIM (Yao et al. 2004). Since the downward closure prop-
erty ofARMno longer holds inHUIM,Liu et al. proposed the
TWUmodel (Liu et al. 2005). This latter is used by a pruning
property called the transaction-weighted downward closure
(TWDC), to greatly reduce the number of unpromising can-
didates when mining HUIs using a level-wise approach.
Several tree-based approaches for mining HUIs have also
been proposed such as IHUP (Ahmed et al. 2009), HUP-
growth (Lin et al. 2011), UP-growth (Tseng et al. 2010), and
UP-growth+ (Tseng et al. 2013). Despite that these pattern-
growth approaches outperform previous approaches, they
still suffer from the problem of generating a huge number
of candidates and storing them in memory, to obtain the
actual HUIs. To address this issue of traditional HUIM, the
HUI-Miner algorithm was proposed. It directly mines HUIs
without performingmultiple database scans andwithout gen-
erating candidates, thanks to a novel utility-list structure (Liu
and Qu 2012). The FHM algorithm was further proposed to
enhance the performance of HUI-Miner by considering the
occurrence frequencies of pairs of items (Fournier-Viger et al.
2014). FHM can greatly reduce the number of operations to
be performed to discover HUIs using only a little bit more
memory for keeping track of the occurrences frequencies of
pairs of items.

Besides traditional HUIM, several variations of the prob-
lem of HUIM have been studied. Lin et al. proposed a series
of approaches for mining HUIs in dynamic databases by
considering record insertion (Lin et al. 2015f), record dele-
tion (Lin et al. 2015a), and record modification (Lin et al.
2015d). The UDHUP algorithmwas proposed to mine up-to-
date HUIs, which can be applied in real-world situations for
discovering up-to-date information about profitable itemsets
(Lin et al. 2015e). Lan et al. proposed several algorithms for
mining on-shelfHUIs (Lan et al. 2011, 2014), by considering
time periods where products are sold. An improved FOSHU
algorithm (Fournier-Viger and Zida 2015) was also designed
to efficiently mine on-shelf HUIs. Another recently studied
issue in HUIM is to discover the top–k HUIs. The TKU algo-
rithm was proposed to mine the top-k HUIs in transaction

databases (Wu et al. 2012), and the T-HUDS algorithm was
proposed to mine top-k HUIs in data streams (Zihayat and
An 2014). Mining high-utility itemsets with multiple min-
imum utility thresholds is also an interesting topic, where
multiple thresholds are used instead of a single minimum
utility threshold (Lin et al. 2015b). The development of other
algorithms for HUIM is in progress. However, most HUIM
algorithms are designed to handle precise data. To the best
of our knowledge, PHUIM (Lin et al. 2015c) is the first algo-
rithm for mining high-utility itemsets in uncertain data.

3 Preliminaries and problem statement

The probabilistic frequent itemset (PFI) model (Bernecker
et al. 2009; Sun et al. 2010) aims at finding itemsets that
have a high probability of being frequent. In real-life applica-
tions, the derived high-utility itemsets are, however, usually
rare. Hence, the probabilistic frequent itemsets model is not
suitable for discovering high-utility itemsets in uncertain
databases. In contrast, the expected support model considers
that an itemset is an expected frequent itemset if its expected
support (the sum of its existential probabilities) in an uncer-
tain database exceeds a user-specified minSup threshold
(Aggarwal et al. 2009; Chui et al. 2007; Leung et al. 2008),
which is similar to the potential probability model used in the
MUHUI algorithm, proposed in this paper. In addition, it is
possible to distinguish between the “tuple uncertainty” and
“attribute uncertainty” models. The former (Nilesh and Dan
2007) considers that each tuple is associated with an exis-
tential probability, while the latter associates an existential
probability to each attribute. The derived patterns using these
models have a high probability of being HUIs in an uncertain
database. Hence, in this paper, the tuple uncertainty model
(Nilesh and Dan 2007) and the uncertainty calculated model
which are somewhat similar to the expected support-based
model (Aggarwal et al. 2009; Chui et al. 2007; Leung et al.
2008) are adopted to design the proposedMUHUI algorithm.

3.1 Preliminaries

Assume that an uncertain quantitative database D = {T1,
T2,…, Tn} contains n transactions, where each transaction
has a unique identifier, TID. Let I = {i1, i2,…, im} be a
finite set of m distinct items in D, such that each transaction
Tq ∈ D is a subset of I . Moreover, assume that each item i j

occurring in a transaction is associated with a purchase quan-
tity q(i j , Tq). As in the tuple uncertainty model (Nilesh and
Dan 2007), each transaction Tq ∈ D has a unique probability
of existence p(Tq), which indicates that Tq exists in D with
a probability p(Tq). Assume that the unit profit of each item
is given in a profit table, ptable = {pr1, pr2,…, prm}, where
pr j is the unit profit of item i j . A k−itemset X , denoted as

123

2804 J.C.-W. Lin et al.

Table 1 A tuple uncertain database

TID Transaction (item, quantity) Probability

T7 (A, 1); (C , 3); (D, 4) 0.95

T2 (B, 1); (C , 1); (D, 2) 0.80

T3 (A, 2); (B, 2); (E , 3) 0.50

T4 (C , 2); (E , 2) 0.95

T5 (B, 1); (D, 2); (E , 2) 0.70

T6 (A, 1); (C , 2); (D, 1) 1.00

T7 (A, 3); (C , 1); (D, 3); (E , 4) 0.80

T8 (B, 1); (C , 4); (E , 1) 0.76

T9 (B, 3); (D, 5) 0.60

T10 (D, 5); (E , 2) 0.90

Table 2 The profit table Item A B C D E

Profit ($) 6 3 10 1 5

Xk , is a set of k distinct items {i1, i2,…, ik}. Furthermore,
let there be two user-specified thresholds called theminimum
utility threshold (ε) and the minimum potential probability
threshold (μ).

Table 1 shows an example of a tuple uncertainty quan-
titative database. The corresponding predefined profit table
is shown in Table 2. In this example, assume that the two
thresholds are, respectively, set to ε (=15%) and μ(=18%)
by the user.

Definition 1 The utility of an item i j in a transaction Tq is
denoted as u(i j , Tq) and defined as:

u(i j , Tq) = q(i j , Tq) × pr(i j).

For example, the utility of item {A} in T1 is u(A, T1) = q(A,
T1) × pr(A) (= 1 × 6) (= 6).

Definition 2 The probability that an item/itemset X occurs
in a transaction Tq is denoted as p(X, Tq), and defined as
p(X, Tq) = p(Tq), where p(Tq) is the existential probability
of Tq .

For example, consider an item (A) and an itemset (AD) in
T1; p(A, T1) = p(T1) (= 0.95), and p(AD, T1) = p(T1)(=
0.95).

Definition 3 The utility of an itemset X in a transaction Tq

is denoted as u(X, Tq), and defined as:

u(X, Tq) =
∑

i j ∈X∧X⊆Tq

u(i j , Tq).

For example, the utility of itemset (AD) in T1 is calculated
as u(AD, T1) = u(A, T1) + u(D, T1) = q(A, T1)× pr(A) +
q(D, T1) × pr(D) (= 1 × 6 + 4 × 1) (= 10).

Table 3 The transaction utility of each transaction

Tq T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

tu 40 15 33 30 15 27 51 48 14 15

Definition 4 The utility of an itemset X in a database D is
denoted as u(X), and defined as:

u(X) =
∑

X⊆Tq∧Tq∈D

u(X, Tq).

For example, u(A) = u(A, T1)+u(A, T3)+u(A, T6)+u(A,
T7) (= 6 + 12 + 6 + 18) (= 42), and u(AD) = u(AD, T1) +
u(AD, T6) + u(AD, T7) (= 10 + 7 + 21) (= 38).

In the expected support-based model used in uncertain
data mining, the expected support of an itemset X in a data-
base D is defined as the sum of the support of X for each
possible world W j (the probability of W j being the true
world) (Chui et al. 2007; Tong et al. 2012):

expSup(X) =
|D|∑

i=1

⎛

⎝
∏

xi ∈X

p(xi , Tq)

⎞

⎠.

The probabilitymeasure of a pattern in an uncertain database,
for the problem addressed in this paper, is defined as follows.

Definition 5 The potential probability of an itemset X in a
database D is denoted as Pro(X), and is defined as:

Pro(X) =
∑

X⊆Tq∧Tq∈D

p(X, Tq).

For example, in Table 1, Pro(A) = p(A, T1) + p(A, T3) +
p(A, T6) + p(A, T7) (= 0.95 + 0.50 + 1.00 + 0.80) (=
3.25), and Pro(AD) = p(AD, T1) + p(AD, T6) + p(AD, T7)
(= 0.95 + 1.00 + 0.80) (= 2.75).

Definition 6 The transaction utility of a transaction Tq is
denoted as tu(Tq), and is defined as:

tu(Tq) =
m∑

j=1

u(i j , Tq),

where m is the number of items in Tq .

For example, the transaction utility of T1 is calculated as
tu(T1) = u(A, T1) + u(C , T1) + u(D, T1) (= 6 + 30 + 4)
(= 40). The transaction utilities of transactions T1 to T10 of
Table 1 are shown in Table 3.

123

Efficiently mining uncertain high-utility itemsets 2805

Table 4 The derived HUIs for the running example

Itemset Utility Itemset Utility

(C) 130 (CE) 105

(E) 70 (DE) 50

(AC) 90 (ACD) 98

(AE) 65 (ACE) 48

(BC) 56 (BCE) 48

(CD) 80 (ACDE) 51

Definition 7 The total utility in a database D is denoted as
TU, and defined as:

T U =
∑

Tq∈D

tu(Tq).

For example, the total utility in the running example is calcu-
lated as:TU (= 40+15+33+30+15+27+51+48+14+15)
(= 288).

Definition 8 An itemset X in a database D is said to be a
high-utility itemset (HUI) if u(X) ≥ ε× TU. Otherwise, it
is called a low-utility itemset.

In the running example, the itemset (AD) is not an HUI
since u(AD) (= 38), which is smaller than (15% × 288)
(= 43.2). The itemset (ACD) is an HUI in D since u(ACD)
(= 98) > 43.2. If the minimum utility threshold is set to
15%, there are twelve HUIs, as shown in Table 4.

Definition 9 An itemset X in a database D is said to be a
potential high-utility itemset (PHUI) if it satisfies the follow-
ing two conditions: (1)X is an HUI, i.e., u(X) ≥ ε× TU, and
(2) Pro(X) ≥ μ ×|D|. A PHUI is thus an itemset having
both a high potential probability and a high utility.

3.2 Problem statement

Let there be an uncertain database D having a total utility
TU, and the user-specified minimum utility threshold ε and
minimum potential probability threshold μ. The problem of
mining an uncertain database to discover high-utility item-
sets (MUHUI) is to find all potential high-utility itemsets
(PHUIs), i.e., all itemsets having a utility no less than (ε×
TU), and a probability no less than (μ × |D|).

Hence, the goal of MUHUI is to mine all highly profitable
patterns having a high probability, by taking into account
both the semantic utility measure and the objective probabil-
ity measure. Consider the database of the running example
shown in Tables 1 and 2, and that the minimum utility
threshold and minimum potential probability threshold are,
respectively, set to 15 and 18%. The set of PHUIs is shown
in Table 5.

Table 5 The derived PHUIs for
the running example

Itemset Utility Pro

(C) 130 5.26

(E) 70 4.61

(AC) 90 2.75

(CD) 80 3.55

(CE) 105 2.51

(DE) 50 2.4

(ACD) 98 2.75

4 The proposed MUHUI Algorithm

Recently, the PHUI-List algorithm was proposed to effi-
ciently mine HUIs in uncertain databases. The experimental
evaluation of PHUI-List indicates that it outperforms the
upper bound-based PHUI-UP algorithm (Lin et al. 2015c).
However, PHUI-List explores the search space of itemsets
by generating itemsets, and a costly join operation has to be
recursively performed to construct the probability-utility-list
(PU-list) structure of each itemset, to evaluate its probabil-
ity and utility information. In this section, a novel algorithm
namedMUHUI is proposed to more efficiently mine PHUIs.
The PU-list structure is adopted in the proposed MUHUI
algorithm. The PU-list structure is introduced thereafter.

4.1 The PU-list structure

ThePU-list structure is an efficient vertical data structure. For
a given itemset, it stores information about the TIDs of trans-
actions where the itemset appears, and information about its
probability, utility, and remainingutility in these transactions.
Let there be two item/sets X and Y . A total order≺ is defined
such that X ≺ Y (i.e., X precedes Y) if the PU-list of X is
constructed before the PU-List of Y . Furthermore, an itemset
{X ∪ i} is said to be an extension of X if i is a 1-itemset,
and X ≺ {X ∪ i}. The PU-list structure is formally defined
as follows.

Definition 10 Given an itemset X and a transaction (or item-
set) T such that X ⊆ T , the set of all items in T that are not
in X is denoted as T \X , and the set of all items appearing
after X in T is denoted as T/X . Thus, T/X ⊆ T \X .

For example, consider X = (CD) and the transaction T7
in Table 1, T7\X = (AE), and T7/X = (E).

Definition 11 (Probability-Utility-list, PU-list). The PU-list
of an itemset X in a database D is denoted as X.PUL. It
consists of a set of entries (elements), such that there is an
element for each transaction Tq where Xappears (X ⊆ Tq ∈
D). An element representing a transaction Tq contains four
fields storing: (1) the TID of the transaction Tq (denoted as
tid), (2) the probabilities of X in Tq (denoted as prob), (3)
the utility of X in Tq (denoted as iu), and (4) the remaining

123

2806 J.C.-W. Lin et al.

utility of X in Tq (denoted as ru). For an element representing
a transaction Tq , the field iu is calculated as:

X.iu =
∑

i j ∈X∧X⊆Tq

u(i j , Tq),

and the field ru is calculated as:

X.ru =
∑

i j ∈(Tq/X)

u(i j , Tq).

The PU-list structure is designed to store and compress all
the information from an uncertain database that is relevant
for exploring the search space starting from a given itemset
X . An important property of the PU-list structure is that the
probability and utility information of any k-itemset can be
obtained from its PU-list.Moreover, thePU-list of a k-itemset
can be obtained by joining the PU-list of its parent node with
the PU-list of one of its uncle node, i.e., the PU-lists of two
(k − 1)-itemsets. The join operation is very efficient since it
does not require scanning the database. Moreover, the size of
the PU-list of a k-itemset is never greater than the one of its
parent node, i.e., (k−1)-itemset. By the above properties, the
construction of the PU-list of any itemset in the search space
can be done whenever necessary. The PU-list construction
procedure is shown in Algorithm 1.

Note that the TWU ascending order of items is adopted
as the processing order in the proposed MUHUI algorithm.
Initially, only the PU-lists of items that are members of the
set of high transaction-weighted probabilistic and utilization
itemsets (HTWPUIs) are constructed, since only those items
may appear in PHUIs, and thus other items do not need to be
considered by the recursive search process (additional expla-
nations about the concept of HTWPUI (Lin et al. 2015c) will
be given in the next subsection). Consider the running exam-
ple. The set of HTWPUIs of length 1 is denoted asHTWPUI1

and contains the following itemsets {TWU(A)= 151,Pro(A)
= 3.25; TWU(B) = 125, Pro(B) = 3.36; TWU(C) = 211,
Pro(C) = 5.26; TWU(D) = 177, Pro(D) = 5.75; TWU(E)
= 192, Pro(E) = 4.61}. The processing order of items by
ascending order of TWU is (B ≺ A ≺ D ≺ E ≺ C). Thus,
the constructed PU-lists of items in HTWPUI1are shown in
Fig. 1.

The PU-list of an itemset can be used to calculate the
following important information.

Definition 12 Let the sum of the utilities of an itemset X in
D be denoted as X.IU, and defined as:

X.IU =
∑

X⊆Tq∧Tq∈D

(X.iu).

123

Efficiently mining uncertain high-utility itemsets 2807

(D)

1 0.95 4 30

2 0.80 2 10

5 0.70 2 10

6 1.00 1 20

7 0.80 3 30

9 0.60 5 0

10 0.90 5 10
tid iu ru

(B)

2 0.80 3 12

3 0.50 6 27

5 0.70 3 12

8 0.76 3 45

9 0.60 9 15

(A)

1 0.95 6 43

3 0.50 12 15

6 1.00 6 21

7 0.80 18 33

(E)

3 0.50 15 0

4 0.95 10 20

5 0.70 10 0

7 0.80 20 10

8 0.76 5 40

10 0.90 10 0

(C)

1 0.95 30 0

2 0.80 10 0

4 0.95 20 0

6 1.00 20 0

7 0.80 10 0

8 0.76 40 0prob

Fig. 1 The constructed PU-lists of items in HTWPUI1

Definition 13 Let the sum of the remaining utilities of an
itemset X in D be denoted as X.RU, and defined as:

X.RU =
∑

X⊆Tq∧Tq∈D

(X.ru).

Definition 14 For an itemset X, Pro(X) is the sum of the
probabilities of X in D.Pro(X) can be easily calculated using
the PU-list of X as:

Pro(X) =
∑

X⊆Tq∧Tq∈D

(X.prob).

For example, consider the database shown in Fig. 1. The
itemset (B) appears in five transactions having the TIDs {2,
3, 5, 8, 9}. B.IU is calculated as (3+6+3+3+9)= 24, and
B.RU is calculated as (12 + 27+ 12+ 45+ 15) = 111. The
itemset (BC) appears in two transactions having the TIDs =
{2, 8}. BC.IU = (3 + 10) + (3 + 40) = 56, and BC.RU =
(12 + 0) + (45 + 0) = 57.

4.2 Search space and properties used by the MUHUI
Algorithm

Based on previous studies, the complete search space of a
pattern-based mining algorithm can be represented as a set-
enumeration tree (Rymon 1992). Therefore, the search space
of the proposed MUHUI algorithm can also be represented
as a set-enumeration tree where the ascending order of TWU
values of HTWPUI1 is used as processing order. Each node
in the set-enumeration tree represents an itemset, which is an
extension of its parent node (except for the root node, which
represents the empty set and has no parent). In the running
example, the TWU ascending order of items is (B ≺ A ≺
D ≺ E ≺ C). The corresponding set-enumeration tree is as
shown in Fig. 2.

The PU-list structure keeps all the information from an
uncertain database that is necessary for discovering PHUIs,
in terms of TID, probability, utility, and remaining utility.
Two important properties related to probability and utility
are used in the proposed MUHUI algorithm to reduce the
search space, and are described by the following lemmas.

root

BA

B A D E C

BAC

BD BE BC

BAD

BADE

BAE

BADC

level 1

……

B A D E CBAEC ……

…… level 2

level k

……

Fig. 2 The set-enumeration tree

Lemma 1 The sum of all the probabilities of any node in the
set-enumeration tree is equal or greater than the sum of the
probabilities of any of its child nodes (extensions).

Proof Let there be a (k − 1)-itemset Xk−1 (k ≥ 2) corre-
sponding to a node in the set-enumeration tree. Furthermore,
let Xk be any child node of Xk−1. Since p(Xk , Tq) = p(Tq)
for any transaction Tq in D, it can be found that:

p(Xk, Tq)

p(Xk−1, Tq)
= p(Tq)

p(Tq)
= 1.

Since Xk−1 is a subset of Xk , the TIDs of Xk are a subset of
the TIDs of Xk−1. Hence,

Pro(Xk) =
∑

Xk⊆Tq∧Tq∈D

p(Xk, Tq)

≤
∑

Xk−1⊆Tq∧Tq∈D

p(Xk−1, Tq) = Pro(Xk−1)

⇒ Pro(Xk) ≤ Pro(Xk−1).

Therefore, this lemma holds.
�

123

2808 J.C.-W. Lin et al.

Lemma 2 For any node X in the set-enumeration tree, the
sum of X.IU and X.RU is greater than or equal to the sum of
the utilities of any of its child nodes (extensions).

Proof From Liu and Qu (2012), this lemma holds.
�

4.3 Proposed pruning strategies

Based on the PU-list structure and the above properties
related to the probabilities and utilities of itemsets, five
efficient pruning strategies are designed in the MUHUI
algorithm to prune unpromising itemsets early. Using these
strategies, a smaller part of the search space is explored for
discovering PHUIs, which speeds up the discovery of PHUIs.
As in the PHUI-UP algorithm (Lin et al. 2015c), MUHI effi-
ciently eliminates some unpromising candidates using the
transaction-weighted probabilistic and utilization downward
closure (TWPUDC) property. The TWPUDC property is
also adopted in the MUHUI algorithm. It is applied before
the construction of a series of PU-lists for extensions of an
itemset. As previously explained, the well-known downward
closure property ofARM(Agrawal et al. 1993b;Agrawal and
Srikant 1994a) cannot be directly applied in HUIM to mine
HUIs. To address this issue, the transaction-weighted utiliza-
tion downward closure (TWDC) property with TWU upper
bound (Liu et al. 2005) was proposed to reduce the search
space in HUIM. The TWDC property has been extended in
the PHUI-UP algorithm (Lin et al. 2015c) for mining PHUIs
in uncertain data. Details of this property are provided there-
after.

Definition 15 The transaction-weighted utility (TWU) of an
itemset X in a database D is the sum of the transaction utili-
tiestu (Tq) of each transaction Tq containing X , and is defined
as:

TWU(X) =
∑

X⊆Tq∧Tq∈D

tu(Tq).

Definition 16 An itemset X in a database D is said to be
a high transaction-weighted utilization itemset (HTWUI) if
T WU (X) ≥ T U × ε.

For example, in Table 1, the TWUof item (A) is calculated
as TWU(A) (= tu(T1) + tu(T3) + tu(T6) + tu(T7)) (= 40 +
33 + 27 + 51) (= 151). Since TWU(A) (= 151) > (288 ×
15% = 43.2), item (A) is an HTWUI. Based on Liu et al.
(2005), the set of high-utility itemsets is a subset of the set
of HTWUIs, that is, HUIs ⊆ HTWUIs.

Definition 17 An itemset X in a database D is called a
high transaction-weighted probabilistic and utilization item-
set (HTWPUI) if (1) T WU (X) ≥ ε× TU, and (2) Pro(X) ≥
μ × |D|.

For example, in Tables 1 and 2, since μ is set to 18%,
the minimum potential probability is calculated as (18% ×

10) (= 1.8). For example, consider item (A). Since TWU(A)
(= 151) (> 43.2), Pro(A) = p(A, T1) + p(A, T3) + p(A,
T6)+ p(A, T7) (= 0.9 + 0.85 + 0.75 + 0.45) (= 3.91) (> 1.5),
item (A) is an HTWPUI.

Theorem 1 (Downward closure property of HTWPUI). Let
X k−1 be a (k–1)-itemset. Furthermore, let X k be a k-itemset
that is a superset of X k−1 (i.e., Xk−1 ⊆ Xk), and assume
that both Xk and Xk−1 are HTWPUIs in the uncertain data-
base. The downward closure property of HTWPUIs indicates
that TWU(Xk−1) ≥ TWU(Xk) and Pro (Xk−1) ≥ Pro(Xk)
(Lin et al. 2015c).

Proof Since Xk−1 ⊆ Xk , the TIDs of Xk is a subset of the
TIDs of Xk−1. Thus,

1. TWU(Xk) = ∑
Xk⊆Tq∧Tq∈D tu(Tq)

≤ ∑
Xk−1⊆Tq∧Tq∈D tu(Tq) = TWU(Xk−1)

⇒ TWU(Xk) ≤ T WU (Xk−1).

2. Pro(Xk) = ∑
Xk⊆Tq∧Tq∈D p(Xk, Tq)

≤ ∑
Xk−1⊆Tq∧Tq∈D p(Xk−1, Tq) = Pro(Xk−1)

⇒ Pro(Xk) ≤ Pro(Xk−1).

Therefore, if Xk is an HTWPUI, any of its subset Xk−1 is
also an HTWPUI.
�
Theorem 2 (PHUIs ⊆ HTWPUIs). The transaction-weigh-
ted probabilistic and utilization downward closure
(TWPUDC) property ensures that PHUIs ⊆ HTWPUIs.
Hence, if an itemset is not an HTWPUI, then none of its
supersets are PHUIs (Lin et al. 2015c).

Proof According to Lin et al. (2015c), this theorem holds.
By utilizing the TWPUDC property, we only need to con-

struct the PU-lists of promising itemsets, i.e., the HTWPUIs.
If an itemset is an HTWPUI, all its subsets are HTWPUIs,
and if an itemset is not an HTWPUI, all its supsersets are
not HTWPUIs.Hence, only the PU-lists of 1-items that are
HTWPUIs need to be built and considered by the proposed
MUHUI algorithm, for discovering all PHUIs.
�
Pruning strategy 1 During the first database scan, we can
obtain the TWU and probability value of each item appearing
in the database. If the TWU of an item i (TWU(i)) and the
sum of all the probabilities of i (Pro(i)) do not satisfy the two
conditions: 1) TWU(i) ≥ ε× TU, and 2) Pro(i) ≥ μ × |D|,
this item can be directly pruned, because none of its supersets
is a PHUI.

Rationale According to Theorems 1 and 2, this pruning
strategy holds.

Pruning strategy 2 When traversing the set-enumeration
tree using a depth-first search, if the sum of all the prob-
abilities of a tree node in its constructed PU-list is less than

123

Efficiently mining uncertain high-utility itemsets 2809

the minimum potential probability, then none of its children
is a PHUI.

Rationale Lemma 1 shows that if the sum of the prob-
abilities of an itemset is less than the minimum potential
probability (μ ×|D|), this itemset cannot be a PHUI, as well
as its child nodes (extensions). Hence, by calculating the sum
of all the probabilities of each itemset, many unpromising
itemsets and their extensions can be identified as irrelevant
and be directly pruned.

Pruning strategy 3 When traversing the set-enumeration
tree using a depth-first search strategy, if the sum of X.IU
and X.RU in the constructed PU-list is less than the mini-
mum utility count, none of the children (extensions) of node
X is a PHUI.

Rationale Lemma 2 shows that if the sum X.IU + X.RU
of a tree node is less than the minimum utility count (ε ×
TU), any of its child nodes (extensions) is an unpromising
itemset (is not a PHUI). Thus, by calculating the sum of the
utilities and remaining utilities for each node, child nodes of
unpromising itemsets can be identified as irrelevant and be
pruned directly.

Furthermore, the efficientEstimatedUtilityCo-occurrence
Pruning (EUCP) strategy (Fournier-Viger et al. 2014) is also
extended in the proposed MUHUI algorithm to speed up the
discovery of PHUIs. The EUCP is defined as follows.

Lemma 3 (Estimated utility co-occurrence pruning strat-
egy, EUCP) If the TWU of a 2-itemset is less than the
minimum utility count, any superset of this 2-itemset is not
an HTWUI nor an HUI.

Proof Let Xbe a 2-itemset, and Xk be a k-itemset (k ≥ 3)
that is a superset of X.Since TWU(Xk) ≤ TWU(Xk−1) and
HUIs ⊆ HTWUIs, if a 2-itemset X has TWU(X) ≤ TU×
ε,X is not a HTWUI, and any superset of X of length k ≥ 3
is neither an HTWUI nor an HUI.

The concept of PHUI is defined using two constraints.
Thus, if an itemset is not an HUI, it is also not a PHUI. The
EUCP strategy is applied in the proposed algorithm to prune
additional unpromising itemsets. Based on the EUCP strat-
egy, a huge number of unpromising k-itemsets (k ≥ 3) can be
efficiently pruned. To effectively apply the EUCP strategy, a
structure named Estimated Utility Co-occurrence Structure
(EUCS) (Fournier-Viger et al. 2014) is built. It is a matrix
that stores the TWU values of all 2-itemsets. Note that the
EUCS is built during the second database scan after discov-
ering the set HTWPUI1. The EUCS built for the database of
the running example is shown in Table 6. Since the TWU
value of (AC) is calculated as TWU(AC) =tu(T1) + tu(T6)
+tu(T7)(= 40+27+51)(= 118), the value of (AC) in Table
6 is set to 118.
�

Table 6 The EUCS built for the
running example

Item A B C D E

B 33 – – – –

C 118 63 – – –

D 118 44 133 – –

E 84 96 129 81 –

Pruning strategy 4 Let X be an itemset (node) encountered
during the depth-first search of the set-enumeration tree. If
the TWU of a 2-itemset Y ⊆ X according to the constructed
EUCS is less than the minimum utility threshold, X is not an
HTWPUI and it is also not a PHUI. Hence, none of its child
nodes is a PHUI, and the construction of the PU-lists of X
and its children does not need to be performed.

Rationale According to definition 17, Lemmas 1 and 3, this
pruning strategy is correct. Since PHUIs ⊆ HTWPUIs, if
TWU(X) ≤ TU× ε for a 2-itemset X ,X is not an HTWPUI.
Moreover, X and all its supersets are not PHUIs (note that
all extensions of X in the set-enumeration tree are super-
sets of X). Based on the EUCP strategy, a huge number of
unpromising k−itemset (k ≥ 2) can be pruned.

Since the information about the probability of an itemset
X (Pro(X)) can be easily obtained from its PU-list, Pro(X)
can also be used to reduce the search space. The key idea is
that after constructing the PU-list of an itemset X , if X.PUL
is empty or if Pro(X) < |D| × μ, the PU-list X.PUL can
be directly skipped, and does need to be added to the set of
extensions of X ’s parent node. Thus, X.PUL will not be used
to generate any other itemsets.

Pruning strategy 5 Let X be an itemset (node) encountered
during the depth-first search of the set-enumeration tree.
After constructing the PU-list of the itemset X, if X.PUL is
empty or Pro(X) is less than the minimum probability thresh-
old, X is not a PHUI, and none of its child nodes is a PHUI.
Hence, PU-lists of the child nodes of X do not need to be
constructed.

Rationale According to Lemma 1, this pruning strategy is
correct.

Based on the five designed pruning strategies, a great num-
ber of unpromising itemsets can be efficiently pruned and
the construction of the PU-lists of their extensions can be
avoided, which effectively reduces the number of join oper-
ations and the search space in the set-enumeration tree. The
proposed MUHUI algorithm is described thereafter.

The main procedure of MUHUI (Algorithm 2) takes four
parameters as input: an uncertain quantitative database D, the
corresponding profit tableptable, theminimum utility thresh-
old ε, and the minimum potential probability threshold μ.

123

2810 J.C.-W. Lin et al.

123

Efficiently mining uncertain high-utility itemsets 2811

The algorithm first scans the uncertain database to calculate
TWU(i) and Pro(i) for each item i ∈ I (Line 1), and finds the
set HTWPUI1, which is denoted as I ∗(Line 2, pruning strat-
egy 1). After sorting I ∗ according to the TWU ascending
order (Line 3), the MUHUI algorithm scans D again to con-
struct the PU-list of each item in HTWPUI1, that is each item
i ∈ I ∗, and build the EUCS (Line 4). After that, the proce-
dure PHUI-Search (Line 5) is recursively called to discover
all PHUIs using a depth-first search. The PHUI-Search pro-
cedure is presented below.

The PHUI-Search procedure (Algorithm 3) takes five
parameters as input: X , extendOfX, ε, μ, and the EUCS. The
procedure first checks if each itemset Xa in extendOfX is a
PHUI (Lines 2 to 5). Strategies 2 and 3 are then applied to
determine whether extensions of Xa satisfy the two required
conditions for pursuing the depth-first search (Line 6). If
these conditions are met, a for loop is performed to combine
Xa with each itemset Xb in extendOfX such that b is after a
according to the TWU ascending order, to obtain an itemset
Xab. However, before constructing the PU-list of an itemset
Xab (Evfimievski et al. 2002), theMUHUI algorithm applies
the EUCP strategy to check if it is necessary to build the PU-
list of Xab (Line 9, pruning strategy 4). If the PU-list should
be built, the construction procedureConstruct(X,Xa, X�) is
called (Line 11). After the for loop has ended, all the PU-lists
of promising extensions of Xa have been constructed (Lines
8 to 16). Note that for each itemset Xab that is a promising
1-extension of itemset Xa(Line 10), if the PU-list of Xab is
such that Xab.PU L
= Ø
= Pro(Xab) ≥ |D| × μ (pruning
strategy 5), Xab is put into the set extendOfXa so that exten-
sions of Xab will be considered by the recursive depth-first
search. Otherwise, Xab is directly pruned (Lines 12–14). The
designed PHUI-Search procedure is recursively applied to
mine PHUIs (Line 17). Based on the PU-list structure and the
five proposed pruning strategies, the MUHUI algorithm can
directly mine PHUIs in uncertain databases without candi-
date generation and by performing only two database scans,
and the MUHUI algorithm is correct and complete for dis-
covering the complete set of PHUIs.

4.4 An illustrated example

In this section, a simple example is given to illustrate how the
proposed MUHUI algorithm is applied step-by-step to dis-
cover PHUIs. Consider the database of the running example
shown in Tables 1 and 2 that the minimum utility threshold
ε is set to 15%, and that the minimum potential probability
threshold (μ) is set to 18%.

The MUHUI algorithm first scans the uncertain database
to calculate the TWU(i) and Pro(i) values of each item i ∈ I .
Each item i that satisfies TWU(i) ≥ ε× TU and Pro(i) ≥
μ × |D| is added to the set HTWPUI1. In this example, it is
found that the set HTWPUI1 is equal to {A: 151, 3.25; B:

125, 3.36; C : 211, 5.26; D: 177, 5.75; E : 192, 4.61}. After
that, items in HTWPUI1 are sorted by TWU ascending order,
that is (B ≺ A ≺ D ≺ E ≺ C). TheMUHUI algorithm then
scans the uncertain database again to extract the necessary
information for performing the depth-first search (i.e., tid,
prob, iu and ru) for each item in each transaction. The PU-

list structures are then constructed for all items inHTWPUI1.
After that, MUHUI recursively applies the depth-first search
procedurePHUI-Search tomine PHUIs. The item (B) is first
processed. Since (B) does not satisfy the PHUI conditions, as
B.IU = 24 < (228 ×25% = 43.2) and Pro(B) = 3.36 >

(10 ×18% = 1.8), the item (B) is not a PHUI. But since
(B.IU + B.RU) = (24 + 111) (= 135) is no less than the
minimum utility count(= 43.2), and Pro(B) = 3.36 > 1.8,
its children nodes may be PHUIs, and extensions of this item
will be considered by the depth-first search.

For each 2-itemset having itemset (B) as prefix, the
MUHUI algorithm applies the EUCP strategy to check
whether it is necessary to build its PU-list. The first child
node (BA) is first considered. SinceTWU(BA) (= 33 < 43.2),
as shown in Table 6, node (BA) and all its children are not
PHUIs and can be pruned. The construction of the PU-list
of itemset (BA) and the depth-first search starting from node
(BA) are thus terminated. The next child node (BD) is then
processed in the same way, as well as other nodes. Based on
the PU-lists of itemsets in HTWPUI1, the built PU-lists of
promising 2-itemsets having itemset (B) as prefix are shown
in Fig. 3.

After that, the node (BD) is considered by the depth-first
search. Based on its PU-list, the sum of the utilities and prob-
abilities of (BD) can be calculated as BD.IU (= 24 < 43.2)
and Pro(BD) (= 2.1 > 1.8). The node (BD) and all its chil-
dren are not PHUIs and can be directly pruned. The next child
node (BE) is then processed in the same way, as well as the
other nodes. After traversing the set-enumeration tree, the
complete set of PHUIs has been discovered by the MUHUI
algorithm, by performing only two database scans. The final
result is shown in Table 5.

5 Experimental evaluation

In this section, substantial experiments were conducted to
evaluate the performance of the proposed MUHUI algo-
rithm. The performance of the proposed MUHUI algorithm
is compared with the PHUI-UP and PHUI-List algorithms
(Lin et al. 2015c) for mining PHUIs, in terms of runtime,
pattern analysis, memory usage, effect of pruning strategies,
and scalability. The PHUI-UP and PHUI-List algorithms are
the first proposed algorithms for mining HUIs in uncertain
data. PHUI-List is the state-of-the-art algorithm for min-
ing PHUIs, as it was shown to considerably outperform the
PHUI-UP algorithm. Note that the performance of the pro-

123

2812 J.C.-W. Lin et al.

Fig. 3 The built PU-lists of
itemsets in HTWPUI2 having
(B) as prefix

(BE)

3 0.50 21 0

5 0.70 13 0

8 0.76 8 40

(BD)

2 0.80 5 22

5 0.70 5 22

9 0.60 14 15

(BC)

2 0.80 13 0

8 0.76 43 0

posed MUHUI algorithm is not compared with traditional
HUIM algorithms such as Two-Phase (Liu et al. 2005), IHUP
(Ahmed et al. 2009), HUP-growth (Lin et al. 2011), UP-
growth (Tseng et al. 2010), UP-growth+ (Tseng et al. 2013),
HUI-Miner (Liu and Qu 2012), and FHM (Fournier-Viger
et al. 2014), because those are not designed for mining pat-
terns in uncertain data. Besides, in this experiment, two
versions of MUHUI are used. The first one, denoted as
MUHUI2, adopts all the designed pruning strategies, while
the second one, denoted as MUHUI1, does not use pruning
strategy 5. Experiments have been conducted by varying the
minimum utility threshold (abbreviated as MU) while other
parameters where fixed, and by varying the minimum poten-
tial probability threshold (abbreviated as MP) while other
parameters where fixed.

5.1 Experimental setup and datasets description

All algorithms in the experiments were implemented in Java
and were run on a personal computer equipped with an Intel
Core i5-3460 dual-core processor and 4 GB of RAM, run-
ning the 32-bit Microsoft Windows 7 operating system. Both
real-life and synthetic datasets were used in the experiments.
Three real-life datasets (foodmart Microsoft 2016, accident
FIMDR 2012, and retail FIMDR 2012) and one synthetic
dataset (T10I4D100K Agrawal and Srikant 1994b) were
used. The foodmart dataset contains customer transactions
from a chain store. It contains unit profit information and
purchase quantities for all items. The retail dataset contains
88,162 transactions from a retail store. It contains 16,470
distinct items, the average transaction length is 10.3 items,
and the largest transaction has 76 items. The accident dataset
contains anonymous traffic accident data for a public road in
Belgium. It has 340,183 distinct items, 468 transactions, and
the average transaction length is 33.8 items. The synthetic
dataset T10I4D100K was generated using the IBM Quest
Synthetic Dataset Generator (Agrawal and Srikant 1994b). It
contains 100,000 distinct items, 870 transactions, the average
transaction length is 10.1 items, and the largest transaction
has 29 items. The foodmart dataset is very sparse, while acci-
dents is a very dense dataset.

Both purchase quantities (internal) and unit profits (exter-
nal) were assigned to the items in the accident, retail, and
T10I4D100K datasets using a simulation method proposed
in previous studies (Liu and Qu 2012; Liu et al. 2005; Tseng

et al. 2010), except for the foodmart dataset. In addition, due
to the tuple uncertainty property, a unique probability value
in the range of (0.5, 1.0] was assigned to each transaction in
these datasets.

5.2 Runtime

The runtimeof the compared algorithms for various MUsand
a fixedMP, and variousMPs and a fixedMU, are respectively
compared and shown in Figs. 4 and 5.

From Fig. 4, it can be observed that the runtimes of all the
algorithms decrease whenMU is increased. In particular, the
proposed MUHUI algorithm can be up to one or two orders
of magnitude faster than the PHUI-UP algorithm, and that
it outperforms the state-of-the-art PHUI-List algorithm on
all datasets. This is reasonable since an upper bound-based
generate-and-test approach performs less well than a vertical
PU-list-based approach. Besides, theMUHUI algorithmuses
five pruning strategies to prune unpromising itemsets early
and reduce the search space. Thus, it can avoid perform-
ing costly join operations for constructing a huge number of
PU-lists for mining PHUIs, compared to the PHUI-List algo-
rithm. When the MU is set quite low, longer HTWPUIs are
discovered by the PHUI-UP algorithm, and thus it takesmore
time toprocess these patterns using agenerate-and-testmech-
anism, especially for dense datasets. Because the PHUI-List,
MUHUI1 and MUHUI2 algorithms directly identify PHUIs
in the set-enumeration treewithout generating candidates and
using a depth-first search rather than a level-wise search, they
can effectively avoid performing multiple time-consuming
database scans.Moreover, theMUHUI algorithm applies five
pruning strategies to prune unpromising items early, which
greatly speed up the discovery of PHUIs, compared to the
PHUI-List algorithm.

As shown in Fig. 5, it can be observed that (1) theMUHUI
algorithm outperforms the PHUI-List algorithm for various
MPs and a fixed MU on the four datasets. (2) The runtime of
PHUI-UP sharply decreases when theMP is increased, while
the runtimes of PU-list-based algorithms steadily decrease.
(3) The runtime of theMUHUI algorithmwith different prun-
ing strategies is always less than the runtime of the PHUI-List
algorithm. (4) MUHUI2 has the best performance, and is
always faster thanMUHUI1. These results are reasonable for
the previously mentioned reasons. Although the PHUI-UP
algorithm uses the TWPUDC property to reduce the search

123

Efficiently mining uncertain high-utility itemsets 2813

0.002 0.004 0.006 0.008 0.010 0.012
10

0

10
1

10
2

10
3

10
4 (a) foodmart (MP: 0.003%)

Minimum utility threshold (%)

R
un

tim
e

(s
ec

.)

0.005 0.010 0.015 0.020 0.025 0.030
10

1

10
2

10
3

10
4 (b) retail (MP: 0.05%)

Minimum utility threshold (%)

R
un

tim
e

(s
ec

.)

0.4 0.6 0.8 1.0 1.2 1.4

10
2

10
3 (c) accidents (MP: 4%)

Minimum utility threshold (%)

R
un

tim
e

(s
ec

.)

0.050 0.075 0.100 0.125 0.150 0.175

10
1

10
2

10
3 (d) T10I4D100K (MP: 0.1%)

Minimum utility threshold (%)

R
un

tim
e

(s
ec

.)

PHUI-UP PHUI-List MUHUI1 MUHUI2

Fig. 4 Runtime for various MUs and a fixed MP

space, it still performs a level-wise search to explore the
search space, and generates and tests a huge amount of candi-
dates forminingPHUIs.Among these candidates fewof them
are PHUIs. Therefore, when the MP is set high, many redun-
dant unpromising candidates are pruned early, and thus the
search space and runtime of the PHUI-UP algorithm sharply
decreases while those of the PHUI-List and MUHUI algo-
rithms steadily decrease. Overall, the MUHUI algorithm is
about one to two orders of magnitude faster than PHUI-UP,
and alwaysmore efficient thanPHUI-List, especially on large
datasets. Furthermore, the performance gap becomes wider
when the MU or MP parameters are decreased.

5.3 Patterns analysis

To analyze the relationships betweenMUHUI and traditional
HUIM, and evaluate whether the proposed MUHUI frame-
work is acceptable, the number of patterns in terms of PHUIs
andHUIswas also compared. Note that HUIswere generated
using a traditional HUIM algorithm named HUI-Miner, and
the PHUIs were generated by the proposed MUHUI algo-
rithm. Besides, the useable ratio of the derived high-utility
itemsets (abbreviated as useRatio) and redundant ratio of
PHUIs (abbreviated as redRatio) are studied. The two ratios
are defined as follows:

useRatio = |PHUIs|
|HUIs| × 100%; and

red Ratio = |HUIs − PHUIs|
|HUIs| × 100% or 100% − useRatio.

The results of pattern analysis for HUIs and PHUIs under
various MUs and a fixed MP, and for various MPs and a
fixed MU are, respectively, shown in Tables 7 and 8.

In Table 7, it can be observed that the number of PHUIs
is always smaller than the number of HUIs for various MUs
on both sparse and dense datasets, which demonstrates the
usefulness of incorporating an objective probability measure
with the subjective individual preference utility measure, for
mining PHUIs. Data uncertainty influences the discovered
results since numerous HUIs are discovered but few of them
are PHUIs when considering the probability value of each
transaction in an uncertain dataset. This situation happens
when the MU is set to small values, as the redRatio increases
when the MU is decreased, while the useRatio decreases.
In real-world applications, high-utility itemset mining aims
at discovering itemsets with high utility that have a high
existential probability for helping a manager or retailer to
take efficient business decisions. When the MU is increased,
fewer HUIs and PHUIs are produced by HUI-Miner and
the designed approach, but the useRatio increases. This is

123

2814 J.C.-W. Lin et al.

0.001 0.002 0.003 0.004 0.005 0.006
10

0

10
1

10
2

10
3 (a) foodmart (MU: 0.008%)

Minimum potential probability threshold (%)

R
un

tim
e

(s
ec

.)

PHUI-UP PHUI-List MUHUI1 MUHUI2

0.02 0.04 0.06 0.08 0.10 0.12
10

1

10
2

10
3

10
4 (b) retail (MU: 0.04%)

Minimum potential probability threshold (%)

R
un

tim
e

(s
ec

.)

0 2 4 6 8 10
10

1

10
2

10
3

10
4 (c) accidents (MU: 1%)

Minimum potential probability threshold (%)

R
un

tim
e

(s
ec

.)

0.00 0.05 0.10 0.15 0.20 0.25
10

1

10
2

10
3

10
4 (d) T10I4D100K (MU: 0.05%)

Minimum potential probability threshold (%)

R
un

tim
e

(s
ec

.)

Fig. 5 Runtime for various MPs and a fixed MU

Table 7 Analysis of useRatio
and redRatio for various MUs
and a fixed MP

Foodmart (%) 0.002 0.004 0.006 0.008 0.010 0.012

HUIs 492,041 267,164 93,467 26,193 8365 3850

PHUIs 358,331 196,750 70,321 20,985 7550 3779

useRatio (%) 72.83 73.64 75.24 80.12 90.26 98.16

redRatio (%) 27.17 26.36 24.76 19.88 9.74 1.84

Retail (%) 0.005 0.010 0.015 0.020 0.025 0.030

HUIs 16,177,286 261,772 15,713 9969 7061 5237

PHUIs 12,118 10,649 9018 7344 5852 4630

useRatio (%) 0.07 4.07 57.39 73.67 82.88 88.41

redRatio (%) 99.93 95.93 42.61 26.33 17.12 11.59

Accidents (%) 0.4 0.6 0.8 1.0 1.2 1.4

HUIs 3845 1282 543 269 144 79

PHUIs 904 681 438 253 143 79

useRatio (%) 23.51 53.12 80.66 94.05 99.31 100.00

redRatio (%) 76.49 46.88 19.34 5.95 0.69 0.00

T10I4D100K (%) 0.050 0.075 0.100 0.125 0.150 0.175

HUIs 16,850 10063 5558 3293 2082 1561

PHUIs 13,464 8752 5306 3250 2075 1560

useRatio (%) 79.91 86.97 95.47 98.69 99.66 99.94

redRatio (%) 20.09 13.03 4.53 1.31 0.34 0.06

123

Efficiently mining uncertain high-utility itemsets 2815

Table 8 Analysis of useRatio
and redRatio for various MPs
and a fixed MU

Foodmart (%) 0.001 0.002 0.003 0.004 0.005 0.006

HUIs 26,193 26,193 26,193 26,193 26,193 26,193

PHUIs 26193 26193 20985 15039 11218 9997

useRatio (%) 100.00 100.00 80.12 57.42 42.83 38.17

redRatio (%) 0.00 0.00 19.88 42.58 57.17 61.83

Retail (%) 0.02 0.04 0.06 0.08 0.10 0.12

HUIs 3192 3192 3192 3192 3192 3192

PHUIs 3192 3124 2910 2699 2390 2098

useRatio (%) 100.00 97.87 91.17 84.56 74.87 65.73

redRatio (%) 0.00 2.13 8.83 15.44 25.13 34.27

Accidents (%) 0 2 4 6 8 10

HUIs 269 269 269 269 269 269

PHUIs 269 269 253 174 124 69

useRatio (%) 100.00 100.00 94.05 64.68 46.10 25.65

redRatio (%) 0.00 0.00 5.95 35.32 53.90 74.35

T10I4D100K (%) 0.00 0.05 0.10 0.15 0.20 0.25

HUIs 16,850 16,850 16,850 16,850 16,850 16,850

PHUIs 16850 16572 13464 9743 5225 2572

useRatio (%) 100.00 98.35 79.91 57.82 31.01 15.26

redRatio (%) 0.00 1.65 20.09 42.18 68.99 84.74

reasonable since the proposed algorithm is used to discover
PHUIs by considering both the utility and the probability
constraints, while HUI-Miner discovers HUIs by only con-
sidering the utility constraint. When theMU is increased and
the MP is fixed, the number of unpromising itemsets pruned
by the utility constraint increases, and the number of redun-
dant HUIs having a low existential probability is greater, and
are filtered, and thus the useRatio decreases.

In Table 8, it can be observed that (1) fewer PHUIs are
discovered by the MUHUI algorithm compared to the num-
ber of HUIs discovered by HUI-Miner for various MPs and
a fixed MU, for the four uncertain datasets. (2) The number
of discovered HUIs remains steady as the MP is increased,
whereas the number of PHUIs decreases. (3) The useRa-
tio decreases as the MP is increased, whereas the redRatio
increases for a fixed MU on all datasets. These results are
reasonable and explained as follows. The proposed MUHUI
algorithm applies two constraints for mining PHUIs, while
HUI-Miner only considers the utility constraint for discov-
ering HUIs. Thus, the number of PHUIs is always no greater
than the number of HUIs, while the number of HUIs does
not change when the MP is increased. Moreover, the number
of PHUIs dramatically decreases when the MP is increased;
more derivedHUIs are considered as redundant patternsw.r.t.
non-PHUIs since their existential probabilities are less than
the MP. Thus, the higher the MP is, the lower the useRa-
tio is. In particular, the discovered PHUIs can be considered
as valuable patterns compared to patterns discovered using
traditional HUI mining algorithms since the data uncertainty

factor often occurs in real-life situations. It can be concluded
that numerous discovered HUIs may not be patterns of inter-
est that canhelp amanager or retailer to take efficient business
decisions, since the probability factor is not considered, and
thus the proposed MUHUI framework is suitable for mining
high-probability and high-utility patterns in uncertain data.

5.4 Effect of the different pruning strategies

To evaluate the effect of the different pruning strategies, the
number of visited nodes in the search space is compared.
Since the comparison of runtime and memory usage has
already been presented, only the number of visited nodes
in the set-enumeration tree is discussed in this subsection. In
the following, the number of nodes visited by the PHUI-List,
MUHUI1 andMUHUI2 algorithms is denoted as N1, N2,and
N3, respectively. Experimental results for various MUs and
MPs are, respectively, shown in Figs. 6 and 7.

In Figs. 6 and 7, it is obvious that N1 ≥ N2 ≥ N3 for all
datasets and all tested parameter values, and that the num-
ber nodes in the search space (set-enumeration tree) visited
by the proposed MUHUI algorithm changes when differ-
ent pruning strategies are applied. MUHUI prunes a greater
number of unpromising itemsets compared to the PHUI-List
algorithm. An interesting observation is that the gap between
N1 and N2, and the gap between N2 and N3 growwider when
the MU or MP is decreased. This indicates that the various
pruning strategies can greatly influence the number of vis-
ited nodes in the search space. This observation is due to

123

2816 J.C.-W. Lin et al.

0.002 0.004 0.006 0.008 0.010 0.012
0

5

10

15
x 10

7 (a) foodmart (MP: 0.003%)

Minimum utility threshold (%)

V

is
ite

d
no

de
s

N
1

N
2

N
3

0.005 0.010 0.015 0.020 0.025 0.030
3

3.5

4

4.5

5

5.5
x 10

6 (b) retail (MP: 0.05%)

Minimum utility threshold (%)

V

is
ite

d
no

de
s

0.4 0.6 0.8 1.0 1.2 1.4
2000

4000

6000

8000

10000
(c) accidents (MP: 4%)

Minimum utility threshold (%)

V

is
ite

d
no

de
s

0.050 0.075 0.100 0.125 0.150 0.175
0

0.5

1

1.5

2
x 10

6 (d) T10I4D100K (MP: 0.1%)

Minimum utility threshold (%)

V

is
ite

d
no

de
s

Fig. 6 Number of visited nodes using different pruning strategies for various MUs and a fixed MP

0.001 0.002 0.003 0.004 0.005 0.006
0

0.5

1

1.5

2

2.5
x 10

7 (a) foodmart (MU: 0.008%)

Minimum potential probability threshold (%)

V

is
ite

d
no

de
s

N
1

N
2

N
3

0.02 0.04 0.06 0.08 0.10 0.12
0

0.5

1

1.5

2
x 10

7 (b) retail (MU: 0.04%)

Minimum potential probability threshold (%)

V

is
ite

d
no

de
s

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5
x 10

4 (c) accidents (MU: 1%)

Minimum potential probability threshold (%)

V

is
ite

d
no

de
s

0.00 0.05 0.10 0.15 0.20 0.25
0

0.5

1

1.5

2

2.5

3
x 10

6 (d) T10I4D100K (MU: 0.05%)

Minimum potential probability threshold (%)

V

is
ite

d
no

de
s

Fig. 7 Number of visited nodes using different pruning strategies for various MPs and a fixed MU

123

Efficiently mining uncertain high-utility itemsets 2817

the fact that the PHUI-List algorithm performs an exhaustive
search in the set-enumeration tree, and builds the PU-lists
of unpromisingk-itemsets (k ≥ 2, which are not HTWPUIs),
which is very time consuming especially when the thresholds
are set quite low. On the other hand, MUHUI uses the EUCP
strategy to check the TWU value of each itemset and deter-
mine if a processed node and its child nodes are promising,
early. When the number of distinct items in a dataset is large,
the search space is huge (a property of the set-enumeration
tree). Pruning strategies 4 and 5 considerably reduce the
search space by pruning subtrees. When a processed node
is pruned, a greater number of subtrees is pruned, and thus
the search space becomes smaller.

In addition, these results also show that pruning strategy
5, using the probability value, can prune many unpromis-
ing itemsets and thus avoid constructing a series of PU-lists
for them and their child nodes. Although the number N3 is
slightly less than N2 on the retail dataset, as shown in Figs.
6b and 7b, it can still be observed that N3 is quite smaller
than N2 for the foodmart and accidents datasets. It can be
concluded that the proposed pruning strategy 5 is reasonable
and acceptable.

5.5 Memory usage

In this section, thememory usage of the compared algorithms
is compared. All memorymeasurements were done using the
standard Java API. The performance of the algorithms was
evaluated for various MUs and a fixed MP, and for various
MPs and a fixedMU.Results are, respectively, shown in Figs.
8 and 9.

In Figs. 8 and 9, it can be clearly seen that the pro-
posed MUHUI algorithm consumes less memory than the
PHUI-UP algorithm, but consumes more memory than the
state-of-the-art PHUI-List algorithm except for the retail
dataset. In particular, the memory usages of the two PU-list-
based algorithms, PHUI-List andMUHUI, gradually change
when the parameters are varied, for the four datasets. The rea-
sons for this behavior are similar to the reasons given in the
runtime analysis. This result is reasonable since both PHUI-
List and MUHUI are PU-list-based algorithms, and they can
easily prune unpromising itemsets using the actual utilities
and remaining utilities. The reason why PHUI-List always
consumes a little bit more memory thanMUHUI is that it has
to spend extra memory for storing the additional EUCS data
structure. Thanks to the advantage of the designed vertical
PU-list data structure, the proposed PU-list-based MUHUI
algorithm discovers PHUIs by considering the utility and
probability constraints, and more efficient pruning strategies
are proposed in MUHUI to improve its performance. Hence,
thememory usage of theMUHUI algorithm is somehow sim-
ilar to that of the PHUI-List algorithm.

In addition, the memory usage for the PHUI-UP algo-
rithm sharply decreases when the MU or MP is increased.
For the PHUI-List and MUHUI algorithms, the main mem-
ory cost is to initialize its PU-list structures. In particular, as
the MU or MP is increased, MUHUI1 and MUHUI2 require
less memory to build the EUCS for storing the co-occurrence
relationships of 2-itemsets. Therefore, the memory usage of
the proposed MUHUI algorithm is reduced and acceptable.

5.6 Scalability and efficiency

In Fig. 10, the scalability of the four algorithms is compared
on the synthetic dataset T10I4N4KD|X |K,where the number
of transaction is varied. In this experiment, the MP is set to
0.05%, theMU is set to 0.1%, and the number of transactions
|X | is varied from 100 to 500 (thousand transactions).

In Fig. 10a, it can be observed that the runtimes of
all compared algorithms linearly increase as the dataset
size |X | is increased. The performance of MUHUI1 and
MUHUI2 is relatively stable when |X | is varied. As the
size of the dataset increases, the runtime of MUHUI1 is
close to that of MUHUI2, but MUHUI1 is considerably
faster than PHUI-List. In particular, the runtime gap between
the runtimes of these two algorithms grows wider when the
dataset size increases. This is reasonable since all the items in
T10I4N4KD|X |K have similar distributions. As the dataset
size increases, runtimes of the algorithms linearly increase. It
can be observed that the proposed MUHUI algorithm scales
well for large datasets. Figure 10b compares memory usage
of the four algorithms. These results indicate that memory
usage also linearly grows with respect to database size. In
addition, we observe that the memory usages of the four PU-
list-based algorithms increase less rapidly than the memory
usage of the PHUI-UP algorithm.

In Fig. 10c, it can be observed that few HUIs found by
traditional HUIM algorithms are actually PHUIs. MUHUI1
and MUHUI2 both visit less nodes than the PHUI-List algo-
rithm when the dataset size is varied, as it can be observed
in Fig. 10d. From these results of the scalability test, it can
be concluded that the proposedMUHUI algorithm has better
scalability than the state-of-the-art PHUI-List algorithm.

6 Conclusions and future work

Many approaches were previously proposed for mining
high-utility itemsets in precise data. But few studies have
addressed the problem of mining high-utility itemsets in
uncertain data. In this paper, an efficient algorithm called
MiningofUncertain data forHigh-Utility Itemsets (MUHUI)
is proposed to discover itemsets having both a high utility
and a high existential probability in an uncertain database.
The previous state-of-the-art algorithm, named PHUI-List,

123

2818 J.C.-W. Lin et al.

0.0020.0040.0060.0080.0100.012
0

20

40

60

80

100

120

140
(a) foodmart (MP: 0.003%)

Minimum utility threshold

M
em

or
y

us
ag

e
(M

B
)

PHUI-UP PHUI-List MUHUI1 MUHUI2

0.0050.0100.0150.0200.0250.030
0

50

100

150

200
(b) retail (MP: 0.05%)

Minimum utility threshold

M
em

or
y

us
ag

e
(M

B
)

0.4 0.6 0.8 1.0 1.2 1.4
0

500

1000

1500

2000

2500

3000
(c) accidents (MP: 4%)

Minimum utility threshold

M
em

or
y

us
ag

e
(M

B
)

0.0500.0750.1000.1250.1500.175
0

50

100

150

200

250

300

350
(d) T10I4D100K (MP: 0.1%)

Minimum utility threshold

M
em

or
y

us
ag

e
(M

B
)

Fig. 8 Memory usage for various MUs and a fixed MP

0.0010.0020.0030.0040.0050.006
0

20

40

60

80
(a) foodmart (MU: 0.008%)

Minimum potential probability threshold (%)

M
em

or
y

us
ag

e
(M

B
)

PHUI-UP PHUI-List MUHUI1 MUHUI2

0.02 0.04 0.06 0.08 0.10 0.12
0

50

100

150

200

250
(b) retail (MU: 0.04%)

Minimum potential probability threshold (%)

M
em

or
y

us
ag

e
(M

B
)

0 2 4 6 8 10
0

500

1000

1500

2000

2500

(c) accidents (MU: 1%)

Minimum potential probability threshold (%)

M
em

or
y

us
ag

e
(M

B
)

0.00 0.05 0.10 0.15 0.20 0.25
0

100

200

300

400
(d) T10I4D100K (MU: 0.05%)

Minimum potential probability threshold (%)

M
em

or
y

us
ag

e
(M

B
)

Fig. 9 Memory usage for various MPs and a fixed MU

123

Efficiently mining uncertain high-utility itemsets 2819

100 200 300 400 500
0

500

1000

1500

2000

2500

3000

Dataset size of |X| (K)

R
un

tim
e

(s
ec

.)

(a) T10I4N4KD|X|K

100 200 300 400 500
0

200

400

600

800

1000

Dataset size of |X| (K)

M
em

or
y

(M
B

)

(b) T10I4N4KD|X|K

100 200 300 400 500
0

200

400

600

800

1000

Dataset size of |X| (K)

P

at
te

rn
s

(c) T10I4N4KD|X|K

100 200 300 400 500
0

1

2

3

4
x 10

6

Dataset size of |X| (K)

 #
 V

is
ite

d
no

de
s

(d) T10I4N4KD|X|K

N
1

N
2

N
3

PHUI-UP
PHUI-List
MUHUI1
MUHUI2

HUIs
PHUIs

PHUI-UP
PHUI-List
MUHUI1
MUHUI2

Fig. 10 Scalability results

suffers from the problem of performing multiple join opera-
tions to construct PU-lists,which is time consuming, andmay
face the problem of a very large search space when thresh-
olds are set to small values. TheMUHUI algorithm integrates
several efficient pruning strategies to discover PHUIs more
efficiently than the PHUI-List algorithm. The proposed PU-
list structure stores information about both the probabilities
and utilities of itemsets. Several efficient pruning strate-
gies have also been designed to speed up the discovery of
PHUIs, and avoid constructing the PU-lists of a large num-
ber of unpromising itemsets. Substantial experiments both
on real-life and synthetic datasets show that the proposed
MUHUI algorithm consumes slightly more memory than the
PHUI-List algorithm, but is generally much faster, visits less
nodes in the set-enumeration tree, and has better scalability.
In particular, the MUHUI algorithm has better scalabil-
ity than the PHUI-List algorithm on large-scale uncertain
datasets.

For future work, many interesting issues can be studied
related to the problem of mining high-utility itemsets in
uncertain data, such as incremental mining of PHUIs, mining
PHUIs in streams, and up-to-date PHUI mining. In addition,
how to design more efficient algorithms for mining PHUIs
can also be considered for future work.

Acknowledgements This research was partially supported by the
National Natural Science Foundation of China (NSFC) under Grant
No.61503092, by the Shenzhen Peacock Project, China, under Grant
KQC201109020055A, by the Natural Scientific Research Innova-
tion Foundation in Harbin Institute of Technology under Grant
HIT.NSRIF.2014100, and by the Shenzhen Strategic Emerging Indus-
tries Program under Grant ZDSY20120613125016389.

Compliance with ethical standards

Conflicts of interest The authors declare that there are no conflicts of
interest in this paper.

Ethical standard This article does not contain any studies with human
participants performed by any of the authors.

References

Aggarwal CC (2010) Managing and mining uncertain data, managing
and mining uncertain data

Aggarwal CC, Li Y, Wang J, Wang J (2009) Frequent pattern mining
with uncertain data. In: The 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp 29–38

Aggarwal CC, Yu PS (2009) A survey of uncertain data algorithms and
applications. IEEE Trans Knowl Data Eng 21(5):609–623

Agrawal R, Imielinski T, Swami A (1993) Database mining: a perfor-
mance perspective. IEEE Trans Knowl Data Eng 5(6):914–925

123

2820 J.C.-W. Lin et al.

Agrawal R, Imielinski T, Swami A (1993) Mining association rules
between sets of items in large database. In: The ACM SIGMOD
International Conference on Management of Data, pp 207–216

Agrawal R, Srikant R (1994) Fast algorithms for mining association
rules in large databases. In: InternationalConference onVeryLarge
Data Bases, pp 487–499

Agrawal R, Srikant R (1994) Quest synthetic data generator. http://
www.Almaden.ibm.com/cs/quest/syndata.html

Ahmed CF, Tanbeer SK, Jeong BS, Le YK (2009) Efficient tree struc-
tures for high utility patternmining in incremental databases. IEEE
Trans Knowl Data Eng 21(12):1708–1721

Bernecker T, Kriegel HP, Renz M, Verhein F, Zuefl A (2009) Prob-
abilistic frequent itemset mining in uncertain databases. In: The
15th ACMSIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp 119–128

ChanR,YangQ, ShenYD (2003)Mining high utility itemsets. In: IEEE
International Conference on Data Mining, pp 19–26

Chen MS, Han J, Yu PS (1996) Data mining: an overview from a data-
base perspective. IEEE Trans Knowl Data Eng 8(6):866–883

Chui CK, Kao B, Hung E (2007) Mining frequent itemsets from uncer-
tain data. In: Advances in Knowledge Discovery and DataMining,
pp 47–58

Evfimievski A, Srikant R, Agrawal R, Gehrke J (2002) Privacy preserv-
ing mining of association rules. In: ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp 217–
228

Fournier-Viger P, Wu CW, Zida S, Tseng VS (2014) FHM: Faster
high-utility itemset mining using estimated utility co-occurrence
pruning. Found Intell Syst 8502:83–92

Fournier-Viger P, Zida S (2016) FOSHU: Faster on-shelf high utility
itemset mining—with or without negative unit profit. In: The 30th
Symposium on Applied Computing, pp 857–864

Frequent itemset mining dataset repository (2012). http://fimi.ua.ac.be/
data/

Geng L, Hamilton HJ (2006) Interestingness measures for data mining:
a survey. ACM Comput Surv 38(3):9 (Article 9)

Han J, Pei J, Yin Y, Mao R (2004) Mining frequent patterns without
candidate generation: A frequent-pattern tree approach. Data Min
Knowl Disc 8(1):53–87

Lan GC, Hong TP, Tseng VS (2011) Discovery of high utility item-
sets from on-shelf time periods of products. Expert Syst Appl
38(5):5851–5857

Lan GC, Hong TP, Huang JP, Tseng VS (2014) On-shelf utility mining
with negative item values. Expert Syst Appl 41(7):3450–3459

Leung CKS, Mateo MAF, Brajczuk DA (2008) A tree-based approach
for frequent pattern mining from uncertain data. In: Advances in
Knowledge Discovery and Data Mining, pp 653–661

Lin JCW, Gan W, Fournier-Viger P, Hong TP (2015) Mining high-
utility itemsets withmultipleminimumutility thresholds. In: ACM
International C* Conference on Computer Science & Software
Engineering, pp 9–17

Lin JCW, GanW, Fournier-Viger P, Hong TP, Tseng VS (2015) Mining
potential high-utility itemsets over uncertain databases. In: ACM
5th ASE BigData & SocialInformatics, pp 25

Lin JCW,GanW,Hong TP, Zhang B (2015) An incremental high-utility
mining algorithm with transaction insertion. Sci World J

Lin CW, Hong TP, LuWH (2011) An effective tree structure for mining
high utility itemsets. Expert Syst Appl 38(6):7419–7424

Lin CW, Hong TP, Lan GC, Wong JW, Lin WY (2015) Efficient updat-
ing of discovered high-utility itemsets for transaction deletion in
dynamic databases. Adv Eng Inform 29(1):16–27

Lin JCW, GanW, Hong TP (2015) A fast updated algorithm to maintain
the discovered high-utility itemsets for transaction modification.
Adv Eng Inform 29(3):562–574

Lin JCW, Gan W, Hong TP, Tseng VS (2015) Efficient algorithms
for mining up-to-date high-utility patterns. Adv Eng Inform
29(3):648–661

Lin CW, Hong TP (2012) A new mining approach for uncertain data-
bases using CUFP trees. Expert Syst Appl 39(4):4084–4093

Liu C, Chen L, Zhang C (2013) Summarizing probabilistic frequent
patterns: a fast approach. In: The19thACMSIGKDDInternational
Conference on Knowledge Discovery and Data Mining, pp 527–
535

Liu Y, Liao WK, Choudhary A (2005) A two-phase algorithm for fast
discovery of high utility itemsets. In: Advances in Knowledge Dis-
covery and Data Mining, pp 689–695

Liu M, Qu J (2012) Mining high utility itemsets without candidate
generation. In: ACM International Conference on Information and
Knowledge Management, pp 55–64

Microsoft (2016) Example database foodmart of microsoft analysis ser-
vices. http://msdn.microsoft.com/en-us/library/aa217032(SQL.
80).aspx

Nilesh D, Dan S (2007) Efficient query evaluation on probabilistic data-
bases. VLDB J 16(4):523–544

Rymon R (1992) Search through systematic set enumeration. In: Inter-
national Conference Principles of Knowledge Representation and
Reasoning, pp 539–550

Sun L, Cheng R, Cheung DW, Cheng J (2010) Mining uncertain data
with probabilistic guarantees. In: The 16th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining,
pp 273–282

Tong Y, Chen L, Cheng Y, Yu PS (2012) Mining frequent itemsets over
uncertain databases. VLDB Endow 5(11):1650–1661

TsengVS,WuCW,ShieBE,YuPS (2010)UP-growth: an efficient algo-
rithm for high utility itemset mining. In: The 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Min-
ing, pp 253–262

Tseng VS, Shie BE, Wu CW, Yu PS (2013) Efficient algorithms for
mining high utility itemsets from transactional databases. IEEE
Trans Knowl Data Eng 25(8):1772–1786

Wang L, Cheung DL, Cheng R, Lee SD, Yang XS (2012) Efficient
mining of frequent item sets on large uncertain databases. IEEE
Trans Knowl Data Eng 24(12):2170–2183

Wang L, Cheng R, Lee SD, CheungD (2010) Accelerating probabilistic
frequent itemset mining: a model-based approach. In: The 19th
ACM International Conference on Information and Knowledge
Managemen, pp 429–438

Wu CW, Shie BE, Tseng VS, Yu PS (2012) Mining top-k high utility
itemsets. In: The 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp 78–86

Yao H, Hamilton HJ, Butz CJ (2004) A foundational approach to min-
ing itemset utilities from databases. In: The SIAM International
Conference on Data Mining, pp 211–225

Yao H, Hamilton HJ (2006) Mining itemset utilities from transaction
databases. Data Knowl Eng 59(3):603–626

Zihayat M, An A (2014) Mining top-k high utility patterns over data
streams. Inf Sci 285:138–161

123

http://www.Almaden.ibm.com/cs/quest/syndata.html
http://www.Almaden.ibm.com/cs/quest/syndata.html
http://fimi.ua.ac.be/data/
http://fimi.ua.ac.be/data/
http://msdn.microsoft.com/en-us/library/aa217032(SQL.80).aspx
http://msdn.microsoft.com/en-us/library/aa217032(SQL.80).aspx

	Efficiently mining uncertain high-utility itemsets
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries and problem statement
	3.1 Preliminaries
	3.2 Problem statement

	4 The proposed MUHUI Algorithm
	4.1 The PU-list structure
	4.2 Search space and properties used by the MUHUI Algorithm
	4.3 Proposed pruning strategies
	4.4 An illustrated example

	5 Experimental evaluation
	5.1 Experimental setup and datasets description
	5.2 Runtime
	5.3 Patterns analysis
	5.4 Effect of the different pruning strategies
	5.5 Memory usage
	5.6 Scalability and efficiency

	6 Conclusions and future work
	Acknowledgements
	References

