
Soft Comput (2017) 21:5647–5663
DOI 10.1007/s00500-016-2140-z

METHODOLOGIES AND APPLICATION

Comparison of metamodeling techniques in evolutionary
algorithms

Alan Díaz-Manríquez1 · Gregorio Toscano2 · Carlos A. Coello Coello3

Published online: 19 April 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Although researchers have successfully incor-
porated metamodels in evolutionary algorithms to solve
computational-expensive optimization problems, they have
scarcely performed comparisons among different metamod-
eling techniques. This paper presents an in-depth comparison
study over four of the most popular metamodeling tech-
niques: polynomial response surface, Kriging, radial basis
function neural network (RBF), and support vector regres-
sion. We adopted six well-known scalable test functions and
performed experiments to evaluate their suitability to be cou-
pled with an evolutionary algorithm and the appropriateness
to surrogate problems by regions (instead of surrogating the
entire problem). Notwithstanding that most researchers have
undertaken accuracy as the main measure to discern among
metamodels, this paper shows that the precision, measured
with the ranking preservation indicator, gives amore valuable
information for selecting purposes.Additionally, nonetheless

Communicated by V. Loia.

B Alan Díaz-Manríquez
amanriquez@uat.edu.mx

Gregorio Toscano
gtoscano@tamps.cinvestav.mx

Carlos A. Coello Coello
ccoello@cs.cinvestav.mx

1 Facultad de Ingeniería y Ciencias, Centro Universitario
Victoria, Universidad Autónoma de Tamaulipas, 87000
Cd. Victoria, Tamaulipas, Mexico

2 CINVESTAV-IPN, Unidad Tamaulipas, Parque Científico y
Tecnológico TECNOTAM, Km. 5.5 carretera Cd.
Victoria-Soto La Marina, 87130 Cd. Victoria,
Tamaulipas, Mexico

3 Departamento de Computación, CINVESTAV-IPN,
Av. IPN No. 2508, Col. San Pedro Zacatenco, 07360
Mexico, DF, Mexico

each model has its own peculiarities; our results concur that
RBF fulfills most of our interests. Furthermore, the readers
can also benefit from this study if their problem at hand has
certain characteristics such as a low budget of computational
time or a low-dimension problem since they can assess spe-
cific results of our experimentation.

Keywords Surrogate models · Evolutionary algorithms ·
Local models

1 Introduction

Evolutionary algorithms (EAs) gather a set of algorithms,
inspired by neo-Darwinism, that have been successfully
applied to an important variety of difficult optimization prob-
lems.

In many science and engineering problems, researchers
have used computer simulations to avoid expensive physi-
cal experiments with the aim of improving the quality and
performance of engineered products and devices, but using a
fraction of the needed effort. Analogously, researchers have
proposed a number of EAs that make use of metamodels1 to
solve computational-expensive optimization problems (Nain
and Deb 2002; Gaspar-Cunha and Vieira 2005; Voutchkov
and Keane 2006; Isaacs et al. 2007).

Although distinct metamodeling techniques can produce
different solutions, little emphasis has been placed on explor-
ing their behavior when coupled to EAs. Even when we
understand the scarcity of comparative works, since such
an exploration would require gaining deep knowledge on
each approach, it is important to note that some approaches

1 We will use the terms approximation models, surrogate models, and
metamodels interchangeably in this paper.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-016-2140-z&domain=pdf

5648 A. Díaz-Manríquez et al.

are bound to specific domains. Therefore, it is necessary to
carry out comparative studies among metamodeling tech-
niques before selecting one.

In this regard, Carpenter and Barthelemy (1993) adopted
several test problems with up to 15 decision variables to
compare the accuracy of polynomial regression (PRS) and
artificial neural networks (ANN) to be used as metamod-
eling approaches. In their study, although PRS required a
lower construction time, both approaches showed a similar
performance according to their achieved number of function
evaluations and their required parameters. Therefore, they
stated that the selection would depend on the user prefer-
ences.

Shyy et al. (2001) compared the accuracy of a PRS, a back
propagation ANN, and a radial basis function neural network
(RBF) approaches, concluding that PRS and RBF performed
similarly in several problems with up to 11 variables.

Rasheed et al. (2002) adopted several test problems with
up to 16 decision variables to compare the behavior of PRS,
RBF, and Quickprop ANN when they were coupled to a
genetic algorithm (GA). Such a comparison showed that PRS
had the fastest time for building and executing the meta-
model. Additionally, it did not require any parameter to be
fine-tuned. For these reasons, the authors agreed in favor of
PRS.

Willmes et al. (2003) compared the behavior of ANN
and Kriging (KRG) methods when they are coupled to an
evolution strategy (ES) with covariance matrix adaptation
(CMA) (Hansen and Ostermeier 2001) in three scalable test
problems with up to 50 decision variables. However, there
is no clear conclusion about which metamodel performed
best.

Simpson et al. (1998) compared the performance of KRG
and PRS with respect to the design of an aerospike nozzle
with three decision variables. According to their results, both
approaches were comparable with respect to their accuracy.

Jin et al. (2001) compared the accuracy, robustness, effi-
ciency, transparency, and simplicity of PRS, multivariate
adaptive splines, RBF, and KRG, using several test prob-
lems with up to 16 decision variables. The conclusion of
their comparison was that PRS behaved the best in low-
dimension problems, while the RBF approach was the best
when dealing with high-dimension problems. It is worth not-
ing that although this paper compares several metamodeling
approaches, they were not incorporated into an EA.

Although the above proposals selected the best metamod-
eling technique from a comparison methodology, some of
them were evaluated based only on a small group of meta-
modeling techniques, adopting a reduced set of test problems,
or taking into account only a single criterion (most works
selected accuracy as their main criterion).

Furthermore, they usually omit measuring two important
factors: the performance with the increase in the dimension-

ality and the suitability of the metamodel to be combined
with population-basedmetaheuristics. Moreover, most of the
existing algorithms used a single metamodel to approximate
the whole search space of the problem, even though results
from certain researchers (Isaacs et al. 2007; Georgopoulou
and Giannakoglou 2009; Pilat and Neruda 2013) suggest
that using metamodels to approximate specific regions of
the search space produces an improvement in the accuracy
of the approximation.

In Díaz-Manríquez et al. (2011), we fine-tuned the para-
meters of four metamodeling techniques using accuracy as
performance measure. Then, we evaluated the metamodels’
accuracy, robustness, efficiency, scalability, and suitability
when they were combined with an EA. From the results, we
found that accuracy and suitability were in conflict, in the
sense that not always the most accurate metamodel produced
the best results when it was coupled to a EA. On the other
hand,we found that our ranking preservation indicator,which
measures the percentage of solutions in the metamodel that
preserves the hierarchy according to the original objective
function, could be a better measure to evaluate the perfor-
mance of a metamodel.

This paper compares the results achieved by the meta-
models fine-tuned with the accuracy indicator (presented in
Díaz-Manríquez et al. 2011) with respect to the results pro-
duced by ranking preservation fine-tuned approaches. Such
a new parametrization will endorse the selection of the meta-
modeling technique. Then, we will explore its capabilities to
surrogate the entire problem (also known as the global sur-
rogate model, or GM for short) with respect to surrogating
the problems by regions (also known as the local surrogate
model or LM for short). It is worth noting that unlike the
results presented in Díaz-Manríquez et al. (2013), the base-
line approach used to analyze the use of GM and LM was
fine-tuned trough the ranking preservation indicator.

The remainder of this paper is organized as follows: Sec-
tion 2 gives a brief overview of the metamodeling techniques
commonly used in the literature. Section 3 presents our
experimental setting. We divided our experimentation into
four parts: Section 4 introduces our first experiment where
besides fine-tuning the parameters of the adopted metamod-
eling approaches with respect to the accuracy performance
measure, it compares their obtained accuracy, robustness,
and scalability. Our second experiment, which is shown in
Sect. 5, measures the suitability of each technique to be
incorporated into anEA. Section 6 introduces our third exper-
iment. It presents the use of ranking preservation indicator
to fine-tuning the parameters of the adopted metamodel-
ing approaches. We compare the results obtained in this
section with respect to that obtained with the accuracy fine-
tuned methods. Our fourth experiment, presented in Sect. 7,
measures the efficiency of the compared approaches. Then,
Sect. 8 presents three different approaches for using LM,

123

Comparison of metamodeling techniques in evolutionary algorithms 5649

analyzes their parameters, and compares their results with
respect to the use of GM. Finally, Sect. 9 summarizes our
main conclusions and outlines future work.

2 Background

A metamodel is an approximation of a simulation used to
construct simpler and lower computational cost models; if
the original simulation is represented as f (x), and the meta-
model is represented as f ′(x), then, f ′(x) = f (x) + e(x),
where e(x) is the approximated error. The internal behavior
of f (x) does not need to be known (or understood); only the
input/output behavior is important. A model is constructed
based on the response of the simulator to a limited num-
ber of intelligently chosen data points. Metamodels generate
simpler representations that capture relations between the
relevant information of the input and output variables and
not in the underlying process.

Among the techniques to create metamodels, we have
rational functions (Press et al. 2007), radial basis func-
tions (Hardy 1971), Kriging models (Sacks et al. 1989),
support vector machines (Vapnik 1998), polynomial regres-
sion (Myers and Anderson-Cook 2009), and splines (Schu-
maker 2007).Below,we review themost commonapproaches
for constructing approximate models:

2.1 Polynomial approximation models

The response surface methodology (RSM) (Myers and
Anderson-Cook 2009) employs statistical techniques for
regression and analysis of variance to obtain aminimumvari-
ance of the responses.

The simplicity of polynomials makes them a good
approach to approximate most polynomial response surfaces
(PRS).

A polynomial in the coded inputs x1, x2, . . . , xn (n data
in the training set) is a function which is a linear aggregate
(or combination) of powers and products of the input.

The polynomial model is usually written in matrix nota-
tion, ŷ(p) = βT xp, where β is the vector of coefficients to
be estimated, and xp is the vector corresponding to the form
of the x (p)

1 and x (p)
2 terms in the polynomial model.

To estimate the unknown coefficients of the polynomial
model, both the least-squaresmethod (LSM) and the gradient
method, can be used. However, both approaches require the
number of samples to be equal to the number of coefficients.

PRS can also be built using stepwise regression (Draper
andSmith 1981). The basic procedure for stepwise regression
involves (1) identifying an initial model, (2) iteratively “step-
ping”, that is, repeatedly altering the model at the previous
step by adding or removing a predictor variable in accor-

dance with the “stepping criterion”, and (3) terminating the
search when a specified maximum number of steps has been
reached.

In practice, we can often proceed by supposing that, a
polynomial of first or second degree might represent ade-
quately the real function over limited regions of the design
space.Although higher-order polynomials can be used, insta-
bilities may arise (Barton 1992), or it can be highly difficult
to take enough sample data to estimate the coefficients of the
polynomial equation (particularly in high dimensions). This
work considers second degree PRS models.

2.2 Kriging-DACE

Kriging (KRG) (Matheron 1963) is a spatial prediction
method that belongs to the group of geo-statistical meth-
ods. It is based on minimizing the mean squared error, and
it describes the spatial and temporal correlation among the
values of an attribute.

The design and analysis of computer experiments (DACE)
is a parametric regression model developed by Sacks et al.
(1989), which is an extension of the KRG approach to be
able to manage three or more dimensions.

The DACE model can be expressed as a combination of
a known function a(x) (e.g., polynomial function, trigono-
metric series) and a Gaussian random process b(x) that is
assumed to have mean zero and covariance:

E(b(x(i)), b(x(j))) = Cov(b(x(i)), b(x(j)))

= σ 2R(θ, x(i), x(j)), (1)

where σ 2 is the process variance of the response and
R(θ, x(i), x(j)) is the correlation function with parameters
θ . Among the different types of correlation models, we have
Gaussian, cubic, exponential, linear, spherical, and splines.

In the downside of KRG, we have that besides its model
construction can be very time-consuming, the estimation of
the parameters requires to solve an n-dimensional optimiza-
tion problem (where n is the number of variables in the design
space), which can also be computationally expensive.

2.3 Radial basis function neural network

The radial basis function method (RBF) was proposed by
Hardy (1971). An RBF is a real-value function whose value
depends only on the distance from the input to the center
of the neuron, so that φ(x) = φ(||x||) or alternatively on
the distance from some other point c, called a center. Any
function φ that satisfies the property φ(x) = φ(||x||) is a
radial function. The norm is usually the Euclidean distance,
although other distance functions can be used.

Typical choices for the RBF include linear, cubic, multi-
quadratic, or Gaussian functions.

123

5650 A. Díaz-Manríquez et al.

An RBF commonly has three layers: an input layer with
the identity function, a hidden layer with non-linear RBF
activation functions, and a linear output layer. The output,
ϕ : Rn → R, of the network is thus ϕ(x) = ∑N

i=1 wiφ(||x−
ci ||).

In order to adapt the RBF network for a particular task,
three parameters need to be fine tuned: the weights wi , the
center vector ci , and the RBF width parameters βi . In this
work, the center vector was tuned according to the centers of
a clustering technique (there are as many clusters as RBFs).
The width parameter was tuned averaging the distance from
its own center to its two closest RBFs. Finally, in this paper
we adopted the Gaussian function to serve as RBF.

2.4 Support vector regression

Support vector machines (SVMs) draw inspiration from sta-
tistical learning theory (Vapnik 1998). An SVM is a set of
related supervised learningmethods which analyzes data and
recognizes patterns. An SVM constructs a hyperplane or a
set of hyperplanes in a high-dimensional space that can be
used for classification, regression, or other tasks.

An SVM maps its inputs to a larger space; however, the
cross products may be computed easily in terms of the vari-
ables in the original space making the computational load
reasonable. The cross products in larger spaces are defined
in terms of a kernel function K (x, y), which can be selected
to suit the problem.

Through the introduction of an alternative loss function,
an SVMcan also be applied to regression problems.2 The loss
function must be modified to include a distance measure. In
this work, we adopted the Gaussian RBF as kernel function.
Moreover, C , γ and ε were fine-tuned using a methodology
explained later.

3 Experimental settings

Evaluating the performance of a metamodeling technique is
not an easy task.Most approaches only consider the accuracy
in performing the selection (Carpenter andBarthelemy 1993;
Shyy et al. 2001; Simpson et al. 1998; Giunta and Watson
1998).However, other approaches suggest the use ofmultiple
criteria (e.g., the robustness, the efficiency, or the simplicity)
for assessing the quality of ametamodel (Jin et al. 2001). The
success of a technique not only depends exclusively on the
accuracy, but also on several factors, such as the parameters
of the metamodeling technique, the dimensionality of the
problem, the data sampling technique, etc.

2 The SVM for a regression problem is known as a support vector
regression (SVR).

To evaluate the performance of the compared approaches,
six scalable unconstrained global optimization test functions
were taken from the specialized literature (De Jong 1975;
Rastrigin 1974; Bäck 1996; Schwefel 1981). The test func-
tions were selected according to both, the shape of the search
space, and the number of local minima, i.e., they contain
characteristics that are representative of what can be con-
sidered “difficult” in global optimization. A summary of
such features is given in Table 1. Since all the adopted
problems can be scaled in the number of decision vari-
ables, we evaluate them using the following problem sizes:
v = {2, 4, 6, 8, 10, 15, 20, 25, 50}. If an instance has more
than 15 variables (v > 15), we list it as a high-dimension
instance. Contrariwise, if it has less than 15 variables, we
named it as low-dimension (v ≤ 15).

We gathered our research from four main experiments.
The first experiment besides fine-tuning the parameters of the
adoptedmetamodeling approaches, compares their accuracy,
robustness, and scalability. Our second experiment measures
the efficiency of the compared metamodeling approaches,
while our third experiment measures their suitability to be
incorporated into an EA. Finally, our fourth experiment is
intended to clarify the advantages and disadvantages of local
metamodels with respect to global metamodels.

4 Experiment 1: fine-tuning, accuracy, robustness,
and scalability

We performed a full factorial design of the most widely used
parameters to avoid affecting the techniqueswith a poor para-
meter tuning. Therefore, we discretized the parameters used
by each technique as follows:

• PRS Degree of the polynomial = 2, technique for con-
structing the regression = {traditional, stepwise}.

• KRG Correlation function= {Gaussian, cubic, exponen-
tial, linear, spherical, splines}.

• RBF Neurons in the hidden layer = {3–100} with a step
size of 1, Radial basis function=Gaussian, center vector
were set through the k-means algorithm, the widths of
each RBF were calculated according to the average dis-
tance between the two closest centers.

• SVMC ={2E−5 −2E15}, γ ={0.1−2}, ε ={2E−10 −
2E5} with a step size of 0.1, and a Gaussian RBF kernel
function.

We executed the different variants 31 times on all prob-
lem sizes of each test problem according to the performed full
factorial design and processed the results with respect to the
achieved accuracy. The accuracy was measured according
to the coefficient of determination (R2) performance mea-
sure (Jin et al. 2001).

123

Comparison of metamodeling techniques in evolutionary algorithms 5651

Table 1 Important features of the adopted test problems

Problem Modality # of local minima Global minimum

Step Unimodal No local minima excepting the global one x∗ = (0, . . . , 0), f (x∗) = 0

Sphere Unimodal No local minima excepting the global one x∗ = (0, . . . , 0), f (x∗) = 0

Rosenbrock Unimodal for n ≤ 3
otherwise multimodal

Several local minima for n > 3 x∗ = (1, . . . , 1), f (x∗) = 0

Ackley Multimodal Several local minima x∗ = (0, . . . , 0), f (x∗) = 0

Rastrigin Multimodal Large number of local minima x∗ = (0, . . . , 0), f (x∗) = 0

Schwefel Multimodal Several local minima x∗ = (420.96, . . . , 420.96), f (x∗) = 0

R2 = 1 −
∑NV

i=1

(
yi − ŷi

)2

∑NV
i=1 (yi − ȳi)2

= 1 − MSE

Variance
, (2)

where NV is the size of the validation dataset, ŷi is the pre-
dicted value for the input i , and yi is the real value; ȳ is
the mean of the real values. The mean square error (MSE)
measures the difference between the estimator and the real
value. In this metric, larger values of R2 are preferred since
this represents a more accurate metamodel.

Then, we selected two different set of parameters: (1) the
parameters that produced the best average accuracy consid-
ering all problems and instances, and (2) the parameters that
behaved best for each problem and on each instance size.
We called them best overall settings (BOS) and best local
settings (BLS), respectively. Since BLS involves a different
setting for each approach on each test function, we did not
show the obtained results because of their length. However,
BOS parameters are shown below:

• PRS Degree of the polynomial = 2, technique for con-
struct the regression = {stepwise}.

• KRG Correlation function = {Exponential}.
• RBF Number of neurons in the hidden layer = {6}.
• SVR C ={2E10.5}, γ ={0.2}, ε ={2E−2.5}.

Then, we measured the accuracy, robustness, and scalabil-
ity of the compared approaches according to the following
methodology:

1. We create a training dataset using Latin hypercubes3

(McKay et al. 1979) with 100 points (a size of 100 was
selected since most EAs typically handle this population
size).

2. We train each technique (PRS, KRG, RBF, and SVR)
with the training dataset created in the previous step.

3. We use Latin hypercubes to create a validation dataset
with the double of query points of the training dataset
(200).

3 Statisticalmethodof stratified sampling that can be applied tomultiple
variables.

4. We predict the validation dataset with each metamodel.
5. We compute the performance measure for the following

adopted criteria:

• Accuracy For accuracy, we refer to the capability of
the technique to have a prediction close to the real
objective function. The previously defined R2 per-
formance measure was used to achieve such a goal.

• RobustnessThis refers to the capability of a technique
to achieve good accuracy on adopted test problems.
We measured the robustness of a technique by aver-
aging its obtained accuracy in the adopted test cases.

• Scalability The scalability refers to achieving good
accuracy even when the number of variables increa-
ses.

4.1 Analysis of results

We used boxplot graphics to present our results since they
simultaneously show different descriptive measures that
facilitate the comprehension of many competing approaches.
In these graphics, the median (second quartile) of the plot-
ted data is shown with a straight line inside the box. The
average accuracy of the technique is shown with a diamond.
The beginning and end of the box indicate the first and third
quartiles, respectively. Therefore, we prefer smaller boxes
because they represent a more robust behavior.

Since multimodal problems usually induce erratic behav-
ior in probabilistic-based techniques, we divided our test
functions according their modality. Figure 1 displays the
obtained results according the application of the R2-metric
to the solutions produced by each metamodeling technique
using the two adopted set of parameters BLS and BOS.

Figure 1a, b shows the average results considering uni-
modal and multimodal test functions, respectively. Finally,
the average results gathering all the adopted test functions
are shown in Fig. 1c. These results indicate that BOS and
BLS induced a similar behavior in the adopted metamod-
eling approaches regardless of whether they are unimodal
or multimodal. Therefore, we will use BOS settings in our
remaining experiments.

123

5652 A. Díaz-Manríquez et al.

−2

−1.5

−1

−0.5

0

0.5

1

Metamodeling technique

R
2

PRS KRG RBF SVR

PRS KRG RBF SVR

PRS KRG RBF SVR

(a) Unimodal problems.

−2

−1.5

−1

−0.5

0

0.5

1

Metamodeling technique

R
2

(b) Multimodal problems.

−2

−1.5

−1

−0.5

0

0.5

1

BLS BOS BLS BOS BLS BOS BLS BOS

BLS BOS BLS BOS BLS BOS BLS BOS

BLS BOS BLS BOS BLS BOS BLS BOS

Metamodeling technique

R
2

(c) All the problems together.

Fig. 1 Boxplots graphics obtained from the application of R2 metric to
the results produced by PRS, KRG, RBF, and SVR. a, b Unimodal and
multimodal, while c gathers the results for all the adopted test functions

Also, when we analyzed the size and position of the box
of each boxplot, we found that RBF behaved slightly better
than KRG, and both outperform SVR. In these graphics, we
also found that PRS produced the worst results according to
R2 and our robustness performance measures.

To corroborate our previous results, we separately aver-
aged the results obtained by the studied algorithms on each
test function, and plotted them in Fig. 2. This experiment
confirms the lack of accuracy of PRS even in low-dimension
problems. PRSwas capable of creating a surrogate model for
step and ackley functions for up to eight variables (shown
in Fig. 2a, d, respectively), but it had the poorest accuracy
among the tested approaches.

Although PRS improved its own performance in sphere,
rosenbrock, and rastrigin when using two, four, eight, and ten
variables (see Fig. 2b, c, e, respectively), it has the poorest
results among the compared metamodels. PRS behaved rea-
sonably well only for schwefel, which is shown in Fig. 2f
(where it could approximate the problem in all the sizes
tested, and showed good performance even for the 50 vari-
ables instance).

The SVR approach had an inconsistent behavior in step
and ackley when using two, four, six, eight, and ten variables
(shown in Fig. 2a, d). However, it performed considerably
better than PRS, and it improved its behavior for the rest
of the test functions. Although KRG had a similar behavior
to SVR for the sphere (see Fig. 2b), rastrigin (see Fig. 2e),
and schwefel functions (see Fig. 2f), it outperformed SVR
in low-dimension instances when optimizing the rosenbrock
test function (shown in Fig. 2c). KRG had an impressive
performance in low-dimension instances on all the tested
problems since it outperformed the other techniques. How-
ever, its performance decreased after 15 variables in all test
functions as we can see in Fig. 2.

Contrary to the KRG behavior, RBF had an average per-
formance with the initial sizes of all problems, as is easily
seen in Fig. 2, but it was capable of maintaining its per-
formance according to the R2-metric in high-dimension
problems.

Figure 3 shows the performance of the compared tech-
niques on the adopted functions. KRG was the technique
that showed the best performance when working with low-
dimension instances (v < 15), while RBF had the best
performance with high-dimension instances. The results
obtained by SVR show that the behavior of this technique
was just behind KRG. Finally, PRS was the technique with
the worst overall performance.

From the above results, we were able to identify an
instance size (with approximately ten variables) where the
performances ofKRGandRBFare intersected. This intersec-

123

Comparison of metamodeling techniques in evolutionary algorithms 5653

0 10 20 30 40 50
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Number of variables

R
2

KRG PRS SVR RBF

(a) Step test function.

0 10 20 30 40 50
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Number of variables

R
2

KRG
PRS
SVR
RBF

(b) Sphere test function.

0 10 20 30 40 50
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Number of variables

R
2

KRG PRS SVR RBF

(c) Rosenbrock test function.

0 10 20 30 40 50
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Number of variables

R
2

KRG PRS SVR RBF

(d) Ackley test function.

0 10 20 30 40 50
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Number of variables

R
2

KRG
PRS
SVR
RBF

(e) Rastrigin test function.

0 10 20 30 40 50
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Number of variables

R
2

KRG PRS SVR RBF

(f) Schwefel test function.

Fig. 2 Average values of the application of the R2 metric to the
produced results by PRS, KRG, RBF, and SVR approaches on each
problem. The x-axis shows the number of variables, while the y-axis

shows the R2 metric value obtained by each metamodeling technique.
This figure intends to clarify the accuracy robustness and scalability of
the adopted approaches

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of variables

R
2

KRG PRS SVR RBF

Fig. 3 Average values of the application of the R2 metric to the pro-
duced results by PRS,KRG,RBF, and SVR approaches on all problems.
The x-axis shows the number of variables, while the y-axis shows the
R2 metric value obtained by each metamodeling technique. This figure
intends to clarify the accuracy robustness and scalability of the adopted
approaches

tion can be used as a reference point to choose the approach
to be incorporated into an EA according to the dimensional-
ity of the problem at hand (KRG in low-dimension problems,
and RBF in high-dimension problems).

According to the discussed results, RBF is the most effi-
cient approach among the reviewed ones. However, when
we search for the most accurate approach, we can say that
KRG is the best approach to be used in low-dimension prob-
lems (followed by SVR). On the other hand, RBF is the best
approach in high-dimension problems (followed by SVR).
However, if we want to select a single approach for both low-
and high-dimension problems, we suggest using RBF, since
our results indicate that this approach was the less affected
with the increase in the dimensionality. Therefore, we con-
cur that this approach is also the most scalable and robust
approach.

5 Experiment 2: suitability

The suitability refers to the ability of an EA to optimize the
fitness landscape produced by a specific surrogate model.

We propose two approaches to measure this criterion. For
the first approach, we used a differential evolution (DE)
algorithm (Storn and Price 1997) to optimize the created
metamodel at hand. Then,we computed the distance from the
best solution (obtained by the DE algorithm) to the optimum
of the original test function. The DE used is a DE/rand/1/bin,

123

5654 A. Díaz-Manríquez et al.

with a population size of 100, a CR = 0.8, a F = 0.5, and
the algorithm was executed for 100 iterations.

Since the optimumsolution on each test function is known,
we can say that a metamodel approach A induces better
behavior than another approach B into an EA; this is if the
best solution found when optimizing metamodel A is closer
to the optimum than an obtained solutionwhen it is optimized
with approach B.

The second approach was motivated by the manner with
which EAs select solutions. They usually compare two solu-
tions to select the one with the best fitness value. Therefore,
it would be interesting to complete the following steps: (1)
build ametamodel, (2) produce a number of distributed points
with it, and (3) compare each pair of the generated points
using both the surrogate function and the original function.
We can say that a metamodel approach is more suitable to be
used with an EA if it best preserves the comparative relation
with respect to the original function. In order to quantify this
assumption, we propose measuring the ranking preservation
(RP) indicator.

RP refers to the ability of a metamodel to maintain the
same rank of the query points with respect to the original
function. A metamodel f ′(x) has a perfect ranking preser-
vation under the original function f (x) if

∀x, y ∈ F : (f (x) < f (y) ⇒ f ′(x) < f ′(y))
∨ (f (x) > f (y) → f ′(x) > f ′(y)) (3)

∨ (f (x) = f (y) ⇒ f ′(x) = f ′(y)),

whereF is the feasible region of the problem. Therefore, the
performance measure can be defined as follows:

RP =
⎛

⎝
ND∑

i=1

ND∑

j=i+1

h(i, j)

⎞

⎠
/(

ND

2

)

, (4)

where h(i, j):

h(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

if((f (i) < f (j) ∧ f ′(i) < f ′(j))
1 ∨(f (i) > f (j) ∧ f ′(i) > f ′(j))

∨(f (i) = f (j) ∧ f ′(i) = f ′(j)))
0 otherwise,

(5)

where N refers to the number of solutions to validate the
model. The adopted methodology to measure the RP con-
sisted of training each metamodel with 100 solutions and
then measuring the RP using 1000 solutions. The pro-
cedure was applied to the six test problems previously
introduced with their full range of instance sizes (v =
{2, 4, 6, 8, 10, 15, 20, 25, 50}).

For this performance measure, larger RP values are pre-
ferred. Since this value is normalized between zero and one,
we will prefer the solutions closer to one.

5.1 Analysis of results

Figure 4 shows the results obtained by our first proposal to
measure the suitability. It indicates that although KRG and
SVR approaches were competitive, RBF was the approach
that induced the best performance for the adopted EA. How-
ever, since in general, SVR, KRG, and RBF showed a similar
performance in most of the problems, this experiment sug-
gests that an EA (in this case a DE) can produce acceptable
results even with a metamodel that is not very accurate.

Figure 5 displays a boxplot graphic of the general behav-
ior of the approaches with respect to RP on all test problems.
From this figure, we can see that the RBF produced the best
behavior according to RP since its boxplot is closest to one
and also presents the smallest deviation. Therefore, we con-
clude that RBF was the approach that induced the best RP.
Figure 6 shows the behavior of RPwith respect to the number
of variables of the adopted problems while Fig. 7 illustrates
the results of the RP performance measure in all the adopted
problems by instance size. From both figures, we observed
that RBF was very consistent in all problem sizes. Moreover,
in most of the problems, the performance of PRS up to 20
variables was better than the performance of SVR. Finally,
KRG presented the worst performance with respect to the
increase in the dimensionality.

It is worth noting that the higher the RP value, the lower
the probability to add a false optimum to the problem. This
feature is a very important characteristic when optimizing a
metamodel.

With this analysis of results, we can state that even if a
metamodel had a poor performance according to R2 met-
ric but a good performance according to our RP metric, one
could expect good behavior in the metaheuristic (in this case
we used a DE). However, if the metamodel had good perfor-
mance on R2 metric but a bad RP performance, then we do
not have elements to predict its behavior in the optimization
process. RBF was the metamodeling approach that behaved
best according to this experiment.

6 Experiment 3: suitability with RP-based
fine-tuning

Although the results obtained in our second experiment
(shown in Sect. 5) indicate that our adopted accuracy mea-
sure does not reflect properly the behavior of the adopted
metamodels when we they are incorporated within an EA,
we found that the RP performance measure does. Therefore,
we decided to perform the fine-tuning process all over again,
but using RP as performance measure.

The fine-tuning process was undertaken on the same para-
meters of our first experiment (shown in Sect. 4). After
analyzing the results, we selected two different set of para-

123

Comparison of metamodeling techniques in evolutionary algorithms 5655

0 10 20 30 40 50
0
5

10
15
20
25
30
35
40
45
50

Number of variables

||x
* −

x|
|

KRG

PRS

SVR

RBF

(a) Step test function.

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

Number of variables

||x
* −

x|
|

KRG

PRS

SVR

RBF

(b) Sphere test function.

0 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Number of variables

||x
* −

x|
| KRG

PRS

SVR

RBF

(c) Rosenbrock test function.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of variables

||x
* −

x|
|

KRG

PRS

SVR

RBF

(d) Ackley test function.

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

Number of variables

||x
* −

x|
|

KRG

PRS

SVR

RBF

(e) Rastrigin test function.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5
x 10

4

Number of variables

||x
* −

x|
|

KRG

PRS

SVR

RBF

(f) Schwefel test function.

Fig. 4 Distance from the best solution found by a tuple (metamodel, DE) to the optimum of the problem at hand. The x-axis shows the number
of variables, while the y-axis shows the distance of the best solution found by each model with respect to the optimum

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PRS KRG RBF SVR

Metamodeling technique

R
an

ki
ng

 P
re

se
rv

at
io

n
(R

P
)

Fig. 5 Boxplots summarizing the ranking preservation of a metamodel
with respect to the original test function of the problem at hand. Higher
values of this y-axis are preferred

meters: (1) the parameters that produced the best average
accuracy considering all problems and instances (the best
overall settings, or BOS-RP for short), and (2) the parame-
ters that behaved best for each problem and on each instance
size (best local settings or BLS-RP for short), respectively.
However, since the results of BOS-RP and BLS-RP are sim-

ilar, we decided to adopt BOS-RP for simplicity. Below, we
present these parameters:

• PRS Degree of the polynomial = 2, technique for con-
struct the regression = {stepwise}.

• KRG Correlation function = {Exponential}.
• RBF Number of neurons in the hidden layer = {15}.
• SVR C ={2E12}, γ ={0.6}, ε ={2E−5.0}.

The new parameter-tuning produced a different set para-
meters for RBF and SVR. Therefore, we will focus exclu-
sively on these two approaches in the remaining of this
experiment.

Then,we optimized the createdmetamodel at hand in aDE
algorithmand computed the distance from the best solution to
the optimum of the original test function to identify themeta-
model that produces the best behavior in our implementedEA
(similar to the first approach of our second experiment).

6.1 Analysis of results

Similarly to our experiment 1 (shown in Sect. 4), we divided
our test functions according their modality. Figure 8 dis-
plays the obtained results according the application of the

123

5656 A. Díaz-Manríquez et al.

0 10 20 30 40 50
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of variables

R
an

ki
ng

 P
re

se
rv

at
io

n
(R

P
)

KRG

PRS

SVR

RBF

(a) Step test function.

0 10 20 30 40 50

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of variables

R
an

ki
ng

 P
re

se
rv

at
io

n
(R

P
)

KRG

PRS

SVR

RBF

(b) Sphere test function.

0 10 20 30 40 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of variables

R
an

ki
ng

 P
re

se
rv

at
io

n
(R

P
)

KRG

PRS

SVR

RBF

(c) Rosenbrock test function.

0 10 20 30 40 50
0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95

Number of variables

R
an

ki
ng

 P
re

se
rv

at
io

n
(R

P
) KRG

PRS

SVR

RBF

(d) Ackley test function.

0 10 20 30 40 50
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of variables

R
an

ki
ng

 P
re

se
rv

at
io

n
(R

P
)

KRG

PRS

SVR

RBF

(e) Rastrigin test function.

0 10 20 30 40 50
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Number of variables

R
an

ki
ng

 P
re

se
rv

at
io

n
(R

P
)

KRG

PRS

SVR

RBF

(f) Schwefel test function.

Fig. 6 Behavior of each metamodeling technique on each size of the adopted functions according to the ranking preservation. The x-axis shows
the number of variables, while the y-axis shows the ranking preservation achieved for each metamodeling technique

0 10 20 30 40 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of variables

R
an

ki
ng

 P
re

se
rv

at
io

n
(R

P
)

KRG

PRS

SVR

RBF

Fig. 7 Average behavior on all the adopted problems by each meta-
modeling technique according to the ranking preservation. The x-axis
shows the number of variables, while the y-axis shows the ranking
preservation achieved for each metamodeling technique

RP-metric to the solutions produced by each metamodeling
technique using the two adopted set of parameters BLS and
BOS.

Figure 8a, b shows the average results considering uni-
modal and multimodal test functions, respectively. Finally,
the average results gathering all the adopted test functions are
shown in Fig. 8c. Besides, these results indicate that BOS-

RP and BLS-RP induced a similar behavior in the adopted
metamodeling approaches regardless of whether they are
unimodal or multimodal; when we compare these results
(see Fig. 8c) with respect to those obtained in the second
approach of our second experiment (shown in Fig. 7), we can
clearly realize that the new results outperform the previous
ones. From these results we can observe that RBF improved
significantly as it consistency topped the best result of our
adopted performance measure. Additionally, we can observe
that 75 % of the solutions that SVR produced on this new
experiment outperformed the median of the results of our
previous one.

Figure 9 gathers the results produced by the execution of
the DE on each metamodel. Since we are interested in evalu-
ating the results produced by SVR and RBF (the approaches
with different parameters), each graphic only show both
results, as well as their counterparts of our previous exper-
iment. In order to differentiate the results, we added ‘RP’
postfix to the labels of the new results.

Figure 9e shows the comparison of results of when the
approaches solved Rastrigin test function. From this figure,
we realized that SVR worsen its performance when it solved
instances up to 25 variables. However, it produced similar
results with 50 variables. On the other hand, the new parame-
trization of RBF slightly outperformed the results obtained
with the previous one.

123

Comparison of metamodeling techniques in evolutionary algorithms 5657

0

0.2

0.4

0.6

0.8

1

BLS BOS BLS BOS

BLS BOS BLS BOS

BLS BOS BLS BOS

Metamodeling technique

R
an

ki
ng

 P
re

se
rv

at
io

n
(R

P
)

SVRRBF

SVRRBF

SVRRBF

(a) Unimodal problems.

0

0.2

0.4

0.6

0.8

1

Metamodeling technique

R
an

ki
ng

 P
re

se
rv

at
io

n
(R

P
)

(b) Multimodal problems.

0

0.2

0.4

0.6

0.8

1

Metamodeling technique

R
an

ki
ng

 P
re

se
rv

at
io

n
(R

P
)

(c) All the problems together.

Fig. 8 Boxplots graphics obtained from the application of RPmetric to
the results produced by PRS, KRG, RBF, and SVR. a, b Unimodal and
multimodal, while c gathers the results for all the adopted test functions

Figure 9d presents the results obtained inAckley test func-
tion. It is easy to identify on this figure that RBF improved
its performance with the new tuning, since it outperform our
former experiment on all problem sizes. Moreover, SVR also
presented a noticeable improvement since in our former study
it presented an undesirable behavior with low-dimensional
problems. Additionally, this approach improved the distance
measure on every problem size.

The results shown in Figure 9b, c, f indicate that the new
tuning of RBF and SVR induced a slight improvement than
the former tuning in Rosenbrock, Schwefel, and sphere test
functions, respectively.

Finally, the results obtained in the step test problem, pre-
sented in Fig. 9a, show that RBF and SVR induce a slight
improvement for instances with 25 variables and fewer, but
only RBF enhanced its results for the 50 variable instance.

The new parameters’ tuning eases the comparison of
results when we consider all the adopted test functions, since
RBF induced the best results of all the compared metamod-
eling approaches across all the instance sizes. Also, although
SVR improved its over all performance, it could not outfper-
form the results produced by KRG in all problems. Similar
to our previous experiment, PRS produced the worst results
in this new experiment.

7 Experiment 4: efficiency

Our fourth experimentmeasures the efficiency of the adopted
approaches. In order to calculate efficiency, we measured the
time employed to construct a metamodel with 100 points and
the required time that it takes to predict 100 other responses.
All the experiments were executed in a computer Intel Core
i3 with 2.6 GHz and 4 GB de RAM. The results of this
experiment are shown in Fig. 10. These results indicate that
the time consumed by KRG is relatively large, mainly pro-
duced by the embedded optimization method used to find
the best values of its parameter (θ). On the other hand, SVR
and RBF required almost constant time in this experiment.
Finally, the expended computational time for PRS and KRG
was very similar. In conclusion, if the metamodel needs to
be constructed several times in the optimization process, we
recommend using a metamodeling technique that requires
a small amount of time, i.e., RBF or SVR. However, if the
metamodel only needs to be constructed a single time, any
metamodeling technique can be used.

8 Experiment 5: global and local metamodels (GM
vs. LMs)

When a metamodel is implemented into an EA, a fixed-
size repository of real-function-evaluated solutions is usually

123

5658 A. Díaz-Manríquez et al.

10 20 30 40 50

5

10

15

20

25

Number of variables

||x
* −

x|
|

SVR−R2

RBF−R2

SVR−RP
RBF−RP

(a) Step testf unction.

00 10 20 30 40 50
0

2

4

6

8

10

12

14

Number of variables

||x
* −

x|
|

SVR−R2

RBF−R2

SVR−RP
RBF−RP

(b) Sphere test function.

0 10 20 30 40 50
0

200
400
600
800

1000
1200
1400
1600
1800
2000

Number of variables

||x
* −

x|
|

SVR−R2

RBF−R2

SVR−RP
RBF−RP

(c) Rosenbrock test function.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of variables

||x
* −

x|
| SVR−R2

RBF−R2

SVR−RP
RBF−RP

(d) Ackley test function.

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

Number of variables

||x
* −

x|
|

SVR−R2

RBF−R2

SVR−RP
RBF−RP

(e) Rastrigin test function.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5
x 10

4

Number of variables

||x
* −

x|
|

SVR−R2

RBF−R2

SVR−RP
RBF−RP

(f) Schwefel test function.

Fig. 9 Distance from the best solution found by a tuple (metamodel,
DE) to the optimum of the problem at hand. The metamodel was fine-
tuned with the R2 or with RP performance measure. The x-axis shows

the instance size, represented by its number of variables, while the y-
axis shows the distance of the best solution found by each model with
respect to the optimum

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

Number of variables

T
im

e
(s

ec
on

ds
)

KRG PRS SVR RBF

Fig. 10 Average execution time required by each metamodel when
training and predicting the adopted problems. The x-axis shows the
number of variables, while y-axis shows the average training + predic-
tion time

managed (solutions from this repository are used to create the
metamodel). However, under the premise that it is difficult
to have a representative set of solutions to approximate the
whole search space of a function, we explored the idea to

approximate it by regions. This decision was strengthened
in practice since in our previous experiments we often found
that there were regions with either no solution or only a few
solutions. Such a scarcity of solutions in certain regions of
the search space induced a bias to dense regions (when using
GM).

Below, three different approaches for creating LMs are
proposed; the first two are based on clustering techniques
while the third is based on a data structure. These approaches
are briefly explained below:

• The k nearest neighbors approach (k-nn) is a method to
classify objects based on the closest training examples in
the design space (Silverman and Jones 1989).
We will use k-nn to select the k real-evaluated solutions
nearest to a query point. The selected solutions will serve
to create an LM.
The computational complexity to find the solutions to
create the LM of this approach depends linearly on the
size of the repository (Nrep). For a problem of a specific
dimensionality (dp) and using the Euclidean distance, the
computational complexity to find the solutions belonging
to the LM is of order O(Nrepdp).

123

Comparison of metamodeling techniques in evolutionary algorithms 5659

• The use of k-means (Forgy 1965) to create metamodels
consists of splitting the decision space into k subspaces.
The LM is created with the solutions that are located in
the same subspace as the solution to be evaluated.
The computational complexity of the k-means is given
with respect to the number of iterations (I) required in the
k-means algorithm, the size of the repository (Nrep), the
dimensionality of the problem (dprob), and the required
number of clusters (k). Therefore, the complexity to
obtain the clustered solutions required to create the LM
is of O(Nrepk Idprob).

• Binary space partitioning (BSP) is a technique for sub-
dividing a space into a convex set by hyperplanes. The
subdivision can be represented by means of a tree data
structure known as a BSP Tree. A BSP Tree is thus a
point access method that stores all the solutions of the
repository. The construction of the tree is similar as the
proposals of Chow and Yuen (2011) and Yuen and Chow
(2009), although in both works the BSP Tree was used
for other purposes. The tree will store the positions and
fitness of the real-evaluated solutions (in the variable
space). The pseudo-code for the insertion in the BSP
Tree is shown in Algorithm 1. The root S of the BSP
Tree represents the whole search space and each node
in a BSP Tree represents a hyperplane that divides the
space into two halves. Therefore, the terminal nodes are
the stored solutions, and each non-terminal node or root
node represents a subspace (Spi) of the search space.

Algorithm 1 BSP-tree-insertion (s, f(x), T)

Input: Solution x, Fitness f(x), Tree T
Output: Tree T
Node =root node of T
while Node has two child nodes a and b do

if x = a or x = b then
Exit without inserting the element

end if
j = argmaxk∈D |a(k) − b(k)| {D is the dimensionality of the
problem}
if |a(j) − x(j)| ≤ |b(j) − x(j)| then
Node=a

else
Node=b

end if
end while
Insert a virtual child node to Node
Create a real child node that records x and f(x) under the virtual child
node

It is possible to create an LM in each subspace of the
BSP Tree. Therefore, to select the solutions to create the
metamodel, the BSP Tree is traversed until the solution
to be evaluated is found. All solutions belonging to the
solution’s subspace are going to feed the training set of
the metamodel. If the number of solutions is fewer than

expected, then the solutions belonging to the parent node
are taken. This procedure is repeated until a minimum
number of required solutions (k) is reached. The compu-
tational complexity to find the solutions in a BSP Tree
with a certain number of solutions (NBSP) and a problem
of D dimensions is of O(log(NBSP)D). In this approach,
it is necessary to take into account the complexity to store
the solutions in the BSP Tree, which is O(log(NBSP)D).
However, the store procedure is carried out exclusively
when the training dataset is updated.

8.1 Influence of the parameters in the local surrogate
models

To evaluate the performance of the different approaches,
we selected the same test functions used in our previous
experiments. Below, we describe in detail the employed
methodology to compare the metamodels:

1. Create a training dataset with a Latin hypercube of size
100.

2. Train the LMs and the GM with the previously created
training dataset.

3. Create the validation dataset with Latin hypercubes of
size 200.

4. Predict the validation dataset using LM and GM.
5. Compute the mean squared error (MSE).

The metamodels were created using an RBF since it resulted
in the most suitable approach in our previous experiments.
The parameters used in the RBF were the BOS − RP found
in the experiment 6. Moreover, in this case we classified the
size of our problems in low-, medium-, and high-dimension
sizes, having 2, 15, and 30 variables, respectively.

The results from this experiment are shown in Tables 2, 3,
and 4. These tables contain the normalized MSE obtained
by each tested approach on each of the six tested functions.
We normalized the MSE according to the highest and lowest
errors in the entire table4 to have errors between zero and
one since this would facilitate the comparison of results. We
prefer values with error predictions closer to zero.

In order to have a deeper understanding about the behav-
ior of the adopted metamodeling techniques, we studied the
behavior induced by different parameter settings.

8.2 k-nn tuning

We studied the required k closest training examples to a
query point. We selected 10, 25, and 50 values to be given
as input to this approach since by having 100 individuals as

4 This normalization is known as normalized root-mean-square devia-
tion.

123

5660 A. Díaz-Manríquez et al.

Table 2 Adjustment of the required k closest training examples to a query point in low-, medium-, and high-dimension instances according to
normalized root-mean-square deviation

Problem Low-dimension Medium-dimension High-dimension

k = 10 k = 25 k = 50 k = 10 k = 25 k = 50 k = 10 k = 25 k = 50

Rosenbrock 0.121826 0.021356 0.000121 0.000009 0.002316 0.361654 0.000001 0.000522 0.221734

Sphere 0.132118 0.049620 0.001234 0.102314 0.121815 0.273419 0.076130 0.142721 0.299782

Step 0.191102 0.061893 0.000098 0.000010 0.003018 0.412185 0.000001 0.001012 0.499836

Ackley 0.201286 0.027981 0.000920 0.000008 0.003015 0.401243 0.000001 0.001311 0.372318

Rastrigin 0.152369 0.053147 0.001519 0.000009 0.001721 0.432418 0.000002 0.001723 0.539018

Schwefel 0.206192 0.071992 0.002015 0.000007 0.001218 0.231235 0.000002 0.001271 0.424123

Average 0.167482 0.047665 0.000985 0.017060 0.022184 0.352026 0.012690 0.024760 0.392802

Bold values indicate best results obtained for each instance

Table 3 Adjustment of the required number of clusters (k) required by k-means in low-, medium-, and high-dimension instances according to
normalized root-mean-square deviation

Test function Low-dimension Medium-dimension High-dimension

k = 2 k = 4 k = 10 k = 2 k = 4 k = 10 k = 2 k = 4 k = 10

Rosenbrock 0.001973 0.011723 0.113124 0.311023 0.001121 0.000009 0.521243 0.002214 0.000015

Sphere 0.012985 0.041211 0.201633 0.202155 0.172147 0.162410 0.401123 0.266863 0.214201

Step 0.007123 0.025371 0.192317 0.380021 0.001346 0.000015 0.501321 0.001452 0.000003

Ackley 0.003418 0.0321245 0.201622 0.371457 0.002001 0.000019 0.501351 0.002271 0.000009

Rastrigrin 0.003685 0.033123 0.223119 0.337123 0.001612 0.000010 0.494142 0.001539 0.000004

Schwefel 0.005725 0.030162 0.139281 0.304611 0.001001 0.000011 0.361946 0.001122 0.000004

Average 0.005818 0.028952 0.178516 0.317732 0.029871 0.027079 0.463521 0.045910 0.035706

Bold values indicate best results obtained for each instance

Table 4 Adjustment of the k number of minimal solutions to create the LM using a BSP Tree in low-, medium-, and high-dimension instances
according to normalized root-mean-square deviation

Test function Low-dimension Medium-dimension High-dimension

k = 10 k = 25 k = 50 k = 10 k = 25 k = 50 k = 10 k = 25 k = 50

Rosenbrock 0.083425 0.019081 0.001912 0.000001 0.006612 0.308912 0.000000 0.042301 0.409313

Sphere 0.091712 0.007312 0.000601 0.0751245 0.169918 0.247121 0.062217 0.168232 0.219912

Step 0.046163 0.002581 0.000194 0.000000 0.005628 0.355012 0.000000 0.031842 0.381020

Ackley 0.117163 0.016612 0.002131 0.000001 0.008712 0.313243 0.000001 0.042192 0.401450

Rastrigin 0.100118 0.009453 0.000512 0.000001 0.005743 0.313201 0.000000 0.036080 0.449501

Schwefel 0.103617 0.008771 0.000056 0.000001 0.017324 0.379128 0.000001 0.020112 0.277961

Average 0.090366 0.010635 0.000901 0.012521 0.035656 0.319436 0.010370 0.056793 0.356526

Bold values indicate best results obtained for each instance

the population, the selection of these values are intended to
represent small, medium, and big clusters with respect to the
whole population. The obtained results are shown in Table 2.
The first three columns of this table display the behavior for
two variables (low-dimension sizes). These results indicate
that the metamodeling technique behaves better when a high
number of solutions is used (50 out of 100) in low-dimension
instances. Therefore, we suggest using as much informa-
tion as possible when we are working with low-dimension
instances. However, when the size of the instance increases,

themetamodel requires narrowing itswidth, concentrating on
local information, as Table 2 clearly indicates. Accordingly,
we suggest the use of k = 50 in low-dimension instances,
and k = 10 in medium- and high-dimension instances.

8.3 k-means tuning

We studied the required number of clusters (k) of the k-means
algorithm. We selected 2, 4, and 10 to be given as input to
this approach. The idea behind the selection of these values

123

Comparison of metamodeling techniques in evolutionary algorithms 5661

is that by having two clusters (k = 2), in the best case each
cluster will have about 50% of the population, i.e., 50 solu-
tions each. Similarly, when having four and ten clusters we
intended to group about 25 and 10% of the population in
each cluster. Results shown in Table 3 corroborate our pre-
vious findings that the metamodel prefers having as much
information as possible (i.e., k = 2) in low-dimension sizes,
while for medium- and high-dimension instances it is better
to concentrate on specific regions (i.e., k = 10).

8.4 BSP Tree tuning

In the BSP Tree approach, the parameter k refers to the num-
ber of minimal solutions to create the LM; however, this
number does not restrict the whole set of points to train
the metamodel. For example, if the subspace of the solu-
tion to evaluate contains more than k solutions, the LM will
also contain more than k solutions. The adopted values were
k = {10, 25, 50}. Themain idea behind the selection of these
parameters was to be fair with respect to the previous two
approaches. The results shown in Table 4 indicate that for
low-dimension instances, the metamodel prefers to use as
much information as possible (k = 50), while for medium-
and high-dimension instances, it performs better by focusing
on a specific region (k = 10).

8.5 Comparison of results

According to our results, the selected metamodeling appro-
ach (RBF) prefers to have as much information as possi-
ble when solving low-dimension instances. However, for
medium- and high-dimension instances, RBF prefers to have
solutions focused around the region of interest.

Table 5 shows that the GM had the best performance
in low-dimension instances, confirming our previous results
with this, while Tables 6 and 7 assure that the compared
LMs approaches outperformed the GM in medium- and
high-dimension instances. These results provide evidence

Table 5 Comparison of the normalized root-mean-square deviation
obtained by k-nn, k-means, BSP Tree, and the GM in low-dimension
instances

Test function k-nn k-means BSP GM

Rosenbrock 0.001761 0.049271 0.007110 0.003210

Sphere 0.004920 0.025766 0.002451 0.000000

Step 0.000156 0.008101 0.002732 0.000000

Ackley 0.001408 0.012915 0.002350 0.000000

Rastrigrin 0.003324 0.026400 0.010901 0.000001

Schwefel 0.002716 0.019593 0.003341 0.000001

Average 0.002381 0.023674 0.004814 0.000535

Bold values indicate best results obtained for each instance

Table 6 Coparison of the normalized root-mean-square deviation
obtained by k-nn, k-means, BSP Tree, and the GM in medium dimen-
sional problems

Test function k-nn k-means BSP GM

Rosenbrock 0.000000 0.000000 0.000003 0.344958

Sphere 0.160315 0.231249 0.292345 0.129843

Step 0.000000 0.000001 0.000009 0.365923

Ackley 0.000000 0.000001 0.000004 0.353567

Rastrigrin 0.000000 0.000001 0.000003 0.331678

Schwefel 0.000000 0.000002 0.000012 0.563293

Average 0.026719 0.038542 0.048729 0.348210

Bold values indicate best results obtained for each instance

Table 7 Comparison of the normalized root-mean-square deviation
obtained by k-nn, k-means, BSP Tree, and the GM in high-dimension
problems

Test function k-nn k-means BSP GM

Rosenbrock 0.000000 0.000001 0.000008 0.384567

Sphere 0.227124 0.332456 0.200012 0.112567

Step 0.000000 0.000003 0.000008 0.455183

Ackley 0.000000 0.000001 0.000009 0.425788

Rastrigrin 0.000000 0.000002 0.000003 0.495866

Schwefel 0.000000 0.000001 0.000004 0.325552

Average 0.037854 0.055411 0.033341 0.366587

Bold values indicate best results obtained for each instance

that LMs are a viable strategy for improving the predic-
tion of metamodels. Finally, in medium- and high-dimension
instances the best averaged results were obtained by the BSP
Tree approach followed by the k-nn approach.

9 Conclusions and future work

In order to avoid a biased comparison for bad parameter
tuning, we decided to search for the parameter configura-
tion of each meta-modeling technique that performs best (in
average) in all the adopted test functions. We called this the
“best overall settings” (BOS). Also, we wanted to discover
the parameters that induced the best performance on each
meta-modeling technique for each test function. We called
this the “best local settings” (BLS). A comparison of the
results shows us that the advantage of havingBLS isminimal.
Therefore, we suggest tuning the metamodeling parameters
according to our BOS.

We also found that RBF and SVR are the most efficient
approaches among the reviewed ones. However, when we
search for the most accurate approach, we select KRG as the
best approach to be used in low-dimension problems (fol-
lowed by SVR). On the other hand, RBF is the most accurate

123

5662 A. Díaz-Manríquez et al.

approach in high-dimension problems (followed by SVR).
However, if we consider all instance sizes, we would select
RBF as the most robust and scalable approach.

Moreover, since we wanted to evaluate how convenient
metamodeling techniques are when incorporated into EAs,
we propose measuring their suitability. We proposed two
approaches to evaluate such a criterion; our first approach
measured the distance from best solution obtained by the
metamodeling technique-EA to the optimal solution (in the
objective function space), while our second approach mea-
sures the percentage of solutions in the metamodel that
preserves the hierarchy according to the original objective
function. Our results indicate that RBFwas the best approach
in both studies.

After realizing that our RP performance measure was bet-
ter aligned with the manner with which EAs select solutions,
we decided to perform a parameters’ tuning based on such
a performance measure. The new tuning phase produced a
different parameter selection on two out of four metamodels.
The new parameter sets induced the better performance on
their approaches. This new experiment endorses our previ-
ous findings that RBF is the metamodeling technique that
induced the best performance of our EA. This experiment
also found that although the accuracy of the metamodel does
not reflect properly the behavior of the adopted metamodels
when we they are incorporated within an EA, the RP perfor-
mance measure does. Therefore, we suggest the use of this
performance measure for future comparisons among meta-
modeling techniques.

In addition, we also evaluated three different approaches
to select solutions to create LMs. The first two approaches
are based on clustering algorithms. The last approach uses a
data structure, calledBSPTree, to split the entire search space
according to the repository of solutions. The compared algo-
rithms were tuned with respect to a single parameter. Results
showed that the RBF method prefers to have as much infor-
mation as possible in low-dimension problems. However, the
method prefers to have more clustered information when the
problem size increases.

A comparison of results indicates that for medium- and
high-dimension instances the best approach to be selected
is either BSP or the k-nn (the average performance of BSP
was better than k-nn, but the latter performed better in more
instances).

Part of our future work will include the incorporation of
more metamodeling techniques into the comparative study.
Additionally, some meta-modeling techniques train a meta-
model that minimizes the MSE in a validation dataset. The
maximization of RP may produce good results. Therefore,
we would like to use the RP indicator to train metamod-
els. Finally, we would like to evaluate the LM with other
meta-modeling techniques, because there may be interesting
results.

Acknowledgements G. Toscano gratefully acknowledges support
from CONACyT through Project No. 105060. C. A. Coello Coello
gratefully acknowledges support from CONACyT Project No. 221551.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

Bäck T (1996) Evolutionary algorithms in theory and practice. Oxford
University Press, Oxford

Barton R (1992) Metamodels for simulation input-output relations.
In: Proceedings of the 24th conference on winter simulation
(WSC’92). ACM, New York, pp 289–299

CarpenterW,Barthelemy J (1993)A comparison of polynomial approx-
imations and artificial neural nets as response surfaces. Struct
Optim 5(3):166–174

Chow C, Yuen S (2011) An evolutionary algorithm that makes deci-
sion based on the entire previous search history. IEEE Trans Evol
Comput 15(6):741–769

De Jong K (1975) An analysis of the behavior of a class of genetic
adaptive systems. Ph.D. thesis, University ofMichigan, AnnArbor

Díaz-Manríquez A, Toscano-Pulido G, Gomez-Flores W (2011) On
the selection of surrogate models in evolutionary optimization
algorithms. In: IEEE congress on evolutionary computation, pp
2155–2162

Díaz-Manríquez A, Toscano-Pulido G, Coello Coello CA, Landa-
Becerra R (2013) A ranking method based on the r2 indicator
for many-objective optimization. In: 2013 IEEE congress on
evolutionary computation (CEC’13). IEEE Press, Cancún, pp
1523–1530. ISBN 978-1-4799-0454-9

Draper N, Smith H (1981) Applied regression analysis. In: Wiley series
in probability and mathematical statistics, 2nd edn. Wiley, New
York

ForgyEW(1965)Cluster analysis ofmultivariate data: efficiency versus
interpretability of classifications. Biometrics 21:768–769

Gaspar-Cunha A, Vieira A (2005) A multi-objective evolutionary algo-
rithm using neural networks to approximate fitness evaluations. Int
J Comput Syst Signal 6:18–36

Georgopoulou C, Giannakoglou K (2009) Multiobjective metamodel-
assisted memetic algorithms. In: Multi-objective memetic algo-
rithms, studies in computational intelligence, vol 171. Springer,
Berlin, pp 153–181

Giunta A, Watson L (1998) A comparison of approximation modeling
techniques: polynomial versus interpolating models. Tech. rep.,
NASA Langley Technical Report Server

Hansen N, Ostermeier A (2001) Completely derandomized self-
adaptation in evolution strategies. Evol Comput 9(2):159–195

Hardy R (1971) Multiquadric equations of topography and other irreg-
ular surfaces. J Geophys Res 76:1905–1915

Isaacs A, Ray T, Smith W (2007) An evolutionary algorithm with spa-
tially distributed surrogates for multiobjective optimization. In:
Randall M, Abbass H, Wiles J (eds) Progress in artificial life, vol
4828., Lecture notes in computer scienceSpringer, Berlin, pp 257–
268

Jin R, Chen W, Simpson T (2001) Comparative studies of meta-
modelling techniques under multiple modelling criteria. Struct
Multidiscip Optim 23(1):1–13

Matheron G (1963) Principles of geostatistics. Econ Geol 58(8):1246–
1266

McKay M, Beckman R, Conover W (1979) A comparison of three
methods for selecting values of input variables in the analysis of
output from a computer code. Technometrics 21(2):239–245

123

Comparison of metamodeling techniques in evolutionary algorithms 5663

Myers R, Anderson-Cook C (2009) Response surface methodology:
process and product optimization using designed experiments, vol
705. Wiley, New York

Nain P, Deb K (2002) A computationally effective multi-objective
search and optimization technique using coarse-to-fine grain mod-
eling. In: 2002 PPSN workshop on evolutionary multiobjective
optimization comprehensive survey of fitness approximation in
evolutionary computation

Pilat M, Neruda R (2013) Aggregate meta-models for evolutionary
multiobjective andmany-objective optimization. Neurocomputing
116:392–402

Press W, Teukolsky SA, Vetterling W, Flannery B (2007) Numerical
recipes 3rd edition: the art of scientific computing, 3rd edn. Cam-
bridge University Press, New York

Rasheed K, Ni X, Vattam S (2002) Comparison of methods for devel-
oping dynamic reduced models for design optimization. In: IEEE
congress on evolutionary computation, pp 390–395

Rastrigin L (1974) Extremal control systems. In: Theoretical founda-
tions of engineering cybernetics series. Nauka, Moscow

Sacks J, Welch W, Mitchell T, Wynn H (1989) Design and analysis of
computer experiments. Stat Sci 4(4):409–423

Schumaker L (2007) Spline functions: basic theory. Cambridge Uni-
versity Press, Cambridge

Schwefel H (1981) Numerical optimization of computer models.Wiley,
New York

Shyy W, Papila N, Vaidyanathan R, Tucker K (2001) Global design
optimization for aerodynamics and rocket propulsion components.
Prog Aerosp Sci 37(1):59–118

Silverman B, Jones M (1989) An important contribution to nonpara-
metric discriminant analysis and density estimation: commentary
on fix and hodges. In: International statistical review/revue inter-
nationale de statistique, pp 233–238

SimpsonT,MaueryT,Korte J,MistreeF (1998)Comparisonof response
surface and Kriging models for multidiscilinary design optimiza-
tion

Storn R, Price K (1997) Differential evolution? A simple and efficient
heuristic for global optimization over continuous spaces. J Glob
Optim 11(4):341–359

Vapnik V (1998) Statistical learning theory. Wiley-Interscience, New
York

Voutchkov I, Keane A (2006) Multiobjective optimization using surro-
gates. In: International conference on adaptive computing in design
andmanufacture. TheM.C.EscherCompany,Holland, pp 167–175

Willmes L, Baeck T, Jin Y, Sendhoff B (2003) Comparing neural
networks and Kriging for fitness approximation in evolutionary
optimization. In: IEEE congress on evolutionary computation, pp
663–670

Yuen S, Chow C (2009) A genetic algorithm that adaptively mutates
and never revisits. IEEE Trans Evol Comput 13(2):454–472

123

	Comparison of metamodeling techniques in evolutionary algorithms
	Abstract
	1 Introduction
	2 Background
	2.1 Polynomial approximation models
	2.2 Kriging-DACE
	2.3 Radial basis function neural network
	2.4 Support vector regression

	3 Experimental settings
	4 Experiment 1: fine-tuning, accuracy, robustness, and scalability
	4.1 Analysis of results

	5 Experiment 2: suitability
	5.1 Analysis of results

	6 Experiment 3: suitability with RP-based fine-tuning
	6.1 Analysis of results

	7 Experiment 4: efficiency
	8 Experiment 5: global and local metamodels (GM vs. LMs)
	8.1 Influence of the parameters in the local surrogate models
	8.2 k-nn tuning
	8.3 k-means tuning
	8.4 BSP Tree tuning
	8.5 Comparison of results

	9 Conclusions and future work
	Acknowledgements
	References

