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Abstract Grammatical evolution (GE) is a combination of
genetic algorithm and context-free grammar, evolving pro-
grams for given problems by breeding candidate programs in
the context of a grammar using genetic operations. As far as
the representation is concerned, classical GE as well as most
of its existing variants lacks awareness of both syntax and
semantics, therefore having no potential for parallelism of
various evaluation methods. To this end, we have proposed
a novel approach called model-based grammatical evolution
(MGE) in terms of grammar model (a finite state transition
system) previously. It is proved, in the present paper, through
theoretical analysis and experiments that semantic embedded
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syntax taking the form of regex (regular expression) over an
alphabet of simple cycles and paths provides with potential
for parallel evaluation of fitness, thereby making it possible
for MGE to have a better performance in coping with more
complex problems than most existing GEs.
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1 Introduction

Solving complex problems by genetic programming (GP)
was formally proposed and popularized by Koza (1992).
This kind of work borrows ideas from genetic algorithm
(GA), sharing the same algorithmic framework with GA,
but provides more convenient means (Cano et al. 2015;
Fernandez-Blanco et al. 2013; Fu et al. 2015; Kampouridis
and Otero 2015; Krawiec 2014; Harman et al. 2012; Langdon
and Harman 2015; O’Neill and Ryan 2001; Oltean et al. 2009;
Qian et al. 2015) for dealing with nonlinear structures, and
coping with a wide range of real-world optimization issues
in circuit design, financial modeling, image processing, soft-
ware engineering, etc.

Despite having achieved so many successes in GP appli-
cations, there still remain some important problems to be
solved. In GP, solutions represented as abstract syntax trees
(Aho et al. 2007; Hopcroft et al. 2008) are often evolved by
randomly breeding candidate programs using genetic oper-
ators like crossover, mutation, and so on, thus giving rise to
difficulties in delineating type, domain knowledge, restric-
tions on the legal programs, and closure requirement (when
employing GP to generate computer programs, the first prin-
ciple we should obey for valid crossovers or mutations is
that we should guarantee type consistency). This principle is
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referred to as closure (Koza 1992) in GP. To this end, various
linear representation-based GP variants including particu-
larly grammatical evolution (GE) (O’Neill and Ryan 2001)
which forms our major concern in the present paper are devel-
oped. Owing to the use of a context-free grammar, GE as well
as other grammar-related GP approaches can be best suited
to type descriptions and recursive program generations.

Grammatical evolution is an automatic programming sys-
tem, originally introduced by Ryan et al. (1998), and further
described in later work by the same group. It differs from
classical GP in ways of representation and decoding method.
In GE (O’Neill and Ryan 2001), chromosomes usually rep-
resented by strings of codons (integers in [0,255], usually
represented as 8 bits) are translated into sentential forms in
light of the context-free grammar using a special genotype-
to-phenotype mapping. Since GE outperforms GP in many
aspects, such as easy for delineation of both type and domain
knowledge, it has been widely taken up both by researchers
and practitioners.

Works centered on improving GE, and debates on the
effectiveness of the technique appear in a great many litera-
tures (Alfonseca and Gil 2013; Burbidge and Wilson 2014;
Dempsey et al. 2006; He et al. 2011b, 2015; Risco-Martin
et al. 2014; Wilson and Kaur 2009; Mckay et al. 2010).
For instance, O’Neill et al. (2004) extended classical GE by
regarding the codon not as only one integer in [0, 255] for
rule selection, but as a vector of pairs of integers in [0, 255]
for designating both non-terminal and rule selection. So this
genotype-to-phenotype mapping mechanism can take a ter-
minal or non-terminal at any stage, thus allow greater control
over the depth of programs. O’Neill and Ryan (2004), made
the first attempt to construct a coevolutionary system of gram-
mar and corresponding solutions, opening up an exciting
research direction towards the development of more com-
plex programs.

Grammatical evolution approaches have received a great
deal of interest in recent years, but few of them deal with
genotypic unreadability, deep-structured analyzing of rep-
resentations; and few of them are willing to discard the

seemingly omnipotent genotype-to-phenotype mapping used
in O’Neill and Ryan (2001), thus many of them lack the
potential for parallelism of fitness evaluations. Fortunately,
model-based approach proposed in our previous work (He
et al. 2008, 2011a,b, 2015) can help with these problems.
In this paper, we will make a deep investigation into its nor-
malized structural representation and parallelism that may be
useful in the design of efficient GE system in asynchronous
parallel computing environments. What we can conclude is
chromosomes of mode-based grammatical evolution (MGE)
(He et al. 2011b, 2015) can be represented by regex (regular
expression) for languages over an alphabet of simple paths
and cycles. More importantly, MGE still has the potential for
parallelism of various evaluation methods.

2 Related works
2.1 Grammatical evolution

Grammatical evolution is an automatic programming tech-
nique pioneered by Ryan et al. (1998). It represents programs
by sequences of codons (each codon consists of 8 bits), and
decodes them into sentential forms of a context-free gram-
mar using the following rule. Given a grammar as shown in
even-5 parity problem of Sect. 4, an example of GE decoding
process is given in Table 1.

Rule = (integer codon value) mod (number of derivation
alternatives for current non-terminal X)

There is a vast bibliography focusing on GE related works
up to date. Changes with either its codon or genotype-to-
phenotype mapping will lead to different GE variants. For
instance, representing codons of classical GE by integers
or production rules, the integer representation GE (Hugos-
son et al. 2010) and MGE (He et al. 2011b, 2015) will be
obtained. Since the important rule almost all existing GE
obeyed in choosing production for the leftmost derivation is
the use of natural transaction (i.e., natural binary encoding)
and modulo translation (Wilson and Kaur, 2009), our discus-
sion mainly focuses on classical GE. In view of the fact that
most existing GEs have deficiencies in semantic analysis and

Table 1 Decoding of individual of even-5 parity problem (see Sect. 4 for the grammar)

Expression Con Num R = Con mod Num Rule

(prog) 8 1 O(the first rule) (prog) (expr)

(expr) 12 4 O(the first rule) (expr) == (expr)(op){expr)
(expr){op)(expr) 15 4 3(the 4th rule) (expr) := (var)
(var)(op){expr) 16 5 1(the second rule) (var) ==d1

dl (op){expr) 12 3 O(the first rule) (op) :=or

dl or (expr) 19 4 3(the 4th rule) (expr) ::= (var)

dl1 or (var) 18 5 3(the 4th rule) (var) :=d3

dl or d3
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genotypic readability and lack of awareness of both syntax
and semantics, we carry out researches on the characteristics
of MGE.

2.2 MGE: model-based grammatical evolution

Model-based grammatical evolution (MGE) (He et al. 2011b,
2015) is arelatively new GE variant developed over its gram-
mar model. As we know, any codon of a GE chromosome has
no definite semantics, therefore is difficult to figure out its
roles. To this end, we have investigated relationships among
production rules, delineating them with finite state transition
system. This system is the so-called grammar model. For the
readers convenience, we recall in this section some notions
and properties of (He et al. 2011b, 2015).

Definition 1 (Context-free Grammar; Aho et al. 2007) A
context-free grammar G = (Vy, Vr, B, P) consists of four
components: (a) a set Vy of non-terminal symbols or syn-
tactical variables; (b) a set V7 of terminal symbols; (c) a
designation of one of the non-terminals in Vy as the start
symbol B; (d) a set P of productions applied for generation
of programs. Each production is of the form A — «. When
A has many alternatives, we shall treat them differently in
the following discussion. Note that “context-free grammar”
is also shortened to “grammar” in the later sections.

Definition 2 (Derivations) Let G = (Vy, Vr, B, P) be a
grammar with A — y € P,and a¢AB € (Vy U Vr)* . A
direct derivation of ayB from awAB , denoted 0AB =
ayp, is a substitution of y for some A in ¢ A . Particu-
larly, we call tAB = ayp the leftmost derivation, denoted
aAB % ayp, if a € V}. By the way, o1 = a =
m
- = oy and ) = ap = -+ = o, are abbreviated to
Im m Im

ES * . . . .
o] = «, and oy l:> oy, respectively. Derivations with no
m

production involved are referred to as zero derivations.

Definition 3 (51’; )Let G=(V, V7, B, P) be a grammar with
A—yeP,andd € (Vy U Vp)* 83; is a substitution of y
for the leftmost occurrence of A in §. Particularly, we define
SZ = ¢ for A ¢ &, and regard BZ = § as a zero derivation.

Definition 4 (Sentential form) Given a grammar G =
(Vy, Vr, B, P) and a string @ € (Vy U Vp)*, « is a sen-
tential form of G, if B = (a is also called a sentence if
B=ac V;f). o is an LM sentential form, provided all

direct derivations involved in B == « are leftmost ones.
Definition 5 (Justification) Let G = (Vy, V7, B, P) be
a grammar, and o, 8 € (Vy U Vr)*. A sequence s =
p1P2 - .. pyn of productions justifies the derivations o = B,
if 5,0, 8, can establish the series of derivations « % o] é
m m

Pn—1 4 K
==, ] = Bora = B.
Im Im Im

Definition 6 ( ¢-equivalence) Let G = (Vy, V7, B, P)bea
grammar, and & € (Vy U Vp)*. Two justifications jj, jp are
e-equivalent, if they are exactly the same except for usage of
€(empty word).

Definition 7 (Leftmost grammar model) Let G = (V, V7,
B, P) be a grammar. A finite state transition graph Gph =<
V, E > withedges in E labeled either by productions (or pro-
duction names) or empty (or €) words is a leftmost grammar
model of G,denoted LM GM (G),iffora € (VyUVp)*, ais
a leftmost sentential form of G < there exists a path starting
atthe initial state in L M G M (G) such that the sequence s con-

catenated from edge labels along it justifies «, i.e., B l=S> a.
m

Definition 8 (Language) Let G = (Vy, Vr, B, P) be a
grammar. The language commonly used in compiler con-
structions is LM (G)={a € Vj | a is an LM sentential form
of G}.

Theorem 1 (Existence theorem) Given a grammar G =
(Vn, Vr, B, P), there exists a leftmost grammar model
LMGM(G) constructed by Algorithm 1.

Algorithm 1 (Construction of LM GM (G))

Input: a grammar G = (Vy, V7, B, P).

Output: LM GM (G). Here Sp, € stand for the initial ver-
tex and zero derivation, respectively.

1) Draw two vertices Sy and S%, for each production N —
o € P. When N has many alternatives, we should treat them
separately as different production.

2) Draw an ¢ arrow from V to itself for each vertex V of
step 1;

3) Draw an arrow from Sy to S} for vertices of step 1 if
N — « € P;naming the arrow either with the production
or the production name.

4) Calculate Follow(X) for all X in Vy as follows:

A.Y € Follow(X), if there exists a production A —
- XaY---e€ Pwitha € Vi,and X,Y € Vy ;

B. Follow(A) C Follow(X),if A - ---Xa € P.
Where A, X € Vy, a € V7.

5) Calculate LM C(S§,) for all states of the form S%; as
follows:

A LMC(S3,) = {A},if a ¢ V] and A is the leftmost
non-terminal symbol of « ;
B. LMC(S§;) = Follow(M), ifa € V}.

6) Draw an & arrow from Sj, to Sy, for every state Sy
with subscript N € LM C(S3,).

The transition diagram obtained above reflects the left-
most derivation relations. We also call it the leftmost
grammar model, denoted LM GM (G). Since the number
of its nodes has linear relationship with that of produc-
tions, the node complexity is O(|P|). Based on this diagram,
Model based grammatical evolution (MGE) which gen-
erates computer programs evolutionarily from genotypes
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comprising production names can be developed. However,
for simplicity we do not intended to show MGE algorithm
and related genetic operations here. In fact, MGE and clas-
sical GE share the same algorithmic framework except that
they work on different representations. So the reader can find
about them either in classical works (Koza 1992; O’Neill and
Ryan 2001) or in He et al. (2011b, 2015). In the following
section, we will make deep investigation into some features
most existing GEs do not cover, such as easiness in structured
genotype analysis, modular representation, functional reuse,
effective implementation, etc.

3 Deep-structured analysis of MGE

Previously we have introduced a novel GE framework (He
et al. 2011b, 2015), discussed a wide range of related issues
which include building block-based genotypic representa-
tion, evolutionary mechanism, semantic reuse, automatic
detecting of reusable sub-expressions, and so on. In this sec-
tion, we will make a systematic research on its normalized
structural representation and parallelism that may be useful
in the design of efficient GE system in asynchronous parallel
computing environments.

3.1 Structured representation

Generally speaking, standard genetic programming has no
built-in support for establishing a modular solution of a prob-
lem (Dostal 2013). As far as most of the existing GEs are
concerned, even if there are the same gene segments, they
do not mean the same semantics. However, we can expect
more semantic results in the case of MGE. As proved later,
not only can we represent chromosomes of MGE by mod-
ules like cycles and simple paths, but also we can evaluate
them on modules of concern in parallel. Now let us define
terminologies in light of grammar model as follows.

Definition 9 (Path) Let G = (Vy, Vr, B, P), as defined in
Sect. 2.2, be a context-free grammar, LMGM (G) = (V, E)
the leftmost grammar model of G, a path p with starting
and ending vertices x, y in LM GM(G), denoted , py, is
a finite sequence of edges connecting a series of vertices.
Particularly, if all vertices of the path are distinct, we call it
a simple path. For simplicity x py is often abbreviated as p.

Definition 10 (Cycle) Let G = (Vn,Vr,B,P) be a
context-free grammar,LMGM(G) = (V, E) its leftmost
grammar model, a path ,p, in LMGM(G) is a cycle, if
both of the starting and ending vertices x, y for the path are
identical. Particularly, if a cycle consists of a simple path, we
call it a simple cycle, denoted . p, where x is the starting and
ending vertex.

@ Springer

Definition 11 (Length) The length of a path p, denoted | p|,
in a grammar model is the number of edges on it.

Definition 12 (Joinable paths) Two paths , py,, gy, in some
grammar model are joinable, denoted , pg,, if the ending and
staring vertices of p and ¢ are the same.

Definition 13 (Path covering) Let , py,, g, be two paths in
a context-free grammar model,  py covers , gy, if (a) x = u;
(b) there exists a path ,z, such that p is the join of ¢ and z,
ie., p =qz.

Similarly, let us formulate paths in grammar model in reg-
ular expressions.

Definition 14 (Regular expression) Given a finite alphabet
%, the regular expressions (regexes for short) as well as the
corresponding regular sets are recursively defined as follows.

(a) Every a € X, @, € are regexes, their corresponding reg-
ular sets, denoted L(a), L(®) and L(e¢) are {a}, ® and
{e}, respectively.

(b) Let x, y be regexes, L(x) and L(y) their corresponding
regular sets. Then xy, (x|y), x* (or denoted (x)*) are
regexes, and L(x)L(y), L(x) U L(y), and (L(x))* are
their corresponding regular sets.

Definition 15 (Valid regex) A regex E over a finite alphabet
% of paths in some grammar model is a valid regex with
respect to some vertices x and y, denoted , E, (, E for short
when x = y), if it is recursively defined as follows:

(a) Either ® or an empty word (an € arrow going from vertex
X to y);

(b) Every path in ¥ (with starting and ending vertices x and
y)s

(c) If yM,,, Ny are valid regexes, then so is the concatena-
tion M Ny, if u = v; the union (M|N)y, if v = x and
u = y; and the star operation ,(M*),(, M* for short), if
X =U.

Definition 16 (Path covering regex) A path regex E is a path
covering regex of some path p in a grammar model, if there
exists at least one element in L(E) which covers p.

Lemmal Let G = (Vy, V7, B, P) be a context-free gram-
mar, LM GM(G) be its leftmost grammar model. Then, x p,
is a path in LMGM(G) & there exists a path covering regex
over an alphabet of simple cycles and paths covering it.

Proof Assuming that C = {c|c is a simple cycle attain-
able from the vertex x in LM GM (G)}, cycles_in(x)= {v|v
is a vertex in a simple cycle attainable from the vertex
x in LMGM(G)}, sink(LMGM(G))= {v|v is a vertex
with zero outdegree in LM GM (G)}, and L is the set of
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typedef struct {
int NumVertices;
int NumEdges;

int vertices[n]; //the number of vertices, counting from "1".

int arcs[n][n]; //adjacent matrix

} TypeGraph;

int visited[n];

/Ivertex x (<=n) is visited <=> visited [x]= 1

int VerVisited[n], NumVisited=0; //number of vertices currently visited

int VerCount;

//number of vertices of a cycle

cycle detecting(TypeGraph G, int v){

mark v as a visited vertex by executing visited[v] = 1;
record currently visited vertex v by executing VerVisited[ NumVisited++ ] =v;
for (int i=1; i<=G.NumVertices; i++){
if ((G.arcs[v][i] = 1) and (visited[i] =0)), then invoke DFS(G, i);
else if ((G.arcs[v][i] = 1) and (visited[i] = 1)) {
store the number of visited vertices NumVisited — 1 up to now to VerCount;
count vertices of a cycle by executing while (VerVisited[VerCount] <> i) VerCount--;
output non-trivial simple cycle by executing the following if-statement
if (VerCount!= NumVisited-1) {
for (int g=VerCount; q<NumVisited; g++) cout<<VerVisited[q];
cout<<i<<endl ; // VerVisited[VerCount], ..., i are vertex of a cycle
} //// acycle is a trivial one, if it includes only one empty edge

}
}

mark v as a unvisited vertex so that it can be used to construct a new cycle by executing :

visited[v] = 0; NumVisited --;
}

Fig. 1 Simple cycle detecting algorithm

all simple paths from vertex x to every w incycles_in(x)U
sink(LMGM (G)) ; from w(e cycles_in(x)) to h (€
sink(G) ); and from w ( € cycles_in(x)) to h
(€ cycles_in(x) ) in LM GM (G). The proof goes by induc-
tion on the length of paths.

(i) Induction base: for |, py|= 0, the path covering regex is
®. For |, py|=1, every simple cycle or simple path which
starts at the vertex x and contains the only edge of p is
desirable.

(ii) Induction step: let the path ,p, = (ca;)(;8y), and
|xaz| = n, |;By| = 1. By induction hypothesis, there
exists a path covering regex, say y, over (C U L) cover-
ing ;. Hence, , py as apathin LM GM (G) is covered
either by y or ¥4, where § is in {e|e is a simple cycle or
path with starting vertex z covering §}. This completes
the proof. O

Theorem 2 (Structured path-regex) Let G = (Vy, V7, B,
P) be a context-free grammar, LM GM (G) be its leftmost
grammar model .Then, p as a sequence of leftmost deriva-
tions of G is a path starting at vertex Sp in LMGM (G) <
there exists a path covering regex over an alphabet of simple
cycles and paths covering it.

The proof follows from Lemma 1. It tells us every
sequence of derivations of a sentential form can be struc-

tured represented by simple cycles and paths. To this end,
a major task is to detect simple cycles automatically. The
algorithm is given in Fig.1.

Algorithm 2 (Simple cycle detecting) Let G = (Vy, V7,
B, P) be acontext-free grammar, L M G M (G) be its leftmost
grammar model. Solving under the grammar model all the
simple cycles by calling circle_detecting(G, 1) as shown
in Fig.1.

3.2 Potential for parallelism of fitness evaluations

So far, we have established that individuals of MGE can be
structured represented with modules like simple paths and
cycles. What we should do next is to reveal its potential for
parallelism of various evaluation methods. To find out both
sub-expressions and structured individual decoding methods,
let us first introduce several basic concepts.

Definition 17 (List) List is a data structure with the follow-
ing properties.

(a) []is an empty list;

(b) :: is a list operator with ay :: [a2,...,a,] = [ay, ...,
a,], which means a insertion of a; into some list
laa, ..., a,];
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(c) @ is another list operator with [ay, ..., a,]@[by, - - -,
byl =lai,...,ay, by, ..., by], which means a combi-
nation of two lists [ay, ..., ay] and [by, ..., by].

Algorithm 3 Let G = (Vy, Vr, B, P) be a context-free
grammar, LM G M (G) be its leftmost grammar model, and
s = p1p2--- pp as a sequence of productions be a path in
LMGM (G). Then, the decoding method Der(s) of MGE
essentially works as follows:

(a) Der(s) = «a, if s is a production M — «;

(b) Der(s) =a,if 1 <k <n, Der(p1p2---pk—1) =« €
vVr)*;

(¢) Der(s) = apy, if Der(pipy---pk-1) = aMy €
(VwUVp* e e (Vp)*,and prisM — B.

Definition 18 (Fledged/unfledged phrase) Given G = (Vy,
Vr, B, P), LMGM (G) as above, a string « is a phrase, if

there exists some non-terminal M with M l=*> «. Particu-
m

larly, « is a fledged phrase, if « € (Vr)*; otherwise, « is a
unfledged phrase.

Definition 19 (Normalized phrase representation) Given
G = (Vn, V7, B, P) as above, a list of phrases [e], e2, ...,
em]is anormalized phrase representationof o = p1p> - - - py,
a sequence of leftmost derivations of G, if o is a sym-
bolic combination of Der~l(ey), ..., Der~ep)
, ie, « = Der—Y(e)Der'(es)... Der—1(e,), where
Der~!(e;) with Der(Der~'(e;)) = e; is the sequence of
productions (represented as a substring of ) applied to gram-
matically derive ¢; in G.

Theorem 3 (Existence of normalized representation) Let
G = (Vn, V7, B, P) beacontext-free grammar, LM GM (G)
be the corresponding leftmost grammar model. Then there
exists uniquely a normalized phrase representation R =
le1, ex,...,em]lfora = pipr--- pr, apathin LMGM(G)
which represents a sequence of leftmost derivations, with one
of the following properties.

(a) R is a list of fledged phrases;

(b) R is a list of both fledged and unfledged phrases, then
em, in terms of leftmost derivations in G, is the only
unfledged phrase in R.

Proof Inducting on the length of &« = p1p> - - - pi, it follows
the existence. Now, let us deal with the uniqueness.

Let Ry = [e1,e2,...,ep—1,€p, -+ ,em], Ro = [e1, e,
.. €ep_1,1p, ..., Iy], be two different normalized phrase
representations of o with e, # t,(1 < p < min(m, n)).
Then Der‘l(e,,) * Der‘l(tp). Since the first production

@ Springer

used for deriving e, and 7, locate at the same place in «,
it follows either Der_l(ep) - Der_l(tp) or Der‘l(ep) D
Der™! (tp) . Without loss of generality, assuming Der™! (ep)
- Der‘l(t,,), by the definition of Algorithm 3, we have
Der(Der‘l(ep)) = Der(Der‘l(tp)) if e, is a fledged
phrase. This is in contradiction with e, # t,,. Otherwise, we
havea = Der‘l(el)Der_l(ez) s Der‘l(ep_l)Der_l(tp)
D a, if e}, is a unfledged phrase (in this case, e, should be
the last element of R1). We meet a contradiction again. This
completes the proof.

Now, it is time to deal with the calculation of normalized
phrase representations.

Algorithm 4 (Computing of normalized representation)

Given G = (Vy,Vr,B,P), LMGM(G) as above,
the normalized phrase representation for a path ¢ =
p1p2 - - - pk 1s recursively solved by the following function
Norm_rep(a).

A. Norm_rep(a) =[] iflel =0

B. Norm_rep(a) = [Der(a)]@Norm_rep(copy(«,

|Der=!(Der(@))| + 1, ) if lef =1

Where || stands for the number of productions in «,
copy(a, |Der_1(Der(oz))| + 1, |a]) is a function solving
the subsequence B of « such that « is the combination of
Der~—Y(Der(«)) and B,ie.,a = Der~! (Der(a))B. For the
details of Der~!(e), one can refer to definition 19.

Clearly, not only can MGE be easily developed on
building blocks like simple cycles and paths, but also its
genotypes provide a potential for parallelism of various eval-
uation methods. We will demonstrate these advantages in
Sect. 4.

4 Experiments

Previously, we have demonstrated the efficiency of MGE
(He et al. 2011b, 2015) through using regression prob-
lems. In this section, we will certify the result with even-
3, 4, and 5 parity problems. By even-k parity problem
(Koza 1992), we mean a Boolean even-parity function of
k Boolean arguments which returns T (True) if an even
number of its arguments are T; and returns F (False), oth-
erwise. The grammar used in the even-5 parity problem
is as follows. The experiments show us again that MGE
which is developed on the basis of building blocks such
as simple paths and cycles has advantage over GE in per-
formance improvements. As for the explanation, one can
refer to our previous work (He et al. 2015) for the details.
The major concern here will focus on the use of results
of Sects. 2.2 and 3, and introduce the problem-solving
process.
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Fig. 2 The LMGM transition diagram for even-5 parity problem. Note that arrows without names are € arrows. S o> is the start state. Besides,
€ arrows over all states are omitted here

The method solving even-parity problems is divided into

6 steps.

@
@)

3
C))

®)

(prog)
{expr)

(PreOp)
(var)

= {expr)
= (expr)(op)(expr)
({expr){op)(expr))
(PreOp)({var))
(var)
= not
==d0
| dl
| d2
| d3
| d4
=or
| and
| nand

(la)
(2a)
(2b)
(2¢)
(2d)
(3a)
(4a)
(4b)
(4c)
(4d)
(4e)
(5a)
(5b)
(5¢)

(a) Model construction: constructing by Theorem 1 the left-
most grammar model of the grammar as shown in Fig. 2.

(b) Calculation of simple cycles: running Algorithm 2 on
Fig. 2, we get three kinds of non-trivial cycles, denoted
by e, v, and p. Here e, v, p are named after the first
English letters of [(] < expr >< op >< expr > [)],
< var > and < PreOp > (< var >), respectively.
Meanwhile, we identify nodes of Fig. 2 as Vi(0 < i <
13), and represent these cycles as follows:

e:V3VI2V3;
v: V3V4V5VeVTIVEVIVIOV3;

p:V3VI11V7V8VIV10V3.

The adjacent matrix delineated by Fig. 2 is:

@ Springer



5420

P. He et al.

(c) Construction of structured path-regex: from Theorem
2 and results of steps a and b, it follows every chro-
mosome can be represented by a structured path-regex,
i.e., (la€e)(e|v|p)*, where lae is the only simple path in
LMGM(G) (see Fig. 2).

(d) System implementation: developing building block
based MGE in terms of the structured path-regex
(lae)(elv|p)*. However, to ensure all sentential forms
generated by MGE can be successfully transformed into
sentences (or programs), some default mapping prin-
ciple, called pre-defined complete mapping function,
should be employed. The involved pre-defined complete
mapping function I : Vy — V7 used here is I (X):

do Xis <expr >
dl Xis <var >
I1(X)= 1 or Xis <op >
not Xis < PreOp >
do Xis < prog >

(e) Parameter settings: The major parameters employed are
as follows. The parameter Runs(= 100) defines the
number of runs that will be conducted for each exper-
iment on a particular problem. Fitness evaluation: the
set of fitness cases for the problems of concern consist
of 2% combinations of the k Boolean arguments. So, the
fitness is the sum, over these fitness cases, of the Ham-
ming distance (error) between the returned values by
MGE chromosome and the correct value of the Boolean
function (Oltean 2004). The other parameters are as
follows:

Generation size: 100
Probability of crossover: 0.9
Crossover model: two-point
Population size: 50

Probability of mutation: 0.15
Mutation mode: block mutation
Selection strategy: tournament
Runs: 100
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Fig. 3 Average fitness of 100 runs of the 3 GEs in even-3 parity prob-
lem

Mean fithess

Generation

Fig. 4 Average fitness of 100 runs of the 3 GEs in even-4 parity prob-
lem

(f) Solving the problem: running all the involved 3 GEs with
the above parameters on the given problems, we get the
results shown in Figs. 3,4, 5,6, 7 and 8.

Figures 3, 4, 5 illustrate the average fitness of 100 runs of
MGE, CGE, IGE in the experiments. Figures 6, 7, § compare
these three methods with respect to time complexity. These
figures, on the one hand, demonstrate that MGE has almost
the same ability (refer to the shape of fitness profiles and
the ultimate approximate solutions) as the other two GEs to
generate the desired result, and the advantage in efficiency
over the others. For an explanation, one can refer to He et al.
(2015).

S Discussion
While commenting on the open issues of GP in O’Neill et al.

(2010), O’Neill et al. have pointed out that the most efficient
forms of GP may combine awareness of both syntax and
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Fig. 7 Time used for 100 individual runs of the 3 GEs in even-4 parity
problem

semantics. Unlike most of existing GEs which decode codons
of individuals in terms of their context, MGE works only on
sequences of productions. Since every production or segment

Minute

0 10 20 30 40 50 60 70 80 90 100
Run

Fig. 8 Time used for 100 individual runs of the 3 GEs in even-5 parity
problem

of chromosomes has definite semantics, we have conducted
modular analysis on phenotypes in He et al. (2015), and
deep-structured representation in the present paper. Undoubt-
edly, these achievements benefit from representation and the
awareness of both syntax and semantics.

Additionally, judging by the obtained results, we have
good reason to benefit more from MGE. As we know, there
exist many GP variants like GEP, MEP, etc., (Ferreira 2001;
Du et al. 2015; Oltean et al. 2009). As far as expressive-
ness is concerned, we can construct them using context-free
grammar. This furnishes a formal framework for unifying
numerous GP variants. Consequently, many new methods
introduced to improve GPs will find their way into MGE.
Reusability has lain at the heart of software development
issues for a long time. As revealed in He et al. (2015) and
discussions above, reusable principle can be syntactically
established on the basis of genotypic analysis technique
of sub-expressions. Meanwhile, semantic embedded syntax
taking the form of regex of simple cycles and paths supports
parallel evaluations, and help to implement GE system effi-
ciently. We will manage to find their new applications in a
wide range of real-world optimization problems (Li et al.
2010, 2014; D’ Apiec et al. 2014; Mokryani et al. 2013; Cas-
tiglione et al. 2015; Esposito et al. 2013; Gu et al. 2015; Ma
etal. 2015; Wen et al. 2015; Xie and Wang 2014; Zheng et al.
2015) in the future.

Although structured analysis shows that chromosomes
can be well expressed by regex, how to synthesize desir-
able expressions from grammar models of MGE is worthy of
deep investigation. To this end, we may ask formal linguistic
theory for the solution.

6 Conclusions

In place of representing genotype of GE by sequences of bits,
model-based GE (MGE) which aims at improving genotypic
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readability, reusability and fitness evaluations was developed
over finite state transition systems as well as derivation paths
in them (He et al. 2011b, 2015). The present paper recalls
the major results, revealing deeply through theoretical studies
and demonstrations why MGE supports structured represen-
tation, and why it has the potential for parallelism of fitness
evaluations. So, MGE has many advantages over classical GE
particularly in visualized analysis of chromosomes, semantic
reuse, and performance improvement. Our future works will
focus on its real-world applications, structure detecting, and
unification with other GP variants.
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