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Abstract In this work, an exponential effective function
(EEF) is developed as fitness function applied in a hybrid-
Genetic Algorithm (hybrid-GA) to propose a genetic-based
effective approach to the glider path-planning of ocean-
sampling mission in variable oceans. The proposed EEF is
such an objective function that is able to be implemented in
optimization algorithm such as Genetic Algorithm (GA) for
evaluation of the fittest path. In consideration of the glider
path-planning problem (GPP), two motivations are driven
by the proposed approach to the glider path-planning in dis-
covery of: (1) a reachable path with the upstream-current
avoidance (UCA) in variable oceans; (2) an efficient path for
the glider ocean-sampling mission. The exponential combi-
nation of the glider motion and current effects as well as
the cruising distance benefits the path in terms of reacha-
bility and efficiency. The reachability is the first motivation
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to discover a reachable path implemented by the scheme
of UCA, while the efficiency is the second motivation to
shorten the cruising distance. Meanwhile, the stabilized path
solution is accomplished by hybrid-GA. In variable oceans,
currents severely impact the path solution and lead the global
optimum to absence. Therefore, alternative is to discover an
optimal path with the minimum upstream-current sub-paths
to approximate the minimal cruising distance in the condi-
tion that the discovered cruising distance should be less than
the glider cruising range. To deeply analyze the path reacha-
bility, two theorems are developed to verify the conditions of
the downstream-current angle (DCA). To evaluate the path-
planning performances, 6 state-of-the-art fitness functions
are studied and used to make a fair comparison with the EEF
in hybrid-GA. First of all, 112 scenarios are created in the
restricted random current variations (RRCV). Secondly, 21
scenarios are created in the near-realKuroshioCurrent of east
Taiwan (KCET) introducing froman ocean predictionmodel.
These scenarios are designed to evaluate fairly the EEF in
hybrid-GA. Numeric results show that whether the RRCV or
the KCET, the proposed EEF indeed is able to discover the
optimal path with the benefits of reachability and efficiency.
Therefore, the proposed genetic-based effective approach is
well developed to solve the GPP in variable oceans.

Keywords Optimization ·GeneticAlgorithm ·Autonomous
underwater glider · Path-planning · Exponential effective
function · Upstream-current avoidance

1 Introduction

Autonomous underwater glider (AUG) is a buoyancy-driven
underwater vehicle, which is a type of autonomous underwa-
ter vehicle (AUV). The wings convert the lift and drag forces
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to produce the forward moving with a half of a knot speed
passing through thewater columns. The rudder is used to turn
the glider heading. By rolling and shifting the internalmasses
or batteries, the gravity and attitude can be controlled. The
buoyancy-driven engine benefits the low-power consump-
tion. However, without active propeller, the glider is difficult
to overcome the variable currents. An efficient and reach-
able path-planning approach, therefore, is essential to benefit
the glider ocean-sampling mission and to greatly reduce the
tedious path-planning by hand in variable oceans.

In the last decade, the topics related to find an optimal
path for AUV have been studied. Young and Wan (2013)
conducted rapidly-exploring random trees (RRT)-based local
path-planning for AUV. RRT is one of the path-planning
algorithms that attempt to rapidly and uniformly explore
the solution space, offering benefits that are similar to those
obtained by other successful randomized planning methods
(LaValle andKuffner 2000).However, the environmentswith
low connectivity due to the presence of obstacles can severely
affect convergence (Clifton et al. 2008). The low-connective
environments such as ship lanes, strong and dynamic cur-
rents critically increase the path-planning complexity and
lead the path to unreachability. Fernandez-Perdomo et al.
(2010) developed new path-planning software named Pinzon
to assist underwater vehicles piloting. The proposed software
integrated a novel path-planning algorithm called constant-
time surfacing A* (CTS-A*) that is particularly useful for
the long-range glider missions. A* algorithm is Dijkstra-like
search heuristic, which prescribes how to use such informa-
tion from a problem domain to guarantee a minimum cost
path solution through a graph (Hart et al. 1968). In fact, A*
is a guided version of breadth-first search, which is expo-
nential in memory complexity with respect to the length of
the solution. Classic algorithms such as RRT and Dijkstra-
like algorithms only concern with the constant environment;
however, the upstream-current (UC) conditions had not been
considered in their search heuristic.

In this work, a novel problem of the GPP is studied. In the
GPP, there is a challenge to design an objective function to
benefit a path in terms of reachability and efficiency. In other
words, the characteristics such as the glider motion and the
cruising distance, as well as the variable currents, should be
considered in the objective function and integrated into an
optimization algorithm to build a path-planning approach.
Therefore, the EEF is developed as a new fitness function
based on these characteristics applied in hybrid-GA that is
able to discover a reachable and efficient path and to stabilize
the path solution in the GPP. The exponential combination of
the EEF is a premium method which emphasizes obviously
the benefits of reachability and efficiency. Besides, GA is one
of the well-known optimization algorithms, which is easy to
involve arbitrary objective functions in it. Thus, in this work,
the EEF applied in hybrid-GA is able to develop a premium

path-planning approach for the glider ocean-sampling mis-
sion in variable oceans.

The rest of this paper is organized as follows. Related
works on literature reviews of optimization algorithm and
problem statement of the glider path-planning are studied
in Sect. 2. Development of genetic-based effective path-
planning approach with the EEF and new theorems in
conditions of the downstream-current (DC), as well as study
on the optimal path of the GPP are described in Sect. 3. In
Sect. 4, two current variations are created to simulate the
total 133 scenarios and all scenarios are made fair compar-
isons with fair GA configurations. Finally, conclusions are
discussed in Sect. 5.

2 Related works

2.1 Literature review on optimization algorithms

In computer science, heuristic methods such as RRT and
A* are well-known algorithms which are able to solve
the optimization problems such as path-planning and task
scheduling. However, RRT and A* lack for path-planning
in changing environment (Alcázar et al. 2011; Bhadoria and
Singh 2014; Zhang and Zhao 2014). In the field of evolu-
tionary computation, GA is an optimization technique which
is routinely used to generate useful solutions to optimiza-
tion problems. In Ahmed and Deb (2013), Castillo et al.
(2007), Hong et al. (2002), Alvarez et al. (2004), Moura et al.
(2010),Aghababa (2012),GAhas been studied in underwater
vehicle path planning with high flexibility and applicabil-
ity and validated as an efficient optimization algorithm with
less memory and real-time demand to solve the optimiza-
tion problem. Therefore, GA is accepted as the optimization
algorithm to involve the EEF for solving the GPP in this
work. GA mimics the process of natural selection inspired
by natural evolutions including reproduction, crossover and
mutation, as well as searching the space of chromosomes in
a way much more subtle than a “random search with preser-
vation of the best (Holland 1984). GA provides a flexible
and efficacious path-planning approach with arbitrary objec-
tive functions to discover the optimal paths. A simple GA
process includes population initialization, fitness evaluation,
selection and reproduction. The search space of GA is rep-
resented as a collection of individuals which are encoded
as fixed length bit strings referred to as chromosomes (Lar-
rañaga et al. 1999). GA employs a population of individuals
as the possible solutions of a problem. Meanwhile, a good
individual has more chances to be selected into the mating
pool so that it hasmore chances tomate than low-quality indi-
viduals have (Yu and Gen 2010). GA randomly generates a
set of individuals and each individual comes with a particular
fitness evaluated by the fitness function. The population size
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and individual length are dependent on the problem com-
plexity. A complete iteration so-called a generation consists
of all GA processes. A run is defined as when a given amount
of iterations is completed.

In evolution strategy ofGA, afitness function is significant
to evaluate the fittest path. A fitness function is a particu-
lar type of objective function, which is used to evaluate the
fittest in a problem. Classic objective functions such as K -
means, C-means, Euclidean distance and kinematic motion
model are capable of the fitness functions for GA. The fitness
resulted by fitness function illustrates that how good a solu-
tion can be promoted to an outstanding one. In this work, 6
state-of-the-art objective functions are studied. Alvarez et al.
(2004) developed a kinematic model-based energy cost (EC)
function to compute the strength of the individuals that the
energy cost required to run each path. Fernandez-Perdomo
et al. (2011) computed an underestimated temporal cost to
reach the goal from the current location using the straight-line
distance to the goal and proposed a conservative but admis-
sible heuristic function to compute a reaching cost (RC).
Pêtrès et al. (2007) proposed a heuristic function that esti-
mates the residual distance between the considered current
location and the goal location with a constant α. When con-
stant α equals to 1, heuristic function of hybrid search (HS)
is likely an A* algorithm. Shih et al. (2014) considered the
glider motion with the current effects and total cruising dis-
tance to develop an effective function (EF) and applied the
EF in GA. Shih et al. (2012) proposed an effective speed
(ES) function to compute the composite speed of the glider
velocity and current velocity, as well as the drift factor for the
glider path-planning. Soulignac (2011) combined an appro-
priate objective function of actual travel time (ATT) in a
Dijkstra-like algorithm that guarantees the existence of a path
with an arbitrary precision. These functionsmentioned above
are well-designed objective functions to support the path-
planning approaches to the specific path-planning problem.
However, some parameters such as the distance and effective
angle between the glider heading and the current direction
were not considered as well. For instance, EF, ES and ATT
did not consider the adjacent distance; while RC and HS did
not concern with the effective angle. Even though these func-
tions concerned the variable currents; however, they missed
the consideration of the UC on the way to target. In fact, the
UC greatly affects the path reachability.

Considering buoyancy-driven engine features, the power-
saving glider moves like a saw-tooth profile with a half
of knot velocity so that it can prolong the cruising range
from least weeks to months. However, currents are classi-
fied as variable and unknown environment that essentially
influences the path-planning performance of a slow-moving
glider. Moreover, currents lead the glider mission to fail-
ure, even endanger the glider. Consider that the slow-moving
glider is difficult to confront stronger currents than its

velocity, a premium path-planning approach to the glider
ocean-sampling mission should concern completely the cur-
rent effects to discover a reachable and efficient path as
possible as it can. Thus, the objective of this work is to
develop a fitness function of the EEF applied in hybrid-GA
as a premium path-planning approach to solve the GPP in
variable oceans. The EEF combines the glider motion and
current effects as well as the cruising distance carefully so
that it can benefit the optimal path with reachability and effi-
ciency in the ocean-sampling mission.

2.2 Problem statement on AUG path-planning

The ocean-sampling is an activity to observe and collect
oceanographic properties in an ocean area where there are
interests in the ocean research for scientists. These inter-
ests are such as climate change associated with Kuroshio
Current that scientists create an ocean-sampling mission and
deploy scientific instruments to collect data in that area. In
the glider ocean sampling, amissionmeans that given a set of
waypoints in the ocean area of interest, a glider with the lim-
ited cruising range cruises autonomously in the programmed
water depth and reaches to each waypoint once and only
once from the source to the target. The glider follows a prior
path-planning with a series of waypoints and reaches the
next waypoint one by one to carry out the desired goal of a
mission. A path is connected by a series of waypoints in an
ocean area. In case of n waypoints, there will be (n-1)! candi-
date solutions to be solved in the GPP. Thus, the GPP is also a
NP-hard (non-deterministic polynomial-time hard) problem.
Most path-planning approaches assume that the environment
is constant; however, it is not applicable in real oceans. Typ-
ically, the discovery of a path with the constant environment
can be considered as a simple traveling salesman problem
(sTSP). However, to find a path with the variable currents
can be considered as a complicated TSP (cTSP). The GPP,
therefore, is a cTSP-like optimization problem.

In graph theory, reachability refers to the ability to travel
from a vertex to a specific vertex within a directed graph
G = (S, E). S is a set of vertices, while E is a set of edges.
A vertex s can reach a vertex t if there exists a sequence
of adjacent vertices (Skiena 2008) which starts with s and
ends with t . In this work, a waypoint can be considered as a
vertex. Self-looping should not be allowed in thiswork. Thus,
the glider starts at the source waypoint (wps=0,s∈S), passes
through intermediate waypoint (wpq∈S) once and only once,
and finally terminates at the target waypoint (wpt∈S) which
is determined by scientist or the path-planning approach. The
great-circle (GC) formula (NIMA 2002) is used to calculate
the distance between two waypoints on the earth surface,
given by

123



5372 C.-C. Shih et al.

dGC = WGS84_a × cos−1 [cosφ1 cosφ2 cos(λ1 − λ2)

+ sin φ1 sin φ2] (1)

where dGC is the distance between two arbitrary waypoints
in a gnomonic projection; WGS84_a is the equatorial radius
about 6378 km;λ andφ are the longitude and latitude, respec-
tively. A waypoint with coordinates is denoted by wp(λ, φ).

In optimization problem, the GPP is a problem between
TSP and navigation problem. Original TSP is denoted by
messenger problem which is a task to find the shortest route
connecting the points for finitely many points whose pair-
wise distances are known (Schrijver 2005). In other words,
the problem of TSP is “given a set of cities (points) and a
known pairwise distance matrix, finding the shortest path
that the salesman travels each city exactly once and then
returns to the original city”. The other optimization problem
related to the GPP is the problem of motion planning, also
known as the navigation problem, which frequently refers to
motions of a robot in a 2D or 3D world that contains obsta-
cles. A motion planning involves determining what motions
are appropriate for the robot so that the robot reaches a goal
state without colliding into obstacles (LaValle 2006). The
navigation problem is to produce a continuous motion that
connects source s and target t , while avoiding collision with
known obstacles. The kinodynamic planning problem is a
class of navigation problems, which is to synthesize a robot
motion subject to simultaneous kinematic constraints such as
avoiding obstacles, and dynamic constraints such as modu-
lus bounds on velocity, acceleration and force (Donald et al.
1993). Unlike TSP, the glider does not return to the source
waypoint.Moreover, these constraints of navigation problem
such as obstacles and acceleration are not concernedwith this
work. Besides, TSP and navigation problem do not consider
the environmental variation in the path-planning problem.
Assume that the glider does not cruise in ship lane and no
physical obstacle exists on the way to target. Thus, the glider
path-planning in the variable currents is considered as a novel
problem called the GPP, which is a problem of how to dis-
cover an optimal path from a source waypoint wps to a target
waypoint wpt through each intermediate waypoint wpq once
and only once.

To represent an individual for the GPP, a permutation
encoding is applicable to ordering problems and used to
describe a path sequence in an individual of GA. Given a
set of waypoints S, each waypoint wpi∈S is indexed a unique
integer i . The source waypoint is denoted by wp0, while the
target waypoint is decided by the optimization algorithm or
scientists. Thus, an individual is represented by

Ik ∈ P = {
wpi∈S, f or 0 ≤ i ≤ n − 1

}
(2)

where Ik is the kth individual in the population set P; wpi
is the i th waypoint and n is the number of waypoints. In

case of the path with 8 waypoints in a mission, a permutation
encoding of an individual could be represented as {0, 7, 4,
6, 3, 5, 1, 2}. Subsequently the goals of this work are to:
(1) develop a new EEF as a fitness function to combine the
glidermotionwith the current effects; (2) implement the EEF
for hybrid-GA to discover an optimal path with the UCA in
the variable currents; (3) develop new theorems to derive the
conditions of the UCA.

3 A genetic-based effective approach to AUG
path-planning with upstream-current avoidance
in variable oceans

3.1 Design of genetic-based path-planning approach

GA is an iterative- and evolutionary-based optimization algo-
rithm to find the individual from the search space with the
best genetic material. The search space of a problem is rep-
resented as a collection of individuals. Classic GA uses
crossover and mutation operators with stochastic rates to
create the solution diversity and escape the local optima.
In this work, multiple crossover and mutation operators are
applied in hybrid-based GA. Crossover operators include
partially mapped crossover (PMX) and partially scram-
bling crossover (PSX), while mutation operators include
exchange mutation (EM), rotate mutation (RM) and inver-
sionmutation (IVM). In general, GA configuration including
crossover and mutation rates, iteration and population sizes
as well as run size should be declared in GA initialization
process.

In fact, determination of the appropriate crossover and
mutation rates is not only a critical but also an open issue
because the results are highly depending on the optimal goal
of a problem. There is no general rule in assignment of
crossover and mutation rates for the most problems. Typi-
cal mutation rate with a low value between 0 and 1 % works
well when the population size is large enough. However, for
the efficient computation with less memory and real-time
demand, a small population size and high mutation rate are
preferred.Moreover, when a portion of individuals is trapped
in local optimum, high mutation rate is a useful strategy to
increase the population diversity and to enhance the ability of
exploringother possible solution.Todetermine crossover and
mutation rates, a trial is exercised iteratively. Both crossover
andmutation rates are given from0 to 100%steppedby10%.
In this trial, the path solution is converged when crossover
and mutation rates are equivalent to 10 and 20 %, respec-
tively. Thus, the accepted crossover and mutation rates of
this work are 10 and 20 %, respectively. Besides, high muta-
tion rate is also a useful strategy to reduce the population size
in this work.
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Table 1 A survey for GA configurations

WPs Popu. Iter. Run Mission type Path cost UCA Crossover Mutation Test cases

52–442 (Albayrak and
Allahverdi 2011)

40 20,000 N/A sTSP Distance Non DPX GSTM 336

10 (Majumdar and
Bhunia 2011)

20 50 20 sTSP Time Non MOX MCX SX EM RM 12

15 (Majumdar and
Bhunia 2011)

30 50 20 sTSP Time Non MOX MCX SX EM RM 12

20 (Majumdar and
Bhunia 2011)

40 50 20 sTSP Time Non MOX MCX SX EM RM 12

30 (Majumdar and
Bhunia 2011)

60 50 20 sTSP Time Non MOX MCX SX EM RM 12

17–443 (Nagata and
Soler 2012)

100–300 N/A 100 sTSP Distance Non EAX N/A 153

>100 (Wang 2014) 20 100 N/A sTSP Distance Non PBX EM 30

101–200 (Wang 2014) 100 200 N/A sTSP Distance Non PBX EM 45

201–300 (Wang 2014) 100 200 N/A sTSP Distance Non PBX EM 18

301–500 (Wang 2014) 50 200 N/A sTSP Current Non PBX EM 15

6–12 (Groba et al. 2015) 100 1000 N/A cTSP Time, current Non GX EM 17

29–198 (Ahmed 2010) 200 1000 10 sTSP Distance Non SCX EM 45

DPX distance preserving crossover, MOX modified order crossover, MCX modified cycle crossover, SX sequence crossover, EAX edge assembly
crossover, PBX position-based crossover, GX greedy crossover, SCX sequential constructive crossover, GSTM greedy sub tour mutation, EM
exchange mutation; RM replacement mutation

Table 2 GA configurations
Waypoints 5 9 10 16 32 35 48

Crossover rate (%) 10 10 10 10 10 10 10

Mutation rate (%) 20 20 20 20 20 20 20

Population 20 50 50 100 200 200 300

Iteration 50 100 100 200 300 400 500

Run 20 20 20 20 30 40 40

The remaining GA configuration of population and iter-
ation sizes as well as run size is highly dependent on
the problem complexity such as the number of waypoints.
To determine the remaining GA configuration, literatures
(Albayrak andAllahverdi 2011;Majumdar andBhunia 2011;
Nagata and Soler 2012; Wang 2014; Groba et al. 2015;
Ahmed2010) are surveyed and summarized inTable 1. These
cited papers assigned various population and iteration sizes
as well run size to solve different path-planning problem and
to reach the desired goals in various environments. Besides,
these cited papers used adequate population sizes to solve
their problems. Thus, conclusion of this survey; the GA con-
figurations accepted for simulations with various waypoints
in this work are given in Table 2.

3.2 Development of exponential effective function with
upstream-current avoidance

Typically, the kinematicmotionmodel is basicmethodwhich
is used to formulate the composite velocity between the vehi-

cle motion and the current effects. Mathematically, the for-
wardkinematic equations define a functionbetween the space
of Cartesian positions and orientations and the space of joint
positions (Spong and Vidyasagar 2008). In this paper, the
unconstrainedkinematicmotionmodel (Fernandez-Perdomo
et al. 2011) is used to describe the relative velocity relations
between the glider and currents, given by

⇀
v e

�= ⇀
v g + ⇀

v c (3)

where
⇀
v e,

⇀
v g and

⇀
v c are the vectors of the glider, current

and effective velocities, respectively. Navigation problem is
described as “let a vessel traveling at constant speed on a body
of water having surface velocity (Weisstein 2002)” that can
be simply modeled by a kinematic motion model. Kinematic
motionmodel only describes the composite velocity relations
between the glider motion and current effects; however, the
angle between the glider heading and the current direction is
not considered properly. Assume that the current effects are
always present in a path; that means, the current velocity is a
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non-zero value. To consider the glidermotionwith the current
effects completely, a cruising capability (CC) is developed as
the first component of theEEF to benefit the path reachability,
given by

ε j =
∣
∣
∣
⇀
v g

∣
∣
∣

∣
∣
∣
⇀
v c j

∣
∣
∣

× cos
(
θec j

)
, θec j = θg j − θc j (4)

where ε j is the CC;
⇀
v g and

⇀
v c j are the velocity vectors of the

glider and currents, respectively; θec j is the effective angle
between the glider heading θg j and the current direction θc j ;
j is the j th sub-path. The glider heading is toward to the next
waypoint from its current waypoint. The CC has themaximal
performance when the glider cruises actually along with the
DC. To consider the distance efficiency, an adjacent degree
(AD) is developed as the second component of the EEF to
benefit the path efficiency, given by

ξ j = dGC j

dtotal
(5)

where ξ j and dGC j are the AD and the distance on the j th
sub-path, respectively. dtotal is the cruising distance in a path,
given by

dtotal =
n−2∑

j=0

dGC j (6)

Equation (5) shows that the higher the AD is, the longer dis-
tance on the j th sub-path we have. Afterward, an exponential
combination is a premium method to integrate the benefits
of CC and AD in a sub-path, given by

eef j = ε j × exp(−α × ε j × ξ j ), for 0 ≤ α ≤ 1 (7)

where eef j is the fitness of the EEF on the j th sub-path; α is
the curve shaping (CS) parameter which enables the scheme
of UCA and benefits the path reachability. The detailed CS
parameter is investigated in Sect. 3.3. Finally, the fitness of

a path is given by

eef =
n−2∑

j=0

eef j (8)

where eef is the fitness of the EEF in a path. The EEF is
developed as a fitness function to evaluate the path reach-
ability and efficiency in hybrid-GA to discover the optimal
path for solving the GPP.

3.3 Activation of upstream-current avoidance

The CS parameter with the positive value between 0 and
1 is designed to raise the reachability in a path. When CS
parameter is equal to zero, the scheme of UCA is disabled
and only CC is involved in the EEF to evaluate the path.
Otherwise, the CS is used to enable the scheme of UCA
and to shape the effective curve of the EEF, as shown in
Fig. 1. The effective curve related to the effective angle and
the AD is showed in Fig. 1a. There are two conditions that
cause eef to be dropped deeply. The first condition is held
when the sub-path has high AD; that means, this sub-path
has a long distance. The second condition is held when the
glider heading and the current direction are in the opposite
direction; thatmeans, the glider confronts theUC. In case of a
sub-path with high AD and along with the UC (θec = 180◦),
as shown by the blue line, the solved eef resulted in extreme
negative value and this sub-path will be considered as an
unreachable one. However, in case of a sub-path with high
AD and along with the DC (θec = 0◦), as shown by the green
line, the solved eef is always higher than the blue line one
so that this sub-path along with the DC is always considered
as the reachable one. These two cases mentioned above are
given the same CS parameter (α = 1.0).

For the glider safety, the sub-path with high AD and along
with the DC should be considered as the better sub-path than
the sub-path with small AD but along with the UC. However,
the sub-path may be considered as an unreachable one when
this sub-path is with high AD and along with the DC (θec =
0◦) but given a median CS parameter (α = 0.5), as shown

Fig. 1 Effective curve for EEF
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Fig. 2 A simple mission to verify the optimal path in various currents

by the red line in Fig. 1b, the solved eef is close to zero. To
promote this sub-path to be a reachable one, it is possible to
re-shape the effective curve bygiving a smallerCSparameter.
This sub-path, therefore, has a chance to be promoted as
a reachable one when the CS parameter is reduced to 0.1
(α = 0.1), as shown by the orange line in Fig. 1b. At the
same time, the solved eef of this sub-path has the higher
value than the previous one with α = 0.1. Thus, the CS
parameter dominates the EEF to discover a reachable path.
However, determination of the appropriate CS parameter for
discovery of an optimal path is a critical task. This task will
be done by a routine process and described in Sect. 4.3.

3.4 Definition of optimal path in AUG path-planning
problem

The goal of TSP is to find a global best solution with the
shortest traveling distance. However, the shortest traveling
or cruising distance is not an extreme objective to be reached
in this work. As mentioned previously, the safety is the most

important concern of scientists. To verify the optimal path
problem, there are 4 scenarios in a simple mission with vari-
ous current directions varied in velocity are created, as shown
in Fig. 2. Different from the mission, a scenario means that
based on a given mission with the desired waypoints, a spe-
cific fitness function is applied in hybrid-GA with the same
GA configuration to discover a path for aiding the glider
cruise. These four scenarios with the same CS parameter
(α = 0.1) are created in four current directions; they are the
east–northward (E–N), the east–southward (E–S), the west–
southward (W–S) and the west–northward (W–N) directions.
The blue arrow indicates the current directionwith a velocity.
The EEF is specified as the fitness function and applied in
hybrid-GAwith the sameGA configuration to discover paths
for these four scenarios. The optimal path with the maximal
eef is discovered in the W–S direction, as shown in Fig. 2c;
while the worst path with theminimal eef is discovered in the
W–N direction, as shown in Fig. 2a. Numeric results of this
simple mission are shown in Table 3. In scenarios with the
W–S and E–S current directions, the path along with the DC
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Table 3 Numeric results in a simple mission

Current direction Best fitness Best distance (m) Path sequence

W–N (a) 1.15 446,500 0-4-3-2-1

E–N (b) 1.30 446,500 0-4-3-2-1

W–S (c) 2.39 248,355 0-1-2-3-4

E–S (d) 2.14 248,355 0-1-2-3-4

results in the shortest cruising distance. However, in scenar-
ios with the W–N and E–N current directions, one sub-path
(from wp0 to wp4) confronts the UC and the paths result
in the worst paths with the longest cruising distances. The
cruising distance resulted in the longest distance is due to the
scheme of UCA.

The path as shown in Fig. 2c is a better one with the maxi-
mal fitness than others. This path is not only an optimal path,
but also a global best path. The global best path solution is
able to be discovered if and only if the glider moves exactly
along with the DC on each sub-path. However, this is just an
example. In TSP, the global best solution with the shortest
traveling distance may be found in the constant environment.
However, in the real oceans, currents are not constant in a
path and vary their velocity and direction all the time. That
means, the global best solution may not or even never be
found in variable oceans. Moreover, in the GPP, it is hard to
discover a path with the shortest cruising distance and still to
avoid the UC completely. An alternative, therefore, is used to
make a compromise between the shortest cruising distance
and exclusive of the UC. For the glider safety, the path with
the minimum upstream-current sub-paths (UPs) is superior
to the path with the shortest cruising distance. Thus, a new
definition of the optimal path is given as “a path with the
minimum UPs to approximate the minimal cruising distance
in the condition that the discovered cruising distance should
be less than the glider cruising range”. The EEF is developed
to meet the objective of GPP that can discover the optimal
path in this work.

3.5 New theorems for path reachability with
upstream-current avoidance

In fact, the glider path-planning is affected deeply by current
effects. The current velocity is decomposed to two veloc-

ity components
⇀
v c1 and

⇀
v c2.

⇀
v c1 is the horizontal velocity

component parallel with
⇀
v g and

⇀
v c2 is the vertical velocity

component perpendicular to
⇀
v g , as shown in Fig. 3. The

⇀
v c1

will increase or decrease the glider velocity toward the next

waypoint. The
⇀
v c2 will affect the glider heading; however,

the mis-heading of the glider will be corrected by GPS signal
when the glider resurfaces periodically. Thus, the perpendic-
ular current does not affect the velocity component but the
horizontal component. When currents are not perpendicular

(a) Current is not perpendicular 
to the glider

(b) Current is perpendicular 
            to the glider 

Fig. 3 An example of the glider motion affected by the current effects

to the glider, the current velocity affects the glider velocity
and heading, as shown in Fig. 3a. When the current is per-
pendicular to glider, currents only change the glider heading,
rather than the horizontal velocity component toward the next
waypoint, as shown in Fig. 3b. In this case, low and high
velocity of current actually has the same result to keep the
velocity component toward the next waypoint.

In the GPP, there is a sufficient condition of reachability
when the glider velocity is higher than the current velocity,

namely,
⇀
v g >

⇀
v c. To consider the glider safety, a more strict

condition is studied to discover the reachable path. In case
of the glider velocity slightly higher than the current veloc-
ity, the difference of velocity between the glider velocity and
the current velocity is small. The glider has weak capability
to overcome the UC. The difference of velocity, namely the

glider effective velocity
⇀
v e, is used to set a sufficient and nec-

essary condition. The glider effective velocity is significant to
affect the reachability that the glider approaches to its destina-
tion. Afterward, there are two conditions for the reachability
in the glider path-planning; the first condition is held when
the glider effective velocity is higher than the current veloc-

ity (namely
⇀
v e >

⇀
v c); the second condition is held when

the glider effective velocity is lower than the current velocity

(namely
⇀
v e <

⇀
v c). In the first condition, a glider will be

able to approach to its destination if its effective velocity is
always higher than the current velocity. In other words, even
in the UC case, the glider has sufficient velocity to overcome
the UC. The second condition is the most important case that
makes the glider avoid the UP. In this case, an angle domi-
nating the path reachability, called the DCA, is an important
angle to set the reachable condition that the path reachabil-
ity should be confined to the DCA. Thus, two theorems are
developed to set the path availability for the GPP when the
current velocity is higher than the glider effective velocity.

Theorem 1 Areachable sub-pathof the glider path-planning
should be confined to DCA.

Proof In the first condition mentioned above, the DCA is
unboundedwhen the glider velocity is higher than the current
velocity.However, the second condition is themost important

case we focused on. Thus, assume that current velocity (
⇀
v c)
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is greater than the glider effective velocity (
⇀
v e). Therefore,

an inequality is given by

∣
∣
∣
⇀
v e

∣
∣
∣ <

∣
∣
∣
⇀
v c

∣
∣
∣ ⇒

√(
⇀
v gx + ⇀

v cx

)2 +
(

⇀
v gy + ⇀

v cy

)2

<

√(
⇀
v cx + ⇀

v cy

)2
(9)

because

⇀
v g =

∣
∣
∣
⇀
v gx

∣
∣
∣ +

∣
∣
∣
⇀
v gy

∣
∣
∣ =

∣
∣
∣
⇀
v g

∣
∣
∣ cos θg +

∣
∣
∣
⇀
v g

∣
∣
∣ sin θg (10a)

and
⇀
v c =

∣
∣
∣
⇀
v cx

∣
∣
∣ +

∣
∣
∣
⇀
v cy

∣
∣
∣ =

∣
∣
∣
⇀
v c

∣
∣
∣ cos θc +

∣
∣
∣
⇀
v c

∣
∣
∣ sin θc (10b)

Then, Eq. (9) can be modified as

(∣
∣
∣
⇀
v g

∣
∣
∣ cos θg +

∣
∣
∣
⇀
v c

∣
∣
∣ cos θg

)2 +
(∣
∣
∣
⇀
v g

∣
∣
∣ sin θg +

∣
∣
∣
⇀
v c

∣
∣
∣ sin θc

)2

<
(∣
∣
∣
⇀
v c

∣
∣
∣ cos θc +

∣
∣
∣
⇀
v c

∣
∣
∣ sin θc

)2
(11)

By squaring and subtracting the duplicates of both sides, Eq.
(11) can be deduced as

∣
∣
∣
⇀
v g

∣
∣
∣
2 (

sin2θg + cos2θg
)

+ 2
∣
∣
∣
⇀
v g

∣
∣
∣
∣
∣
∣
⇀
v c

∣
∣
∣

× (
cos θg cos θc + sin θg sin θc

)
< 0 (12)

because

sin2θg + cos2θg = 1 (13a)

and

cos θg cos θc + sin θg sin θc = cos
(
θg − θc

)
(13b)

From Eq. (12), we have

∣
∣
∣
⇀
v g

∣
∣
∣
2 + 2

∣
∣
∣
⇀
v g

∣
∣
∣
∣
∣
∣
⇀
v c

∣
∣
∣ cos

(
θg − θc

)
< 0 (14)

then

cos
(
θg − θc

)
< −

∣
∣
∣
⇀
v g

∣
∣
∣

2
∣
∣
∣
⇀
v c

∣
∣
∣

(15)

Let θec = θg − θc and θ ′
c j = cos−1

(

−
∣
∣
∣
⇀
v g

∣
∣
∣

2
∣
∣
∣
⇀
v c j

∣
∣
∣

)

, we have

a condition of the downstream-current sub-path (DP), given
by

θec < θ ′
c j (16)

where θ ′
c j is theDCAon the j th sub-path. The effective angle

θec is an actual heading that the glider deviates its heading due
to current effects. A reachable sub-path is applicable for the
glider cruise if the effective angle is smaller than the DCA.
Otherwise, the glider may confront the stronger currents over
the glider cruising capability and the discovered sub-path
may turn into an unreachable one. The DCA is useful for
determination of path reachability. A reachable path should
involve the minimum UPs as possible as it can. Afterward,
a critical angle is found in condition of the glider velocity
equivalent to the current velocity, given by

θ ′′
c = 2π/3 (17)

where θ ′′
c is a critical angle. The DCA is able to determine

the sub-path reachability, while the critical angle is used to
set the angle thresholds of the glider velocity relevant to the
current velocity, given by

θ ′
c j ≤ θc

′′, if
∣
∣
∣
⇀
v g

∣
∣
∣ ≤

∣
∣
∣
⇀
v c j

∣
∣
∣ (18)

θ ′
c j > θ

′′
c , if

∣
∣
∣
⇀
v g

∣
∣
∣ >

∣
∣
∣
⇀
v c j

∣
∣
∣ (19)

Equation (18) represents that the DCA never exceeds the
critical angle when the glider velocity is less than or equal to
the current velocity, while Eq. (19) represents that theDCA is
unboundedwhen the glider velocity is higher than the current
velocity. The composite paradigm related to the glider and
current velocities is shown in Fig. 4. In case of the current
velocity higher than the glider velocity, the boundary angles
(BAs) of the DC should be declared as the angle constraints
of the DCA. Then, BAs are derived from Theorem 1.

Theorem 2 A sub-path can be considered as a reachable
one if only if the glider heading is confined to BAs.

Proof Assume that the current velocity is higher than the
glider effective velocity. Thus, the angle constraints of the
DC on the sub-path is given by

θ ′
c1 j

= θc j − 1

2
θ ′
c j (20a)

Fig. 4 Vector relations between the glider heading and current
direction
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θ ′
c2 j

= θc j + 1

2
θ ′
c j (20b)

where θ ′
c1 j

and θ ′
c2 j

are the boundary angles of the DCA on
the j th sub-path. Equation 20(a) and 20(b) can be combined
as

θ ′
c j = θ ′

c2 j
− θ ′

c1 j
(21)

The discovered sub-path can be considered as a reachable
one if the effective angle is bounded by

θ ′
c1 j

< θec j < θ ′
c2 j

(22)

because of θec j = θg j − θc j , we have

θ ′
c1 j

<
(
θg j − θc j

)
< θ ′

c2 j
(23)

From Eqs. (20) to (23), we have

(
2θc j − 1

2
θ ′
c j

)
≤ θg j ≤

(
2θc j + 1

2
θ ′
c j

)
(24)

θ̌c j ≤ θg j ≤ θ̂c j ; θ̌c j = θc j − 1

2
θ ′
c j ; θ̂c j = 2θc j + 1

2
θ ′
c j (25)

where θ̌c j and θ̂c j are the lower and upper bound BAs to
confine the glider heading on the j th reachable sub-path,
respectively. The BAs are significant to describe the condi-
tions of the reachable sub-path. Therefore, the DCA and BAs
activate the important conditions to verify the path reacha-
bility for the GPP in next section.

4 Numeric results

4.1 Mission deployments

In this work, currents for the ocean-sampling missions are
classified into two variations; the first variation is held when
currents vary in the RRCV; the second variation is held when
currents of theKCETare generated from the ocean prediction
model. In the first current variation, four missions (Mission
A–D) with various waypoints are created to simulate the
glider path-planning in four current directions. Four current
directions are the E–N, the E–S, theW–S and theW–N direc-
tions. Thus, total 112 scenarios involving 7 fitness functions
are presented in these four missions with four current direc-
tions. In the second current variation, three missions (KCET
MissionA–C)with various waypoints are created to simulate
the glider path-planning in the KCET. Thus, total 21 scenar-
ios involving 7 fitness functions are presented in three KCET
missions. Each scenario in a mission is given with a specific
fitness function but the same GA configuration to discover
a path. Waypoint distributions of all missions are shown in

Table 4 Waypoint distributions

Mission A B C D KCET-A KCET-B KCET C

Waypoints 9 16 32 48 10 35 48

Fig. 5 Graphic waypoint distributions of three missions in the KCET

Table 4. Missions fromA to D are created by random distrib-
ution, while three KCETMissions are created by regular dis-
tribution in the west Pacific near Taiwan, as shown in Fig. 5.

4.2 Current variations

In this work, the glider is approached to the GPP in short
inter-waypoint distances such as the Kuroshio current with
less than 100 km. In conditions of the short inter-waypoint
distance, the current glider travels in a day between succes-
sive waypoints. There is a good method to densely deploy
dozens of waypoints to imitate the long cruising distance in
a mission and to reduce the current variation effect on each
sub-path. Thus, the offshore current variation can be con-
sidered as slight in both magnitude and direction that can
be ignorable in the short inter-waypoint distance. However,
the current variation on the next sub-path is dissimilar to the
previous one. In the first current variation of the RRCV, the
current velocity varies randomly in the zonal (horizontal,U )

and meridional (vertical, V ) directions, given by

Uj =
⎧
⎨

⎩

+
[
U − Ur

2 + Rnd(Ur )
]
, eastward

−
[
U − Ur

2 + Rnd(Ur )
]
,westward

(26)

Vj =
⎧
⎨

⎩

+
[
V − Vr

2 + Rnd(Vr )
]
, northward

−
[
V − Vr

2 + Rnd(Vr )
]
, southward

(27)

whereUj and Vj are the restricted random current velocities
on the j th sub-path. U and V are the user-defined current

123



A genetic-based effective approach to path-planning of autonomous underwater glider... 5379

Fig. 6 Kuroshio current of east of Taiwan generated by TOPS1

velocities. Ur and Vr are the variable ranges of the current
velocities. Rnd() is a random function. For example, assume
that the user-defined current velocity is 0.3 m/s and the vari-
able ranges are 0.1 m/s, then currents are varied between
0.25 and 0.35 m/s. In the first variation of the RRCV, the cur-
rent velocities are lower than or equal to the glider nominal
velocity.

To create more real-ocean simulation and imitate the near-
real current variations in the second current variation of
the KCET, a Princeton Ocean Model-based offshore Taiwan
Ocean Prediction Systems (TOPS)1 is introduced to gener-
ate the KCET data, as shown in Fig. 6. The KCET presents
the northward-like direction. The Kuroshio current is one
of the major currents in the world’s oceans that occupies
only a small fraction of North Pacific Ocean: a thin narrow
band less than 100 km in width and about 1 km at max-
imum depth running for 3000 km along the western edge
of the Pacific between the Philippines and the east coast of
Japan (Barkley 1970). To simulatemore realKCET, theKTW
(Kuroshio Tropical Water) of paper (Mensah et al. 2014) is
studied on the correction of current velocity. This paper pro-
vided long-duration observation in the KTW and showed
actual and simulated salinity maximum from 18.75 to 24◦N,
as shown in Fig. 7. The black dotted-line displays the evo-
lutions of the current velocity at the level of KTW salinity
maximum. Thus, the current variations of KCET are between
0.52 and 0.58 m/s. In the second variation of the KCET, the

1 http://tops.tori.org.tw.

Fig. 7 Evolutions of Kuroshio Tropical Water (Mensah et al. 2014)

Table 5 Appropriate CS parameters for all missions

Mission Waypoints E–N E–S W–S W–N

A 9 0.5 0.5 0.4 0.4

B 16 0.6 0.6 0.1 0.5

C 32 0.5 0.6 0.7 0.2

D 48 0.2 0.5 0.4 0.2

KCET-A 10 0.4

KCET-B 35 1.0

KCET-C 48 0.7

current velocities are higher than the glider nominal velocity
(0.35 m/s).

4.3 Determination of curve shaping parameters

As thementioned above, the CS parameter of the EEF is used
to diverse the path reachability. To determine the appropriate
CS parameters for each mission, a routine process is adopted
to verify the performances of the various CS parameters. Dif-
ferent CS parameter involved in a mission resulted in change
of the path sequence and the dissimilar cruising distance as
well as the number of UPs. However, the detailed results of
routine process create a large table and only the accepted
CS parameters for all missions are concluded, as shown in
Table 5.

4.4 Evaluation criterions

Tomake fair comparisonswith theEEF, the compared 6 state-
of-the-art fitness functions are briefly reviewed in Sect. 2.1;
they are effective speed (ES) (Shih et al. 2012), energy cost
(EC) (Alvarez et al. 2004), reaching cost (RC) (Fernandez-
Perdomo et al. 2011), hybrid search (HS) (Pêtrès et al. 2007),
actual travel time (ATT) (Soulignac 2011), and effective
function (EF) (Shih et al. 2014). All fitness functions are
applied in hybrid-GA with the same GA configuration in a
mission to solve the GPP. The fitness functions such as the
EEF, ES and EF are seeking the maximum fitness, while
others are seeking the minimum fitness. All fitness func-
tions evaluated the performances of a path in reachability
and efficiency as well as the stability of convergent solu-
tion. Reachability is evaluated by the number of UPs by Eq.
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(25), while efficiency is evaluated by the cruising distance
by Eq. (6) and the distance overhead. The number of UPs is
increased when the glider heading is over the BAs. The dis-
tance overhead is the cruising distance ratio of the compared
fitness function and the EEF, given by

Odist = dotherbest

dEEFbest

× 100 % (28)

where Odist is the distance overhead; dotherbest and dEEFbest are the
cruising distances discovered by compared fitness function
and the EEF, respectively. In evaluation of the path stability,
the coefficient of variation (CV) as the ratio of standard devi-
ation and mean is used to evaluate the convergent solution,
given by

CV = σ(dbest)

μ(dbest)
× 100 % (29)

where dbest is the best efficiency of the cruising distance dis-
covered by the fitness function in a path. σ and μ are the
functions of standard deviation and mean, respectively. The
CV is a meaningful tool that analyzes the solution stability,
and compares the variability of two or more samples of data
from different variables or from the same variables when the
means are very different (Lovie 2005). Lower CV means the
more stable or convergent solution we have; however, higher
CV leads to path solution variation or divergence from the
optima.

4.5 Numeric results of AUG path-planning in restricted
random current variations

Each time the RRCV generates different current variations
for four missions (Mission A–D) and currents vary in both

velocity and direction. Numeric results of Mission A are pre-
sented in Table 6. The EEF discovers the optimal paths with
the shorter cruising distance than others, except for EC in the
W–S current direction. In this case, EC is a good fitness func-
tion to shorten the cruising distance. However, to inspect the
UPs, as the column of UPs, the EEF discovers the minimum
UPs but a bit long cruising distance around 5 % distance
overhead more than EC does. EC discovers the most 7 UPs
same as ATT. In other words, the EEF tries to discover a path
following the DC on the way to the target as possible as it
can. As mentioned previously, it is hard to discover a path
without the UC completely in the variable currents. There are
only 2 UPs discovered by the EEF; that means, path reacha-
bility of the EEF is better than other fitness functions do. The
minimal and maximal distance overheads are 95 and 161 %
discovered by EC in the W–S current direction and ES in the
E–N current direction, respectively.

In the most ocean-sampling missions, the glider travels
continuously over periods of weeks, even months (Leonard
et al. 2007) and could have dozens of waypoints in a mission.
To simulate more complex ocean-samplingmission,Mission
Bwith 16waypoints is created. Numeric results ofMission B
are presented in Table 7. The EEF discovers the optimal paths
with the minimumUPs and the shorter cruising distance than
others do. The minimal and maximal distance overheads are
100 and 166 % discovered by EF and RC in the E–S current
direction, respectively.

Furthermore, additional two missions are created. Mis-
sion C extends Mission B to 32 waypoints, while Mission D
extends Mission C to 48 waypoints. Numeric results of these
two missions are shown in Tables 8 and 9. In Mission C and
D, the EEF discovers the optimal paths with the minimum
UPs and the shortest cruising distance to all scenarios. The
minimal and maximal distance overheads of Mission C are
100 and 209 % discovered by HS in the W–N current direc-
tion and ATT in the E–S current direction, respectively. The

Table 6 Performance comparisons in Mission A

Fit. func. E–N E–S W–S W–N

UPs Dist. (km) Odist (%) UPs Dist. (km) Odist (%) UPs Dist. (km) Odist (%) UPs Dist. (km) Odist (%)

ES (Shih et al. 2012) 6 89.50 161 5 70.03 121 6 74.54 127 6 63.82 105

EC (Alvarez et al.
2004)

7 58.50 105 3 57.74 100 7 55.74 95 3 60.70 100

RC (Fernandez-
Perdomo et al.
2011)

6 78.25 140 6 67.98 118 4 74.28 127 7 70.01 115

HS (Pêtrès et al.
2007)

7 74.14 133 5 74.14 128 4 74.14 127 6 74.13 122

ATT (Soulignac
2011)

5 70.60 127 6 75.72 131 6 76.58 131 7 64.05 106

EF (Shih et al. 2014) 3 55.74 100 4 58.42 101 2 58.50 100 3 60.70 100

EEF 3 55.74 100 3 57.74 100 2 58.50 100 3 60.70 100
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Table 7 Performance comparisons in Mission B

Fit. func. E–N E–S W–S W–N

UPs Dist. (km) Odist (%) UPs Dist. (km) Odist (%) UPs Dist. (km) Odist (%) UPs Dist. (km) Odist (%)

ES (Shih et al. 2012) 12 1327 125 9 1180 139 11 1455 157 10 1109 106

EC (Alvarez et al.
2004)

15 1067 101 4 1044 123 13 1217 131 5 1172 112

RC (Fernandez-
Perdomo et al.
2011)

13 1389 131 8 1410 166 10 1145 123 9 1126 108

HS (Pêtrès et al.
2007)

12 1157 109 8 1159 136 10 1159 125 11 1157 111

ATT (Soulignac
2011)

12 1140 108 9 1276 150 10 1432 154 11 1100 105

EF (Shih et al. 2014) 6 1088 103 3 850 100 5 1026 111 5 1052 101

EEF 6 1060 100 3 850 100 5 927 100 5 1044 100

Table 8 Performance comparisons in Mission C

Fit. func. E–N E–S W–S W–N

UPs Dist. (km) Odist (%) UPs Dist. (km) Odist (%) UPs Dist. (km) Odist (%) UPs Dist. (km) Odist (%)

ES (Shih et al. 2012) 27 5511 151 18 5423 155 22 4299 124 19 5056 119

EC (Alvarez et al.
2004)

27 3894 107 7 4627 132 29 4551 131 8 4761 112

RC (Fernandez-
Perdomo et al.
2011)

27 5940 162 13 5488 156 23 5710 165 18 5694 134

HS (Pêtrès et al.
2007)

24 4379 120 13 4355 124 23 4505 130 23 4268 100

ATT (Soulignac
2011)

27 5101 140 16 7321 209 25 5462 158 19 5512 129

EF (Shih et al. 2014) 16 4594 126 7 4007 114 15 3611 104 10 4824 113

EEF 13 3656 100 6 3509 100 15 3464 100 8 4262 100

Table 9 Performance comparisons in Mission D

Fit. func. E–N E–S W–S W–N

UPs Dist. (km) Odist (%) UPs Dist. (km) Odist (%) UPs Dist. (km) Odist (%) UPs Dist. (km) Odist (%)

ES (Shih et al. 2012) 34 10088 149 30 10613 151 35 9197 131 34 10895 154

EC (Alvarez et al.
2004)

39 8114 120 13 7952 113 37 8837 126 16 8208 116

RC (Fernandez-
Perdomo et al.
2011)

32 9816 145 33 9537 136 31 9926 141 30 9092 129

HS (Pêtrès et al.
2007)

36 7134 105 27 7720 110 33 7967 114 36 7852 111

ATT (Soulignac
2011)

37 10035 148 29 9886 141 28 9737 139 35 10488 149

EF (Shih et al. 2014) 19 8159 120 15 7250 103 16 7138 102 21 7445 105

EEF 19 6784 100 12 7029 100 15 7020 100 16 7061 100
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Table 10 Path sequences in Mission A–D

Mission Dir. Path sequence

A E–N 0-2-5-4-3-6-7-8-1

E–S 0-3-8-1-2-7-6-5-4

W–S 0-5-2-3-4-1-8-7-6

W–N 0-8-3-2-1-4-5-6-7

B E-N 0-14-13-12-9-5-15-10-7-8-4-1-11-6-3-2

E–S 0-2-3-7-13-9-8-6-15-11-5-1-4-10-12-14

W–S 0-1-4-8-13-14-7-10-15-12-5-9-2-3-6-11

W–N 0-13-7-3-4-11-2-1-5-14-12-10-15-6-8-9

C E–N 0-11-15-10-7-8-4-1-22-19-12-13-16-18-
30-28-27-6-3-2-21-25-26-14-20-17-23-
9-5-31-29-24

E–S 0-4-3-16-18-23-24-25-27-5-1-11-10-12-
17-19-26-9-2-7-14-29-28-8-6-15-13-20-
21-22-31-30

W–S 0-1-5-9-16-13-14-7-12-25-24-23-19-21-
3-6-18-17-20-8-27-28-30-22-2-4-10-15-
11-26-29-31

W–N 0-31-14-2-1-5-27-25-19-18-17-16-7-3-4-
28-29-23-12-30-22-20-10-11-6-9-26-
24-21-13-15-8

D E–N 0-36-37-41-43-45-12-7-16-34-29-28-13-
17-32-46-9-8-5-3-31-27-26-14-20-18-
30-24-47-11-15-10-22-25-6-1-21-19-
23-33-39-4-2-35-38-40-42-44

E–S 0-7-16-17-22-23-25-27-39-40-26-9-8-6-
15-14-24-28-4-10-12-18-20-21-41-37-
33-29-30-5-3-13-19-31-44-1-2-35-34-
32-45-43-42-46-11-36-38-47

W–S 0-1-6-11-46-39-32-24-29-31-35-16-10-
47-23-19-3-8-44-43-41-36-20-21-42-
26-27-28-30-18-17-14-45-37-2-4-12-
25-22-13-5-9-40-38-33-34-7-15

W–N 0-27-23-34-36-43-20-17-7-3-28-24-18-
35-2-1-25-33-21-13-12-5-40-39-37-14-
15-6-8-11-30-31-22-47-46-42-44-45-
29-19-16-10-4-9-26-32-38-41

minimal and maximal distance overheads of Mission D are
102 and 154 % discovered by EF in the W–S current direc-
tion and ES in the W–N current direction, respectively. The
path sequences discovered by the EEF in Mission A–D are
presented in Table 10.

Numeric results of four missions with the RRCV show
that the EEF is able to reach the expected objective of the
optimal path in theGPP. The EEF not only develops as a good
fitness function to evaluate the fittest path but also optimizes
the path with the minimum UPs to approximate the minimal
cruising distance. Besides, with the growing waypoints, the
EEF indeed exhibits outstanding performances in terms of
path reachability and efficiency. In the GPP, a path with the
shortest cruising distance may have more UPs on the way to
the target. A path-planning approach should detour roundUP

and shorten the cruising distance to approximate the minimal
cruising distance in a path.

In fact, the cruising distance of a glider is essentially con-
cerned with the cruising capability and safety in the oceans.
A path-planning approach should be able to advice scien-
tists whether the estimative cruising distance goes beyond
the glider enduring range or not. The glider has limitation
of the cruising range due to internal battery capacity. For
instance, the commercial gliders such as Slocum (Webb et al.
2001), Spray (Sherman et al. 2001) and Seaglider (Rudnick
et al. 2004), have maximum cruising ranges in 4000, 6000
and 4600 km, respectively. In case of Mission D, the shortest
cruising distances discovered by the EEF exceeds the endur-
ing range that the commercial gliders can do. This is an alert
to notify scientists that it is better to reduce the amount of
waypoints or to deploy multiple gliders to collaborate in a
mission. In consideration of the glider cruising distance, con-
sequently the KCETmissions are created in the smaller areas
than Mission D.

4.6 Numeric results of AUG path-planning in near-real
oceans

In contrast to the RRCV, the KCET missions with the
higher current velocity are created to simulate the glider path-
planning in near-real oceans. Numeric results are presented
in Table 11. The EEF discovers the paths with the minimum
UPs to approximate minimal cruising distances better than
others do. However, there is a distinctive case of the KCET
Mission B to be discussed honestly. In this case, EF is a
good fitness function to discover the shorter cruising distance
than the EEF does; however, the UPs are more than the EEF
does. That means, the EEF detours around the UC so that
it can reduce UPs. In this case, the path discovered by the
EEF devotes additional 16 km around 4%distance overhead.
For the glider safety, it is worth to sacrifice a bit distance to
avoid the UC.With the growing waypoints up to 48 of KCET
Mission C, the EEF indeed discovers the optimal path. The
maximal distance overheads are discovered by RC (151 %)
in KCET Mission A, ATT (134 %) in KCET Mission B, and
RC (143 %) in KCET Mission C.

Afterward, the CV is used to measure the stability of
the data expressed in percentage. The stability of the solved
path is highly dependent on the optimization algorithm. An
efficient optimization algorithm is able to lead the solution
to convergence quickly. A hybrid-GA is designed as the
optimization algorithm to solve the GPP in this work. The
stability in all scenarios of KCET missions are analyzed by
the CV, as shown in Table 12. As the CV results, all sce-
narios are maintained in the lower values. That means, the
proposed hybrid-GA is an efficient optimization algorithm
that is able to converge the solution in rapidity. Thus, a partial
success of the proposed path-planning approach to the GPP
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Table 11 Performance comparisons in KCET missions

Fit. func. KCET Mission A KCET Mission B KCET Mission C

Dist. (km) Odist (%) UPs Dist. (km) Odist (%) UPs Dist. (km) Odist (%) UPs

ES (Shih et al. 2012) 702 124 8 736 124 27 3262 138 41

EC (Alvarez et al. 2004) 765 136 7 632 106 29 2887 122 39

RC (Fernandez-Perdomo et al. 2011) 854 151 8 757 127 26 3384 143 37

HS (Pêtrès et al. 2007) 675 120 9 617 104 29 2564 109 38

ATT (Soulignac 2011) 769 136 8 800 134 26 3106 132 35

EF (Shih et al. 2014) 564 100 5 579 97 15 2431 103 18

EEF 564 100 5 595 100 13 2362 100 18

Table 12 Stability analyses of convergent path solution in KCET Missions

Mission KCET Mission A KCET Mission B KCET Mission C

Fit. func. μ σ CV μ σ CV μ σ CV

ES (Shih et al. 2012) 657 71 10.82 740 23 3.18 3150 145 4.61

EC (Alvarez et al. 2004) 748 48 6.39 594 40 6.68 2927 70 2.38

RC (Fernandez-Perdomo et al. 2011) 854 0 0.00 801 57 7.15 3373 29 0.86

HS (Pêtrès et al. 2007) 675 0 0.00 643 37 5.70 2585 74 2.85

ATT (Soulignac 2011) 699 80 11.45 784 11 1.40 3139 190 6.04

EF (Shih et al. 2014) 565 3 0.57 573 16 2.76 2500 125 5.00

EEF 567 3 0.57 618 35 5.67 2562 82 3.20

μ mean in km, σ standard deviation in km, CV coefficient of variation in %

is ascribed to the rapidly convergent hybrid-GA. Finally, the
graphic paths of the KCET missions discovered by the EEF
are shown in Fig. 8.

5 Conclusions

In computational intelligence science, most state-of-the-art
optimization algorithms create efficient approaches to dis-
cover the global best path solutions in particular research
fields. Development of a fitness function for the path-
planning problem is the key that obviously influences the
performance and stability of path solution, especially in the
environment variability. Because of variable oceans, currents
severely affect the glider path-planning in terms of efficiency
and reachability. Discovery of a global optimal path solu-
tion with the minimum UPs and with the shortest cruising
distance becomes a difficult task. However, for the glider
safety, an alternative is to compromise the trade-off between
reachability and efficiency. A condition of the optimal path
with the minimum UPs to approximate the minimal cruis-
ing distance for solving the GPP is, therefore, defined in this
work.

To solve the GPP, one of the objectives in this work is to
develop a new fitness function that is able to discover an opti-

mal path and to benefit the path reachability and efficiency
for glider ocean-sampling missions in real oceans. The pro-
posed EEF considers the characteristics of not only cruising
distance but also the relations between the glider motion and
current effects so that is able to discover an optimal path
for real applications. The benefits of reachability and effi-
ciency are realized by exponential combination. Moreover,
the scheme of UCA is enabled when the CS parameter is
given a positive non-zero value between 0 and 1. Various
CS parameters shape the effective curve accordingly and re-
organize the path sequences obviously to excite the diversity
of path reachability. To verify the DC on a path, new theo-
rems are, therefore, developed to set the conditions for the
scheme of UCA.

Prior to the simulations, a simple mission is used to ver-
ify that the global best optimal path solution can be found
only in a specific situation. Afterward, two current variations
are created to simulate the glider ocean-sampling missions
with total 133 scenarios. Firstly, 112 scenarios are created to
verify that the proposed EEF is able to discover the optimal
paths in the condition of the RRCV. Secondly, 21 scenarios
are created to validate that the EEF discovers the optimal
paths in the condition of the KCET. Two special scenarios
solved by the compared fitness functions discover the bet-
ter cruising distances than the EEF does. However, the path
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(a) KCET Mission A, path: 0-1-5-3-8-
7-9-2-4-6 

(b) KCET Mission B, path: 0-30-17-12-32-24-18-13-8-5-21-
23-11-19-14-31-25-9-33-27-29-22-16-7-4-2-28-15-10-6-3-1-

34-26-20

(c) KCET Mission C, path: 0-8-24-7-15-23-31-44-1-10-18-33-40-5-13-22-30-38-46-6-14-20-43-2-9-
17-25-28-36-45-12-21-29-37-16-32-27-35-42-3-4-11-19-26-34-41-39-47

Fig. 8 Graphic paths discovered by EEF in KCET Missions

with the shortest cruising distance is not more important than
the path with the minimum UPs because the glider safety is
of most concern of scientists. Thus, in the GPP, the opti-
mal path should be benefited the maximum reachability to
approximate the maximum efficiency.

Numeric results show that the proposed EEF can discover
the optimal path with the minimum UPs to approximate the
minimal cruising distance. In point of reachability, the pro-
posed EEF minimizes the UPs. The maximum decrements
of UPs are 22 (EC) and 23 (ES) in Mission D with the W–
S current direction and in KCET Mission C, respectively.
In point of efficiency, the proposed EEF shortens the cruis-

ing distance to approximate the minimal cruising distance.
The maximum decrements of distance overheads are 109 %
(ATT) and 51 % (RC) in Mission C with the E–S current
direction and in KCET Mission A, respectively. Finally, the
stability of convergent solution in all scenarios of KCETmis-
sions is verified by the CV. The results show that hybrid-GA
is able to maintain a low CV to lead the path solution to
stability. The proposed EEF applied in hybrid-GA is devel-
oped as a premium path-planning approach to the glider
ocean-sampling mission. Thus, this work contributes a path-
planning approach with the UCA to the glider path-planning
for solving the GPP in variable oceans.
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