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Abstract In this paper, we continue our study of prime
ideals in posets that was started in Joshi and Mundlik (Cent
Eur J Math 11(5):940–955, 2013) and, Erné and Joshi (Dis-
crete Math 338:954–971, 2015). We study the hull-kernel
topology on the set of all prime ideals P(Q), minimal prime
ideals Min(Q) and maximal ideals Max(Q) of a poset Q.
Then topological properties like compactness, connectedness
and separation axioms ofP(Q) are studied. Further, we focus
on the space of minimal prime ideals Min(Q) of a poset Q.
Under the additional assumption that every maximal ideal
is prime, the collection of all maximal ideals Max(Q) of a
poset Q forms a subspace ofP(Q). Finally, we prove a char-
acterization of a space of maximal ideals of a poset to be a
normal space.
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1 Introduction

The co-equivalence of the category of bounded distributive
lattices and certain category of topological spaces was devel-
oped in the classical paper of Stone (1937). It was observed
that the set of prime ideals of a Boolean algebra can be made
into a topological space in a natural way, the open sets of
which correspond to ideals of the algebra. More precisely,
to an ideal I , we associate the open set which consist of all
prime ideals which do not contain I .

Venkatanarasimhan (1972) studied Stone’s topology on
the set of prime dual ideals F(L) of a pseudocomplemented
and bicomplemented lattice L . In fact, he has proved that
F(L) is compact, T0, and it is π0 if {1} is the only dense
element of L . These results are generalized in Sect. 3 of this
paper.

The topology of minimal prime ideals Min(L) of a dis-
tributive lattice L with 0 is studied in Speed (1974) and it
is proved that Min(L) is compact if and only if L is qua-
sicomplemented. This result is exetended for 0-distributive
semilattices by Pawar and Thakare (1978, 1982); see also
Pawar (1978).

In this paper, we introduce the concept of quasicomple-
mented and weakly quasicomplemented poset and prove that
if the space of minimal prime ideals is compact then the cor-
responding poset is weakly quasicomplemented.

Grätzer (1998) gave a topological representation for the
class of distributive join-semilattices extending the known
topological representation of Stone (1937) for distributive
lattices.
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During last few years, the theory of prime ideals of
posets has been developed; see David and Erné (1992), Erné
(2006), Erné and Joshi (2015), Halaš et al. (2010), Halaš and
Rachůnek (1995) and, Joshi and Mundlik (2013). In fact,
Venkatanarasimhan (1970) seems to be first who introduced
the topology on the set of all prime semi-ideals of a poset
and characterized T1-spaces. He proved that for a bounded
poset Q, the space of prime semi-ideals is T1 if and only if
Q is the two-element chain.

This motivated us to study the topology on the set of prime
ideals, minimal prime ideals and maximal ideals of a poset.
It can be observed that the space of prime ideals P(Q) is a
subspace of the space of prime semi-ideals Ps(Q). If a poset
Q is different from the two-element chain then the space of
prime semi-ideals is not T1 and hence not T2. But we prove
that the space P(Q) of prime ideals of Q is completely reg-
ular and totally disconnected space if Q is a complemented
poset. Also, we give necessary and sufficient condition for a
space of prime ideals to be T1 which generalizes the results
of Balasubramani (2008).

The last section extends the results of Pawar and Thakare
(1977), Balasubramani (2008) for pm-(semi)lattices, that
is, bounded distributive (semi)lattices in which every prime
ideal is contained in a unique maximal ideal. In the last sec-
tion, we extend the following Theorem 1.1 of Balasubramani
(2008) to posets.

Theorem 1.1 A bounded pseudocomplemented meet-semi-
lattice is a pm-semilattice if and only if the space of maximal
ideals is normal.

We begin with necessary concepts and terminology in a
poset Q.

Let A ⊆ Q. The set Au = {x ∈ Q | x ≥ a for every
a ∈ A} is called the upper cone of A. Dually, we have the
concept of lower cone A� of A. Au� shall mean {Au}� and
A�u shall mean {A�}u . The upper cone {a}u is simply denoted
by au and {a, b}u is denoted by (a, b)u . Similar notations are
used for lower cones. We note that A ⊆ Au� and A ⊆ A�u . If
A ⊆ B then A� ⊇ B� and Au ⊇ Bu . Moreover, A�u� = A�,
Au�u = Au , {au}� = a� and {a�}u = au .

A poset Q is called distributive (see Larmerová and
Rachůnek 1988) if for all a, b, c ∈ Q, {(a, b)u, c}� =
{(a, c)�, (b, c)�}u�. More details about distributive posets as
well as distributive pairs can be found in Waphare and Joshi
(2007). A poset Q with the least element 0 is said to be 0-
distributive (see Joshi and Waphare 2005) if for all a, b, c ∈
Q, (a, b)� = (a, c)� = {0} imply {a, (b, c)u}� = {0}.

Dually, we have the concept of a 1-distributive poset.
A bounded poset Q is said to be 0-1-distributive if it is

both 0-distributive and 1-distributive.
If Q is a lattice, then Q is distributive (0-distributive) as

a poset if and only if it is distributive (0-distributive) as a
lattice.

Let Q be a poset with 0 and 1. An element y ∈ Q is said
to be a complement of x ∈ Q if (x, y)u� = (x, y)�u = Q.
A poset Q is said to be complemented if each element of Q
has a complement in Q. A distributive complemented poset
is called Boolean. More details about Boolean posets can be
found in Waphare and Joshi (2005).

Let Q be a poset with 0. An element x∗ ∈ Q is said to
be the pseudocomplement of x ∈ Q, if (x, x∗)� = {0} and
for y ∈ Q, (x, y)� = {0} implies y ≤ x∗. A poset Q with 0
is called pseudocomplemented if each element of Q has the
pseudocomplement (see Venkatanarasimhan 1971 and Halaš
1993).

Given a poset Q and a non-empty subset I ⊆ Q, we call
I a semi-ideal of Q if x ≤ y, y ∈ I imply x ∈ I. A
non-empty subset I of Q is said to be an ideal if a, b ∈ I
yields (a, b)u� ⊆ I (see Halaš 1993). An ideal I is said to
be a principal ideal generated by a ∈ Q if I = (a] = {x ∈
Q | x ≤ a}. An ideal I is called a u-ideal if, for all x, y ∈ I ,
(x, y)u ∩ I 	= ∅. Note that every principal ideal is a u-ideal
but not conversely. Dually, we have the concepts of a filter
and an �-filter.

The following result is easy to prove, hence we omit its
proof.

Lemma 1.2 Let Q be a poset and I , J be u-ideals of Q. Then
I ∨ J = {x ∈ Q | x ∈ (a, b)u� for some a ∈ I, b ∈ J }.

It is known that every ideal in a join-semilattice is a
u-ideal. Therefore the following corollary is an easy con-
sequence of the above lemma.

Corollary 1.3 Let I and J be ideals of a join-semilattice Q.
Then

I ∨ J = {x ∈ Q | x ≤ i ∨ j, for some i ∈ I, j ∈ J }.

The set of all ideals of a poset Q is denoted by I d(Q) and
it forms an algebraic lattice with respect to set inclusion. A
poset Q is called ideal-distributive if (I d(Q),⊆) is a dis-
tributive lattice.

For a non-empty subset A ⊆ Q, the annihilator of A is
denoted by A⊥ = {y ∈ Q | (x, y)� = {0} for all x ∈ A}. In
particular, if A = {x} then the annihilator of x is x⊥ = {y ∈
Q | (x, y)� = {0}} (see Joshi and Waphare 2005).

A proper semi-ideal (ideal) I of Q is called prime if for
x, y ∈ Q, (x, y)� ⊆ I implies x ∈ I or y ∈ I. Dually,
we have the concept of a prime filter. The set of all prime
ideals of a poset Q is denoted by P(Q). Minimal elements
of the poset of all prime ideals (prime u-ideals) of Q will
be called minimal prime ideals (minimal prime u-ideals) of
Q. A proper ideal (u-ideal) I is said to be a maximal ideal
(u-ideal) if there is no proper ideal (u-ideal) J such that
I � J � Q. Dually, we have the concept of a maximal filter
(maximal �-filter). The set of all minimal prime ideals of a
poset Q with 0 is denoted by Min(Q).
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Fig. 1 A maximal u-ideal is not a maximal ideal
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Fig. 2 A Boolean poset in which a maximal filter is not prime

Remark 1.4 Note that a maximal u-ideal, that is, maximal
among all u-ideals, is not a maximal ideal, that is, maximal
among all ideals.

Consider the ideal I = {0} ∪ {in | n ∈ N} in the poset
visualized in Fig. 1. Clearly, I is a maximal u-ideal but not
a maximal ideal whereas the ideal J = I ∪ { j} is a maximal
ideal but not a u-ideal, as ( j, i1)u ∩ J = ∅.
Remark 1.5 Note that in a pseudocomplemented poset, max-
imal filters need not be prime, contrary to the lattice case.
However, every maximal �-filter of a pseudocomplemented
poset is prime, see Joshi and Mundlik (2013, Theorem 2.2).
Consider the pseudocomplemented poset (in fact a Boolean
poset) depicted in Fig. 2. The filter F = {1, a′, b′, c′, d ′}
is maximal but F is not prime as (a, b)u ⊆ F for
a, b /∈ F .

Denote by Ps(Q) the set of all prime semi-ideals of a
poset Q. It is clear that P(Q) ⊆ Ps(Q). However, for a
poset depicted in Fig. 3, we have P(Q) = ∅ (as there is

Fig. 3 A poset in which
P(Q) = ∅ but Ps(Q) 	= ∅ 1

a b c

0

no prime ideal) but Ps(Q) 	= ∅ as I = {0, a, b} is a prime
semi-ideal but not a prime ideal.

Remark 1.6 We denote by PMFP, the class of posets having
the least element 0 in which every maximal filter is prime
and by PMIP, the class of posets having the greatest ele-
ment 1 in which every maximal ideal is prime. We denote
by P�

MFP, the subclass of PMFP (see Remark 1.4) consisting
of all posets having the least element 0 and with the property
that every maximal �-filter (i.e., maximal among all �-filters)
is a maximal filter (i.e., maximal among all filters). Hence
every maximal �-filter F of a poset Q in P�

MFP is also prime.
Dually, we have the class Pu

MIP.

In what follows we present the relationship between the
above mentioned concepts.

Theorem 1.7 For a poset Q with 0, consider the following
statements:

(1) Q is a pseudocomplemented meet-semilattice.
(2) Every maximal filter of Q is prime.
(3) Every maximal �-filter of Q is prime.
(4) Q is 0-distributive.
(5) A⊥ is an ideal for any non-empty subset A of Q.
(6) I d(Q) is 0-distributive.
(7) I d(Q) is pseudocomplemented, where I⊥ is the pseudo-

complement of I ∈ I d(Q).

Then the implications (1) ⇒ (2), (1) ⇒ (3), (2) ⇒
(4), (3) ⇒ (4) and (4) ⇔ (5) ⇔ (6) ⇔ (7) hold. Moreover,
if Q happens to be a lattice then (2) to (7) are equivalent.

Proof (1) ⇒ (2) and (3): It follows from Joshi andMundlik
(2013, Theorem 2.2) and the fact that every filter of a meet-
semilattice is an �-filter.

(2) ⇒ (4): Let a, b, c ∈ Q be such that (a, b)� = {0} =
(a, c)�. Suppose on the contrary that {a, (b, c)u}� 	= {0},
that is, there exists x ∈ {a, (b, c)u}� such that x 	= 0. By
Zorn’s Lemma there is a maximal filter F containing x . By
the hypothesis F is a prime filter. As x ∈ (b, c)u�, we have
(b, c)u ⊆ xu ⊆ F . Primeness of F implies that b ∈ F or
c ∈ F . Since a ∈ F , we have Q = (a, b)�u ⊆ F or Q =
(a, c)�u ⊆ F , a contradiction. Hence Q is 0-distributive.
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(3) ⇒ (4): Using similar techniques as in the implication
(2) ⇒ (4), except that by Zorn’s Lemma, there exists a
maximal �-filter F containing x .

(4) ⇔ (5) ⇔ (6) ⇔ (7): It follows from Joshi and
Waphare (2005, Theorems 2.13, 2.16).

It is easy to observe that in lattices every filter is an �-filter.
Hence, the last part follows from Pawar and Thakare (1977,
Theorem 5). ��
Remark 1.8 From the above theorem, it is clear that the
class P�

MFP is richer than the class of 0-distributive posets
but weaker than the class of pseudocomplemented meet-
semilattices. Note that there is a 0-distributive poset in which
there exists a maximal �-filter such that it is not prime; see
Mokbel and Kharat (2013, Remark 2.15). On the other hand,
it is not difficult to verify that for a finite poset these two
concepts coincide.

The following theorem is due to Halaš and Rachůnek
(1995).

Theorem 1.9 Let Q be a poset. Let I be a prime ideal of Q.
Then Q\I is a filter. Q\I is a prime filter if and only if I is
a u-ideal. Moreover, Q\I is then an �-filter.

The following lemma shows the existence of a prime ideal
in the class P�

MFP.

Lemma 1.10 Let Q be a poset in P�
MFP. Then there is a

prime ideal P in Q.

Proof Let Q be a poset in P�
MFP and let x ∈ Q be any non-

zero element. Then (0] ∩ [x) = ∅. By Zorn’s lemma, there
exists a maximal �-filter F ⊇ [x) such that (0] ∩ F = ∅.
Due to the assumption every maximal �-filter is maximal
among all filters, we have that F is a maximal filter. Further,
Q ∈ P�

MFP, so F is a prime filter. This further yields Q\F is
an ideal. Moreover, Q\F is a prime ideal and consequently
P(Q) 	= ∅. ��

2 Properties of the topological space P(Q)

The following result about Ps(Q) can be found in Venkata-
narasimhan (1970).

Lemma 2.1 (Venkatanarasimhan 1970) Let Q be a poset
with the smallest element 0 and I, J, Iα be semi-ideals of
Q, α ∈ �. Then

(1) F(Q) = ∅, F((0]) = Ps(Q), where F(I ) is the set of
all prime semi-ideals which contains the semi-ideal I ;

(2) F(I ) ∪ F(J ) = F(I ∩ J );
(3)

⋂{F(Iα) | α ∈ �} = F(∪ {Iα | α ∈ �}).

According to Lemma 1.10, there is a guarantee of the
existence of a prime ideal in Q ∈ P�

MFP, that is, P(Q) 	= ∅.
Thus if we restrict ourselves to P(Q) then for any ideal I of
a poset Q, we denote by V (I ) = {P ∈ P(Q) | P ⊇ I } the
subset of P(Q) of prime ideals which contain an ideal I .

The following lemma is similar to Lemma 2.1 but for the
sake of completeness we provide its proof.

Lemma 2.2 Let Q be a poset with 0 and I, J, Iα ∈
I d(Q), α ∈ �. Then

(1) V (Q) = ∅, V ((0]) = P(Q);
(2) V (I ) ∪ V (J ) = V (I ∩ J );
(3)

⋂{V (Iα) | α ∈ �} = V (∨ {Iα | α ∈ �}).

Proof (1) There is no prime ideal containing Q, hence
V (Q) = ∅. Also every prime ideal contains 0, which gives
V ((0]) = P(Q).

(2)Let P ∈ V (I )∪V (J ), that is, P ∈ V (I ) or P ∈ V (J ),
and without loss of generality, assume that P ∈ V (I ). This
implies that I ∩ J ⊆ I ⊆ P . Thus V (I )∪V (J ) ⊆ V (I ∩ J ).

To prove the converse, let P ∈ V (I ∩ J ). Assume on
the contrary that P /∈ V (I ) ∪ V (J ). Then choose x ∈ I\P
and y ∈ J\P . This implies that (x, y)� ⊆ I ∩ J ⊆ P . By
primeness of P , we have x ∈ P or y ∈ P , a contradiction.
Hence P ∈ V (I ) ∪ V (J ).

(3) Assuming P ∈ ⋂{V (Iα) | α ∈ �}, we have P ⊇ Iα
for each α ∈ �, which gives P ⊇ ∨{Iα | α ∈ �} and
P ∈ V (∨{

Iα | α ∈ �}). Hence ⋂{V (Iα) | α ∈ �} ⊆
V (∨ {Iα | α ∈ �}).

Conversely, let P ∈ V (∨ {Iα | α ∈ �}). Then ∨{Iα | α ∈
�} ⊆ P which yields Iα ⊆ P for every α ∈ �. Con-
sequently, P ∈ V (Iα) for every α ∈ � and thus P ∈
⋂{V (Iα) | α ∈ �}. ��

Due to Lemmas 2.1 and 2.2, the sets F(I ) for a semi-ideal
I (V (I ) for an ideal I ) of Q can be considered as closed sets
in a topological space on Ps(Q) (P(Q)).

Definition 2.3 For a poset Q with the least element 0, the
topological spacePs(Q) having {F(I ) | I is a semi-ideal of
Q} as the collection of closed sets is called the prime semi-
ideal space of Q.

Remark 2.4 Since every prime ideal is a prime semi-ideal,
we can consider the prime ideal space P(Q) as a sub-
space of Ps(Q), where the collection of all closed sets is
{P(Q) ∩ F(I ) | I is a semi-ideal of Q}. We now prove that
the collection of all closed sets of the subspace P(Q) is
{V (I ) | I is an ideal of Q}. For this, let V (I ) be a closed
set in P(Q) for some ideal I . Since every ideal is a semi-
ideal, it follows that V (I ) = P(Q) ∩ F(I ). Then V (I ) ∈
{P(Q)∩ F(J ) | J is a semi-ideal of Q}. LetU1 ∈ {P(Q)∩
F(I ) | I is a semi-ideal of Q}. ThenU1 = P(Q)∩ F(I ) for
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some semi-ideal I . Consider J = ∩{P|P ∈ P(Q) ∩ F(I )}.
Clearly, J is an ideal of Q such that I ⊆ J . Now we prove
that U1 = V (J ). If R ∈ U1 then R ⊇ J , hence R ∈ V (J ).
Conversely, let T ∈ V (J ). Then T ⊇ J ⊇ I and hence
T ∈ P(Q)∩ F(I ). This proves thatP(Q) is a subspace with
{V (I ) | I is an ideal of Q} as the collection of all closed sets.
However, if a poset Q ∈ P�

MFP then P(Q) is a non-empty
subspace of Ps(Q). If P(Q) = ∅ then the results are trivial.

Lemma 2.5 Let Q be a poset with 0. The collection
{Ps(Q)\F((x]) | x ∈ Q} forms a basis for the open sets
of Ps(Q).

Proof Let U be any open set in Ps(Q) and P ∈ U . By
Lemma 2.1, U = Ps(Q)\F(I ) for some semi-ideal I of Q.
Therefore I � P . Let x ∈ I\P . Then P ∈ Ps(Q)\F((x]) ⊆
Ps(Q)\F(I ). Thus the collection {Ps(Q)\F((x]) | x ∈ Q}
forms a basis for the open sets of Ps(Q). ��
Corollary 2.6 For a poset Q in P�

MFP , the collection
{P(Q)\V ((x]) | x ∈ Q} forms a basis for the open sets
of P(Q).

For any subset X ⊆ P(Q), denote by X the closure of X
in P(Q), the smallest closed set containing X .

The following lemma forPs(Q) can be found in Venkata-
narasimhan (1970), in fact it generalizes Theorem 3 of
Venkatanarasimhan (1972) and for the sake of completeness,
we provide its proof.

Lemma 2.7 Let Q be a poset with 0 and X be any non-empty
subset of P(Q). Then X = V (∩P∈X P).

Proof Clearly, V (∩P∈X P) is a closed set of P(Q) and X ⊆
V (∩P∈X P).We show that any closed setY containing X also
contains V (∩P∈X P). Indeed, by Remark 2.4, Y = V (I ) for
some ideal I of Q. As X ⊆ V (I ), we have I ⊆ P for every
P ∈ X . Therefore I ⊆ ∩P∈X P and thus V (∩P∈X P) ⊆
V (I ) = Y . Hence X = V (∩P∈X P). ��
Definition 2.8 Atopological space X is said to be aT0 -space
if for any two distinct points of X , there is a neighborhood
containing just one of them.

Theorem 2.9 (Venkatanarasimhan 1970) The space Ps(Q)

is always a T0-space.

Corollary 2.10 The subspace P(Q) of Ps(Q) is always a
T0-space.

A topological space X is said to be a T1 -space, if {x} is a
closed set for any x ∈ X .

We recall Theorem 24 from Venkatanarasimhan (1970).

Theorem 2.11 (Venkatanarasimhan 1970) Let Q be a
bounded poset. Then Ps(Q) is a T1-space if and only if Q is
the two-element chain.

Fig. 4 A poset for which P(Q)

is not a T1-space

a b

c d

1

0

a b

1

0

Fig. 5 A Boolean poset in which P(Q) is T1 but Ps(Q) is not T1

In a bounded poset Q with more than one prime ideal the
spaceP(Q)neednot be a T1-space. For instance, consider the
poset depicted in Fig. 4. Here P(Q) = {(a], (b], (c], (d]}.
Observe that {(a]} = V ((a]) = {(a], (c], (d]} 	= {(a]}.
Hence {(a]} is not closed and thus P(Q) is not T1.

Now, for the poset depicted in Fig. 5 we have P(Q) =
{(a], (b]}. Clearly, {(a]} = V ((a]) = {(a]} and {(b]} =
V ((b]) = {(b]}. ThusP(Q) is a T1-space. However, by The-
orem 2.11, Ps(Q) is not a T1-space.

The following lemma characterizes P(Q) as a T1-space.

Lemma 2.12 For a poset Q in P�
MFP, the following condi-

tions are equivalent:

(1) P(Q) is a T1-space;
(2) {P} = V (P) for all P ∈ P(Q);
(3) (P(Q),⊆) is an antichain.

Proof (1) ⇒ (2): It follows from Lemma 2.7.
(2) ⇒ (3): Suppose there exist P, R ∈ P(Q) such that
P � R. Then R ∈ V (P) = {P}, a contradiction.
(3) ⇒ (1): If (P(Q),⊆) is an antichain, then {P} = V (P)

for each P ∈ P(Q). Thus P(Q) is a T1-space. ��

Corollary 2.13 For a pseudocomplemented meet-
semilattice Q, the following conditions are equivalent:
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1658 N. Mundlik et al.

(1) P(Q) is a T1-space;
(2) {P} = V (P) for all P ∈ P(Q);
(3) (P(Q),⊆) is an antichain.

Definition 2.14 Let X be a topological space. A closed sub-
set V of X is said to be reducible if V = V1 ∪ V2, where V1
and V2 are closed sets in X , and V1, V2 are proper subsets of
V . Otherwise, V is called irreducible.

The following lemma relates the irreducibility of sets in
Ps(Q) with the primeness of semi-ideals in Q.

Lemma 2.15 Let Q be a poset with the least element 0 and V
be a non-empty closed subset ofPs(Q). Then V is irreducible
if and only if I = ∩P∈V P is a prime semi-ideal of Q.

Proof Let V be irreducible in Ps(Q). We claim that I =
∩P∈V P is a prime semi-ideal of Q. As V 	= ∅, I is a proper
semi-ideal of Q. Now, suppose that there exist x, y ∈ Q
with (x, y)� ⊆ I and x, y /∈ I . This implies that x /∈ Pi
and y /∈ Pj for some Pi , Pj ∈ V . Consider the closed sets
V1 = V ∩V ((x]) = {P ∈ V | x ∈ P} and V2 = V ∩V ((y]).
As Pi /∈ V1 and Pj /∈ V2, we have V1 and V2 are proper
subsets of V . Suppose there exists P ∈ V but P /∈ V1 ∪
V2. Then x /∈ P and y /∈ P . By primeness of P , we have
(x, y)� � P . Then there exists z ∈ (x, y)� ⊆ I such that
z /∈ P , a contradiction. Hence V = V1 ∪ V2, where V1
and V2 are non-empty proper subsets of V . This contradicts
the irreducibility of V and thus I is a prime semi-ideal of
Q.

Conversely, assume that I = ∩P∈V P is a prime semi-
ideal. Suppose on the contrary that V = V1 ∪ V2, where
V1 and V2 are proper closed sets. Let J = ∩P∈V1 P and
K = ∩P∈V2 P . Since V1 � V , there exists a prime semi-
ideal P ∈ V such that P /∈ V1. As V1 is closed, there
is a neighborhood of P , say Ps(Q)\V ((a]), disjoint from
V1. Therefore (Ps(Q)\V ((a])) ∩ V1 = ∅ which yields
V1 ⊆ V ((a]), that is, a ∈ Pi for all Pi ∈ V1. Thus
we get a ∈ J . Observe that a /∈ P ⊇ I , and hence
J � I . Similarly, K � I . Therefore there exist x ∈ J ,
y ∈ K such that x, y /∈ I . Since V = V1 ∪ V2, we
have I = J ∩ K . Hence (x, y)� ⊆ J ∩ K = I , a con-
tradiction to primeness of I . Thus V is an irreducible set.

��
If we restrict ourselves to the subspaceP(Q) of prime ideals
then by Lemma 1.10, we have the following corollary for a
poset Q ∈ P�

MFP.

Corollary 2.16 Let Q ∈ P�
MFP and V be a non-empty

closed subset of P(Q). Then V is irreducible if and only
if I = ∩P∈V P is a prime ideal of Q.

Proof It follows by similar arguments as in Lemma 2.15. ��

3 Space of minimal prime ideals

Henriksen and Jerison (1965) investigated the space of min-
imal prime ideals of a commutative ring while Kist (1963)
discussed the space of minimal prime ideals in the context
of commutative semigroups with 0. Speed (1974) studied
the space of minimal prime ideals for distributive lattices
and characterized the compactness in terms of quasicom-
plementedness of a lattice. This was further generalized by
Pawar (1978) for semilattices. We extend these concepts to
the space of minimal prime ideals of posets.

Recall that if a poset Q is in P�
MFP, then P(Q) 	= ∅. As

0 ∈ Q, there exists a minimal prime ideal in Q. Thus if poset
Q is in P�

MFP, then the setMin(Q) of all minimal prime ideals
of Q is non-empty.

We recall the following lemma from Joshi and Mundlik
(2013, Lemma 4.1).

Lemma 3.1 Let Q be a poset with 0 and F be an �-filter of
Q. Then Q\F is a prime semi-ideal. Further, every prime
semi-ideal contains a minimal prime semi-ideal.

Now, we prove the following theorem.

Theorem 3.2 Let I be an ideal of a poset Q. If Q\I is a
maximal �-filter then I is a minimal prime ideal, and the
converse is true if Q is in P�

MFP.

Proof Let I be an ideal of Q such that Q\I is a maximal
�-filter. From the fact that Q\I is an �-filter, it is clear that
I is a prime ideal of Q. Let J be a prime ideal such that
J � I . Therefore Q\I � Q\J . We claim that Q\J is an
�-filter. Let x, y ∈ Q\J . Since J is prime, (x, y)� � J . Let
t ∈ (x, y)�u . We show that t ∈ Q\J . Assume on the contrary
that t ∈ J . Then (x, y)� ⊆ t� ⊆ J , a contradiction to the
fact that (x, y)� � J . Hence Q\J is a filter.

By primeness of J , we get Q\J is an �-filter. Thus Q\I �
Q\J , a contradiction to the maximality of Q\I . Hence I is
a minimal prime ideal.

Conversely, suppose that I is a minimal prime ideal of a
poset Q ∈ P�

MFP. Since I is a prime ideal, it is easy to observe
that Q\I is an �-filter. Let J be a maximal �-filter such that
Q\I ⊆ J , that is, Q\J ⊆ I . We claim that Q\J is a prime
ideal. Since Q ∈ P�

MFP, J is a prime filter.We show that Q\J
is an ideal. Let x, y ∈ Q\J . Suppose there is t ∈ (x, y)u�,
such that t /∈ Q\J . Since t ∈ (x, y)u� and t ∈ J , we have
(x, y)u ⊆ J . Since J is a prime filter, either x ∈ J or y ∈ J ,
a contradiction to x, y ∈ Q\J . Thus Q\J is an ideal.

Primeness of Q\J follows from the fact that J is an �-
filter. Since I is a minimal prime ideal, we have I = Q\J ,
that is, J = Q\I . Thus Q\I is a maximal �-filter. ��
Remark 3.3 From Lemma 3.1 and Theorem 3.2, it is easy
to prove that if a poset Q is in P�

MFP then every minimal
prime semi-ideal is a minimal prime ideal. Thus if Mins(Q)
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denotes the set of all minimal prime semi-ideals of a poset
Q in P�

MFP then Min(Q) = Mins(Q).

In this section, we study the subspace topology of P(Q)

on the set Min(Q) of minimal prime ideals of a poset Q.
Let X be a subset of Min(Q). We denote by k(X) =⋂
P∈X P and we call it the kernel of X . For an ideal I of

Q, we denote by h(I ) the set {P ∈ Min(Q) | I ⊆ P} and
call it the hull of I . Further, for x ∈ Q, m(x) = {P ∈
Min(Q) | x /∈ P} = Min(Q) ∩ (P(Q)\V ((x])).

The following lemma is an easy consequence of the above
definitions.

Lemma 3.4 For a poset Q in P�
MFP, the collection {m(x) |

x ∈ Q} forms a basis of open sets of Min(Q).

The following lemma, very essential and frequently used
in the sequel, can be found in Joshi and Mundlik (2013,
Lemma 2.1).

Lemma 3.5 Let F be an �-filter of a poset Q with 0. Suppose
that every maximal �-filter is maximal among all filters. Then
F is a maximal �-filter if and only if the following condition
(∗) holds:
(∗) for any x /∈ F, there exists y ∈ F such that (x, y)� = {0}.

The following result follows from the dual statement of
Lemma 3.5. For the sake of completeness, we provide its
proof.

Lemma 3.6 Let Q be a poset with 1 and M be a u-ideal of
Q. Suppose that every maximal u-ideal is maximal among
all ideals. Then M is a maximal u-ideal if and only if the
following condition (∗) holds:
(∗) for any x /∈ M, there exists y ∈ M such that (x, y)u =
{1}.
Proof Let M be a maximal u-ideal of Q and let x /∈
M . By the assumption, maximal u-ideals are maximal
among all ideals, hence we have M ∨ (x] = Q. As M
is a u-ideal, by Lemma 1.2 there exists y ∈ M with
(x, y)u = {1}.

Conversely, suppose the condition (∗) holds. Let M1 be
any ideal such that M � M1 ⊆ Q and choose x ∈ M1\M .
Then by the condition (∗), there exists y ∈ M � M1 such
that (x, y)u = {1}. This implies M1 = Q and thus M is a
maximal ideal. ��
For join-semilattices, we have the following corollary.

Corollary 3.7 Let Q be a join-semilattice with 1 and M be
an ideal of Q. Then M is a maximal ideal if and only if for
any x /∈ M there is y ∈ M such that x ∨ y = 1.

Theorem 3.8 Let P be a prime ideal of a poset Q in P�
MFP.

Then the following statements are equivalent:

(1) P is a minimal prime ideal;
(2) P contains precisely one of (x] or x⊥ for any x ∈ Q:
(3) x⊥\P 	= ∅ for any x ∈ P;
(4) O(P) = P, where O(P) = {x ∈ Q | (x, y)� =

{0} for some y /∈ P}.

Proof (1) ⇒ (2): Suppose P is a minimal prime ideal of Q.
Assume on the contrary that x⊥ ⊆ P for x ∈ P . Since P is
a minimal prime ideal, by Theorem 3.2, Q\P is a maximal
�-filter. Now, x /∈ Q\P and by Lemma 3.5, there exists y ∈
Q\P such that (x, y)� = {0}. This implies that y ∈ x⊥ ⊆ P ,
a contradiction to the fact that y ∈ Q\P . Hence x⊥ � P .
On the other hand, if x /∈ P then we show that x⊥ ⊆ P . If
t ∈ x⊥ then (x, t)� = {0} ⊆ P . Since P is prime and x /∈ P ,
we get t ∈ P . Thus x⊥ ⊆ P .

(2) ⇒ (3): Let x be any element of P . By (2), x⊥ � P .
Therefore x⊥\P 	= ∅.

(3) ⇒ (4): Obviously, O(P) ⊆ P . Let x ∈ P . By (3),
x⊥\P 	= ∅. Hence there exists t ∈ x⊥\P . This implies
that (x, t)� = {0}. Hence by definition of O(P), we have
x ∈ O(P).

(4) ⇒ (1): Suppose O(P) = P . In view of Theorem
3.2, to show that P is a minimal prime ideal, it is enough to
verify that Q\P is a maximal �-filter. Let x /∈ Q\P . Then
x ∈ P = O(P). Therefore (x, y)� = {0} for some y ∈ Q\P .
By Lemma 3.5, Q\P is a maximal �-filter. ��
We prove the following theorem characterizing minimal
prime ideals of a poset Q.

Theorem 3.9 Let Q be a poset in P�
MFP and P be a prime

ideal of Q. Then P is a minimal prime ideal of Q if and only
if for any x ∈ P there exists y /∈ P such that (x, y)� = {0}.
Proof Let x ∈ P . As P is a minimal prime ideal, x ∈ O(P)

by Theorem 3.8. Then there exists y /∈ P such that (x, y)� =
{0}.

Conversely, suppose x ∈ P . Thenby the assumption, there
exists y /∈ P such that (x, y)� = {0}. Therefore y ∈ x⊥\P,

that is, x⊥\P 	= ∅. Hence by Theorem 3.8, P is a minimal
prime ideal of Q. ��
Lemma 3.10 If Q ∈ P�

MFP, then the intersection of all
prime ideals of Q is zero.

Proof Suppose
⋂

P∈P(Q)
P 	= {0}. Then there exists t ∈

⋂

P∈P(Q)
P such that t 	= 0. By Zorn’s Lemma, there is

a maximal �-filter F containing t . Applying Theorem 3.2,
Q\F is a minimal prime ideal not containing t , a contradic-
tion. ��
Lemma 3.11 If X and Y are any subsets of Min(Q) then
k(X ∪ Y ) = k(X) ∩ k(Y ).
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Proof Obviously, k(X ∪Y ) ⊆ k(X), k(Y ), thus k(X ∪Y ) ⊆
k(X) ∩ k(Y ). Suppose k(X ∪ Y ) � k(X) ∩ k(Y ). Then there
exists x ∈ k(X)∩ k(Y ) such that x /∈ k(X ∪Y ). This implies
x /∈ ⋂

P∈X∪Y P. Therefore x /∈ P for some P ∈ X ∪ Y .
Without loss of generality assume that P ∈ X . Then x /∈
⋂

P∈X P = k(X), a contradiction to the fact that x ∈ k(X)∩
k(Y ). ��

Note that Min(Q)\m(x) = h(x). Thus by Lemma 3.4,
h(x) is a closed set.

Lemma 3.12 Let Q be a poset in P�
MFP and X be any open

set of Min(Q). Then there is an ideal I = ∩P /∈X P in Q such
that X = Min(Q)\h(I ).

Proof Let X be an open set in Min(Q). Then Min(Q)\X is
a closed set in Min(Q). Thus by Lemma 2.7, Min(Q)\X =
(Min(Q)\X) = h(∩P /∈X P) and Min(Q)\h(∩P /∈X P) = X .
Considering I =∩P /∈X P , we have X =Min(Q)\h(∩P /∈X P)

= Min(Q)\h(I ). ��
Remark 3.13 For any ideal I of a poset Q in P�

MFP, the set
h(I ) is closed in Min(Q).

We prove the following lemma on annihilators.

Lemma 3.14 Let Q be a poset in P�
MFP . Then the annihila-

tor of an ideal I of Q is the intersection of all minimal prime
ideals not containing I .

Proof Let I⊥ be the annihilator of I in Q. Then I ∩ I⊥ =
{0} ⊆ P , where P is any minimal prime ideal not containing
I . As P is a minimal prime ideal not containing I , we have
I⊥ ⊆ P . Hence I⊥ ⊆ ⋂{P ∈ Min(Q) | I � P}. If I⊥ �
⋂{P ∈ Min(Q) | I � P} then there exists x ∈ ⋂{P ∈
Min(Q) | I � P} such that x /∈ I⊥. Therefore (x, y)� 	=
{0} for some y ∈ I . Let (0 	=) a ∈ (x, y)�. Therefore [a)

is a proper �-filter of Q. By Zorn’s Lemma, there exists a
maximal �-filter, M ⊇ [a). Now, x, y ∈ [a) ⊆ M . As M
is a maximal �-filter, by Theorem 3.2, Q\M is a minimal
prime ideal. Observe that y ∈ I and y /∈ Q\M . Hence
I � Q\M . Therefore Q\M ∈ {P ∈ Min(Q) | I � P}. But
x ∈ ⋂{P ∈ Min(Q) | I � P} ⊆ Q\M , a contradiction to
the fact that x ∈ M . ��
Using the above lemma, we have the following result.

Lemma 3.15 Let Q be a poset in P�
MFP. Then for an

ideal I of Q, I⊥ = ⋂{P ∈ Min(Q) | I � P} =
k(Min(Q)\h(I )).

Corollary 3.16 Let Q be a poset in P�
MFP. Then x⊥ =

k(m(x)) for any x ∈ Q.

A subset A of a topological space X is said to be clopen
if it is both closed and open.

Corollary 3.17 Let Q be a poset in P�
MFP and x ∈ Q. Then

the set m(x) is clopen in Min(Q).

Proof It is clear that h(x) and h(x⊥) are closed in Min(Q).
By Theorem 3.8, it is easy to prove that h(x⊥) = Min(Q)\
h(x) = m(x). Thus m(x) is both open and closed. ��
Definition 3.18 A topological space X is said to be a Haus-
dorff space (T2-space) if for each pair x, y of distinct points
of X there exist neighborhoodsU1 andU2 of x and y respec-
tively, that are disjoint.

The following lemma extends the result of Pawar (1978).

Lemma 3.19 Let Q be a poset in P�
MFP. Then Min(Q) is a

Hausdorff space.

Proof It follows from Corollary 3.17. ��
Corollary 3.20 Let Q be a pseudocomplemented meet-
semilattice. Then Min(Q) is Hausdorff.

Lemma 3.21 If Q is a complemented poset thenP(Q) is an
antichain.

Proof Let P be a prime ideal of Q. Let R be an ideal such that
P � R ⊆ Q. Then choose a ∈ R\P . By complementedness
of Q there exists a′ such that a′ ∈ P � R. Thus Q =
(a, a′)u� ⊆ R implies that R = Q. Thus P is a maximal
ideal. ��
Remark 3.22 It is clear from Theorem 2.11, that if Q is a
complemented poset distinct from a two-element chain then
Ps(Q) is not a T1-space and hence it is not Hausdorff. How-
ever, as a consequence of Lemmas 3.19 and 3.21, we prove
the following corollary in which the subspaceP(Q) is Haus-
dorff.

Corollary 3.23 Let Q be a poset in P�
MFP which is comple-

mented. Then P(Q) is a Hausdorff space.

Proof It follows from Lemma 3.21 that P(Q) = Min(Q).
By Lemma 3.19, P(Q) is Hausdorff. ��
In view of Theorem 1.7, we have the following corollary.

Corollary 3.24 (Balasubramani 2008) If Q is a pseudocom-
plemented meet-semilattice then P(Q) is Hausdorff.

Definition 3.25 A topological space X is said to be totally
disconnected if given distinct points x, y ∈ X , there exists a
clopen subset U of X such that x ∈ U and y /∈ U .

Lemma 3.26 Let Q be a poset in P�
MFP. Then Min(Q) is

totally disconnected.

Proof Consider any distinct minimal prime ideals P1, P2 of
Q, and let e.g. x ∈ P1\P2. By Corollary 3.17, m(x) is the
clopen set of Min(Q) with P1 /∈ m(x) and P2 ∈ m(x). ��
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In view of Lemmas 3.21 and 3.26, we have following result
as a corollary.

Corollary 3.27 Let Q be a complemented poset in P�
MFP.

Then P(Q) is totally disconnected.

Definition 3.28 A topological space X is said to be com-
pletely regular, if it is a T1-space and if for each point x0 and
each closed set A of X not containing x0, there is a contin-
uous function f : X → [0, 1] such that f (x0) = {1} and
f (A) = {0}.
Theorem 3.29 Let Q be a poset in P�

MFP. Then Min(Q) is
completely regular.

Proof It follows from the fact that m(x) is clopen and
Min(Q) is Hausdorff. ��
Corollary 3.30 If Q is a complemented poset in P�

MFP then
P(Q) is completely regular.

The concept of a quasicomplemented lattice was intro-
duced and studied by Grillet and Varlet (1967). We extend it
to posets as follows.

Definition 3.31 A poset Q with 0 is called quasicomple-
mented if for any x ∈ Q there exists y such that (x, y)� = {0}
and

(
(x] ∨ (y]

)⊥ = {0}.

In the following lemma, we need not require Q ∈ P�
MFP.

Lemma 3.32 Let Q be a poset in PMFP and I, J ∈ I d(Q).
Then (I ∨ J )⊥ = I⊥ ∩ J⊥.

Proof As Q ∈ PMFP, applying Theorem 1.7, we have Q
is a 0-distributive poset and hence I d(Q) is a pseudocom-
plemented lattice. We know that in a pseudocomplemented
lattice (I ∨ J )⊥ = I⊥ ∩ J⊥ for any I, J ∈ I d(Q). ��
We characterized quasicomplemented posets as follows.

Lemma 3.33 Let Q be a poset in P�
MFP. Then Q is quasi-

complemented if and only if for any x ∈ Q there exists y ∈ Q
such that x⊥ = y⊥⊥.

Proof Suppose Q is quasicomplemented. Then for any x ∈
Q there exists y ∈ Q such that (x, y)� = {0} and ((x] ∨
(y])⊥ = {0}. We claim that x⊥ = y⊥⊥. Let t ∈ x⊥. This
gives (t] ∩ y⊥ ⊆ x⊥ ∩ y⊥ = ((x] ∨ (y])⊥ = {0} by Lemma
3.32. Thus (t] ∩ y⊥ = {0}, that is, t ∈ y⊥⊥, and therefore
x⊥ ⊆ y⊥⊥. Now, we show that y⊥⊥ ⊆ x⊥. As (x, y)� = {0}
implies that y ∈ x⊥, that is, y⊥⊥ ⊆ x⊥. Hence x⊥ = y⊥⊥.

Conversely, let for any x ∈ Q there is y ∈ Q such that
x⊥ = y⊥⊥. Then x⊥ ∩ y⊥ = y⊥⊥ ∩ y⊥ = {0}. This implies
that ((x]∨ (y])⊥ = {0} by Lemma 3.32. Finally, y ∈ y⊥⊥ =
x⊥ yields (x, y)� = {0}. ��

A poset Q is said to be a weakly quasicomplemented if
for any x ∈ Q there exist y1, y2, . . . , yn distinct from x such

that x⊥⊥ =
⋂n

i=1
y⊥
i .

It is clear that every quasicomplemented poset is also
weakly quasicomplemented.

Lemma 3.34 If a poset Q is a 0-distributive join-semilattice
thenweak quasicomplementedness coincideswith quasicom-
plementedness.

Proof Let Q be a weakly quasicomplemented 0-distributive
join-semilattice and x ∈ Q. By definition, there exist
y1, y2, . . . , yn such that x⊥⊥ = ∩n

i=1y
⊥
i . By Lemma 3.32,

we have x⊥⊥ = ∩n
i=1y

⊥
i = (y1 ∨ y2 ∨ . . . ∨ yn)⊥. Put

y = y1 ∨ y2 ∨ . . . ∨ yn . Then x⊥⊥ = y⊥ and thus Q is
quasicomplemented. ��

A topological space X is said to be compact if for every
family of open sets {Aα}α∈� with X ⊆ ⋃

α∈� Aα there are
Aα1 , Aα2 , . . . , Aαn such that X ⊆ ⋃n

i=1 Aαi .
The following result gives the necessary condition for

compactness of Min(Q) which extends the result of Pawar
(1978).

Theorem 3.35 Let Q be a poset in P�
MFP. If Min(Q) is

compact then Q is weakly quasicomplemented.

Proof Suppose Min(Q) is compact. Let x ∈ Q. If x /∈ P
for all P ∈ Min(Q) then we claim that x⊥ = {0}. Let t ∈
x⊥ and suppose t 	= 0. By Zorn’s Lemma, there exists a
maximal �-filter F containing t . By Theorem 3.2, Q\F is a
minimal prime ideal not containing t . Since x /∈ Q\F , and
moreover since Q\F ∈ Min(Q), we have x⊥ ⊆ Q\F . But
then t ∈ x⊥ ⊆ Q\F , a contradiction. Therefore x⊥ = {0}
and thus x⊥⊥ = 0⊥.

Now, suppose that x ∈ P for some P ∈ Min(Q). We
prove that Min(Q) = m(x) ∪ {m(y) | y ∈ x⊥\P ′, P ′ ∈
h(x)}. Let P1 ∈ Min(Q). If x /∈ P1 then P1 ∈ m(x) and
we are done. Let x ∈ P1 for P1 ∈ Min(Q). Then by The-
orem 3.9, there exists y /∈ P1 such that (x, y)� = {0}.
Thus P1 ∈ h(x) and P1 ∈ m(y) for y ∈ x⊥\P1. There-
fore Min(Q) ⊆ m(x) ∪ {m(y) | y ∈ x⊥\P ′, P ′ ∈ h(x)}.
The converse inclusion is obvious. Since Min(Q) is com-
pact, there exist y1 ∈ x⊥\P1, y2 ∈ x⊥\P2, . . . , yn ∈ x⊥\Pn
with P1, P2, . . . , Pn ∈ h(x). Thus Min(Q) = m(x) ∪
(
⋃n

i=1 m(yi )). We show that m(x) ∩ (
⋃n

i=1 m(yi )) = ∅.
Suppose there exists a minimal prime ideal T ∈ m(x) ∩
(
⋃n

i=1 m(yi )). Then x /∈ T and yi /∈ T for some i ∈
{1, 2, . . . , n}. Since yi ∈ x⊥, we have (x, yi )� = {0} ⊆ T ,
a contradiction. Thus m(x) ∩ (

⋃n
i=1 m(yi )) = ∅. Now,

{0} = k(Min(Q)) = k(m(x) ∪ (
⋃n

i=1 m(yi ))) = k(m(x)) ∩
k(∪n

i=1m(yi )) = k(m(x)) ∩ (
⋂n

i=1 k(m(yi ))), by Lemma
3.11. Thus by Corollary 3.16, we obtain x⊥ ∩ (

⋂n
i=1 y

⊥
i ) =

{0}. This implies
⋂n

i=1 y
⊥
i ⊆ x⊥⊥. Let t ∈ x⊥⊥. Then

123



1662 N. Mundlik et al.

(t, y)� = {0} for every y ∈ x⊥. In particular, (t, yi )� = {0},
for every i = 1, 2, . . . , n. This yields t ∈ y⊥

i , for every
i = 1, 2, . . . , n and t ∈ ⋂n

i=1 y
⊥
i . Thus x

⊥⊥ = ⋂n
i=1 y

⊥
i . ��

Corollary 3.36 (Pawar 1978) For a 0-distributive meet-
semilattice Q, the space Min(Q) is compact if and only
if Q is weakly quasicomplemented.

4 Space of maximal ideals

In this section,we study the space ofmaximal ideals of a poset
Q. Let Max(Q) be the set of all maximal ideals of a poset
Q. Note that if a poset Q possesses 1 then by Zorn’s Lemma
there exists a maximal ideal in Q. Therefore Max(Q) 	= ∅.

Consider the ideal M = {0, a, b, c, d} of the poset
depicted in Fig. 2. It is easy to prove that M is not prime.
Consequently, maximal ideals of a poset need not be prime.
Therefore to study Max(Q) as a subspace of P(Q), first of
all we need to fulfill the inclusion Max(Q) ⊆ P(Q).

Remark 4.1 Recall that Pu
MIP is the subclass of PMIP consist-

ing of all posets having the greatest element 1 and with the
property that every maximal u-ideal (maximal among all u-
ideals) is a maximal ideal (maximal among all ideals). Note
that if a poset Q is in Pu

MIP then Max(Q) ⊆ P(Q). Thus the
assumption Q ∈ Pu

MIP yields that Max(Q) forms a subspace
of P(Q).

In view of Remark 1.4, it is clear that the class Pu
MIP is

richer than the class of 1-distributive posets (the dual of 0-
distributive posets).

Any open set of Max(Q) is of the form (P(Q)\V (I )) ∩
Max(Q). For every ideal I of Q we consider U (I ) = {M ∈
Max(Q) | I ⊆ M} and we thus obtain Max(Q)\U (I ) =
(P(Q)\V (I )) ∩ Max(Q).

Lemma 4.2 Let Q be a poset in Pu
M I P . Then the family

{Max(Q)\U ((x]) | x ∈ Q} forms a basis of Max(Q).

An element x of a poset Q with the greatest element 1
is said to be dually dense if x� = {1}, where x� = {y ∈
Q | (y, x)u = {1}}. The set of all dually dense elements of a
poset Q will be denoted by D1.

Lemma 4.3 Let Q be a bounded poset. Suppose every
maximal u-ideal is maximal among all ideals. Then the inter-
section of all maximal u-ideals of Q equals to D1, the set of
all dually dense elements of Q.

Proof Let x ∈ D1, that is, x� = {1}. Suppose on the con-
trary that x /∈

⋂
M , where the intersection is taken over all

maximal u-ideals of Q. Then there exists a maximal u-ideal
M such that x /∈ M . By Lemma 3.6, there exists y ∈ M such

Fig. 6 Example of a poset for
which P(Q) need not be π0

a b

c d

1

0

that (x, y)u = {1}. This gives y ∈ x� = {1}, a contradiction
to the fact that y ∈ M .

Conversely, let x ∈ ⋂
M and suppose that x /∈ D1. Then

x� 	= {1}, that is, there exists y ∈ x� such that y 	= 1. By
Zorn’s Lemma, there is a maximal u-ideal M with (y] ⊆ M .
As x, y ∈ M, we have Q = (x, y)u� ⊆ M , a contradiction
to the maximality of M . ��
Corollary 4.4 Let Q be a bounded poset and suppose every
maximal u-ideal is maximal among all ideals. Then D1 is an
ideal of Q.

Lemma 4.5 Let Q be a poset in Pu
M I P . Then the closure of

the set Maxu(Q) of all maximal u-ideals of Q in P(Q) is
V (D1).

Proof Applying Lemma 2.7, we obtain Maxu(Q) = V
(∩M∈Maxu(Q)M) = V (D1). ��

The following concept is studied inBalasubramani (2004).

Definition 4.6 A topological space is said to be a π0-space,
if every non-empty open set contains a non-empty closed set.

Obviously, every T1-space is a π0-space. We provide
an example of a poset Q for which P(Q) is not π0.
Consider the poset depicted in Fig. 6. Here P(Q) =
{(a], (b], (c], (d]}. The collection of open sets is {∅,P(Q)\
V ((a]),P(Q)\V ((b]),P(Q)\V ((c]),P(Q)\V ((d]),P(Q)

\V ({0, a, b}),P(Q)}. Now, P(Q)\V ((a]) = {(b]} is a non-
empty open set which does not contain any closed set. Thus
P(Q) is not π0. Hence it is not a T1-space, as every T1-space
is a π0-space.

The following lemma essentially extends the result of
Venkatanarasimhan (1972, Theorem 7) [see also Balasub-
ramani (2008, Theorem 2.4)].

Lemma 4.7 Let Q be a poset inPu
M I P with the least element

0. If the intersection of allmaximal u-ideals is zero thenP(Q)

is π0.

Proof Suppose that the intersection of all maximal u-ideals
is zero. By Lemma 4.3, D1 = {0}. Let P(Q)\V (I ) be any
non-empty open set of P(Q). Clearly, I � D1 = {0}. Then
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Fig. 7 A poset for which P(Q)

is π0 but the intersection of all
maximal ideals need not be zero

0

1

a b c

d

e f

there exists x ∈ I such that x /∈ D1. By Lemma 4.3, x /∈⋂

M∈Maxu(Q)
M , where Maxu(Q) is the set of all maximal

u-ideals of Q. Hence there is a maximal u-ideal M such that
x /∈ M and thus I � M . Since Q ∈ Pu

MIP, it follows that M
is a prime ideal. Further, V (M) = {M} yields {M} is a closed
set. Therefore we get a non-empty closed set {M} such that
{M} ⊆ P(Q)\V (I ) and consequently, P(Q) is π0. ��

The converse of Lemma 4.7 need not be true. Consider
the poset depicted in Fig. 7. Here P(Q) = {(e], ( f ]}. By
Lemma 2.12, P(Q) is a T1-space and hence it is π0, but the
intersection of all maximal ideals of Q is non-zero.

Definition 4.8 Let A and B be any two subsets of a topo-
logical space X . A is said to be weakly separable from B if
A ∩ B = ∅.

We extendTheorem2.6 ofBalasubramani (2008) to posets
as follows.

Theorem 4.9 Let Q be a poset in Pu
M I P . Then the subspace

Max(Q) ofP(Q) is the least subspace among all subspaces
X of P(Q) such that X is not weakly separable from any
point outside it.

Proof First, we prove that Max(Q) has the stated property.
For this, let A ∈ P(Q) be any element outside of Max(Q),
that is, A /∈ Max(Q). By Lemma 2.7, {A} = V (A). As
A /∈ Max(Q), there exists a maximal ideal M ⊇ A. By the
hypothesis, M is a prime ideal. Thus M ∈ V (A) and hence
M ∈ {A}. This implies Max(Q) ∩ {A} 	= ∅ and therefore
Max(Q) is not weakly separable from any element outside
it.

Let Y be any subspace of P(Q) such that Y is not weakly
separable from any point outside it.We claim thatMax(Q) ⊆
Y . Assume the opposite, that is, Max(Q) � Y . Then there
exists M ∈ Max(Q) such that M /∈ Y . But {M} = {M}.
Thus Y ∩ {M} = ∅, a contradiction to the fact that Y is not
weakly separable from any point outside it. ��
Recall that the set I d(Q) of all ideals of a poset Q forms an
algebraic lattice with respect to the set inclusion and every
principal ideal is a compact element of I d(Q).

In what follows, we study the compactness of the space of
prime ideals and the space of maximal ideals. The following
lemma extends Theorem 12 of Venkatanarasimhan (1972)
(see also Theorem 2.7 of Balasubramani 2008) to posets.

Lemma 4.10 Let Q be a poset with 1 such that Q ∈ Pu
M I P

and X be any subspace of P(Q) containing Max(Q). Then
X is compact.

Proof Let X ⊆ ⋃{P(Q)\V ((xα]) | α ∈ �}. Then we have
X ⊆ P(Q)\⋂{V ((xα])}α∈� = P(Q)\V (∨(xα])α∈�.
Hence Max(Q) ⊆ X ⊆ P(Q)\V (∨(xα])α∈�. If

∨
α∈�(xα]

	= Q then there exists a maximal ideal M ∈ Max(Q) such
that ∨(xα] ⊆ M . Thus M ∈ V (∨(xα]), a contradiction
to the fact that Max(Q) ⊆ X ⊆ P(Q)\V (∨(xα])α∈�.
Thus

∨
α∈�(xα] = Q = (1] which implies Max(Q) ⊆

X ⊆ P(Q)\V (Q). Since I d(Q) is algebraic and every
principal ideal is a compact element of I d(Q), there exist
x1, x2, . . . , xn ∈ {xα | α ∈ �} such that (x1] ∨ . . . ∨ (xn] =
(1] = Q. Thus X ⊆ P(Q)\V ((x1] ∨ . . . ∨ (xn]) =
P(Q)\⋂n

i=1{V ((xi ])} = ⋃n
i=1 P(Q)\V ((xi ]) and, conse-

quently, X is compact. ��
Corollary 4.11 Let Q be a poset in Pu

M I P . Then Max(Q)

as well as P(Q) both are compact.

Corollary 4.12 (Balasubramani 2008) If Q is a bounded
pseudocomplemented semilattice then P(Q) is compact. In
particular, Max(Q) is compact.

We extend Theorem 2.17 of Balasubramani (2008) to
posets as follows.

Theorem 4.13 Let Q be a poset inPu
M I P . Then the subspace

Max(Q) ofP(Q) is Hausdorff if and only if there exist a, b ∈
Q such that a /∈ M1, b /∈ M2 and (a, b)� ⊆ ⋂

M∈Max(Q) M
for any distinct M1, M2 ∈ Max(Q). In particular, if Q is
complemented then P(Q) is Hausdorff.

Proof Suppose that Max(Q) is Hausdorff. Let M1, M2 be
any two distinct elements of Max(Q). As Max(Q) is Haus-
dorff, there exist disjoint open neighborhoodsMax(Q)\U (I )
and Max(Q)\U (J ) containing M1 and M2, respectively.
This gives I � M1 and J � M2. Then there exist
a ∈ I and b ∈ J such that a /∈ M1 and b /∈
M2. But (Max(Q)\U (I ))

⋂
(Max(Q)\U (J )) = ∅ yields

Max(Q)\U (I ∩ J ) = ∅. Therefore U (I ∩ J ) = Max(Q).
This gives (a, b)� ⊆ I ∩ J ⊆ M for all M ∈ Max(Q) and
hence (a, b)� ⊆ ⋂

M∈Max(Q) M .
Conversely, let M1 and M2 be any two distinct max-

imal ideals. By the hypothesis, there exist a /∈ M1 and
b /∈ M2 such that (a, b)� ⊆ ⋂

M∈Max(Q) M . Clearly,
Max(Q)\U ((a]) and Max(Q)\U ((b]) are the neighbor-
hoods of M1 and M2 respectively in Max(Q). As (a, b)� ⊆
⋂

M∈Max(Q) M , we have (Max(Q)\U ((a]))⋂
(Max(Q)\
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U ((b])) = Max(Q)\U ((a] ∩ (b]) = ∅. This shows that
Max(Q) is Hausdorff.

Since Q is complemented by Lemma 3.21, we haveP(Q)

is an anti-chain. Therefore every prime ideal is a minimal
prime ideal. Let P1 and P2 be any twoprime ideals of Q. Then
P1 � P2 and P2 � P1. Therefore there exists a ∈ P1 such
that a /∈ P2. Let a′ be a complement of a. Then a′ /∈ P1, as
otherwise, Q = (a, a′)u� ⊆ P1, a contradiction. Thus there
exist a′ /∈ P1 and a /∈ P2 such that (a, a′)� ⊆ ⋂

P∈P(Q) P
and P(Q) is Hausdorff. ��

Pawar and Thakare (1977) introduced the concept of a
pm-lattice, that is, a bounded distributive lattice in which
every prime ideal is contained in a unique maximal ideal. In
the following theorem, Pawar (1978) gave a characterization
of pm-lattices.

Theorem 4.14 (Pawar 1978)Let L beaboundeddistributive
lattice. Then L is a pm-lattice if and only if for any twodistinct
maximal ideals M1 and M2, there exist a /∈ M1 and b /∈ M2

with a ∧ b = 0.

We adopt this equivalent condition to define the concept
of pm-poset.

Definition 4.15 Abounded poset Q is said to be a pm-poset,
if for any two distinct maximal ideals M1 and M2, there exist
a /∈ M1 and b /∈ M2 such that (a, b)� = {0}.

Note that in the definition of a pm-poset, we do not assume
its distributivity.

Lemma 4.16 Let Q be a poset in PMI P . If Q is a pm-poset
then every prime ideal is contained in a unique maximal
ideal.

Proof Let Q be a pm-poset. Suppose on the contrary that
there exists a prime ideal P which is contained in two distinct
maximal ideals M1 and M2. By the definition of a pm-poset,
there exist a /∈ M1 and b /∈ M2 such that (a, b)� = {0}. As
(a, b)� = {0} ⊆ P , we have a ∈ P or b ∈ P . In either the
case, we get a contradiction. Therefore every prime ideal is
contained in a unique maximal ideal. ��

A topological space X is said to be normal if for each
pair A, B of disjoint closed sets, there exist disjoint open
sets containing A and B, respectively. Note that any compact
Hausdorff space is normal.

Lemma 4.17 Let Q be a poset in Pu
M I P . If Q is a pm-poset

then Max(Q) is Hausdorff. Moreover, it is normal.

Proof LetM1 andM2 be distinct elements ofMax(Q). Since
Q is a pm-poset, there exist a /∈ M1 and b /∈ M2 such that
(a, b)� = {0} ⊆ ⋂

M∈Max(Q) M . By Theorem 4.13, Max(Q)

is Hausdorff. ByCorollary 4.11,Max(Q) is a compact space.
Thus Max(Q) is a normal space. ��

The converse of the above lemma is true if the intersection
of all maximal ideals of Q is zero.

Theorem 4.18 Let Q be a poset in Pu
M I P with the least ele-

ment 0 and such that the intersection of all maximal ideals
of Q is zero. Then Max(Q) is Hausdorff if and only if Q is
a pm-poset.

Proof It follows from Lemma 4.13. If Max(Q) is Haus-
dorff, there exist a /∈ M1 and b /∈ M2 such that (a, b)� ⊆
⋂

M∈Max(Q) M = {0} for any distinct maximal idealsM1 and
M2. Thus Q is a pm-poset.

The converse follows from Lemma 4.17. ��
We conclude this paper by extending Theorem 1.1 to

posets.

Theorem 4.19 Let Q be a poset in Pu
M I P with the least ele-

ment 0 and such that the intersection of all maximal ideals
of Q is zero. Then the following statements are equivalent:

(1) Q is a pm-poset;
(2) For any pair of distinct points M1 and M2 of Max(Q)

there exist disjoint neighborhoods of M1 and M2 in
P(Q);

(3) Max(Q) is normal.

Moreover, if Q is a complemented poset, then the following
statements are equivalent with the above three statements:

(4) P(Q) is a normal space;
(5) Min(Q) is a normal space.

Proof (1) ⇒ (2): Let Q be a pm-poset. Then for any
two distinct elements M1 and M2 of Max(Q) there exist
a /∈ M1 and b /∈ M2 with (a, b)� = {0}. Thus P(Q)\V ((a])
and P(Q)\V ((b]) are the neighborhoods of M1 and M2

in P(Q), respectively. Since (a, b)� = {0}, we have
(P(Q)\V ((a]))⋂

(P(Q)\V ((b])) = ∅.
(2) ⇒ (3): First we show that Max(Q) is Hausdorff.

Let M1 and M2 be distinct elements of Max(Q). By the
assumption, there are disjoint neighborhoods P(Q)\V (I )
and P(Q)\V (J ) of M1 and M2, respectively. Therefore I �
M1 and J � M2 and there exist a ∈ I and b ∈ J such that
a /∈ M1 and b /∈ M2. As (P(Q)\V (I ))

⋂
(P(Q)\V (J )) =

∅, we have I ∩ J ⊆ P for all P ∈ P(Q), that is,
(a, b)� ⊆ ⋂

P∈P(Q) P ⊆ ⋂
M∈Max(Q) M = {0}. By Lemma

4.13, Max(Q) is a Hausdorff space. Since Q is a bounded
poset, by Corollary 4.11, Max(Q) is a compact space. Hence
Max(Q) is both compact and Hausdorff, that is, also normal.

(3) ⇒ (1): It follows from Theorem 4.18.
(3) ⇔ (4) ⇔ (5): It follows from Lemma 3.21. ��
Note that in a bounded distributive lattice L ,∩{

P|P ∈
P(L)

} = {0}. Hence from the proof of Theorem 4.19, we
have the following corollary.
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Corollary 4.20 (Pawar and Thakare 1977) Let Q be a
bounded distributive lattice. Then the following conditions
are equivalent:

(1) Q is a pm-lattice;
(2) For any two maximal ideals M1 and M2 there exist a /∈

M1 and b /∈ M2 with a ∧ b = 0;
(3) For any pair of distinct points M1 and M2 of Max(Q)

there exist disjoint neighborhoods of M1 and M2 in
P(Q);

(4) Max(Q) is a normal space.

Moreover, if Q is a complemented lattice, then the following
statements are equivalent to the above four statements:

(5) P(Q) is a normal space;
(6) Min(Q) is a normal space.
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