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Abstract In multi-attribute group decision making meth-
ods, team often needs to deal with both quantitative data
and qualitative information with uncertainty. It is essential to
properly represent and use uncertain information to conduct
rational decision analysis. Having regarded this fact many
approaches have been proposed for solving group decision-
making problems, especially in fuzzy environments, but due
to their drawbacks they get an unreasonable preference order
of the alternatives in some situation. Thus in this paper based
on interval-valued intuitionistic fuzzy sets and evidential rea-
soning methodology, a new approach has been proposed for
supporting such decision situation. The experimental results
are examined using the proposed approach. Computation
steps and analysis results are provided to demonstrate its
implementation process. The proposed method can over-
come the drawbacks of the existing methods for fuzzy
multi-attribute group decision making in intuitionistic fuzzy
environments.
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1 Introduction

Decisionmaking is extremely intuitivewhen considering sin-
gle criterion problems, since we only need to choose the
alternativewith the highest preference rating.However,when
decision makers evaluate alternatives with multiple crite-
ria, many problems, such as weights of criteria, preference
dependence and conflicts among criteria, seem to complicate
the problems and need to be overcome bymore sophisticated
methods (Tzeng and Huang 2011). To facilitate system-
atic research in the field of multi-criteria decision making
(MCDM), Hwang and Yoon (1981) suggested that MCDM
problems can be classified into twomain categories: multiple
attribute decision making (MADM) and multiple objective
decision making (MODM), based on the different purposes
and different data types. The former is applied in the evalua-
tion facet, which is usually associated with a limited number
of predetermined alternatives and discrete preference ratings.
The latter is especially suitable for the design/planning facet,
which aims to achieve the optimal or aspired goals by con-
sidering the various interactions within the given constraints.
It is worth noting that in this study our focus will be on the
MADM’s topic.However, conventionalMADMonly consid-
ers the crisp decision problems and lacks a general paradigm
for specific real-world problems, such as group decisions and
uncertain preferences. Therefore, most MADM problems in
the real world should naturally be regarded as fuzzy MADM
problems (Bellman and Zadeh 1970).

Consequently, the fuzzy sets defined by Zadeh (1965) are
used with the ability of covering the variety set of ambiguity,
imprecise and incomplete problems.Then the interval-valued
fuzzy sets (IVFSs) defined by Zadeh (1975) are shown by the
membership function within a closed subinterval of [0, 1],
but sometimes, due to knowledge limitation and time pres-
sure, the decision making process confronts with hesitancy.
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In order to consider this matter, Atanassov (1986) introduced
the intuitionistic fuzzy sets (IFSs), which are characterized
by the membership function, non-membership function and
hesitancy function. The IVFSs and the IFSs are regarded as
flexible and practical tools for dealing with fuzziness and
uncertainty. Atanassov and Gargov (1989) later introduced
the interval-valued intuitionistic fuzzy sets (IVIFSs), as a
generalization of the IVFSs and the IFSs that provides the
membership function and non-membership function with
intervals rather than exact numbers. Hence, Zhang et al.
(2008) suggested that it is more suitable to represent an indi-
vidual’s opinion based on IVIFSs. Therefore, intuitionistic
fuzzynumbers (IFNs) and interval-valued intuitionistic fuzzy
numbers (IVIFNs) were increasingly used in different stud-
ies.

In recent years, some methods have been presented
for fuzzy multi-attribute group decision making based
on IVIFSs. Joshi and Kumar (2016) presented a fuzzy
multi-criteria group decision making method by using the
interval-valued intuitionistic fuzzy Technique for Order Per-
formance by Similarity to an Ideal Solution (TOPSIS).
Xu and Shen (2014) presented a new outranking choice
method for group decision making under interval-valued
intuitionistic fuzzy environment. Wan and Dong (2015)
developed a mathematical programming methodology for
hybrid fuzzy multi-criteria group decision making con-
sidering alternative comparisons with hesitancy degrees,
where the subjective preference relations between alterna-
tives given by each decision maker are formulated as an
IVIFS. Liu et al. (2014) presented an interval-valued intu-
itionistic fuzzy principal component analysis (IVIF-PCA)
model to solve multi-attribute large-group decision making
problems where attribute values are IVIFNs, the number of
decision attributes is often large and their correlation degrees
are high.Meng andChen (2014) presented an interval-valued
intuitionistic fuzzy multi-criteria group decision making
approach based on cross entropy and 2-additive measures.
Hashemi et al. (2016) presented an interval-valued intuition-
istic fuzzy multi-criteria group decision making approach
based on the ELECTRE III method. Li et al. (2014) pre-
sented an improved method on group decision making based
on interval-valued intuitionistic fuzzy prioritized operators.
İntepe et al. (2013) presented an interval-valued intuition-
istic fuzzy multi-criteria group decision making method for
selection of technology forecasting method. Xu (2007) pre-
sented some interval-valued intuitionistic fuzzy arithmetic
aggregation operator based on a fuzzy measure for aggregat-
ing intuitionistic fuzzy information for fuzzy group decision
making. Meanwhile, Xu and Chen (2007); Wei and Wang
(2007) presented some aggregation operators in terms of geo-
metrics. Makui et al. (2015b) presented a fuzzymulti-criteria
group decisionmaking approach based on the interval-valued
intuitionistic fuzzy preference relation and the interval-

valued intuitionistic fuzzy decision matrix, while their main
focuswas to contribute the risk attitude of each decisionmak-
ers in the decisionmaking process. Jin et al. (2014) presented
an interval-valued intuitionistic fuzzy continuous weighted
entropy which generalizes intuitionistic fuzzy entropy mea-
sures defined by Szmidt and Kacprzyk (2001) on the basis of
the continuous ordered weighted averaging (COWA) oper-
ator. However, Makui et al.’s method (Makui et al. 2015b)
and Jin et al.’s method (Jin et al. 2014) have the drawbacks
that they get unreasonable preference orders of alternatives
in some situations. Therefore, to overcome the drawbacks of
Makui et al.’s method (Makui et al. 2015b) and Jin et al.’s
method (Jin et al. 2014), we need to develop a new method
for fuzzy multi-attribute group decision making.

Then, in this paper, we propose a new fuzzy multi-
attribute group decision making method based on IVIFSs
(Atanassov and Gargov 1989) and the evidential reason-
ing methodology (ERM) (Yang 2001; Yang et al. 2006a;
Yang and Singh 1994; Yang et al. 2006b; Yang and Xu
2002). Yang and Singh (1994) presented an evidential rea-
soning approach for multi-attribute decision making with
uncertainty. Yang (2001) presented a rule- and utility-based
evidential reasoning approach for multi-attribute decision
analysis under uncertainty. Yang et al. (2006a) presented a
belief rule-based inference methodology using the eviden-
tial reasoning approach. Yang and Xu (2002) presented an
evidential reasoning algorithm for multi-attribute decision
analysis under uncertainty. Yang et al. (2006b) presented an
evidential reasoning approach for multi-attribute decision
analysis under both probabilistic and fuzzy uncertainties.
From Yang (2001), Yang et al. (2006a), Yang and Singh
(1994), Yang et al. (2006b) and Yang and Xu (2002), we can
see that the ERM has successfully been applied to deal with
multiple attribute decision analysis and multi-attribute deci-
sion making problems. Therefore, in this paper, we take the
advantage of the ERM and the powerful representation capa-
bility of the IVIFSs to propose a new fuzzy multi-attribute
group decision making method. First, the proposed method
uses the ERM to aggregate each decision maker’s decision
matrix and the weights of the attributes given by decision
makers to get the aggregated decision matrix of each deci-
sion maker. Then, it uses the obtained aggregated decision
matrices of the experts, the weights of the experts and the
ERM to get the aggregated intuitionistic fuzzy value in form
of interval for each alternative. Finally, it uses a combined
approach based on Grey Relational Analysis (GRA) and
TOPSIS method for ranking the alternatives. The proposed
method canovercome the drawbacks ofMakui et al.’smethod
(Makui et al. 2015b) and Jin et al.’s method (Jin et al. 2014)
for fuzzy multi-attribute group decision making problems in
intuitionistic fuzzy environments.

The rest of this paper is organized as follows: In Sect. 2,
we briefly review basic concepts of the IVIFSs, the combined
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approach based on GRA and TOPSIS method for ranking
the alternatives and the ERM. In Sect. 3, we analyse the
drawbacks of the fuzzy multi-attribute group decision mak-
ing methods presented in Makui et al. (2015b) and Jin et al.
(2014). In Sect. 4, we propose a new fuzzy multi-attribute
group decision making method based on the IVIFSs and
the ERM. In Sect. 5, we use some examples to compare the
experimental results of the proposed method with the ones of
the methods presented in Makui et al. (2015b) and Jin et al.
(2014). The conclusions are discussed in Sect. 6.

2 Preliminaries

As a preparation for introducing our new approach, some
relevant concepts are illustrated in this section.

2.1 Interval-valued intuitionistic fuzzy sets (IVIFSs)

Definition (Atanassov and Gargov 1989). Let D[0, 1] be
the set of all closed subintervals of the interval [0, 1]. Let
X �= � be a given set. An interval-valued intuitionistic fuzzy
set A in X is given by A = {(x, μA(x), vA(x)) : x ∈ X},
whereμA(x) ∈ [0, 1], vA(x) ∈ [0, 1] and 0 ≤ supx μA(x) +
supx vA(x) ≤ 1.

The intervals μA(x) and vA(x) denote, respectively, the
degree of belongingness and the degree of non-belongingness
of the element x to the set A. Thus, for each x ∈ X , μA(x)
and vA(x) are closed intervals whose lower and upper end
points are, respectively, denoted byμAL (x),μAU (x), vAL(x)
and vAU (x). A can be denoted by

A = {(x, [μAL(x), μAU (x)], [vAL(x), vAU (x)]) : x ∈ X},
(1)

where 0 ≤ μAU (x) + vAU (x) ≤ 1, μAL(x) ≥ 0 and
vAL(x) ≥ 0. In addition the set of all the IVIFS in X is
shown by IVIFS(X ). For each element x the unknown degree
(uncertainty degree) in A can be defined as follows:

πA(x) = 1 − μA(x) − vA(x)

= [1 − μAU (x) − vAU (x), 1 − μAL(x) − vAL(x)],
(2)

An IVIFS is denoted by A = ([a, b], [c, d]) for convenience.
Definition (Szmidt and Kacprzyk 2000) For two IVIFSs A
and B in X = {x1, x2, . . . , xm}, the normalized Hamming
distance is defined as follows:

dh(A, B) = 1

2m

m∑

i=1

(|μA(xi ) − μB(xi )|

+ |vA(xi ) − vB(xi )| + |πA(xi ) − πB(xi )|), (3)

Clearly this distance satisfies the conditions of the metric.

2.2 Combined approach based on GRA and TOPSIS
method for ranking the alternatives

Makui et al. (2015a) presented a combined approach based
on GRA and TOPSIS method for MCDM problems with
interval-valued intuitionistic fuzzy information that can accu-
rately reflect the relationship between alternative’s data and
ideal solutions. The introduced method involves the follow-
ing steps:

Step 1: Determine the positive ideal solution (PIS) and
the negative ideal solution (NIS) with interval-valued
intuitionistic fuzzy information.

r̃+ = ([a+
1 , b+

1 ], [c+
1 , d+

1 ], [a+
2 , b+

2 ], [c+
2 , d+

2 ],
. . . , [a+

n , b+
n ], [c+

n , d+
n ]), (4)

r̃− = ([a−
1 , b−

1 ], [c−
1 , d−

1 ], [a−
2 , b−

2 ], [c−
2 , d−

2 ],
. . . , [a−

n , b−
n ], [c−

n , d−
n ]), (5)

where:

r̃+
j = ([a+

j , b+
j ], [c+

j , d+
j ]) = ([max

i
ai j ,max

i
bi j ],

[min
i

ci j ,min
i

di j ]), j ∈ 1, 2, . . . , n.

r̃−
j = ([a−

j , b−
j ], [c−

j , d−
j ]) = ([min

i
ai j ,min

i
bi j ],

[max
i

ci j ,max
i

di j ]), j ∈ 1, 2, . . . , n.

Step 2: Calculate the grey relational coefficients of each
alternative from PIS and NIS, respectively, by using the
following equations:

ξ+
i j = min1≤i≤m min1≤ j≤n d(r̃i j , r̃

+
i j )+ρmax1≤i≤m max1≤ j≤n d(r̃i j , r̃

+
i j )

d(r̃i j , r̃
+
i j )+ρ max1≤i≤m max1≤ j≤n d(r̃i j , r̃

+
i j )

,

i = 1, 2, . . . ,m, j = 1, 2, . . . , n. (6)

ξ−
i j = min1≤i≤m min1≤ j≤n d(r̃i j , r̃

−
i j )+ρ max1≤i≤m max1≤ j≤n d(r̃i j , r̃

−
i j )

d(r̃i j , r̃
−
i j )+ρ max1≤i≤m max1≤ j≤n d(r̃i j , r̃

−
i j )

,

i = 1, 2, . . . ,m, j = 1, 2, . . . , n. (7)

where the identification coefficient ρ = 0.5. And the
normalized Hamming distance has been used.
Step 3: Calculating the degree of gray relational coef-
ficients of each alternative from PIS and NIS by using,
respectively:the following equations:

ξ+
i =

n∑

j=1

w jξ
+
i j , i = 1, 2, . . . ,m. (8)

ξ−
i =

n∑

j=1

w jξ
−
i j , i = 1, 2, . . . ,m. (9)
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The basic principle of the combined method is that the
chosen alternative should have the “largest degree of grey
relation” from the PIS and the “smallest degree of grey
relation” from the NIS.
Step 4: Calculate the relative grey relational degree of
each alternative from the PIS using the following equa-
tion:

ξi = ξ+
i

ξ+
i + ξ−

i

, i = 1, 2, . . . ,m. (10)

Step 5: Rank all the alternatives Xi (i = 1, 2, . . . ,m)

and select the best one(s) in accordance with ξi (i =
1, 2, . . . ,m). If any alternative has the highest ξi value,
then, it is the most important alternative.

2.3 Evidential reasoning methodology (ERM)

In the following, we briefly review the ERM for multi-
attribute decision analysis under uncertain environments
(Yang and Xu 2002). Let X be a set of alternatives, where
X = {x1, x2, . . . , xm}, and let A be a set of attributes, where
A = {a1, a2, . . . , an}. Let W be a set of weights, where
W = {w1, w2, . . . , wn}, w j is the weight of attribute a j ,
0 ≤ w j ≤ 1, 1 ≤ j ≤ n and

∑n
j=1 w j = 1. Assume that

there are pevaluation grades H1, H2, . . . , Hp for assessing
the attributes of alternatives. Let βq, j (xi ) denote the degree
of belief that attribute a j of alternative xi is assessed to
the evaluation grade Hq , where 0 ≤ βq, j (xi ) ≤ 1 and∑p

q=1 βq, j (xi ) ≤ 1. Let S(a j (xi )) denote the evaluation
value of attribute a j of alternative xi , defined as follows:

S(a j (xi )) = {Hq , βq, j (xi )}, (11)

where Hq is an evaluation grade, 1 ≤ q ≤ p, 1 ≤ i ≤ m
and 1 ≤ j ≤ n. The assessments of the attributes of the
alternatives are represented by a decision matrix D, shown
as follows:

D = (S(a j (xi )))m×n, (12)

where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Based on the deci-
sion matrix D, we can aggregate the evaluating values of the
attributes of each alternative xi , where 1 ≤ i ≤ m, described
as follows (Yang and Xu 2002):

First, the degree of belief βq, j (xi ) of the evaluation grade
Hq of attribute a j for alternatives xi is transformed into the
basic probability mass mq, j (xi ), where

mq, j (xi ) = w jβq, j (xi ), (13)

1 ≤ q ≤ p, 1 ≤ i ≤ m and 1 ≤ j ≤ n. Let mH, j (xi ) be the
remaining probability mass of attribute a j for alternative xi ,
shown as follows:

mH, j (xi ) = mH, j (xi ) + m̃H, j (xi ), (14)

mH, j (xi ) = 1 − w j and m̃H, j (xi )

= w j

⎛

⎝1 −
p∑

q=1

βq, j (xi )

⎞

⎠ , (15)

where 1 ≤ q ≤ p, 1 ≤ i ≤ m and 1 ≤ j ≤ n. The remain-
ing probability mass initially unassigned to any individual
evaluation grades will be treated separately in terms of the
relative weights of attributes and the incompleteness in an
assessment.

mH, j (xi ) is the first part of the remaining probabilitymass
that is not yet assigned to individual grades. Due to the fact
that attribute j (denoted by a j ) only plays one part in the
assessment relative to itsweight.mH, j (xi ) is a linear decreas-
ing function of w j . mH, j (xi ) will be one if the weight of a j

is zero or w j = 0; mH, j (xi ) will be zero if a j dominates
the assessment or w j = 1. In other words, mH, j (xi ) repre-
sents the degree to which other attributes can play a role in
the assessment. mH, j (xi ) should eventually be assigned to
individual grades in a way that is dependent upon how all
attributes are weighted and assessed.

m̃H, j (xi ) is the second part of the remaining probability
mass unassigned to individual grades, which is caused due
to the incompleteness in the assessment S(a j (xi )). m̃H, j (xi )
will be zero if S(a j (xi )) is complete, or

∑p
q=1 βq, j (xi ) = 1;

otherwise, m̃H, j (xi ) will be positive. m̃H, j (xi ) is propor-
tional to w j and will cause the subsequent assessments to be
incomplete.

Next, define GI (l) as the subset of the first l attributed as
follows:

GI (l) = {a1, a2, . . . , al} , (16)

Let mq,I (l)(xi ) be a probability mass defined as the degree
to which all the l attributes in GI (l) support the hypothesis
that xi is assessed to the grade Hq .mH,I (l)(xi ) is the remain-
ing probability mass unassigned to individual grades after
all the attributes in GI (l) have been assessed.mq,I (l)(xi ) and
mH,I (l)(xi ) can be generated by combining the basic proba-
bility masses mq, j (xi ) and mH, j (xi ) for all q = 1, 2, . . . , p
and j = 1, 2, . . . , l.

Given the above definitions and discussions, the recur-
sive evidential reasoning algorithm can be summarized as
follows:

{Hq} : mq,I (l+1)(xi ) = KI (l+1)[mq,I (l)(xi )mq,l+1(xi )

+mH,I (l)(xi )mq,l+1(xi ) + mq,I (l)(xi )mH,l+1(xi )], (17)

mH,I (l+1)(xi ) = mH,I (l+1)(xi ) + m̃H,I (l+1)(xi ), (18)

{H} : mH,I (l+1)(xi ) = KI (l+1)[mH,I (l)(xi )mH,l+1(xi )],
(19)
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{H} : m̃H,I (l+1)(xi ) = KI (l+1)[m̃H,I (l)(xi )m̃H,l+1(xi )

+mH,I (l)(xi )m̃H,l+1(xi ) + m̃H,I (l)(xi )mH,l+1(xi )],
(20)

KI (l+1) =

⎡

⎢⎢⎢⎢⎢⎢⎣
1 −

p∑

u=1

p∑

f = 1
f �= u

mu,I (l)(xi )m f,l+1(xi )

⎤

⎥⎥⎥⎥⎥⎥⎦

−1

,(21)

where KI (l+1) is a normalizing factor so that
∑p

q=1mq,I (l+1)

(xi ) + mH,I (l+1)(xi ) = 1. Note that mq,I (1)(xi ) = mq,1(xi )
(q = 1, 2, . . . , p) and mH,I (1)(xi ) = mH,1(xi ). Also note
that the attributes in G are numbered arbitrarily. This means
that the resultsmq,I (l)(xi ), (q = 1, 2, . . . , p) andmH,I (l)(xi )
do not depend on the order in which the attributes are aggre-
gated.

In the evidential reasoning approach, after all n assess-
ments have been aggregated, the combined degree of belief
βq is directly given by

{
Hq
} : βq(xi ) = mq,I (n)(xi )

1 − mH,I (n)(xi )
, (22)

{H} : βH (xi ) = m̃H,I (n)(xi )

1 − mH,I (n)(xi )
, (23)

where βH is the degree of belief unassigned to any individual
evaluation grade after all the n attributes have been assessed.
It denotes the degree of incompleteness that generated in the
assessment. And

∑p
q=1 βq(xi ) + βH (xi ) = 1.

3 Analysing the drawbacks of the existing fuzzy
multi-attribute group decision making methods

In this paper, we find that the Makui et al.’s method (Makui
et al. 2015b) has the drawback that it will get an unreasonable
preference order of the alternatives when there is an evalu-
ating intuitionistic fuzzy value whose membership degree is
equal to 1 and/or non-membership degree is equal to 0 due to
the fact that the collective intuitionistic fuzzy decisionmatrix
˙̃D =

( ˙̃di j
)

m×n
presented in Makui et al. (2015b) is not well

defined, where

˙̃D =
( ˙̃di j

)

m×n
=
([

1 −
t∏

k=1

(1 − ai jσ(k)
)wk , 1

−
t∏

k=1

(1 − bi jσ(k)
)wk

]
,

[
t∏

k=1

ci jσ(k)
wk ,

t∏

k=1

di jσ(k)
wk

])

m×n

,

(24)

where w = (w1, w2, . . . , wt )
T is the weight vector of the

interval-valued intuitionistic fuzzy ordered weighted aggre-
gation (IIFOWA) operator, wk ∈ [0, 1] and

∑t
k=1 wk =

1 . The weight vector of the IIFOWA operator can be
determined by the Xu’s method presented in Xu (2005).
([ai j , bi j ](k), [ci j , di j ](k)) is an IVIFN denoting the evalu-
ating value of decision maker ek with respect to attribute a j

of alternative xi , (
˙̃di jσ(1) ,

˙̃di jσ(2) , . . . ,
˙̃di jσ(t)

) be a permutation

of (
˙̃d(1)
i j ,

˙̃d(2)
i j , . . . ,

˙̃d(t)
i j ), such that ˙̃di jσ(k−1) ≥ ˙̃di jσ(k)

for all k,

and let ˙̃di jσ(k)
= ([ai jσ(k)

, bi jσ(k)
], [ci jσ(k)

, di jσ(k)
]); t is the

number of decision makers. If ai jσ(k)
= 1 and/or bi jσ(k)

= 1
exist, where 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ t . Then
1 −∏t

k=1(1 − ai jσ(k)
)wk and/or 1 −∏t

k=1(1 − bi jσ(k)
)wk in

Eq. (24) become 1 and it gets an incorrect collective intu-

itionistic fuzzy decision matrix ˙̃D and gets an unreasonable
preference order of the alternatives. In addition if ci jσ(k)

= 0
and/or di jσ(k)

= 0 exist, where 1 ≤ i ≤ m, 1 ≤ j ≤ n,

1 ≤ k ≤ t. Then
∏t

k=1 c
wk
i jσ(k)

and/or
∏t

k=1 d
wk
i jσ(k)

in Eq.
(24) become 0 and it gets an incorrect collective intuitionistic

fuzzy decisionmatrix ˙̃D and gets an unreasonable preference
order of the alternatives.

For example, for any value of wk , where 0 ≤ wk ≤ 1,
if ai jσ(1) = 1, ai jσ(2) = 0, . . ., ai jσ(t)

= 0, then 1 −∏t
k=1(1 − ai jσ(k)

)wk inEq.(24) becomes 1,which is incorrect
due to the fact that if only ai jσ(1) = 1 exists, then it causes

1 − ∏t
k=1(1 − ai jσ(k)

)wk in Eq. (24) to become 1 without
considering the values of ai jσ(2) = 0, ai jσ(3) = 0, . . . and
ai jσ(t)

= 0. Therefore, the IIFOWA operator shown in Eq.
(24) is not well defined. Because the fuzzy multi-attribute
group decision making method presented in Makui et al.
(2015b) uses the ill-defined IIFOWA operator shown in Eq.
(24) to aggregate the evaluating intuitionistic fuzzy values of
the decision makers to get the unified payoff decision matrix
˙̃D, it will get an unreasonable preference order of the alter-
natives in some situations.

In this paper, we also find that the Jin et al.’s method (Jin
et al. 2014) has the following drawbacks:
(1) It will get an unreasonable preference order of the alter-

natives when there is an evaluating intuitionistic fuzzy
value whose membership degree is equal to 1 and/or
non-membership degree is equal to 0 due to the fact
that the collective intuitionistic fuzzy decision matrix
D = (α̃i j )m×n presented in Jin et al. (2014) is not well
defined, where

D = (
α̃i j
)
m×n =

([
1 −

t∏

k=1

(1 − a(k)
i j )wk , 1

−
t∏

k=1

(1 − b(k)
i j )wk

]
,

[
t∏

k=1

c(k)wk

i j ,

t∏

k=1

d(k)wk

i j

])

m×n

,

(25)
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where w = (w1, w2, . . . , wt )
T is the weight vector of

the interval-valued intuitionistic fuzzy weighted arith-
metic aggregation (IIFWA) operator, wk ∈ [0, 1], and∑t

k=1 wk = 1. ([ai j , bi j ](k), [ci j , di j ](k)) is an IVIFN
denoting the evaluating value of decision maker ek with
respect to attribute a j of alternative xi , such that 1 ≤
i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ t . If a(k)

i j = 1

and/or b(k)
i j = 1 exist, then 1−∏t

k=1(1 − a(k)
i j )wk and/or

1−∏t
k=1(1 − b(k)

i j )wk in Eq. (25) become 1 and it gets an
incorrect collective intuitionistic fuzzy decisionmatrix D
and gets an unreasonable preference order of the alterna-
tives. And also, if c(k)

i j = 0 and/or d(k)
i j = 0 exists, then

∏t
k=1 c

(k)wk

i j and/or
∏t

k=1 d
(k)wk

i j in Eq. (25) become0 and
it gets an incorrect collective intuitionistic fuzzy decision
matrix D and gets an unreasonable preference order of
the alternatives.

(2) In addition to above drawback, the proposed method in
Jin et al. (2014) has another disadvantage that it cannot
allow the attributes to have different weights assigned by
different experts.
In the next session, we will propose a new method for
fuzzymulti-attribute group decisionmaking to overcome
the drawbacks of the methods presented in Makui et al.
(2015b) and Jin et al. (2014).

4 A new method for fuzzy multi-attribute group
decision making based on the IVIFSs and the
ERM

In this section, we take the advantage of the ERM and the
powerful representation capability of the IVIFSs to propose

a new fuzzy multi-attribute group decision making method
to overcome the drawbacks of Makui et al.’s method (Makui
et al. 2015b) and Jin et al.’s method (Jin et al. 2014). Let E
be a set of decision makers, where E = {e1, e2, . . . , et }, let
X be a set of alternatives, where X = {x1, x2, . . . , xm} and
let A be a set of attributes, where A = {a1, a2, . . . , an}. Let
Dk be a decision matrix given by decision maker ek , shown
as follows:

Dk =

⎛

⎜⎜⎜⎝

(
[a11, b11](k) , [c11, d11](k)

)
(
[a21, b21](k) , [c21, d21](k)

)
(
[a12, b12](k) , [c12, d12](k)

)
(
[a22, b22](k) , [c22, d22](k)

) · · ·
· · ·

(
[a1n, b1n](k) , [c1n, d1n](k)

)
(
[a2n, b2n](k) , [c2n, d2n](k)

)

...
. . .

...(
[am1, bm1](k) , [cm1, dm1](k)

) (
[am2, bm2](k) , [cm2, dm2](k)

) · · · ([amn, bmn](k) , [cmn, dmn](k)
)

⎞

⎟⎟⎟⎠ ,

where ([ai j , bi j ](k), [ci j , di j ](k)) is an IVIFN denoting the
evaluating value of decisionmaker ek with respect to attribute
a j of alternative xi ; 0 ≤ aki j ≤ 1, 0 ≤ bki j ≤ 1, 0 ≤ cki j ≤ 1,

0 ≤ dki j ≤ 1, 0 ≤ bki j + dki j ≤ 1, 1 ≤ i ≤ m, m is the number
of alternatives, 1 ≤ j ≤ n, n is the number of attributes,
1 ≤ k ≤ t , and t is the number of decision makers. Let
Wk be a set of weights given by decision maker ek , where
Wk = {wk

1, w
k
2, . . . , w

k
n}, wk

j is the weight of attribute a j

given by decision maker ek , 0 ≤ wk
j ≤ 1, 1 ≤ j ≤ n

and
∑n

j=1 wk
j = 1. Let ω be a set of weights, where ω =

{ω1, ω2, . . . , ωt } is the weight of decision maker ek , 0 ≤
ωk ≤ 1, 1 ≤ k ≤ t and

∑t
k=1 ωk = 1. Assume that H1,

H2 and H are the evaluation grades to be used for assessing
the attributes of alternatives, where H1 represents completely
satisfying the fuzzy concept “excellence”, H2 represents not
satisfying the fuzzy concept “excellence”, and H represents
the evaluation grade of indeterminacy. The proposed method
for fuzzy multi-attribute group decision making based on the
IVIFSs and the ERM is now presented as follows:

• Step 1: Let

(26)
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where ([β1, jL (xi ), β1, jU (xi )](k), [β2, jL (xi ), β2, jU
(xi )](k)) = ([ai j , bi j ](k), [ci j , di j ](k)), [β1, jL (xi ), β1, jU
(xi )](k) and [β2, jL (xi ), β2, jU (xi )](k) denote the degrees of
belief of decision maker ek with respect to attribute a j of
alternative xi regarding the evaluation grades H1 and H2,
respectively, 0 ≤ β1, jL (xi )

k ≤ 1, 0 ≤ β1, jU (xi )k ≤ 1,
0 ≤ β2, jL (xi )

k ≤ 1, 0 ≤ β2, jU (xi )k ≤ 1, 0 ≤
β1, jU (xi )k + β2, jU (xi )k ≤ 1, 1 ≤ i ≤ m, 1 ≤ j ≤ n
and 1 ≤ k ≤ t . Based on the decision matrix Dk =
(([β1, jL (xi ), β1, jU (xi )](k), [β2, jL (xi ), β2, jU (xi )](k)))m×n

and the weights wk
1, w

k
2,…,wk

nof the attributes a1,
a2,…,an , respectively,wherewk

j is theweight of attributes
a j is given by decision maker ek , 1 ≤ i ≤ m, 1 ≤ j ≤ n
and 1 ≤ k ≤ t , do the following sub-steps:

• Step 1.1:Transform the degree of belief [βq, jL (xi ), βq, jU
(xi )](k) of decisionmaker ek with respect to attribute a j of
alternative xi regarding the evaluation grade Hq into the
basic probability mass [mq, jL (xi ),mq, jU (xi )](k) and the
remaining probability mass [mH, jL (xi ),mH, jU (xi )](k) of
decision maker ek with respect to attribute a j of alter-
native xi regarding the evaluation grades Hq and H ,
respectively, shown as follows:

[
mq, jL (xi ),mq, jU (xi )

](k) =wk
j×
[
βq, jL (xi ), βq, jU (xi )

](k)
,

(27)

[
mH, jL (xi ),mH, jU (xi )

](k) =
[
(1 − wk

j ) + wk
j

(
1−

2∑

q=1

βq, jU (xi )

)
, (1−wk

j )+wk
j

(
1−

2∑

q=1

βq, jL (xi )

)](k)
,

(28)

where wk
j is the weight of attribute a j given by decision

maker ek , wk
j ∈ [0, 1],

∑n
j=1 wk

j = 1,1 ≤ i ≤ m, 1 ≤
j ≤ n, 1 ≤ q ≤ 2 and 1 ≤ k ≤ t . Based on Eq. (27),
get the basic probability mass matrix Pk of the decision
maker ek , shown as follows:

Pk =
(([

m1, jL (xi ),m1, jU (xi )
](k)

,

[
m2, jL (xi ),m2, jU (xi )

](k)))

m×n
, (29)

where 0 ≤ m1, jL (xi )
k ≤ 1, 0 ≤ m1, jU (xi )k ≤ 1, 0 ≤

m2, jL (xi )
k ≤ 1, 0 ≤ m2, jU (xi )k ≤ 1, 0 ≤ m1, jU (xi )k +

m2, jU (xi )k ≤ 1, 1 ≤ i ≤ m, 1 ≤ j ≤ n and 1 ≤ k ≤ t .
• Step 1.2: Define GI (n) as the set of the all n attributed as
follows:

GI (n) = {a1, a2, . . . , an} , (30)

Let [mq,I (n)L (xi ),mq,I (n)U (xi )](k) be a probability mass
defined as the degree to which all the n attributes in
GI (n) support the hypothesis that xi is assessed to the
grade Hq . [mH,I (n)L (xi ),mH,I (n)U (xi )](k) is the remain-
ing probability mass unassigned to individual grades
after all the attributes in GI (n) have been assessed.
[mq,I (n)L (xi ),mq,I (n)U (xi )](k) and [mH,I (n)L (xi ),
mH,I (n)U (xi )](k) can be generated by combining the
basic probability masses [mq, jL (xi ),mq, jU (xi )](k) and
[mH, jL (xi ),mH, jU (xi )](k) for all q = 1, 2, j = 1, 2,
. . . , n, as described in Eq.(17) to Eq.(21). Note that
[mq,I (1)L (xi ),mq,I (1)U (xi )](k)=[mq,1L (xi ),mq,1U (xi )](k)
(q = 1, 2) and [mH,I (1)L (xi ),mH,I (1)U (xi )](k)
= [mH,1L (xi ),mH,1U (xi )](k).

K (k)
I (l+1)L

=

⎡

⎢⎢⎢⎢⎢⎢⎣
1−

p∑

u=1

p∑

f =1
f �=u

mu,I (l)L (xi )m f,l+1L (xi )

⎤

⎥⎥⎥⎥⎥⎥⎦

−1

,

(31)

K (k)
I (l+1)U

=

⎡

⎢⎢⎢⎢⎢⎢⎣
1−

p∑

u=1

p∑

f =1
f �=u

mu,I (l)U (xi )m f,l+1U (xi )

⎤

⎥⎥⎥⎥⎥⎥⎦

−1

,

(32)

[
mH,I (l+1)L (xi ),mH,I (l+1)U (xi )

](k) = [
mH,I (l+1)L (xi )

+ m̃H,I (l+1)L (xi ), mH,I (l+1)U (xi )

+ m̃H,I (l+1)U (xi )
](k)

, (33)

[
mq,I (l+1)L (xi ),mq,I (l+1)U (xi )

](k)

= [K (k)
I (l+1)L

[
mq,I (l)L (xi )mq,l+1L (xi )

+mH,I (l)U (xi )mq,l+1L (xi )

+mq,I (l)L (xi )mH,l+1U (xi )], K (k)
I (l+1)U[

mq,I (l)U (xi )mq,l+1U (xi ) + mH,I (l)L (xi )mq,l+1U (xi )

+mq,I (l)U (xi )mH,l+1L (xi )
]](k)

, (34)

• Step 1.3:Aggregate the evaluating values of the attributes
of alternative xi to get the degree of belief [βqL (xi ),
βqU (xi )](k) of decision maker ek with respect to alterna-
tive xi regarding the evaluationgrade Hq and the degree of
belief [βHL (xi ), βHU (xi )](k) produced by unknown infor-
mation, respectively, shown as follows:
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{
Hq
} : [βqL (xi ), βqU (xi )

](k)

=
[

mq,I (n)L (xi )

1 − mH,I (n)L (xi )
,

mq,I (n)U (xi )

1 − mH,I (n)U (xi )

](k)

, (35)

{H} : [βHL (xi ), βHU (xi )
](k)

=
[

m̃H,I (n)L (xi )

1 − mH,I (n)L (xi )
,

m̃H,I (n)U (xi )

1 − mH,I (n)U (xi )

](k)

, (36)

where
∑2

q=1[βqL (xi ), βqU (xi )](k)+[βHL (xi ), βHU (xi )](k)
= 1, 1 ≤ i ≤ m, 1 ≤ q ≤ 2 and 1 ≤ k ≤ t .
Let the obtained aggregated values [β1L (xi ), β1U (xi )](k)
and [β2L (xi ), β2U (xi )](k) form an IVIFN ([β1L (xi ), β1U
(xi )](k), [β2L (xi ), β2U (xi )](k)), where [β1L (xi ), β1U
(xi )](k) and [β2L (xi ), β2U (xi )](k) are the degrees of belief
of decision maker ek with respect to alternative xi to the
evaluation grades H1 and H2, respectively, 1 ≤ i ≤ m
and 1 ≤ k ≤ t .

• Step 2: Based on the obtained IVIFNs ([β1L (xi ), β1U
(xi )](k),[β2L (xi ), β2U (xi )](k)), 1 ≤ i ≤ m and 1 ≤ k ≤
t , construct the aggregated decision matrix Y , shown as
follows:

(37)

where ([β1,kL (xi ), β1,kU (xi )], [β2,kL (xi ), β2,kU (xi )]) =
([β1L (xi ), β1U (xi )](k), [β2L (xi ),
β2U (xi )](k)), ([β1,kL (xi ), β1,kU (xi )], [β2,kL (xi ), β2,kU
(xi )]) is an IVIFN denoting the evaluating value of deci-
sion maker ek with respect to alternative xi , [β1,kL (xi ),
β1,kU (xi )] and [β2,kL (xi ), β2,kU (xi )] denote the degrees
of belief of decisionmaker ek with respect to alternative xi
regarding the evaluation grades H1 and H2, respectively,
0 ≤ β1,kL (xi ) ≤ 1, 0 ≤ β1,kU (xi ) ≤ 1, 0 ≤ β2,kL (xi ) ≤
1, 0 ≤ β2,kU (xi ) ≤ 1, 0 ≤ β1,kU (xi ) + β2,kU (xi ) ≤ 1,
1 ≤ i ≤ m and 1 ≤ k ≤ t .

• Step 3: Based on the aggregated decision matrix Y =
(([β1,kL (xi ), β1,kU (xi )], [β2,kL (xi ), β2,kU (xi )]))m×t and
the weights ω1, ω2, …, and ωt of decision makers e1, e2,
…, and et , respectively, do the following sub-steps:

• Step 3.1: Transform the degree of belief [βq,kL (xi ),
βq,kU (xi )] of decision maker ek with respect to alterna-

tive xi regarding the evaluation grade Hq into the basic
probability mass [mq,kL (xi ),mq,kU (xi )] and the remain-
ing probability mass [mH,kL (xi ),mH,kU (xi )] of decision
maker ek with respect to alternative xi regarding the eval-
uation grades Hq and H , respectively, shown as follows:

[
mq,kL (xi ),mq,kU (xi )

]=ωk × [
βq,kL (xi ), βq,kU (xi )

]
,

(38)

[
mH,kL (xi ),mH,kU (xi )

]

=
⎡

⎣(1 − ωk) + ωk

⎛

⎝1 −
2∑

q=1

βq,kU (xi )

⎞

⎠ ,

× (1 − ωk) + ωk(1 −
2∑

q=1

βq,kL (xi ))

⎤

⎦ , (39)

where ωk is the weight of decision maker ek , ωk ∈ [0, 1],∑t
k=1 ωk = 1,1 ≤ i ≤ m, 1 ≤ q ≤ 2 and 1 ≤ k ≤ t .

Based on Eq. (38), get the basic probability mass matrix
P , shown as follows:

P = (([
m1,kL (xi ),m1,kU (xi )

]
,
[
m2,kL (xi ),m2,kU (xi )

]))
m×t ,

(40)

where 0 ≤ m1,kL (xi ) ≤ 1, 0 ≤ m1,kU (xi ) ≤ 1, 0 ≤
m2,kL (xi ) ≤ 1, 0 ≤ m2,kU (xi ) ≤ 1, 0 ≤ m1,kU (xi ) +
m2,kU (xi ) ≤ 1, 1 ≤ i ≤ m and 1 ≤ k ≤ t .

• Step 3.2:DefineGI (t) as the set of the all t decision maker
as follows:

GI (t) = {e1, e2, . . . , et } , (41)

Let [mq,I (t)L (xi ),mq,I (t)U (xi )] be a probability mass
defined as the degree to which all the t decision mak-
ers in GI (t) support the hypothesis that xi is assessed to
the grade Hq . [mH,I (t)L (xi ),mH,I (t)U (xi )] is the remain-
ing probability mass unassigned to individual grades after
all the decision makers in GI (t) have been assessed.
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[mq,I (t)L (xi ),mq,I (t)U (xi )] and [mH,I (t)L (xi ),mH,I (t)U
(xi )] can be generated by combining the basic probabil-
ity masses [mq,kL (xi ),mq,kU (xi )] and [mH,kL (xi ),mH,kU
(xi )] for all q = 1, 2, k = 1, 2, . . . , t , as described in Eq.
(31) to Eq. (34). Note that [mq,I (1)L (xi ),mq,I (1)U (xi )] =
[mq,1L (xi ),mq,1U (xi )](q = 1, 2) and [mH,I (1)L (xi ),
mH,I (1)U (xi )] = [mH,1L (xi ),mH,1U (xi )].

• Step 3.3: Aggregate the evaluating values of the deci-
sion makers with respect to alternative xi to get the
degree of belief [βqL (xi ), βqU (xi )] of alternative xi regard-
ing the evaluation grade Hq and the degree of belief
[βHL (xi ), βHU (xi )] produced by unknown information,
respectively, shown as follows:

{
Hq
} : [βqL (xi ), βqU (xi )

]

=
[

mq,I (t)L (xi )

1 − mH,I (t)L (xi )
,

mq,I (t)U (xi )

1 − mH,I (t)U (xi )

]
, (42)

{H} : [βHL (xi ), βHU (xi )
]

=
[

m̃H,I (t)L (xi )

1 − mH,I (t)L (xi )
,

m̃H,I (t)U (xi )

1 − mH,I (t)U (xi )

]
, (43)

where
∑2

q=1[βqL (xi ), βqU (xi )] + [βHL (xi ), βHU (xi )] =
1, 1 ≤ i ≤ m and 1 ≤ q ≤ 2. Let the obtained aggre-
gated values [β1L (xi ), β1U (xi )] and [β2L (xi ), β2U (xi )]
form an IVIFN ([β1L (xi ), β1U (xi )], [β2L (xi ), β2U (xi )]),
where [β1L (xi ), β1U (xi )] and [β2L (xi ), β2U (xi )] are the
degrees of belief of alternative xi to the evaluation grades
H1 and H2, respectively, and 1 ≤ i ≤ m.

• Step 4: Based on Eqs. (4) and (5), determine the PIS and
the NIS with interval-valued intuitionistic fuzzy informa-
tion, r̃+ and r̃−, where: r̃+ = ([β+

1L
, β+

1U
], [β+

2L
, β+

2U
]) =

([max β1L (xi ),max β1U (xi )], [min β2L (xi ),
min β2U (xi )]) and r̃− = ([β−

1L
, β−

1U
], [β−

2L
, β−

2U
]) =

([min β1L (xi ),min β1U (xi )], [max β2L (xi ),max β2U (xi )]),
i = 1, 2, . . . ,m. Then calculate the gray relational coef-
ficients of each alternative from PIS and NIS using,
respectively, the following equations:

ξ+
i =

min
1≤i≤m

d(r̃i , r̃+) + ρ max
1≤i≤m

d(r̃i , r̃+)

d(r̃i , r̃+) + ρ max
1≤i≤m

d(r̃i , r̃+)
, i = 1, 2, . . . ,m (44)

ξ−
i =

min
1≤i≤m

d(r̃i , r̃−) + ρ max
1≤i≤m

d(r̃i , r̃−)

d(r̃i , r̃−) + ρ max
1≤i≤m

d(r̃i , r̃−)
, i = 1, 2, . . . ,m (45)

where the identification coefficient ρ = 0.5. And the nor-
malized Hamming distance has been used. Based on Eq.
(10), calculate the relative grey relational degree of each
alternative from the PIS by using the following equation:

ξi = ξ+
i

ξ+
i + ξ−

i

, i = 1, 2, . . . ,m. (46)

Rank all the alternatives Xi (i = 1, 2, . . . ,m) and select
the best one(s) in accordance with ξi (i = 1, 2, . . . ,m). If
any alternative has the highest ξi value, then, it is the most
important alternative.

5 Experimental results

In this section, we use some examples to compare the exper-
imental results of the proposed method with the ones of the
methods presented in Makui et al. (2015b) and Jin et al.
(2014).

Example 5.1 (Makui et al. 2015b). In order to increase
market share over the long-termplanningTajhizTunnelEngi-
neering (T.T.E) company wants to select the best supplier
for establishing an effective supply chain management. Four
suppliers were identified (x1, x2, x3andx4) and five experts
(e1, e2, e3, e4ande5), who were technically competent and
experienced, participated in their study. The expert weight
vectorwasgivenbyω = (0.30, 0.25, 0.15, 0.15, 0.15)T.The
criteria considered in the selection process were as follows:
producing ability (a1), financial issues (a2), delivery time (a3)
and services (a4). The decision matrices D1, D2, D3, D4 and
D5 represented by IVIFNs given by the decision makers e1,
e2, e3, e4 and e5, respectively, are shown as follows:

D1 =

⎡

⎢⎢⎣

([0.3, 0.5] , [0.4, 0.5]) ([0.6, 0.7] , [0.1, 0.2]) ([0.5, 0.6] , [0.2, 0.3]) ([0.4, 0.7] , [0.0, 0.1])
([0.6, 0.8] , [0.1, 0.2]) ([0.6, 0.7] , [0.2, 0.3]) ([0.6, 0.8] , [0.1, 0.2]) ([0.5, 0.7] , [0.1, 0.3])
([0.7, 0.8] , [0.1, 0.2])
([0.2, 0.3] , [0.4, 0.5])

([0.7, 0.8] , [0.0, 0.1])
([0.5, 0.7] , [0.1, 0.3])

([0.5, 0.7] , [0.2, 0.3])
([0.4, 0.6] , [0.3, 0.4])

([0.6, 0.8] , [0.1, 0.2])
([0.4, 0.5] , [0.1, 0.3])

⎤

⎥⎥⎦ ,

D2 =

⎡

⎢⎢⎣

([0.5, 0.6] , [0.3, 0.4]) ([0.4, 0.6] , [0.1, 0.2]) ([0.6, 0.7] , [0.2, 0.3]) ([0.5, 0.6] , [0.1, 0.2])
([0.6, 0.7] , [0.1, 0.2]) ([0.5, 0.6] , [0.3, 0.4]) ([0.4, 0.5] , [0.3, 0.4]) ([0.5, 0.7] , [0.1, 0.2])
([0.6, 0.8] , [0.1, 0.2])
([0.4, 0.6] , [0.3, 0.4])

([0.6, 0.7] , [0.1, 0.2])
([0.4, 0.5] , [0.0, 0.1])

([0.5, 0.6] , [0.3, 0.4])
([0.4, 0.5] , [0.2, 0.4])

([0.7, 0.9] , [0.0, 0.1])
([0.4, 0.6] , [0.1, 0.2])

⎤

⎥⎥⎦ ,
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D3 =

⎡

⎢⎢⎣

([0.5, 0.7] , [0.2, 0.3]) ([0.5, 0.6] , [0.1, 0.2]) ([0.5, 0.6] , [0.2, 0.4]) ([0.4, 0.6] , [0.1, 0.3])
([0.5, 0.6] , [0.1, 0.2]) ([0.5, 0.7] , [0.2, 0.3]) ([0.3, 0.6] , [0.2, 0.4]) ([0.6, 0.8] , [0.0, 0.1])
([0.5, 0.8] , [0.1, 0.2])
([0.4, 0.6] , [0.1, 0.3])

([0.5, 0.8] , [0.1, 0.2])
([0.4, 0.6] , [0.0, 0.1])

([0.4, 0.7] , [0.2, 0.3])
([0.3, 0.5] , [0.2, 0.4])

([0.5, 0.8] , [0.0, 0.2])
([0.4, 0.6] , [0.2, 0.3])

⎤

⎥⎥⎦ ,

D4 =

⎡

⎢⎢⎣

([0.3, 0.4] , [0.4, 0.6]) ([0.6, 0.7] , [0.1, 0.2]) ([0.7, 0.8] , [0.1, 0.2]) ([0.5, 0.6] , [0.0, 0.1])
([0.5, 0.8] , [0.1, 0.2]) ([0.6, 0.7] , [0.2, 0.3]) ([0.4, 0.6] , [0.1, 0.4]) ([0.5, 0.6] , [0.1, 0.3])
([0.7, 0.8] , [0.1, 0.2])
([0.2, 0.3] , [0.4, 0.5])

([0.7, 0.8] , [0.0, 0.1])
([0.5, 0.7] , [0.1, 0.3])

([0.5, 0.7] , [0.2, 0.3])
([0.5, 0.6] , [0.1, 0.3])

([0.6, 0.7] , [0.1, 0.2])
([0.4, 0.5] , [0.1, 0.3])

⎤

⎥⎥⎦ ,

D5 =

⎡

⎢⎢⎣

([0.3, 0.4] , [0.4, 0.6]) ([0.6, 0.7] , [0.2, 0.3]) ([0.6, 0.7] , [0.2, 0.3]) ([0.5, 0.7] , [0.0, 0.1])
([0.4, 0.6] , [0.2, 0.4]) ([0.6, 0.8] , [0.1, 0.2]) ([0.5, 0.6] , [0.3, 0.4]) ([0.7, 0.8] , [0.1, 0.2])
([0.5, 0.7] , [0.1, 0.3])
([0.2, 0.3] , [0.5, 0.6])

([0.7, 0.9] , [0.0, 0.1])
([0.5, 0.7] , [0.1, 0.3])

([0.5, 0.6] , [0.2, 0.4])
([0.4, 0.6] , [0.1, 0.2])

([0.6, 0.9] , [0.0, 0.1])
([0.4, 0.6] , [0.1, 0.3])

⎤

⎥⎥⎦ ,

Assume that the weights of the attributes a1, a2, a3 and
a4 given by the decision maker e1 are 0.4, 0.3, 0.2and 0.1,
respectively, i.e., w1

1 = 0.4, w1
2 = 0.3, w1

3 = 0.2 and w1
4 =

0.1. Assume that the weights of the attributes a1, a2, a3 and
a4 given by the decision maker e2 are 0.4, 0.4, 0.1 and 0.1,
respectively, i.e., w2

1 = 0.4, w2
2 = 0.4, w2

3 = 0.1 and w2
4 =

0.1. Assume that the weights of the attributes a1, a2, a3 and
a4 given by the decision maker e3 are 0.3, 0.4, 0.2and 0.1,
respectively, i.e., w3

1 = 0.3, w3
2 = 0.4, w3

3 = 0.2 and w3
4 =

0.1. Assume that the weights of the attributes a1, a2, a3 and
a4 given by the decision maker e4 are 0.4, 0.4, 0.1 and 0.1,
respectively, i.e., w4

1 = 0.4, w4
2 = 0.4, w4

3 = 0.1 and w4
4 =

0.1. Assume that the weights of the attributes a1, a2, a3 and
a4 given by the decision maker e5 are 0.3, 0.3, 0.2 and 0.2,
respectively, i.e., w5

1 = 0.3, w5
2 = 0.3, w5

3 = 0.2 and w5
4 =

0.2.

• [Step 1]: Based on the decision matrices D1, D2, D3,
D4 and D5 and the weights of the attributes given by the
decision makers, we can get

• [Step 1.1]: Based on Eqs. (27) and (29), we can get the
basic probability mass matrices P1, P2, P3, P4 and P5
of the decision makers e1, e2, e3, e4ande5, respectively,
shown as follows:

P1 =

⎡

⎢⎢⎣

([0.12, 0.20] , [0.16, 0.20]) ([0.18, 0.21] , [0.03, 0.06]) ([0.10, 0.12] , [0.04, 0.06]) ([0.04, 0.07] , [0.00, 0.01])
([0.24, 0.32] , [0.04, 0.08]) ([0.18, 0.21] , [0.06, 0.09]) ([0.12, 0.16] , [0.02, 0.04]) ([0.05, 0.07] , [0.01, 0.03])
([0.28, 0.32] , [0.04, 0.08])
([0.08, 0.12] , [0.16, 0.20])

([0.21, 0.24] , [0.00, 0.03])
([0.15, 0.21] , [0.03, 0.09])

([0.10, 0.14] , [0.04, 0.06])
([0.08, 0.12] , [0.06, 0.08])

([0.06, 0.08] , [0.01, 0.02])
([0.04, 0.05] , [0.01, 0.03])

⎤

⎥⎥⎦ ,

P2 =

⎡

⎢⎢⎣

([0.20, 0.24] , [0.12, 0.16]) ([0.16, 0.24] , [0.04, 0.08]) ([0.06, 0.07] , [0.02, 0.03]) ([0.05, 0.06] , [0.01, 0.02])
([0.24, 0.28] , [0.04, 0.08]) ([0.20, 0.24] , [0.12, 0.16]) ([0.04, 0.05] , [0.03, 0.04]) ([0.05, 0.07] , [0.01, 0.02])
([0.24, 0.32] , [0.04, 0.08])
([0.16, 0.24] , [0.12, 0.16])

([0.24, 0.28] , [0.04, 0.08])
([0.16, 0.20] , [0.00, 0.04])

([0.05, 0.06] , [0.03, 0.04])
([0.04, 0.05] , [0.02, 0.04])

([0.07, 0.09] , [0.00, 0.01])
([0.04, 0.06] , [0.01, 0.02])

⎤

⎥⎥⎦ ,

P3 =

⎡

⎢⎢⎣

([0.15, 0.21] , [0.06, 0.09]) ([0.20, 0.24] , [0.04, 0.08]) ([0.10, 0.12] , [0.04, 0.08]) ([0.04, 0.06] , [0.01, 0.03])
([0.15, 0.18] , [0.03, 0.06]) ([0.20, 0.28] , [0.08, 0.12]) ([0.06, 0.12] , [0.04, 0.08]) ([0.06, 0.08] , [0.00, 0.01])
([0.15, 0.24] , [0.03, 0.06])
([0.12, 0.18] , [0.03, 0.09])

([0.20, 0.32] , [0.04, 0.08])
([0.16, 0.24] , [0.00, 0.04])

([0.08, 0.14] , [0.04, 0.06])
([0.06, 0.10] , [0.04, 0.08])

([0.05, 0.08] , [0.00, 0.02])
([0.04, 0.06] , [0.02, 0.03])

⎤

⎥⎥⎦ ,

P4 =

⎡

⎢⎢⎣

([0.12, 0.16] , [0.16, 0.24]) ([0.24, 0.28] , [0.04, 0.08]) ([0.07, 0.08] , [0.01, 0.02]) ([0.05, 0.06] , [0.00, 0.01])
([0.20, 0.32] , [0.04, 0.08]) ([0.24, 0.28] , [0.08, 0.12]) ([0.04, 0.06] , [0.01, 0.04]) ([0.05, 0.06] , [0.01, 0.03])
([0.28, 0.32] , [0.04, 0.08])
([0.08, 0.12] , [0.16, 0.20])

([0.28, 0.32] , [0.00, 0.04])
([0.20, 0.28] , [0.04, 0.12])

([0.05, 0.07] , [0.02, 0.03])
([0.05, 0.06] , [0.01, 0.03])

([0.06, 0.07] , [0.01, 0.02])
([0.04, 0.05] , [0.01, 0.03])

⎤

⎥⎥⎦ ,

P5 =

⎡

⎢⎢⎣

([0.09, 0.12] , [0.12, 0.18]) ([0.18, 0.21] , [0.06, 0.09]) ([0.12, 0.14] , [0.40, 0.06]) ([0.10, 0.14] , [0.00, 0.02])
([0.12, 0.18] , [0.06, 0.12]) ([0.18, 0.24] , [0.03, 0.06]) ([0.10, 0.12] , [0.60, 0.08]) ([0.14, 0.16] , [0.02, 0.04])
([0.15, 0.21] , [0.03, 0.09])
([0.06, 0.09] , [0.15, 0.18])

([0.21, 0.27] , [0.00, 0.03])
([0.15, 0.21] , [0.03, 0.09])

([0.10, 0.12] , [0.40, 0.08])
([0.08, 0.12] , [0.20, 0.04])

([0.12, 0.18] , [0.00, 0.02])
([0.08, 0.12] , [0.02, 0.06])

⎤

⎥⎥⎦ ,
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where [m1, jL (xi ),m1, jU (xi )](k)and [m2, jL (xi ),m2, jU
(xi )](k) are the basic probability masses of decision
maker ek with respect to attribute a j of alternative xi
regarding the evaluation grades H1 and H2, respectively,
1 ≤ i ≤ 4, 1 ≤ j ≤ 4 and 1 ≤ k ≤ 5.

• [Step 1.2]: Define GI (4) as the set of the all 4 attributed
as follows:

GI (4) = {a1, a2, a3, a4} ,

We can now use the recursive Eqs. (31)–(34) to cal-
culate the combined probability masses as follows. Let
[mq,I (1)L (xi ),mq,I (1)U (xi )](k) = [mq,1L (xi ),mq,1U
(xi )](k) and [mH,I (1)L (xi ),mH,I (1)U (xi )](k) = [mH,1L
(xi ),mH,1U (xi )](k) for (q = 1, 2). Therefore,

[
m1,I (4)L (x1),m1,I (4)U (x1)

](1) = [0.3362, 0.4141] ,
[
m1,I (4)L (x2),m1,I (4)U (x2)

](1) = [0.4654, 0.5354] ,
[
m1,I (4)L (x3),m1,I (4)U (x3)

](1) = [0.5182, 0.5686] ,
[
m1,I (4)L (x4),m1,I (4)U (x4)

](1) = [0.2683, 0.3353] ,
[
m2,I (4)L (x1),m2,I (4)U (x1)

](1) = [0.1649, 0.2099] ,
[
m2,I (4)L (x2),m2,I (4)U (x2)

](1) = [0.0844, 0.1313] ,
[
m2,I (4)L (x3),m2,I (4)U (x3)

](1) = [0.0557, 0.1045] ,
[
m2,I (4)L (x4),m2,I (4)U (x4)

](1) = [0.1950, 0.2589] ,
[
m1,I (4)L (x1),m1,I (4)U (x1)

](2) = [0.3700, 0.4380] ,
[
m1,I (4)L (x2),m1,I (4)U (x2)

](2) = [0.4054, 0.4518] ,
[
m1,I (4)L (x3),m1,I (4)U (x3)

](2) = [0.4768, 0.5449] ,
[
m1,I (4)L (x4),m1,I (4)U (x4)

](2) = [0.3323, 0.4160] ,
[
m2,I (4)L (x1),m2,I (4)U (x1)

](2) = [0.1371, 0.1845] ,
[
m2,I (4)L (x2),m2,I (4)U (x2)

](2) = [0.1339, 0.1826] ,
[
m2,I (4)L (x3),m2,I (4)U (x3)

](2) = [0.0708, 0.1188] ,
[
m2,I (4)L (x4),m2,I (4)U (x4)

](2) = [0.1167, 0.1777] ,
[
m1,I (4)L (x1),m1,I (4)U (x1)

](3) = [0.3869, 0.4439] ,
[
m1,I (4)L (x2),m1,I (4)U (x2)

](3) = [0.3766, 0.4669] ,
[
m1,I (4)L (x3),m1,I (4)U (x3)

](3) = [0.3931, 0.5481] ,
[
m1,I (4)L (x4),m1,I (4)U (x4)

](3) = [0.3254, 0.4292] ,
[
m2,I (4)L (x1),m2,I (4)U (x1)

](3) = [0.1023, 0.1658] ,
[
m2,I (4)L (x2),m2,I (4)U (x2)

](3) = [0.1066, 0.1617] ,
[
m2,I (4)L (x3),m2,I (4)U (x3)

](3) = [0.0773, 0.1178] ,
[
m2,I (4)L (x4),m2,I (4)U (x4)

](3) = [0.0672, 0.1489] ,
[
m1,I (4)L (x1),m1,I (4)U (x1)

](4) = [0.3717, 0.4031] ,
[
m1,I (4)L (x2),m1,I (4)U (x2)

](4) = [0.4339, 0.5196] ,

[
m1,I (4)L (x3),m1,I (4)U (x3)

](4) = [0.5451, 0.5941] ,
[
m1,I (4)L (x4),m1,I (4)U (x4)

](4) = [0.2957, 0.3624] ,
[
m2,I (4)L (x1),m2,I (4)U (x1)

](4) = [0.1474, 0.2286] ,
[
m2,I (4)L (x2),m2,I (4)U (x2)

](4) = [0.0998, 0.1554] ,
[
m2,I (4)L (x3),m2,I (4)U (x3)

](4) = [0.0428, 0.0962] ,
[
m2,I (4)L (x4),m2,I (4)U (x4)

](4) = [0.1665, 0.2536] ,
[
m1,I (4)L (x1),m1,I (4)U (x1)

](5) = [0.3694, 0.4061] ,
[
m1,I (4)L (x2),m1,I (4)U (x2)

](5) = [0.4162, 0.4735] ,
[
m1,I (4)L (x3),m1,I (4)U (x3)

](5) = [0.4782, 0.5479] ,
[
m1,I (4)L (x4),m1,I (4)U (x4)

](5) = [0.2902, 0.3644] ,
[
m2,I (4)L (x1),m2,I (4)U (x1)

](5) = [0.1477, 0.2109] ,
[
m2,I (4)L (x2),m2,I (4)U (x2)

](5) = [0.1102, 0.1670] ,
[
m2,I (4)L (x3),m2,I (4)U (x3)

](5) = [0.0452, 0.1163] ,
[
m2,I (4)L (x4),m2,I (4)U (x4)

](5) = [0.1635, 0.2330] .

Based on Eq. (33), we can get the remaining combined
probability masses, shown as follows:

[
mH,I (4)L (x1),mH,I (4)U (x1)

](1) = [0.3760, 0.4989] ,
[
mH,I (4)L (x2),mH,I (4)U (x2)

](1) = [0.3333, 0.4502] ,
[
mH,I (4)L (x3),mH,I (4)U (x3)

](1) = [0.3269, 0.4261] ,
[
mH,I (4)L (x4),mH,I (4)U (x4)

](1) = [0.4058, 0.5367] ,
[
mH,I (4)L (x1),mH,I (4)U (x1)

](2) = [0.3775, 0.4929] ,
[
mH,I (4)L (x2),mH,I (4)U (x2)

](2) = [0.3656, 0.4607] ,
[
mH,I (4)L (x3),mH,I (4)U (x3)

](2) = [0.3363, 0.4524] ,
[
mH,I (4)L (x4),mH,I (4)U (x4)

](2) = [0.4063, 0.5510] ,
[
mH,I (4)L (x1),mH,I (4)U (x1)

](3) = [0.3903, 0.5108] ,
[
mH,I (4)L (x2),mH,I (4)U (x2)

](3) = [0.3714, 0.5168] ,
[
mH,I (4)L (x3),mH,I (4)U (x3)

](3) = [0.3341, 0.5296] ,
[
mH,I (4)L (x4),mH,I (4)U (x4)

](3) = [0.4219, 0.6074] ,
[
mH,I (4)L (x1),mH,I (4)U (x1)

](4) = [0.3683, 0.4809] ,
[
mH,I (4)L (x2),mH,I (4)U (x2)

](4) = [0.3250, 0.4663] ,
[
mH,I (4)L (x3),mH,I (4)U (x3)

](4) = [0.3097, 0.4121] ,
[
mH,I (4)L (x4),mH,I (4)U (x4)

](4) = [0.3840, 0.5378] ,
[
mH,I (4)L (x1),mH,I (4)U (x1)

](5) = [0.3830, 0.4829] ,
[
mH,I (4)L (x2),mH,I (4)U (x2)

](5) = [0.3595, 0.4736] ,
[
mH,I (4)L (x3),mH,I (4)U (x3)

](5) = [0.3358, 0.4766] ,
[
mH,I (4)L (x4),mH,I (4)U (x4)

](5) = [0.4026, 0.5463] ,
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• [Step 1.3]: Based on Eq. (35), we can get

[
β1L (x1), β1U (x1)

](1) = [0.4967, 0.6284] ,
[
β2L (x1), β2U (x1)

](1) = [0.2436, 0.3185] ,
[
β1L (x2), β1U (x2)

](1) = [0.6875, 0.8126] ,
[
β2L (x2), β2U (x2)

](1) = [0.1247, 0.1993] ,
[
β1L (x3), β1U (x3)

](1) = [0.7656, 0.8630] ,
[
β2L (x3), β2U (x3)

](1) = [0.0823, 0.1586] ,
[
β1L (x4), β1U (x4)

](1) = [0.3963, 0.5088] ,
[
β2L (x4), β2U (x4)

](1) = [0.2881, 0.3929] ,
[
β1L (x1), β1U (x1)

](2) = [0.5341, 0.6473] ,
[
β2L (x1), β2U (x1)

](2) = [0.1979, 0.2727] ,
[
β1L (x2), β1U (x2)

](2) = [0.5852, 0.6677] ,
[
β2L (x2), β2U (x2)

](2) = [0.1933, 0.2699] ,
[
β1L (x3), β1U (x3)

](2) = [0.6883, 0.8053] ,
[
β2L (x3), β2U (x3)

](2) = [0.1022, 0.1756] ,
[
β1L (x4), β1U (x4)

](2) = [0.4796, 0.6148] ,
[
β2L (x4), β2U (x4)

](2) = [0.1685, 0.2627] ,
[
β1L (x1), β1U (x1)

](3) = [0.5663, 0.6696] ,
[
β2L (x1), β2U (x1)

](3) = [0.1498, 0.2502] ,
[
β1L (x2), β1U (x2)

](3) = [0.5512, 0.7042] ,
[
β2L (x2), β2U (x2)

](3) = [0.1561, 0.2439] ,
[
β1L (x3), β1U (x3)

](3) = [0.5754, 0.8267] ,
[
β2L (x3), β2U (x3)

](3) = [0.1132, 0.1776] ,
[
β1L (x4), β1U (x4)

](3) = [0.4763, 0.6474] ,

[
β2L (x4), β2U (x4)

](3) = [0.0984, 0.2245] ,
[
β1L (x1), β1U (x1)

](4) = [0.5398, 0.6028] ,
[
β2L (x1), β2U (x1)

](4) = [0.2141, 0.3418] ,
[
β1L (x2), β1U (x2)

](4) = [0.6302, 0.7771] ,
[
β2L (x2), β2U (x2)

](4) = [0.1449, 0.2324] ,
[
β1L (x3), β1U (x3)

](4) = [0.7918, 0.8885] ,
[
β2L (x3), β2U (x3)

](4) = [0.0621, 0.1439] ,
[
β1L (x4), β1U (x4)

](4) = [0.4295, 0.5420] ,[
β2L (x4), β2U (x4)

](4) = [0.2419, 0.3793] ,
[
β1L (x1), β1U (x1)

](5) = [0.5570, 0.6341] ,
[
β2L (x1), β2U (x1)

](5) = [0.2227, 0.3292] ,
[
β1L (x2), β1U (x2)

](5) = [0.6276, 0.7393] ,
[
β2L (x2), β2U (x2)

](5) = [0.1662, 0.2607] ,
[
β1L (x3), β1U (x3)

](5) = [0.7210, 0.8554] ,
[
β2L (x3), β2U (x3)

](5) = [0.0681, 0.1816] ,
[
β1L (x4), β1U (x4)

](5) = [0.4376, 0.5690] ,
[
β2L (x4), β2U (x4)

](5) = [0.2466, 0.3637] ,

Therefore, we can get the aggregated IVIFNs
([

β1L (xi ),

β1U (xi )
]
,
[
β2L (xi ), β2U (xi )

])(k) of the evaluating value
of the attributes of decision maker ek with respect to alter-
native xi , where 1 ≤ i ≤ 4and 1 ≤ k ≤ 5.

• [Step 2]: Based on the obtained aggregated IVIFNs
([β1L (xi ), β1U (xi )], [β2L (xi ), β2U (xi )])(k), where 1 ≤
i ≤ 4 and 1 ≤ k ≤ 5, we can get the aggregated decision
matrix Y , shown as follows:

Y =

⎡

⎢⎢⎣

([0.4967, 0.6284] , [0.2436, 0.3185])
([0.6875, 0.8126] , [0.1248, 0.1993])
([0.7656, 0.8630] , [0.0824, 0.1586])
([0.3963, 0.5088] , [0.2881, 0.3929])

([0.5341, 0.6473] , [0.1979, 0.2727])
([0.5852, 0.6677] , [0.1933, 0.2699])
([0.6883, 0.8053] , [0.1022, 0.1756])
([0.4796, 0.6148] , [0.1685, 0.2627])

([0.5663, 0.6696] , [0.1498, 0.2502])
([0.5512, 0.7042] , [0.1561, 0.2439])
([0.5754, 0.8267] , [0.1132, 0.1776])
([0.4763, 0.6474] , [0.0984, 0.2245])

([0.5398, 0.6028] , [0.2141, 0.3418])
([0.6302, 0.7771] , [0.1449, 0.2324])
([0.7918, 0.8885] , [0.0621, 0.1439])
([0.4295, 0.5420] , [0.2419, 0.3793])

([0.5570, 0.6341] , [0.2227, 0.3292])
([0.6276, 0.7393] , [0.1662, 0.2607])
([0.7210, 0.8554] , [0.0681, 0.1816])
([0.4376, 0.5690] , [0.2466, 0.3637])

⎤

⎥⎥⎦ ,
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• [Step 3]: Based on the obtained aggregated decision
matrix Y and the weights ω1, ω2, ω3, ω4 and ω5 of the
decision makers e1, e2, e3, e4 and e5, respectively, we can
get

• [Step 3.1]: Based on Eqs. (38) and (40), we can get the
basic probability mass matrix P , shown as follows:

P=

⎡

⎢⎢⎣

([0.1490, 0.1885] , [0.0730, 0.0955])
([0.2062, 0.2437] , [0.0374, 0.0598])
([0.2296, 0.2589] , [0.0247, 0.0476])
([0.1189, 0.1526] , [0.0864, 0.1178])

([0.1335, 0.1618] , [0.0494, 0.0681])
([0.1463, 0.1669] , [0.0483, 0.0674])
([0.1720, 0.2013] , [0.0255, 0.0439])
([0.1199, 0.1537] , [0.0421, 0.0656])

([0.0849, 0.1004] , [0.0224, 0.0375])
([0.0826, 0.1056] , [0.0234, 0.0365])
([0.0863, 0.1240] , [0.0169, 0.0266])
([0.0714, 0.0971] , [0.0147, 0.0336])

([0.0809, 0.0904] , [0.0321, 0.0512])
([0.0945, 0.1165] , [0.0217, 0.0348])
([0.1187, 0.1332] , [0.0093, 0.0215])
([0.0644, 0.0813] , [0.0362, 0.0569])

([0.0835, 0.0951] , [0.0334, 0.0493])
([0.0941, 0.1108] , [0.0249, 0.0391])
([0.1081, 0.1283] , [0.0102, 0.0272])
([0.0656, 0.0853] , [0.0370, 0.0545])

⎤

⎥⎥⎦ ,

where [m1,kL (xi ),m1,kU (xi )] and [m2,kL (xi ),m2,kU (xi )]
are the basic probability masses of decision maker ek of
alternative xi regarding the evaluation grades H1 and H2,
respectively, 1 ≤ i ≤ 4, and 1 ≤ k ≤ 5.

• [Step 3.2]: Define GI (5) as the set of the all 5 attributed
as follows:

GI (5) = {e1, e2, e3, e4, e5} ,

We can now use the recursive Eqs. (31)–(34) to cal-
culate the combined probability masses as follows: Let
[mq,I (1)L (xi ),mq,I (1)U (xi )] = [mq,1L (xi ),mq,1U (xi )]
and [mH,I (1)L (xi ),mH,I (1)U (xi )] = [mH,1L (xi ),mH,1U
(xi )] for (q = 1, 2). Therefore,

[
m1,I (5)L (x1),m1,I (5)U (x1)

] = [0.3921, 0.4285] ,
[
m1,I (5)L (x2),m1,I (5)U (x2)

] = [0.4654, 0.5080] ,
[
m1,I (5)L (x3),m1,I (5)U (x3)

] = [0.5458, 0.5896] ,
[
m1,I (5)L (x4),m1,I (5)U (x4)

] = [0.3353, 0.3843] ,
[
m2,I (5)L (x1),m2,I (5)U (x1)

] = [0.1345, 0.1729] ,
[
m2,I (5)L (x2),m2,I (5)U (x2)

] = [0.0933, 0.1260] ,
[
m2,I (5)L (x3),m2,I (5)U (x3)

] = [0.0494, 0.0832] ,
[
m2,I (5)L (x4),m2,I (5)U (x4)

] = [0.1502, 0.1981] ,

Based on Eq. (33), we can get the remaining combined
probability masses, shown as follows:

[
mH,I (5)L (x1),mH,I (5)U (x1)

] = [0.3986, 0.4734] ,
[
mH,I (5)L (x2),mH,I (5)U (x2)

] = [0.3660, 0.4413] ,
[
mH,I (5)L (x3),mH,I (5)U (x3)

] = [0.3272, 0.4048] ,
[
mH,I (5)L (x4),mH,I (5)U (x4)

] = [0.4176, 0.5145] ,

• [Step 3.3]: Based on Eq. (42), we can get

[
β1L (x1), β1U (x1)

] = [0.6003, 0.6735] ,
[
β2L (x1), β2U (x1)

] = [0.2060, 0.2718] ,
[
β1L (x2), β1U (x2)

] = [0.7126, 0.7984] ,

[
β2L (x2), β2U (x2)

] = [0.1429, 0.1980] ,
[
β1L (x3), β1U (x3)

] = [0.8057, 0.9168] ,
[
β2L (x3), β2U (x3)

] = [0.0257, 0.0708] ,
[
β1L (x4), β1U (x4)

] = [0.5133, 0.6040] ,
[
β2L (x4), β2U (x4)

] = [0.2300, 0.3114] ,

Therefore, we can get the aggregated IVIFN ([β1L (xi ),
β1U (xi )], [β2L (xi ), β2U (xi )])of alternative xi with respect
to all the decision makers e1, e2, e3, e4 and e5, where
1 ≤ i ≤ 4. shown as follows:

([
β1L (x1), β1U (x1)

]
,
[
β2L (x1), β2U (x1)

])

= ([0.6003, 0.6735] , [0.2060, 0.2718]) ,([
β1L (x2), β1U (x2)

]
,
[
β2L (x2), β2U (x2)

])

= ([0.7126, 0.7984] , [0.1429, 0.1980]) ,([
β1L (x3), β1U (x3)

]
,
[
β2L (x3), β2U (x3)

])

= ([0.8057, 0.9168] , [0.0257, 0.0708]) ,([
β1L (x4), β1U (x4)

]
,
[
β2L (x4), β2U (x4)

])

= ([0.5133, 0.6040] , [0.2300, 0.3114]) ,

• [Step 4]: Obtain the PIS and the NIS with interval-valued
intuitionistic fuzzy information by utilizing Eqs. (4) and
(5), respectively.

A+ = ([0.8057, 0.9168] , [0.0257, 0.0708] , [0.0124, 0.1686]),

A− = ([0.5133, 0.6040] , [0.2300, 0.3114] , [0.0846, 0.2567]),

Calculate the separation measures, using the normalized
Hamming distance.

d+
i =

⎡

⎢⎢⎣

0.2243
0.1222
0.0000
0.3026

⎤

⎥⎥⎦ , d−
i =

⎡

⎢⎢⎣

0.0782
0.1968
0.3026
0.0000

⎤

⎥⎥⎦ ,
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Calculate the grey relational coefficients of each alterna-
tive from PIS and NIS.

ξ+
i =

⎡

⎢⎢⎣

0.4027
0.5531
1.0000
0.3333

⎤

⎥⎥⎦ , ξ−
i =

⎡

⎢⎢⎣

0.6591
0.4345
0.3333
1.0000

⎤

⎥⎥⎦ ,

Calculate the relative grey relational degree of each alter-
native from PIS.

ξ1=0.3792, ξ2=0.5600, ξ3=0.750, ξ4=0.2500.

Because ξ3 > ξ2 > ξ1 > ξ4, the preference order of the
alternatives x1, x2, x3 and x4 is x3 > x2 > x1 > x4 . This
result coincides with the one presented in Makui et al.
(2015b).

Table 1 shows a comparison of the preference order of
the alternatives for different methods, where the proposed
method and Makui et al.’s method (Makui et al. 2015b) get
the same preference order of the alternatives, i.e., x3 > x2 >

x1 > x4, whereas Jin et al.’s method (Jin et al. 2014) cannot
deal with Example 5.1 due to the fact that it cannot allow
the attributes to have different weights assigned by different
experts.

Table 1 A comparison of the preference orders of the alternatives of
Example 5.1 for different methods

Methods Preference order

Makui et al.’s method (Makui et al. 2015b) x3 > x2 > x1 > x4

Jin et al.’s method (Jin et al. 2014) N/A

The proposed method x3 > x2 > x1 > x4

Note: “N/A” denotes it cannot get the preference order of the alternatives
due to the fact that it cannot allow the attributes to have different weights
assigned by different experts

Example 5.2 (Jin et al. 2014). There are five emergency
operating centers (EOCs) (x1, x2, x3, x4andx5) to be eval-
uated by three evaluators (e1, e2ande3). We suppose that the
emergency management evaluation task has the following
features:

(1) There are eight criteria to evaluate five EOCs, including
energy (a1), food (a2), health and medical services (a3),
communication equipment (a4), emergency medical per-
sonnel (a5), human resource coordinator (a6), cars (a7)
and generators (a8).

(2) There are three evaluators e1, e2ande3 associated with
weighting vector ω = (0.35, 0.40, 0.25)T.

The decisionmatrices D1, D2 and D3 represented by IVIFNs
given by the decision makers e1, e2 and e3, respectively, are
shown as follows:

D1 =

⎡

⎢⎢⎢⎢⎣

([0.6, 0.8] , [0.1, 0.2]) ([0.4, 0.7] , [0.0, 0.1]) ([0.3, 0.7] , [0.2, 0.3]) ([0.7, 0.8] , [0.1, 0.2])
([0.2, 0.4] , [0.4, 0.5]) ([0.5, 0.7] , [0.1, 0.2]) ([0.2, 0.4] , [0.4, 0.5]) ([0.2, 0.3] , [0.4, 0.6])
([0.6, 0.7] , [0.2, 0.3])
([0.4, 0.5] , [0.2, 0.4])
([0.7, 0.8] , [0.1, 0.1])

([0.6, 0.6] , [0.3, 0.4])
([0.7, 0.8] , [0.1, 0.2])
([0.6, 0.8] , [0.0, 0.2])

([0.1, 0.4] , [0.4, 0.5])
([0.3, 0.4] , [0.5, 0.6])
([0.2, 0.4] , [0.3, 0.4])

([0.6, 0.8] , [0.0, 0.2])
([0.6, 0.8] , [0.0, 0.2])
([0.3, 0.4] , [0.3, 0.5])

([0.5, 0.6] , [0.3, 0.4]) ([0.7, 0.8] , [0.1, 0.2]) ([0.2, 0.4] , [0.6, 0.6]) ([0.1, 0.4] , [0.1, 0.5])
([0.7, 0.8] , [0.0, 0.1]) ([0.3, 0.4] , [0.4, 0.5]) ([0.2, 0.3] , [0.3, 0.5]) ([0.4, 0.5] , [0.4, 0.5])
([0.2, 0.4] , [0.4, 0.5])
([0.1, 0.3] , [0.4, 0.6])
([0.5, 0.5] , [0.0, 0.3])

([0.4, 0.5] , [0.2, 0.3])
([0.2, 0.4] , [0.4, 0.6])
([0.3, 0.3] , [0.4, 0.5])

([0.7, 0.9] , [0.1, 0.1])
([0.6, 0.7] , [0.0, 0.1])
([0.6, 0.7] , [0.2, 0.3])

([0.4, 0.4] , [0.3, 0.4])
([0.5, 0.5] , [0.5, 0.5])
([0.3, 0.4] , [0.3, 0.4])

⎤

⎥⎥⎥⎥⎦
,

D2 =

⎡

⎢⎢⎢⎢⎣

([0.3, 0.4] , [0.4, 0.6]) ([0.3, 0.5] , [0.2, 0.3]) ([0.3, 0.5] , [0.4, 0.4]) ([0.6, 0.8] , [0.0, 0.1])
([0.3, 0.3] , [0.4, 0.4]) ([0.3, 0.5] , [0.1, 0.2]) ([0.3, 0.4] , [0.4, 0.6]) ([0.6, 0.7] , [0.1, 0.1])
([0.4, 0.6] , [0.2, 0.3])
([0.4, 0.5] , [0.4, 0.5])
([0.1, 0.2] , [0.5, 0.7])

([0.5, 0.5] , [0.2, 0.2])
([0.1, 0.2] , [0.4, 0.7])
([0.4, 0.6] , [0.1, 0.2])

([0.3, 0.4] , [0.1, 0.2])
([0.3, 0.3] , [0.3, 0.5])
([0.3, 0.4] , [0.3, 0.5])

([0.7, 0.9] , [0.1, 0.1])
([0.5, 0.6] , [0.2, 0.3])
([0.1, 0.1] , [0.6, 0.7])

([0.1, 0.3] , [0.5, 0.6]) ([0.8, 0.9] , [0.1, 0.1]) ([0.1, 0.4] , [0.3, 0.5]) ([0.3, 0.4] , [0.3, 0.3])
([0.4, 0.5] , [0.2, 0.3]) ([0.2, 0.3] , [0.3, 0.5]) ([0.4, 0.7] , [0.0, 0.1]) ([0.4, 0.5] , [0.4, 0.5])
([0.5, 0.5] , [0.5, 0.5])
([0.2, 0.4] , [0.0, 0.3])
([0.2, 0.4] , [0.4, 0.5])

([0.2, 0.5] , [0.3, 0.5])
([0.1, 0.3] , [0.5, 0.6])
([0.3, 0.4] , [0.5, 0.6])

([0.1, 0.3] , [0.4, 0.6])
([0.5, 0.7] , [0.2, 0.2])
([0.1, 0.3] , [0.4, 0.6])

([0.5, 0.7] , [0.2, 0.3])
([0.4, 0.5] , [0.3, 0.5])
([0.3, 0.5] , [0.3, 0.5])

⎤

⎥⎥⎥⎥⎦
,

123



Multi-attribute group decision making approach based on interval-valued intuitionistic… 5075

D3 =

⎡

⎢⎢⎢⎢⎣

([0.2, 0.4] , [0.3, 0.5]) ([0.2, 0.3] , [0.6, 0.7]) ([0.6, 0.7] , [0.2, 0.2]) ([0.8, 0.8] , [0.1, 0.2])
([0.4, 0.5] , [0.5, 0.5]) ([0.3, 0.5] , [0.1, 0.2]) ([0.4, 0.5] , [0.3, 0.3]) ([0.7, 0.8] , [0.1, 0.2])
([0.2, 0.3] , [0.5, 0.6])
([0.1, 0.4] , [0.4, 0.5])
([0.8, 0.9] , [0.0, 0.1])

([0.3, 0.4] , [0.5, 0.6])
([0.6, 0.8] , [0.0, 0.2])
([0.3, 0.8] , [0.0, 0.1])

([0.8, 0.9] , [0.1, 0.1])
([0.2, 0.4] , [0.5, 0.6])
([0.6, 0.7] , [0.2, 0.3])

([0.9, 0.9] , [0.0, 0.1])
([0.5, 0.7] , [0.1, 0.2])
([0.5, 0.7] , [0.1, 0.2])

([0.3, 0.5] , [0.4, 0.5]) ([0.7, 0.8] , [0.1, 0.2]) ([0.5, 0.7] , [0.2, 0.3]) ([0.1, 0.3] , [0.5, 0.6])
([0.4, 0.6] , [0.2, 0.3]) ([0.3, 0.5] , [0.3, 0.5]) ([0.6, 0.7] , [0.2, 0.2]) ([0.3, 0.4] , [0.4, 0.5])
([0.5, 0.6] , [0.2, 0.3])
([0.7, 0.8] , [0.1, 0.2])
([0.2, 0.4] , [0.4, 0.5])

([0.7, 0.8] , [0.1, 0.2])
([0.1, 0.4] , [0.2, 0.5])
([0.4, 0.7] , [0.2, 0.3])

([0.7, 0.7] , [0.2, 0.3])
([0.2, 0.3] , [0.4, 0.6])
([0.6, 0.7] , [0.2, 0.3])

([0.1, 0.4] , [0.2, 0.4])
([0.3, 0.5] , [0.4, 0.5])
([0.3, 0.4] , [0.3, 0.5])

⎤

⎥⎥⎥⎥⎦
,

Assume that the weights of the attributes a1, a2, a3, a4, a5,
a6, a7 and a8 given by the decision maker e1 are 0.1537,
0.1052, 0.0933, 0.1646, 0.1170, 0.1458, 0.1337 and 0.0867,
respectively, i.e.,w1

1 = 0.1537,w1
2 = 0.1052,w1

3 = 0.0933,
w1
4 = 0.1646, w1

5 = 0.1170, w1
6 = 0.1458, w1

7 = 0.1337
and w1

8 = 0.0867. Assume that the weights of the attributes
a1, a2, a3, a4, a5, a6, a7 and a8 given by the decisionmaker e2
are 0.1537, 0.1052, 0.0933, 0.1646, 0.1170, 0.1458, 0.1337
and 0.0867, respectively, i.e., w2

1 = 0.1537, w2
2 = 0.1052,

w2
3 = 0.0933, w2

4 = 0.1646, w2
5 = 0.1170, w2

6 = 0.1458,
w2
7 = 0.1337and w2

8 = 0.0867. Assume that the weights
of the attributes a1, a2, a3, a4„ a5, a6, a7 and a8 given by
the decision maker e3 are 0.1537, 0.1052, 0.0933, 0.1646,
0.1170, 0.1458, 0.1337 and 0.0867, respectively, i.e., w3

1 =
0.1537, w3

2 = 0.1052, w3
3 = 0.0933, w3

4 = 0.1646, w3
5 =

0.1170, w3
6 = 0.1458, w3

7 = 0.1337 and w3
8 = 0.0867.

• [Step 1]: Based on the decision matrices D1, D2 and D3

and the weights of the attributes given by the decision
makers e1, e2 and e3, we can get the aggregated IVIFNs
([β1L (xi ), β1U (xi )], [β2L (xi ), β2U (xi )])(k) of the evalu-
ating value of the attributes of decision maker ek with
respect to alternative xi , where 1 ≤ i ≤ 5 and 1 ≤ k ≤ 3,
shown as follows:

(
[
β1L (x1), β1U (x1)

]
,
[
β2L (x1), β2U (x1)

]
)(1)

= ([0.5563, 0.7050] , [0.1943, 0.2590]),

(
[
β1L (x2), β1U (x2)

]
,
[
β2L (x2), β2U (x2)

]
)(1)

= ([0.3603, 0.4606] , [0.3434, 0.4387]),

(
[
β1L (x3), β1U (x3)

]
,
[
β2L (x3), β2U (x3)

]
)(1)

= ([0.5432, 0.6530] , [0.2144, 0.2870]),

(
[
β1L (x4), β1U (x4)

]
,
[
β2L (x4), β2U (x4)

]
)(1)

= ([0.4862, 0.5691] , [0.2444, 0.3559]),

(
[
β1L (x5), β1U (x5)

]
,
[
β2L (x5), β2U (x5)

]
)(1)

= ([0.5236, 0.5804] , [0.2126, 0.3254]),

(
[
β1L (x1), β1U (x1)

]
,
[
β2L (x1), β2U (x1)

]
)(2)

= ([0.4341, 0.5750] , [0.2816, 0.3360]),

(
[
β1L (x2), β1U (x2)

]
,
[
β2L (x2), β2U (x2)

]
)(2)

= ([0.4426, 0.5446] , [0.2550, 0.3243]),

(
[
β1L (x3), β1U (x3)

]
,
[
β2L (x3), β2U (x3)

]
)(2)

= ([0.4654, 0.5979] , [0.2699, 0.3188]),

(
[
β1L (x4), β1U (x4)

]
,
[
β2L (x4), β2U (x4)

]
)(2)

= ([0.3743, 0.4578] , [0.3312, 0.4414]),

(
[
β1L (x5), β1U (x5)

]
,
[
β2L (x5), β2U (x5)

]
)(2)

= ([0.4252, 0.5161] , [0.2970, 0.3970]),

(
[
β1L (x1), β1U (x1)

]
,
[
β2L (x1), β2U (x1)

]
)(3)

= ([0.5153, 0.6065] , [0.2826, 0.3535]),

(
[
β1L (x2), β1U (x2)

]
,
[
β2L (x2), β2U (x2)

]
)(3)

= ([0.5143, 0.6304] , [0.2764, 0.3230]),

(
[
β1L (x3), β1U (x3)

]
,
[
β2L (x3), β2U (x3)

]
)(3)

= ([0.6295, 0.6823] , [0.2106, 0.2900]),

(
[
β1L (x4), β1U (x4)

]
,
[
β2L (x4), β2U (x4)

]
)(3)

= ([0.4010, 0.5521] , [0.2977, 0.3915]),

(
[
β1L (x5), β1U (x5)

]
,
[
β2L (x5), β2U (x5)

]
)(3)

= ([0.5994, 0.7537] , [0.1746, 0.2406]).

• [Step 2]: Based on the obtained aggregated IVIFNs
([β1L (xi ), β1U (xi )], [β2L (xi ), β2U (xi )])(k), where 1 ≤
i ≤ 5 and 1 ≤ k ≤ 3, we can get the aggregated decision
matrix Y , shown as follows:
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Y =

⎡

⎢⎢⎢⎢⎣

([0.5563, 0.7050] , [0.1943, 0.2590]) ([0.4341, 0.5750] , [0.2816, 0.3360]) ([0.5153, 0.6065] , [0.2826, 0.3535])
([0.3603, 0.4606] , [0.3434, 0.4387]) ([0.4426, 0.5446] , [0.2550, 0.3243]) ([0.5143, 0.6304] , [0.2764, 0.3230])
([0.5432, 0.6530] , [0.2144, 0.2870])
([0.4862, 0.5691] , [0.2444, 0.3559])
([0.5236, 0.5804] , [0.2126, 0.3254])

([0.4654, 0.5979] , [0.2699, 0.3188])
([0.3743, 0.4578] , [0.3312, 0.4414])
([0.4252, 0.5161] , [0.2970, 0.3970])

([0.6295, 0.6823] , [0.2106, 0.2900])
([0.4010, 0.5521] , [0.2977, 0.3915])
([0.5994, 0.7537] , [0.1746, 0.2406])

⎤

⎥⎥⎥⎥⎦
,

• [Step 3]: Based on the aggregated decision matrix Y and
the weights ω1, ω2 and ω3 of the decision makers e1, e2
and e3, respectively, we can get the aggregated IVIFNs
([β1L (xi ), β1U (xi )], [β2L (xi ), β2U (xi )]) of alternative xi
with respect to the decision makers e1, e2 and e3, where
1 ≤ i ≤ 5, shown as follows:

(
[
β1L (x1), β1U (x1)

]
,
[
β2L (x1), β2U (x1)

]
)

= ([0.5496, 0.6635] , [0.2510, 0.2867]),

(
[
β1L (x2), β1U (x2)

]
,
[
β2L (x2), β2U (x2)

]
)

= ([0.4104, 0.5214] , [0.3019, 0.3540]),

(
[
β1L (x3), β1U (x3)

]
,
[
β2L (x3), β2U (x3)

]
)

= ([0.5888, 0.6779] , [0.2304, 0.2755]),

(
[
β1L (x4), β1U (x4)

]
,
[
β2L (x4), β2U (x4)

]
)

= ([0.4038, 0.4927] , [0.3269, 0.3888]),

(
[
β1L (x5), β1U (x5)

]
,
[
β2L (x5), β2U (x5)

]
)

= ([0.5294, 0.6333] , [0.2755, 0.2997]).

• [Step 4]:Obtain the PIS and the NISwith interval-valued
intuitionistic fuzzy information, respectively, shown as
follows:

A+ =([0.5888, 0.6779] , [0.2304, 0.2755] , [0.0466, 0.1808]),
A− =([0.4038, 0.4927] , [0.3269, 0.3888] , [0.1185, 0.2693]),

Calculate the separation measures, using the normalized
Hamming distance.

d+
i =

⎡

⎢⎢⎢⎢⎣

0.0268
0.1674
0.0000
0.1851
0.0520

⎤

⎥⎥⎥⎥⎦
, d−

i =

⎡

⎢⎢⎢⎢⎣

0.1583
0.0299
0.1851
0.0000
0.1331

⎤

⎥⎥⎥⎥⎦
,

Calculate the grey relational coefficients of each alterna-
tive from PIS and NIS.

ξ+
i =

⎡

⎢⎢⎢⎢⎣

0.7745
0.3559
1.0000
0.3333
0.6402

⎤

⎥⎥⎥⎥⎦
, ξ−

i =

⎡

⎢⎢⎢⎢⎣

0.3689
0.7558
0.3333
1.0000
0.4101

⎤

⎥⎥⎥⎥⎦
,

Calculate the relative grey relational degree of each alter-
native from PIS.

ξ1=0.6776, ξ2=0.3201, ξ3=0.7500,

ξ4=0.2500, ξ5=0.6095.

Because ξ3 > ξ1 > ξ5 > ξ2 > ξ4, the preference order
of the alternatives x1, x2, x3, x4 and x5 is x3 > x1 > x5 >

x2 > x4. This result coincides with the ones presented in
Makui et al. (2015b) and Jin et al. (2014).

Table 2 shows a comparison of the preference order of
the alternatives for different methods, where the proposed
method and Makui et al.’s method (Makui et al. 2015b) get
the same preference order of the alternatives, i.e., x3 > x1 >

x5 > x2 > x4, whereas Jin et al.’s method (Jin et al. 2014)
gets the same preference order of the alternatives, but with
a small difference in the preference order of the alternatives
x3 and x5.

Example 5.3 A commercial holding company wants to
invest amount of money in the best business areas. There
are three alternatives: a pharmaceutical company (x1), a
petroleum company (x2) and a software company (x3) to be
assessed. Also there are three attributes: growth index (a1),
risk index (a2) and capital return rate (a3) to be used to eval-
uate the three alternatives x1, x2 and x3 by the three decision
makers, i.e., the manager (e1), the financial director (e2) and
the assistant manager (e3).

Assume that the decision matrices D1, D2 and D3 repre-
sented by IVIFNs given by the decision makers e1, e2 and
e3, respectively, are shown as follows:

Table 2 A comparison of the preference orders of the alternatives of
Example 5.2 for different methods

Methods Preference order

Makui et al.’s method (Makui et al. 2015b) x3 > x1 > x5 > x2 > x4

Jin et al.’s method (Jin et al. 2014) x5 > x1 > x3 > x2 > x4

The proposed method x3 > x1 > x5 > x2 > x4
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D1 =
⎡

⎣
([0.70, 0.80] , [0.00, 0.00]) ([0.40, 0.50] , [0.20, 0.30]) ([0.40, 0.50] , [0.10, 0.20])
([0.75, 0.85] , [0.01, 0.05]) ([0.75, 0.85] , [0.05, 0.15]) ([0.70, 0.80] , [0.05, 0.10])
([0.88, 0.98] , [0.01, 0.02]) ([0.80, 0.90] , [0.01, 0.05]) ([0.75, 0.85] , [0.01, 0.05])

⎤

⎦ ,

D2 =
⎡

⎣
([0.05, 0.10] , [0.80, 0.90]) ([0.05, 0.15] , [0.60, 0.70]) ([0.10, 0.20] , [0.50, 0.60])
([0.10, 0.20] , [0.55, 0.65]) ([0.25, 0.35] , [0.50, 0.60]) ([0.20, 0.30] , [0.40, 0.50])
([0.15, 0.25] , [0.01, 0.05]) ([0.40, 0.50] , [0.30, 0.40]) ([0.30, 0.40] , [0.30, 0.40])

⎤

⎦ ,

D3 =
⎡

⎣
([0.01, 0.05] , [0.85, 0.95]) ([0.10, 0.20] , [0.65, 0.75]) ([0.05, 0.15] , [0.55, 0.65])
([0.05, 0.15] , [0.70, 0.80]) ([0.30, 0.40] , [0.50, 0.60]) ([0.20, 0.30] , [0.50, 0.60])
([0.25, 0.35] , [0.50, 0.60]) ([0.40, 0.50] , [0.30, 0.40]) ([0.25, 0.35] , [0.40, 0.50])

⎤

⎦ ,

Assume that theweightsω1,ω2 andω3 of the decisionmakers
e1, e2 and e3 are 0.36, 0.32 and 0.32, respectively. Assume
that the weights of the attributes a1, a2 and a3 given by the
decision maker e1 are 0.01, 0.49 and 0.50, respectively, i.e.,
w1
1 = 0.01, w1

2 = 0.49 and w1
3 = 0.50. Assume that the

weights of the attributes a1, a2 and a3 given by the decision
maker e2 are 0.01, 0.49 and 0.50, respectively, i.e., w2

1 =
0.01,w2

2 = 0.49 andw2
3 = 0.50. Assume that the weights of

the attributes a1, a2 and a3 given by the decisionmaker e3 are
0.01, 0.49 and 0.50, respectively, i.e.,w3

1 = 0.01,w3
2 = 0.49

and w3
3 = 0.50.

• [Step 1]: Based on the decision matrices D1, D2 and D3

and the weights of the attributes given by the decision
makers e1, e2 and e3, we can get the aggregated IVIFNs
([β1L (xi ), β1U (xi )], [β2L (xi ), β2U (xi )])(k) of the evalu-
ating values of the attributes of decision maker ek with
respect to alternative xi , where 1 ≤ i ≤ 3 and 1 ≤ k ≤ 3,
shown as follows:

([β1L (x1), β1U (x1)], [β2L (x1), β2U (x1)])(1)
= ([0.4616, 0.5483], [0.1574, 0.2476]),

([β1L (x2), β1U (x2)], [β2L (x2), β2U (x2)])(1)
= ([0.8001, 0.8784], [0.0431, 0.1009]),

([β1L (x3), β1U (x3)], [β2L (x3), β2U (x3)])(1)
= ([0.8636, 0.9632], [0.0084, 0.0397]),

([β1L (x1), β1U (x1)], [β2L (x1), β2U (x1)])(2)
= ([0.0720, 0.1582], [0.6244, 0.7050]),

([β1L (x2), β1U (x2)], [β2L (x2), β2U (x2)])(2)
= ([0.2215, 0.3016], [0.4809, 0.5578]),

([β1L (x3), β1U (x3)], [β2L (x3), β2U (x3)])(2)
= ([0.3661, 0.4471], [0.3075, 0.3885]),

([β1L (x1), β1U (x1)], [β2L (x1), β2U (x1)])(3)
= ([0.0702, 0.1533], [0.6729, 0.7517]),

([β1L (x2), β1U (x2)], [β2L (x2), β2U (x2)])(3)
= ([0.2344, 0.3091], [0.5170, 0.5888]),

([β1L (x3), β1U (x3)], [β2L (x3), β2U (x3)])(3)
= ([0.3292, 0.4090], [0.3606, 0.4400]),

• [Step 2]: Based on the obtained aggregated IVIFNs
([β1L (xi ), β1U (xi )], [β2L (xi ), β2U (xi )])(k), where 1 ≤
i ≤ 3 and 1 ≤ k ≤ 3, we can get the aggregated decision
matrix Y , shown as follows:

Y =
⎡

⎣
([0.4616, 0.5483] , [0.1574, 0.2476]) ([0.0720, 0.1582] , [0.6244, 0.7050]) ([0.0702, 0.1533] , [0.6729, 0.7517])
([0.8001, 0.8784] , [0.0431, 0.1009]) ([0.2215, 0.3016] , [0.4809, 0.5578]) ([0.2344, 0.3091] , [0.5170, 0.5888])
([0.8636, 0.9632] , [0.0084, 0.0397]) ([0.3661, 0.4471] , [0.3075, 0.3885]) ([0.3292, 0.4090] , [0.3606, 0.4400])

⎤

⎦ ,

• [Step 3]: Based on the aggregated decision matrix Y and
the weights ω1, ω2 and ω3 of the decision makers e1, e2
and e3, respectively, we can get the aggregated IVIFNs
([β1L (xi ), β1U (xi )], [β2L (xi ), β2U (xi )]) of alternative xi
with respect to the decision makers e1, e2 and e3, where
1 ≤ i ≤ 3, shown as follows:

([β1L (x1), β1U (x1)], [β2L (x1), β2U (x1)]) = ([0.2090, 0.2820], [0.5344, 0.5956]),
([β1L (x2), β1U (x2)], [β2L (x2), β2U (x2)]) = ([0.4518, 0.5142], [0.3213, 0.3695]),
([β1L (x3), β1U (x3)], [β2L (x3), β2U (x3)]) = ([0.5956, 0.6691], [0.1990, 0.2420]),
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• [Step 4]:Obtain the PIS and the NISwith interval-valued
intuitionistic fuzzy information, respectively, shown as
follows:

A+ =([0.5956, 0.6691] , [0.1990, 0.2420] , [0.0889, 0.2054]),
A− =([0.2090, 0.2820] , [0.5344, 0.5956] , [0.1224, 0.2566]),

Calculate the separation measures, using the normalized
Hamming distance.

d+
i =

⎡

⎣
0.3868
0.1493
0.0000

⎤

⎦ , d−
i =

⎡

⎣
0.0000
0.2375
0.3868

⎤

⎦ ,

Calculate the grey relational coefficients of each alterna-
tive from PIS and NIS.

ξ+
i =

⎡

⎣
0.3333
0.5642
1.0000

⎤

⎦ , ξ−
i =

⎡

⎣
1.0000
0.4488
0.3333

⎤

⎦ ,

Calculate the relative grey relational degree of each alter-
native from PIS.

ξ1 = 0.2500, ξ2 = 0.5569, ξ3 = 0.7500.

Because ξ3 > ξ2 > ξ1, the preference order of the alter-
natives x1, x2 and x3 is x3 > x2 > x1.

Table 3 shows a comparison of the preference order of
the alternatives for different methods, where the proposed
method gets the preference order of the alternatives, i.e.,
x3 > x2 > x1, whereas Makui et al.’s method (Makui
et al. 2015b) and Jin et al.’s method (Jin et al. 2014) get
an unreasonable preference order of the alternatives because
there is an evaluating intuitionistic fuzzy value whose non-
membership degree is equal to 0.

In the following, we analyse the drawbacks of the
methods that presented in Makui et al. (2015b) and Jin
et al. (2014). Therefore, consider the information that pre-
sented, in Example 5.3 then: Where there is an IVIFN
([0.70, 0.80] , [0.00, 0.00]) in the first row and the first col-
umn of the decision matrix D1 whose non-membership
degree is equal to 0. Because the weights ω1, ω2 and ω3

of the decision makers e1, e2 and e3 are 0.36, 0.32 and 0.32,
respectively, because the weights of the attributes a1, a2 and
a3 given by the decision maker e1 are 0.01, 0.49 and 0.50,

Table 3 A comparison of the preference orders of the alternatives of
Example 5.3 for different methods

Methods Preference order

Makui et al.’s method (Makui et al. 2015b) x3 > x1 > x2
Jin et al.’s method (Jin et al. 2014) x1 > x3 > x2
The proposed method x3 > x2 > x1

Note: “bold” denotes an unreasonable preference order of the alterna-
tives because there is an evaluating intuitionistic fuzzy value whose
non-membership degree is equal to 0

respectively, i.e., w1
1 = 0.01, w1

2 = 0.49 and w1
3 = 0.50,

because the weights of the attributes a1, a2 and a3 given
by the decision maker e2 are 0.01, 0.49 and 0.50, respec-
tively, i.e., w2

1 = 0.01, w2
2 = 0.49 and w2

3 = 0.50 and
because the weights of the attributes a1, a2 and a3 given by
the decision maker e3 are 0.01, 0.49 and 0.50, respectively,
i.e., w3

1 = 0.01, w3
2 = 0.49 and w3

3 = 0.50.

(1) The drawback of Makui et al.’s method (Makui et al.
2015b): Based onEq. (24),we can get the collective intu-

itionistic fuzzy decision matrix ˙̃D = (
˙̃di j )3×3, where

˙̃D =
[

([0.2908, 0.3851] , [0.0000, 0.0000]) ([0.1680, 0.2695] , [0.4607, 0.5717]) ([0.1796, 0.2810] , [0.3376, 0.4607])
([0.3480, 0.4758] , [0.2045, 0.3496]) ([0.4451, 0.5637] , [0.2752, 0.4193]) ([0.3800, 0.4941] , [0.2465, 0.3445])
([0.5052, 0.7189] , [0.0261, 0.0725]) ([0.5477, 0.6697] , [0.1244, 0.2340]) ([0.4549, 0.5727] , [0.1331, 0.2465])

]
,

For example, we can see that the aggregated IVIFN in
the first row and the first column of the collective intu-
itionistic fuzzy decision matrix ˙̃D is ([0.2908, 0.3851] ,
[0.0000, 0.0000]), which is obtained by aggregating
the IVIFNs ([0.70, 0.80] , [0.00, 0.00]), ([0.05, 0.10] ,
[0.80, 0.90]) and ([0.01, 0.05] , [0.85, 0.95]) in the first
row and the first column of the decision matrices D1, D2

and D3, respectively, based on Eq. (24), where

([a11(1) , b11(1) ], [c11(1) , d11(1) ])
= ([1−(1−0.70)3×0.36, 1−(1−0.80)3×0.36], [(0.00)3×0.36,

(0.00)3×0.36]) = ([0.7275, 0.8241], [0.00, 0.00]),

([a11(2) , b11(2)], [c11(2) , d11(2)])
= ([1 − (1 − 0.05)3×0.32, 1 − (1 − 0.10)3×0.32],

[(0.80)3×0.32, (0.90)3×0.32]) = ([0.0408, 0.0961],
[0.8071, 0.9038])

And
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([a11(3) , b11(3)], [c11(3) , d11(3)]) = ([1−(1−0.01)3×0.32,

1 − (1 − 0.05)3×0.32], [(0.85)3×0.32, (0.95)3×0.32])
= ([0.0096, 0.0480], [0.8555, 0.9519]),

shown as follows:

˙̃d11=
⎛

⎝

⎡

⎣1−
3∏

k=1

(1−a11σ(k) )
wk , 1−

3∏

k=1

(1 − b11σ(k) )
wk

⎤

⎦ ,

⎡

⎣
3∏

k=1

cwk
11σ(k)

,

3∏

k=1

dwk
11σ(k)

⎤

⎦

⎞

⎠

=
(

[1 − (1 − 0.7275)0.243 × (1 − 0.0480)0.514

×(1 − 0.0096)0.243, 1 − (1 − 0.8241)0.243

×(1 − 0.0961)0.514 × (1 − 0.0480)0.243],
[
(0.0000)0.243 × (0.8071)0.514 × (0.8555)0.243,

(0.0000)0.243 × (0.9038)0.514 × (0.9519)0.243
])

= ([0.2908, 0.3851] , [0.0000, 0.0000]),

where the aggregating result ([0.2908, 0.3851] ,
[0.0000, 0.0000]) is incorrect due to the fact that there
only exists [c11(1) , d11(1) ] = [0.00, 0.00], which causes∏3

k=1 c
wk
11σ(k)

= 0 and/or
∏3

k=1 d
wk
11σ(k)

= 0 without con-
sidering the other values of [c11(2) , d11(2) ] = [0.80, 0.90]
and [c11(3) , d11(3)] = [0.85, 0.95], where w1 = 0.243,
w2 = 0.514 and w3 = 0.243. Thus, the presented
method inMakui et al. (2015b) gets the incorrect collec-

tive intuitionistic fuzzy decision matrix ˙̃D and gets an
unreasonable preference order of the alternatives x1, x2
and x3.

(2) The drawback of Jin et al.’s method (Jin et al. 2014):
Based onEq. (25), we can get the collective intuitionistic
fuzzy decision matrix D = (α̃i j )3×3, where

D=
⎡

⎣
([0.0399, 0.0550] , [0.0000, 0.0000]) ([0.6437, 0.8069] , [0.0205, 0.0595]) ([0.6511, 0.8113] , [0.0037, 0.0190])
([0.0482, 0.0700] , [0.8380, 0.8905]) ([0.9554, 0.9869] , [0.0012, 0.0116]) ([0.9252, 0.9736] , [0.0007, 0.0040])
([0.0784, 0.1370] , [0.7394, 0.7963]) ([0.9816, 0.9963] , [0.0002, 0.0006]) ([0.6528, 0.7715] , [0.0002, 0.0007])

⎤

⎦,

For example, we can see that the aggregated IVIFN in
the first row and the first column of the collective intu-
itionistic fuzzy decision matrix D is ([0.0399, 0.0550] ,
[0.0000, 0.0000]), which is obtained by aggregating
the IVIFNs ([0.70, 0.80] , [0.00, 0.00]), ([0.05, 0.10] ,
[0.80, 0.90]) and ([0.01, 0.05] , [0.85, 0.95]) in the first
row and the first column of the decision matrices
D1, D2 and D3, respectively, based on Eq. (25),
where

([a11(1) , b11(1) ], [c11(1) , d11(1) ]) = ([1−(1−0.70)3×0.01,

1−(1−0.80)3×0.01], [(0.00)3×0.01,

(0.00)3×0.01]) = ([0.1026, 0.1348], [0.00, 0.00]),
([a11(2) , b11(2)], [c11(2) , d11(2)])
= ([1 − (1 − 0.05)3×0.01, 1 − (1 − 0.10)3×0.01],

[(0.80)3×0.01, (0.90)3×0.01]) = ([0.0046, 0.0094],
[0.9801, 0.9905])

And

([a11(3) , b11(3)], [c11(3) , d11(3)])
= ([1 − (1 − 0.01)3×0.01, 1 − (1 − 0.05)3×0.01],

[(0.85)3×0.01, (0.95)3×0.01]) = ([0.0009, 0.0046],
[0.9854, 0.9953]),

shown as follows:

d11 =
([

1−
3∏

k=1

(1−a11(k) )
wk , 1−

3∏

k=1

(1−b11(k) )
wk

]
,

[
3∏

k=1

cwk
11(k)

,

3∏

k=1

dwk
11(k)

])

=
(

[1 − (1 − 0.1026)0.36 × (1 − 0.0046)0.32

×(1 − 0.0009)0.32, 1 − (1 − 0.1348)0.36

×(1 − 0.0094)0.32 × (1 − 0.0046)0.32],
[
(0.0000)0.36 × (0.9801)0.32 × (0.9854)0.32,

(0.0000)0.36 × (0.9905)0.32 × (0.9953)0.32
])

= ([0.0399, 0.0550] , [0.0000, 0.0000]),

where the aggregating result ([0.0399, 0.0550] ,
[0.0000, 0.0000]) is incorrect due to the fact that there
only exists [c11(1) , d11(1)] = [0.00, 0.00], it causes∏3

k=1 c
wk
11(k)

= 0 and/or
∏3

k=1 d
wk
11(k)

= 0 without con-
sidering the other values of [c11(2) , d11(2) ] = [0.80, 0.90]
and [c11(3) , d11(3) ] = [0.85, 0.95]. Thus, presented
method in Jin et al. (2014) gets the incorrect collective
intuitionistic fuzzy decision matrix D and gets an unrea-
sonable preference order of the alternatives x1, x2 and
x3, as shown in Table 3.
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6 Conclusions

In this paper, we have proposed a new fuzzy multi-attribute
group decision making method based on the IVIFSs and the
ERM. From the experimental results shown in Tables 1, 2 and
3, we can extract that the proposed method can overcome the
drawbacks ofMakui et al.’s method (Makui et al. 2015b) and
Jin et al.’s method (Jin et al. 2014) for fuzzy multi-attribute
group decision making. The proposed method moves us one
step closer to the usage ofmulti-attribute groupdecisionmak-
ing in real-world situations and provides us with a useful way
for group decision making problems in intuitionistic fuzzy
environments. Therefore, in future, this method can be used
for dealing with uncertainty in MADM problems such as
project selection, manufacturing systems, pattern recogni-
tion, medical diagnosis andmany other areas of management
decision problems.
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