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Abstract In traditional preference-based multi-objective
optimization, the reference points in different regions often
impact the performance of the algorithms so that the region
of interest (ROI) cannot easily be obtained by the decision
maker (DM). In dealing with many-objective optimization
problems, the objective space is filled with non-dominated
solutions in terms of the Pareto dominance relationship, since
the dominance relationship cannot differentiate the mutual
relationship between the solutions. To solve the above prob-
lems, this paper proposes a new selection mechanism with
two main steps. First, we construct a preference radius to
divide the whole population into two distinct parts: a dis-
preferred solution set and a preferred solution set. Second,
the algorithm selects the optimal solutions in the preferred
solution set by means of the Pareto dominance relationship.
If the number of the obtained solutions does not satisfy the
quantity’s upper limit, it selects those dispreferred solutions
which have smaller distances to the reference direction until
the number matches the size of the population. Experimental
results show that the algorithm applying the mechanism is
able to adapt to different reference points in varying regions
in objective space. Moreover, it assists the DM in obtain-
ing different sizes of ROI by adjusting the length of the
radius of ROI. In dealing with many-objective problems, the
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mechanism can dramatically contribute to the convergence
of an algorithm proposed in this paper, in comparison with
other two state-of-the-art algorithms: g-dominance and r-
dominance. Thus, this paper provides a new way to deal with
user preference-based multi-objective optimization prob-
lems.
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1 Introduction

Multi-objective evolutionary algorithms (MOEAs) are one
kind of global searching algorithm, and they simulate the
biological evolutionary mechanisms to solve multi-objective
optimization problems (MOPs) (Deb 2001; Cui and Lin
2005). The objectives inMOPs are often conflicting, wherein
an improvement in one objective cannot be achieved without
detriment to another objective. Thus, MOEAs often try to
search a set of trade-off solutions in the optimization such
as NSGA-II (Deb et al. 2002b), SPEA2 (Laumanns 2001),
MOEA/D (Zhang and Li 2007), IBEA (Zitzler and Künzli
2004), and so forth. Currently, MOEAs mainly focus on the
distribution of Pareto optimal solutions (Deb et al. 2003), the
allocation strategies of the fitness value (Davarynejad et al.
2012) and the improvement of the convergence performance
(Sindhya et al. 2011).

In real life, in most cases, the DM is not interested in
searching for the entire Pareto optimal front, but only the
region of interest (ROI) (Adra et al. 2007). As shown in Fig.
1, the ROI is defined as the preferred region close to or on
the true Pareto front on the basis of the DM’s interests. In
the optimization, the preference information specified by the
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Fig. 1 Illustration of the ROI

DM could guide a more focused searching to the ROI, so
that it could greatly save computing resource. Thus, numer-
ical research has been conducted on the preference-based
MOEAs (Chugh et al. 2015; Aittokoski and Tarkkanen 2011;
Yu et al. 2015; Deb et al. 2010; Cheng et al. 2015).

According to when the DM provides his or her pref-
erence information into the optimization, multiple criteria
decision making (MCDM) and evolutionary multi-criterion
optimization (EMO) can be divided into three classes—a
priori, interactive and a posteriori, respectively (Wang et al.
2015a; Purshouse et al. 2014; Jin and Sendhoff 2002).

(1) In an a priori decision-making approach, the DMs
present their preference information before MOEAs
search for ROI. However, it seems to be difficult for
the DMs to express their preferences.

(2) In an interactive decision-making approach, the DM
can interfere in the whole process of the optimization.
Hence, the DM can learn progressively about the MOPs
and then express their preferences interactively. The
main drawback of this approach is that theDMmayneed
to be involved intensively during the searching process.

(3) In an a posteriori decision-making approach, the DM
can select the preferred solutions from the final sup-
plied set of compromise solutions. This approach can be
effective forMOPswith two or three objectives, because
a good approximation of the Pareto optimal front can
be relatively easily obtained, and the DM can easily
select the preferred solutions from the whole optimal
solutions. On the contrary, an a posteriori approach
becomes less effective on many-objective optimization
problems.

With the progress of preference-based optimization, more
andmore representative preference-basedMOEAshave been
proposed. For example, Fonseca and Fleming (1995) firstly
applied preference information of the DM in evolution-
ary optimization and defined the relational operator called
“preferability”. Molina et al. (2009) proposed a strengthened
relationship called g-dominance to obtain ROI skillfully.

Ben Said et al. (2010) proposed a strict partial ordering
relationship called r-dominance which could achieve good
performance on many-objective evolution problems.

Although many classical evolutionary algorithms have
been combined with preference information to solve MOPs,
there are still someproblems in the optimization. Fonseca and
Fleming (1993) firstly attempted to incorporate preference
information in EMO. In this approach, the DM should spec-
ify aspiration points and reservation points. Additionally, the
preference threshold vector and parameter ε are provided to
control the range of ROI. But the main issue of this approach
is that it requires the DM to know the ranges of objective val-
ues so as to initialize coherent aspiration levels. Another rep-
resentative approach is the Necessary-preference-enhanced
Evolutionary Multi-objective Optimizer (NEMO) proposed
by Branke et al. (2015). In this approach, the DM needs to
either compare some pairs of solutions which are preferred
or to compare intensities of preference between pairs of
solutions. Some value functions (Greco et al. 2008) are con-
structed by the above results to guide the searching process
towards ROI. NEMO performs well on bi-objective prob-
lems. However, in addressing many-objective problems, its
performance scalability has not been examined. Looking into
the former research, there are three important issues to be
concerned with as follows:

• The locations of the reference points may seriously affect
the performance of those user-preference based algo-
rithms. For example, when a specific reference point is
close to or on the true Pareto front, g-NSGA-II (Molina
et al. 2009) fails to obtain optimal solutions with good
convergence and stability.

• Some preference-based MOEAs cannot satisfy the DM
to get different sizes of ROI. The size of the obtained
region is extremely unstable when the given reference
point is located in different regions in the objective space.
For instance, the size of the desired region obtained by
g-NSGA-II cannot be controlled by the DM.

• On many-objective problems, the traditional preference-
based MOEAs commonly apply the Pareto dominance
relationship to select solutions, which gives rise to bad
convergence, because with the increase of the number of
objectives, the number of non-dominated solutions will
dramatically increase.

To solve the aboveproblems, this paper proposes a preference-
based MOEA based on a new selection mechanism of
introducing a preference radius. The preference radius here
has two characteristics. First, it can clearly divide the whole
population into two parts (a dispreferred solution set and a
preferred solution set). Second, it can promote the selection
pressure to guide the population approximating to the ROI.
About the selection mechanism, it can express and satisfy

123



A preference-based multi-objective evolutionary algorithm using preference... 5027

Fig. 2 Illustration of the objective space

the DM’s preference information effectively and efficiently
without extra settings. Furthermore, the selectionmechanism
can enhance the convergence as well and exempt the impact
from the reference point.

By introducing the selection mechanism and preference
radius, the approach proposed in this paper has the following
advantages:

• The algorithm is competitive when the specific reference
point is in different regions as shown in Fig. 2.

• The proposedmodel can assist the algorithm in obtaining
different sizes of ROI in terms of the DM’s preference
information.

• By integrating the selection mechanism proposed in this
paper into the NSGA-II (denoted by “p-NSGA-II”), p-
NSGA-II has good convergence and stability on two- and
three-objective problems.

• The selection mechanism can be applied to deal with
many-objective problems with good convergence.

The remainder of this paper is structured as follows. Section
2 gives the basic concepts and related works. Section 3 is
devoted to describing our proposed approach and introducing
a model of the selection mechanism. Section 4 presents the
frame of the approach in this paper, while Sect. 5 validates the
new approach bymeans of comparative experiments. Finally,
we conclude in Sect. 6.

2 Basic concepts and related works

2.1 Basic concepts

In this section, we present some basic concepts. Without
loss of generality, we consider minimization problems, since
maximization could be easily transformed to minimization.
An MOP can be defined as follows:

Minimize : f (x) = ( f1(x), · · · , fm(x))T (1)

such that

gi (x) ≤ 0 i = 1, . . . , P (2)

h j (x) = 0 j = 1, . . . , Q (3)

where fi (x) is the objective function; m is the number of
objectives; gi (x) andh j (x) are the constraints of the problem.

Definition 1 (Pareto dominance relation) Xand Y are any
two individuals in the population. X is said to dominate
Y (denoted byX ≺ Y ) if and only if: fi (X) ≤ f j (Y )∀i ∈
{1, . . . ,m}and ∃ j ∈ {1, . . . ,m}, where f j (X) < f j (Y ).

Definition 2 (Pareto optimal set) The Pareto optimal set P∗
is defined by: P∗ = {X ∈ F; F is the feasible space, and
X is Pareto optimal }.
Definition 3 (Pareto front) The Pareto front PF∗ is defined
by: PF∗ = { f (x) = ( f1(X), f2(X), . . . , fm(X))|X ∈
{X∗}}, where fi (x) is the objective function, and X∗ is the
Pareto optimal set.

2.2 Related works

2.2.1 Preference model

Jaszkiewicz and Słowiński (1999) proposed a model of com-
plex partial preference relations as shown in Fig. 3. The
reference point is specified by the DM. In this model, ROI
is the region approximating to the optimal Pareto front
and the reference direction, which is from the aspiration
point to the reference point. This model could save many
computational resources, because the reference point allows
algorithms to have a much more focused searching. There-
fore, applying this model could effectively and efficiently
address preference-based MOPs such as Ruiz et al. (2012),
Thiele et al. (2009), and Deb et al. (2006).

Fig. 3 Illustration of the preference model
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Fig. 4 Illustration of g-dominance when the reference point is specified in different regions. The red region is the ROI

2.2.2 The g-dominance

On the basis of the Pareto dominance relationship, Molina
et al. (2009) proposed a g-dominance relationship combin-
ing the traditional Pareto efficiency with the use of reference
points. In the g-dominance relationship, the reference point
becomes a carrier of preference information, and it redefines
the Pareto dominance relation into a simple, flexible domi-
nance relation. The g-dominance can be defined as follows:

Definition 4 (g-Dominance) Given two solutions X and Y
, X is said to g-dominate Y if and only if the two solutions
satisfy one of the following conditions:

(1) Flagg(X) > Flagg(Y ).

(2) If Xi ≤ Yi , ∀i = 1, 2, . . . ,m and Flagg(X) =
Flagg(Y ), then X j < Y j ∃ j = 1, 2, . . . , m.

Flagv(w) can be defined as follows:

Flagv(w) =
⎧
⎨

⎩

1,
1,
0,

wi ≤ vi , ∀i = 1, 2, . . . ,m
vi ≤ wi , ∀i = 1, 2, . . . ,m
otherwise

, (4)

where v is the reference point, and w is the goal of any point
in space.

In Fig. 4, the objective space will be divided into two parts
(regions with Flag = 0 and Flag = 1) in terms of the above
definition. The solutions in the white regions with Flag = 0
are dominated by the solutions in the blue regions with Flag
= 1. Thus, the g-dominance-based algorithm can perform
well when the reference point is in the infeasible region or
feasible region.

However, when the reference point is close to or on the
true Pareto front, the performance of the g-dominance-based
algorithm denoted by g-NSGA-II will be degraded and may
not converge into the true PF on DTLZ1 (Beume et al. 2009)
as shown in Fig. 5.

Fig. 5 Solutions obtained by the g-NSGA-II on DTLZ1

2.2.3 The r-dominance

Ben Said et al. (2010) proposed an r-dominance relation-
ship based on a weighted Euclidean distance to strengthen
the Pareto dominance relations. This method enhances the
selection pressure and assists the r-dominance relation-based
algorithm infinding the preferred solutions. The r-dominance
can be defined as follows:

Definition 5 (r-Dominance) Given two solutions X and Y ,
X is said to r-dominate Y if and only if the two solutions
satisfy one of the following conditions:

(1) X dominates Y in the Pareto sense;
(2) X and Y are Pareto-equivalent and D(X,Y, g) < −δ,

whereδ ∈ [0, 1] is termed the non-r-dominance threshold
and

D(X,Y, g) = Dist(X, g) − Dist(Y, g)

Distmax − Distmin
, (5)
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Fig. 6 Solutions obtained by the r-NSGA-II on DTLZ5

Distmax = MaxZ∈PDist(Z , g), (6)

Distmin = MinZ∈PDist(Z , g). (7)

The weighted Euclidean distance is defined as follows:

Dist(X, g) =
√
√
√
√

M∑

i=1

wi

(
fi (X) − fi (g)

f max
i − f min

i

)2

wi ∈ [0, 1],
M∑

i=1

wi = 1,

(8)

where X is the considered solution; g is the user-specified
reference point; f max

i is the upper bound of the i th objective
value; f min

i is the lower bound of the i th objective value; and
wi is the weight associated with the i th objective.

However, when the reference point is in the feasible
region, the r-dominance relation-based algorithm denoted
by r-NSGA-II fails to converge into the true Pareto front
on DTLZ5 (Deb et al. 2002a) as shown in Fig. 6. The
reason is that Eq. (8) tries to guide the solutions to the ref-
erence point, so that it may lead the solutions away from the
true Pareto front when the reference point is in the feasible
region.

3 The proposed approach

In this section,we detail the proposed approach. Firstly, some
basic relevant concepts are described. Secondly, a simple
preference-based model of the proposed approach is illus-
trated. Finally, we improve the model to satisfy the DM to
obtain different sizes of ROI by adjusting the size of the pref-
erence radius.

Fig. 7 Illustration of the preference radius

3.1 Basic definition of the proposed approach

Definition 6 (Referencedirection)Thedirectionvector from
a starting point to the reference point is referred to as refer-
ence direction.

Definition 7 (Radius of ROI) The radius of the preferred
region (denoted by d̄) is defined as the radius of the region
of interest (ROI). The parameter d̄ is given by the DM and
0 ≤ d̄ ≤ 1.

Definition 8 (Preference radius) The preference radius
(denoted by dp j in Fig. 7) can be defined as follows:

dp j =
N∑

i

d
P j
i
/N , (9)

where d
P j
i

=
√

|−→
OB − −→

Oi |2 (shown in Fig. 7) and d
P j
i
is the

distance from solution i to the reference direction in the j th
generation; N is the population size; thus, d

P j
i
is the average

value in terms of Definition 8.

−→
OB = (

−→
Oi • −→

E ) • −→
E =

(−→
Oi • −→

E

|−→E |

)

∗ −→
E = COSθ ∗ |−→Oi | ∗ −→

E ,

(10)

−→
E =

−→
OR

|−→
OR|

, (11)

where B is the pedal; R is a reference point; 	E is a unit vector;−→
OR is the reference direction; and θ is the angle between
vector

−→
Oi and 	E as shown in Fig. 7.

At the beginning of the algorithm,we set preference radius
dp0 = ∞, then calculated the preference radius for each
generation by Eq. (9). During the optimization, if dP j is less
than or equal to d̄, we set the parameter dP j = d̄, else if dP j

is greater than dP j−1 , we set dP j = dP j−1 ; otherwise, we set
dP j = dP j .
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Fig. 8 Illustration of the two-objective model

Fig. 9 Relation between the number of objectives and non-dominated
solutions

Definition 9 (Preference region) The preference region is
the region surrounding the reference direction, and its radius
is defined as in Definition 8. Figure 8 shows that the d j

p is the
radius of the preference region.

Definition 10 (Non-preference region) The regions exclud-
ing the preference region are defined to be the non-preference
region.

3.2 The model of a new selection mechanism

With the increase of the number of objectives, the number
of non-dominated solutions dramatically increases (Pur-
shouse and Fleming 2003) as shown in Fig. 9. Although
the traditional algorithms using the Pareto dominance rela-
tionship have good convergence in addressing two- and
three-objective MOPs (Hughes 2005; Zitzler and Thiele
1998), their performance is degraded in many-objective
problems (Adra and Fleming 2009; Wagner et al. 2007).

Furthermore, the size of the ROI may not be controlled by
the DM (Adra et al. 2007).

To illustrate the model of the new selection mechanism,
Fig. 8 presents the two-dimensional model, in which the ref-
erence direction starts from the origin to the reference point,
and the current preference radius (dP j ) is calculated from
the parent preference radius and the radius of ROI (d). The
details of the mechanism are as follows:

First, we use a preference radius to divide the population
into two parts. One of them is a preferred solution set and
the other a dispreferred solution set. Then, we calculate the
number of solutions in the preferred solution set. After that,
if the number is bigger than the population size, then the
superfluous solutions by Pareto dominance relationship are
removed, or if the number is smaller than the size, those solu-
tions which have smaller distances to the reference direction
in the dispreferred solution set are selected until the number
matches the population size. Particularly, if all the preferred
solutions are non-dominated, we calculate the crowding dis-
tance of each solution, and the solution with the smallest
crowding distance will be eliminated until the number of
preferred solutions matches the population size.

The new selection mechanism tries to separate the solu-
tions into two different sets and guide the solutions to the
ROI, so that the algorithm based on this mechanism is able
to obtain the preferred solutions satisfying the DM. Com-
pared with representative preference-based MOEAs such
as g-NSGA-II and r-NSGA-II, the algorithms applying this
mechanism not only reduce consumption of resources, but
also have better performance.

It is important to mention that the preference region is
a rectangular area in the two-objective case and is a cylin-
der in the three-dimension case. In the model, the location
information of the reference point is converted into reference
direction and preference radius, and the algorithm based on
this mechanism can adjust to the reference points specified
in different regions.

Furthermore, in terms of the mechanism, it is obvious that
the key issue is to construct the preference radius which is
closely linked to the acquisition of stable ROI. So in the next
section, we analyze the relation between a preference radius
and ROI.

3.3 The effect of the radius of ROI

In dealing with preference-based MOPs, the DM always has
requirements for the size ofROI,while someof the traditional
preference-basedMOEAs cannot satisfy these requirements.
To test the effect of the radius of ROI, this paper conducts an
experiment by setting different lengths of radii of ROI.

In this experiment, we operate four different sets of radii
of ROI on problem DTLZ5 (Deb et al. 2002a) with d̄ =
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Fig. 10 Effect of varying radius of ROI by setting d̄ = 0.0, d̄ = 0.1, d̄ = 0.5, d̄ = 1.0 on the DTLZ5

0.0, d̄ = 0.1, d̄ = 0.5, d̄ = 1.0 , and the reference point
is specified as (0.7, 0.7, 0.8) and shown with a red star.

In Fig. 10, there are four different charts which show the
effect of varying lengths of radius of ROI. When the radius
of ROI is set to be d̄ = 0.0, the solutions converge to one
point as shown in Fig. 10a. The range of the obtained ROI
covers or approximates the whole true Pareto optimal front
by setting d̄ = 1.0 as shown in Fig. 10d. It is apparent that
the range of the ROI increases with the increase of the value
of radius of ROI. Therefore, it can be concluded that the DM
is able to control the spread of the obtained ROI by adjusting
the radius of ROI.

4 The frame of the selection mechanism-based
approach

In this section, we first introduce the main frame of the
approach. Then instructions on how to apply the selection
mechanism into the EnvironmentSelection are given. Finally,
we analyze the complexity.

Algorithm 1 is the main frame of this paper. The radius of
ROI in the input items is given by the DM. At the beginning
of the algorithm, the solution set P is randomly generated
and evaluated. Then, the offspring population Q is obtained
from P after the evolutionary operations such as MatingSe-
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lection, Crossover and Mutation. After that, the set Pand Q
are combined into a mixed population R that is R = P ∪ Q.
The environment selection elicits the new generation P from
the mixed population R. This process is repeated to update
the population set P until termination. The population set
(P) is exported finally.

Algorithm 2 presents the environment selection in detail.
Firstly, two empty Population P and L must be created. Then
the j th preference radius dp j is achieved in line 2, which is
described in Algorithm 3. For each solution xi , if its pref-
erence radius d

P j
i
is smaller than dp j , the solution is added

into P like P = P ∪ {xi }. Otherwise, it is added into L as
shown in line 7. After that, to maintain the solution size (n),
two main steps must be executed. Firstly, when the size of
P is smaller than the specified population size (n), line 12
is executed; otherwise, line 15 Elimination (P) is executed.
Line 12 selects the candidate solutions from the set L by sort-
ing their preference radii, and the solution with a minimum
preference radius will be selected. In conclusion, Algorithm
2 selects optimal solutions from population R.

Algorithm 3 introduces how to obtain the average prefer-
ence radius of population R. First, the preference radius of
each solution is calculated in the set R in terms of Defini-
tion 8, and the average preference radius of the population is
acquired. Next, the preference radius of the current popula-
tion is determined by comparing the father preference radius
( dp j−1), the radius of ROI (d) provided by the DM and d j

p.

Algorithm 4 chooses elite solutions in the solution set
R by fast-non-dominated-sort (Deb et al. 2002b) and
crowding_distance_assignment (Deb et al. 2002b). The fast-
non-dominated-sort aims to sort the whole population into
different layers {L1, L2, …}. In terms of the size of each
layer, when the sum of the size of the current population and
the selected Li is smaller than n, then the solutions in this
layer are added into the current population as shown in line
5. Otherwise, line 7 is executed. Line 7 selects optimal solu-
tions in the final layer Li in terms of their crowding distances.
Notably, crowding_distance_assignment promotes the diver-
sity of the population, because the adjacent solutions are
eliminated with smaller crowding distances.

In conclusion, the main complexity of Algorithm 1 lies
in the EnvironmentSelection. In Algorithm 4, in the worst
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case, the complexity of fast-non-dominated-sort is O(mN 2)

and that of crowding distance assignment is O(mN logN ),
where m is the number of objectives and N is the popula-
tion size. In Algorithm 3, the first iteration requires O(mN )

computations. Thus, the total complexity of this algorithm
is O(mN ). The complexity of Algorithm 2 mainly focuses
on the computation of the preference radius (which costs
O(mN ) computations) and the elimination selection (which
costs O(mN ) computations). Therefore, the overall com-
plexity of the algorithm is O(mN 2).

5 Experimental study

This section presents the experimental study of this paper.
The first subsection presents the parameters setting. The
second subsection introduces the experimental evaluation
indicator. The third subsection analyzes and compares the
experimental results obtained by our proposed approach and
other state-of-the-art algorithms.

5.1 Parameter setting

In problems of comparison, the two sets of ZDT (Zitzler
et al. 2000) and DTLZ (Deb et al. 2002a) problems are con-
sidered. The ZDT1–ZDT4 and ZDT6 are chosen to be the
two-objective test instances. The DTLZ1–DTLZ6 are cho-
sen to be the three-objective test instances. The 5-, 8-, 10-
and 15-objective DTLZ2 and DTLZ3 are chosen to be the
many-objective test instances.

For each test instance,we present themean and variance of
GD values of the obtained results over 30 independent simu-
lation runs. In all simulations, we use the simulations binary
crossover operation with a distribution index of 10 and poly-
nomial mutation with a distribution index of 20 (Deb 2002).
The crossover probability and mutation probability are set to
Pc = 0.9 and Pm = 0.03, respectively, on the set of ZDT
test instances. The parameters Pc and Pm are set to be 0.9
and 0.08, respectively, on the set of DTLZ test instances.
The size of the population is 100 on two- or three-objective
test problems. The size of the population is 200 on other test
problems. The maximum number of the generation is 299 on
two- and three-objective test instances. Especially, the max-
imum number of the generations is set to be 599 on ZDT4,
and 999 on DTLZ3 and DTLZ6, because the ZDT4, DTLZ3
and DTLZ6 test instances are designed to make it difficult to
approximate the true PF. For all test instance experiments, the
parameter d̄ in p-NSGA-II is set to be 0.1 and the parameter
δ in r-NSGA-II is set to be 0.3.

In this paper, to inspect the effect of the locations of the
reference point on the algorithms, three scenarios are con-
sidered. The first one is to specify the reference points in
the infeasible region (far away from the true Pareto front).

Table 1 Reference points setting in the infeasible region, on/close to
PF, and in the feasible region on two- and three-objective instances

Instances Infeasible region On/close to true PF Feasible region

ZDT1 (0.10, 0.20) (0.50, 0.30) (0.50, 0.60)

ZDT2 (0.20, 0.40) (0.60, 0.64) (0.70, 0.60)

ZDT3 (0.20, 0.20) (0.24, 0.28) (0.40, 0.60)

ZDT4 (0.10, 0.30) (0.50, 0.30) (0.50, 0.60)

ZDT6 (0.30, 0.20) (0.60, 0.64) (0.70, 0.80)

DTLZ1 (0.10, 0.20, 0.10) (0.12, 0.15, 0.22) (0.30, 0.40, 0.50)

DTLZ2 (0.20, 0.30, 0.40) (0.50, 0.70, 0.50) (0.70, 0.80, 0.80)

DTLZ3 (0.30, 0.40, 0.50) (0.40, 0.80, 0.45) (0.80, 0.80, 0.80)

DTLZ4 (0.30, 0.40, 0.50) (0.50, 0.50, 0.70) (0.60, 0.60, 0.80)

DTLZ5 (0.30, 0.30, 0.40) (0.40, 0.40, 0.82) (0.70, 0.70, 0.80)

DTLZ6 (0.30, 0.30, 0.40) (0.40, 0.40, 0.82) (0.70, 0.70, 0.80)

The second one is that the reference points are very close
to or on the true Pareto front. The third one is that the ref-
erence points are given in the feasible region. Finally, some
special reference points: (0.0, 0.0, 0.6), (0.0, 0.6, 0.0) and
(0.6, 0.0, 0.0) are specified to test the robustness of the algo-
rithms. The settings of the reference points are presented in
Table 1.

5.2 Evaluation indicator

In this subsection, wewill present the evaluation indicator. In
our experiments, the following performance index is adopted
to measure the closeness of a solution front (PFsolution) to the
Pareto optimal front (PFtrue).

Generational distance (GD) (Van Veldhuizen and Lamont
1998): the GD is defined as follows:

GD =
√∑n

i=1 dist
2
i

n
, (12)

where n is the number of solutions and disti is the Euclidean
distance between each solution in PFsolution and the nearest
member in the Pareto optimal front. The smaller the value of
GD, the better is the convergence of the algorithm.

5.3 Comparative experiments

In this subsection, firstly, the p-NSGA-II is compared
with two state-of-the-art reference-based evolutionary multi-
objective optimization approaches: (1) the g-dominance
(Molina et al. 2009) and (2) the r-dominance (Ben Said et al.
2010). We experimentally demonstrate the positive effect
of managing varying locations of the reference points and
achieving varying sizes of the desired region. Secondly, we
demonstrate the selection mechanism’s positive effect on
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convergence; and especially on addressing many-objective
problems, the p-NSGA-II and the p-non-NSGA-II are com-
pared to g-dominance and r-dominance.

5.3.1 The p-NSGA-II versus g-dominance on two- and
three-objective problems

In this subsection, we compare the p-NSGA-II to the g-
dominance relation on two- and three-objective optimization
problems. Here, the NSGA-II version incorporating the
g-dominance relation is denoted by the g-NSGA-II. We con-
ducted experiments with the sets of ZDT and DTLZ test
instances on three scenarios with the reference point in the
feasible region, on/close to the true PF, and in the infeasible
region. The settings of the reference points are listed in Table
1. Moreover, we also conducted experiments by using some
special reference points to test the stability of p-NSGA-II.

Table 2 shows the mean and variance of GD values of the
obtained results over 30 independent simulation runs on the
sets of ZDT and DTLZ test instances. The best mean and
variance of the GD values are shown in bold type.

From Table 2, it is obvious that the GD values obtained
by p-NSGA-II are smaller than 0.01, which means that
p-NSGA-II has converged into the Pareto optimal front.
Moreover, most of them are smaller than that of g-NSGA-II.
Notably, the mean and variance of the GD values of solutions
obtained by the p-NSGA-II are remarkably less than the solu-
tions obtained by the g-NSGA-II on ZDT1, ZDT2, ZDT3
and on the whole set of DTLZ test instances in these three
scenarios, which denotes that p-NSGA-II has better conver-
gence than g-NSGA-II on those instances, and the locations
of the reference points have little effect on the performance
relatively. However, on ZDT1 when the reference point is
close to the true PF, the values obtained by g-NSGA-II are
smaller than that of p-NSGA-II. Solutions obtained by g-
NSGA-II converge into one point shown in Fig. 11b, which
indicates that g-NSGA-II cannot meet the DM’s needs to get
a relatively stable ROI.

Especially, on DTLZ2 with the reference points in the
infeasible region and on the true PF as shown in Fig. 12,
there are still some solutions obtained by g-NSGA-II not
converging into the true PF, and it can be explained by the
fact that some solutions are Pareto-equivalent to the reference
point and discouraged to remain in the race. From the figure,
when the reference points are in the feasible region, the p-
NSGA-II also outperforms the g-NSGA-II. Also, on DTLZ3
in Fig. 13, solutions obtained by g-NSGA-II cannot converge
into the true PF on three scenarios, but p-NSGA-II has good
convergence and stability. It canbevalidated that although the
preference point varies, the DM can still control the spread
of the obtained ROI by setting the parameter d̄ in terms of p-
NSGA-II.Another experiment also demonstrates p-NSGA-II
has better performance as shown in Fig. 14. The experiment Ta
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Fig. 11 Optimal solutions on ZDT1 with the reference point in the infeasible region (0.1, 0.2): a g-NSGA-II, b p-NSGA-II; on/close to true PF
(0.5, 0.3): c g-NSGA-II, d p-NSGA-II; and in the feasible region (0.5, 0.6): e g-NSGA-II, f p-NSGA-II
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Fig. 12 Optimal solutions on DTLZ2 with the reference point in the infeasible region (0.2, 0.3, 0.4): a g-NSGA-II, b p-NSGA-II; on/close to true
PF (0.5, 0.7, 0.5): c g-NSGA-II, d p-NSGA-II; and in the feasible region (0.7, 0.8, 0.8): e g-NSGA-II, f p-NSGA-II
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Fig. 13 Optimal solutions on DTLZ3 with the reference point in the infeasible region (0.3, 0.4, 0.5): a g-NSGA-II, b p-NSGA-II; on/close to true
PF (0.4, 0.8, 0.45): c g-NSGA-II, d p-NSGA-II; and in the feasible region (0.8, 0.8, 0.8): e g-NSGA-II, f p-NSGA-II
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Fig. 14 Optimal solutions on
DTLZ2 with the reference point
in special regions (0.6, 0.0, 0.0):
a g-NSGA-II, b p-NSGA-II,
(0.0, 0.6, 0.0): c g-NSGA-II, d
p-NSGA-II and (0.0, 0.0, 0.6): e
g-NSGA-II, f p-NSGA-II

was conducted by setting some special reference points: (0.6,
0.0, 0.0), (0.0, 0.6, 0.0), (0.0, 0.0, 0.6) on DTLZ2. From
the experiment, we can see that p-NSGA-II could acquire
the ROI under these special conditions, which means that
p-NSGA-II has better stability.

In summary, the p-NSGA-II has better convergence than
the g-NSGA-II. Moreover, it can control the spread of the
ROI. Thus, the selection mechanism can promote the con-
vergence of p-NSGA-II and stabilize ROI.
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5.3.2 The p-NSGA-II versus r-dominance on two- and
three-objective problems

In this subsection, we compare the p-NSGA-II with the r-
dominance relation-based NSGA-II (r-NSGA-II) on two-
and three-objective optimization problems. The r-NSGA-II
can enhance the pressure of convergence by creating a strict
partial order amongPareto-equivalent solutions. The relevant
settings are shown in Table 1.

Table 3 presents the mean and variance of GD values of
the obtained solutions of r-NSGA-II and p-NSGA-II. It can
be seen that in most of the test instances, the mean and vari-
ance of GD values of the solutions obtained by p-NSGA-II
are smaller than those by r-NSGA-II, which demonstrates
that p-NSGA-II has better stability and convergence than r-
NSGA-II when the reference points are in three regions (in
the feasible region, on or close to the true Pareto front, and
in the infeasible region). Specifically, on ZDT1 in Fig. 15c,
the solutions obtained by r-NSGA-II converge to a small
region, which fails to satisfy the DM when the reference
point is on/close to the true Pareto front. Additionally, in
Fig. 16e, r-NSGA-II performs worse than the p-NSGA-II on
DTLZ5 when the reference point is in the feasible region.
Specially, the p-NSGA-II has better stability than r-NSGA-
II with some special reference points: (0.6, 0.0, 0.0), (0.0,
0.6, 0.0), and (0.0, 0.0, 0.6) as shown in Fig. 17. The conclu-
sion to draw from all these observations is that the selection
mechanism could increase the pressure of convergence and
assist p-NSGA-II to obtain the desired regions.

However, about ZDT6, the r-NSGA-II has better perfor-
mance than the p-NSGA-II when the reference points are
in the feasible and on or close to the true Pareto front. This
phenomenon can be explained by the fact that there are not
many solutions in the preference region when the reference
radius is small. Thus, more solutions are selected from dis-
preferred solution set,which gives rise to bad performance of
p-NSGA-II. On DTLZ3, the solutions obtained by r-NSGA-
II have converged, but they cover the whole Pareto front as
shown in Fig. 18a, c, and e, when the reference point is under
the three scenarios. This phenomenon indicates that the r-
NSGA-II may fall into the optimum and perform badly. On
the contrary, p-NSGA-II can not only converge to the true
Pareto front, but also acquire a stable ROI as shown in Fig.
18b, d, and f.

In summary, the selection mechanism is able to contribute
to p-NSGA-II increasing the pressure of convergence and
obtaining stable ROI.

5.3.3 Comparative experiments on the many-objective
problems

To demonstrate that the selection mechanism could be
applied to deal with many-objective problems, we conduct Ta
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Fig. 15 Optimal solutions on
ZDT1 with the reference point in
the infeasible region (0.1, 0.2): a
r-NSGA-II, b p-NSGA-II;
on/close to true PF (0.5, 0.3): c
r-NSGA-II, d p-NSGA-II; and
in the feasible region (0.5, 0.6):
e r-NSGA-II, f p-NSGA-II
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Fig. 16 Optimal solutions on
DTLZ5 with the reference point
in the infeasible region (0.3, 0.3,
0.4): a r-NSGA-II, b
p-NSGA-II; on/close to true PF
(0.4, 0.4, 0.82): c r-NSGA-II, d
p-NSGA-II; and in the feasible
region (0.7, 0.7, 0.8): e
r-NSGA-II, f p-NSGA-II

comparative experiments with four algorithms: p-NSGA-II,
p-non-NSGA-II, g-NSGA-II and r-NSGA-II. The p-non-
NSGA-II only changes the elimination selection (in Algo-
rithm 4) into the random selection on DTLZ2 and DTLZ3
with 5, 8, 10, and 15 objectives. The population size is set
to be 200, and the reference points are (0.10, 0.30, 0.20,
0.40, 0.20) on 5-objective instances, (0.30, 0.30, 0.30, 0.10,

0.30, 0.55, 0.35, 0.35) on 8-objective instances, (0.30, 0.30,
0.30, 0.10, 0.30, 0.55, 0.35, 0.35, 0.25, 0.45) on 10-objective
instances, and (0.30, 0.30, 0.30, 0.10, 0.30, 0.55, 0.35, 0.35,
0.25, 0.45, 0.10, 0.40, 0.20, 0.30, 0.10) on 15-objective
instances.

Firstly, DTLZ2 is designed to investigate the scalability
of algorithms. Table 4 presents the GD values of the solu-
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Fig. 17 Optimal solutions on
DTLZ2 with the reference point
in special regions (0.6, 0.0, 0.0):
a r-NSGA-II, b p-NSGA-II,
(0.0, 0.6, 0.0): c r-NSGA-II, d
p-NSGA-II, and (0.0, 0.0, 0.6): e
r-NSGA-II, f p-NSGA-II

tions obtained by four algorithms. In Table 4, the solutions
obtained by p-NSGA-II and r-NSGA-II both converge to
the true Pareto optimal region. The mean of GD values of
the solutions obtained by r-NSGA-II is smaller than that
obtained by p-NSGA-II on 5- and 8-objective DTLZ2, but
the result is inverse on 10- and 15-objective DTLZ2. The
main reason is that the number of non-dominated solutions

increases when the problem dimensions increase. In compar-
isonwith p-NSGA-II, p-non-NSGA-II could still converge to
five-, eight-, ten- andfifteen-objectiveDTLZ2without apply-
ing the Pareto dominance relationship, which means that the
selection mechanism has dominated promotion to the con-
vergence of p-NSGA-II rather than the Pareto dominance
relationship.
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Fig. 18 Optimal solutions on
DTLZ3 with the reference point
in the infeasible region (0.3, 0.4,
0.5): a r-NSGA-II, b
p-NSGA-II; on/close to true PF
(0.4, 0.8, 0.45): c r-NSGA-II, d
p-NSGA-II; and in the feasible
region (0.8, 0.8, 0.8): e
r-NSGA-II, f p-NSGA-II

Figures 19, 20, and 21 present the obtained solutions by
the algorithms, and each line stands for a solution. From
those figures, the solutions obtained by p-NSGA-II and the
r-NSGA-II are able to converge to the true Pareto opti-
mal region on 5-, 8-, 10-, and 15-objective DTLZ2 except
g-NSGA-II. The reason why g-NSGA-II cannot obtain
ROI on many-objective problems is that the number of

non-dominated solutions dramatically increases when the
problem dimension increases. Importantly, p-non-NSGA-II
performs better than the g-NSGA-II on thosemany-objective
problems; in other words, the selection mechanism could
increase the pressure of convergence and allow a much more
focused searching. Notably, the p-non-NSGA-II is able to
converge to the PF on five-, eight-, and ten-objective DTLZ2,
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Table 4 The GD values of the solutions obtained by the p-NSGA-II, p-non-NSGA-II, r-NSGA-II, g-NSGA-II on 5-, 8-, 10-, and 15-objective
DTLZ2

Instances p-NSGA-II p-non-NSGA-II r-NSGA-II g-NSGA-II

Mean Variance Mean Variance Mean Variance Mean Variance

DTLZ2 (5) 6.81E−04 3.91E−09 5.11E−03 6.46E−07 6.48E−04 1.06E−08 9.78E−02 9.08E−05

DTLZ2 (8) 2.01E−03 3.28E−08 6.67E−03 1.07E−06 1.16E−03 8.43E−09 1.57E−01 5.57E−06

DTLZ2 (10) 3.01E−03 5.30E−08 7.07E−03 1.18E−06 5.75E−03 5.46E−08 1.61E−01 2.93E−06

DTLZ2 (15) 5.91E−03 1.08E−07 6.38E−03 2.14E−06 1.56E−02 5.50E−08 1.63E−01 3.10E−06

Fig. 19 Optimal solutions on five-objective DTLZ2with the reference point (0.1, 0.3, 0.2, 0.4, 0.2). a g-NSGA-II, b r-NSGA-II, c p-non-NSGA-II,
d p-NSGA-II
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Fig. 20 Optimal solutions on ten-objective DTLZ2 with the reference point (0.3, 0.3, 0.3, 0.1, 0.3, 0.55, 0.35, 0.35, 0.25, 0.45). a g-NSGA-II, b
r-NSGA-II, c p-non-NSGA-II, d p-NSGA-II

but its mean and variance of GD values are bigger than that
of p-NSGA-II and r-NSGA-II. This phenomenon is proba-
bly caused by the random selection, which cannot ensure that
the solutions selected by the p-non-NSGA-II are close to the
Pareto optimal region. However, by applying the selection
mechanism, p-NSGA-II can perform better than r-NSGA-II
on 10- and 15-objective problems.

Secondly, DTLZ3 is applied to investigate the ability to
converge to the global Pareto front. In Table 5, the mean and
variance of the GD values of solutions obtained by p-NSGA-
II are the smallest than those of all the algorithms, which
means that p-NSGA-II outperforms the other algorithms, and
it also can be seen in Figs. 22, 23 and 24. Specifically, g-
NSGA-II and r-NSGA-II cannot converge to the true Pareto
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Fig. 21 Optimal solutions on 15-objective DTLZ2 with the reference point (0.3, 0.3, 0.3, 0.1, 0.3, 0.55, 0.35, 0.35, 0.25, 0.45, 0.1, 0.4, 0.2, 0.3,
0.1). a g-NSGA-II, b r-NSGA-II, c p-non-NSGA-II, d p-NSGA-II

Table 5 The GD values of the solutions obtained by the p-NSGA-II, p-non-NSGA-II, r-NSGA-II and g-NSGA-II on 5-, 8-, 10- and 15-objective
DTLZ3

Instances p-NSGA-II p-non-NSGA-II r-NSGA-II g-NSGA-II

Mean Variance Mean Variance Mean Variance Mean Variance

DTLZ3 (5) 1.17E−03 3.06E−07 5.75E−02 3.41E−03 4.99E+00 3.66E−01 1.01E+02 1.60E+01

DTLZ3 (8) 2.47E−03 8.34E−07 5.61E−02 2.97E−03 7.86E+00 5.95E−01 1.31E+02 5.05E+00

DTLZ3 (10) 3.47E−03 6.44E−07 3.46E−02 2.12E−03 8.51E+00 5.21E−01 1.38E+02 2.50E+00

DTLZ3 (15) 6.13E−03 8.41E−07 5.04E−01 5.61E−03 8.62E+00 8.89E−01 1.42E+02 2.72E+00

123



A preference-based multi-objective evolutionary algorithm using preference... 5047

Fig. 22 Optimal solutions on five-objective DTLZ3 with the reference point (0.1, 0.3, 0.2, 0.4, 0.2). a g-NSGA-II. b r-NSGA-II. c p-non-NSGA-II.
d p-NSGA-II

front on all many-objective DZLZ3, as g-NSGA-II and r-
NSGA-II are easy to trap into the local optima. While p-non-
NSGA-II could also converge into the global Pareto front

and perform better than the g-NSGA-II and the r-NSGA-II,
both the preference radius and the selectionmechanism could
promote the convergence.
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Fig. 23 Optimal solutions on ten-objective DTLZ3 with the reference point (0.3, 0.3, 0.3, 0.1, 0.3, 0.55, 0.35, 0.35, 0.25, 0.45). a g-NSGA-II. b
r-NSGA-II. c p-non-NSGA-II. d p-NSGA-II

From the above experiments, the proposed approach (p-
NSGA-II) benefits from the mechanism and the preference
radius avoids falling into the local optimum. Furthermore,
the performance of p-NSGA-II is much better than that of

p-non-NSGA-II. Therefore, integrating the selection mecha-
nism using a preference radius with the Pareto dominance
relationship could assist the algorithm in converging and
obtaining better optimal solutions.
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Fig. 24 Optimal solutions on 15-objective DTLZ3 with the reference point (0.3, 0.3, 0.3, 0.1, 0.3, 0.55, 0.35, 0.35, 0.25, 0.45, 0.1, 0.4, 0.2, 0.3,
0.1). a g-NSGA-II. b r-NSGA-II. c p-non-NSGA-II. d p-NSGA-II

6 Conclusion

In this paper, we proposed a new selection mechanism based
on thepreference radius.This newapproachhas the following
characteristics:

• The p-NSGA-II can obtain the ROI with the reference
points in three scenarios (the reference point in the
feasible region, on/close to the Pareto front and in the
infeasible region).

123



5050 J. Hu et al.

• The spread of the obtained ROI can be controlled by
adjusting the size of the radius of interest.

• The p-NSGA-II has better performance compared with
g-NSGA-II and r-NSGA-II on most two- and three-
objective problems.

• The new selection mechanism of introducing the pref-
erence radius could prompt the convergence of the
algorithm, especially on many-objective problems.

On some problems, we could extend this approach. The
new selection mechanism could also be applied to differ-
ent classes of multi-objective evolutionary algorithms such
as SPEA2Laumanns (2001),MOEA/DZhang andLi (2007),
Hype Bader and Zitzler (2011), PICEAs Wang et al. (2013),
Wang et al. (2015b), MSPSO Santana-Quintero et al. (2006),
and so on. Furthermore, we will research how to apply p-
NSGA-II to deal with the MOPs based on multiple reference
points.
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