
Soft Comput (2017) 21:4755–4767
DOI 10.1007/s00500-016-2087-0

METHODOLOGIES AND APPLICATION

Adaptive genetic MM-CPHD filter for multitarget tracking

Bo Li1 · Jianli Zhao1 · Fuwen Pang2

Published online: 2 March 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Multitarget tracking is an important topic in visual
surveillance system. Considering imperfections of the cardi-
nalized probability hypothesis density (CPHD) filter and the
target maneuvers, we propose an adaptive genetic multiple-
model CPHDfilter in this paper. First, we discuss the filtering
process and combined the standard CPHD filter with the
multiple-model-based framework. Afterward, the sequential
Monte Carlo implementation of the proposed filter for the
nonlinear and non-Gaussian state estimates is presented in
detail. To enhance the tracking performance as target start to
maneuver, the adaptive genetic algorithm is used to improve
the target state estimation accuracy at the time of state
switching with the excellent particles. On the other hand, the
undetected component of the measurement-updated weight
of survival particle is compensated by the excess weight of
newborn particle to correct the number estimates of targets.
The simulation results are provided to illustrate the reliability
and efficiency of the proposed filter.
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1 Introduction

Multitarget tracking (MTT) concerns estimating both num-
ber and state of targets from the available measurements
(Li et al. 2011). As a satisfactory solution to time-varying
number estimates, theMTThas become an important compo-
nent of almost all the security and surveillance applications
(Jing 2005; Ulmke et al. 2010; Gning et al. 2014). In the
past decades, several scholars have studied this topic with
a great deal of success and many papers addressing the
well-establishedMTT algorithms have been published in the
important international journals (Musicki and Evans 2004;
Blackman 2004), such as the joint probabilistic data associ-
ation (JPDA) and the multiple hypothesis tracking (MHT).
However, these algorithms suffer from unreliable state esti-
mates and complex computation when a large number of
clutters appear around the true target trajectory. To reduce
computational complexity, Mahler proposed a completely
data association-free filter in 2003, named the probability
hypothesis density (PHD) filter. On the basis of the first-
order statistical moment, this filter propagates themultitarget
PHD instead of the full multitarget posterior density (Mahler
2009). The integral of the PHD is used to estimate the number
of targets, and the corresponding peaks are used to estimate
the state of targets. Nevertheless, the target number esti-
mates still fluctuate because the PHD filter is derived with
the Poisson assumption for cardinality distribution (Panta
et al. 2009). In contrast, propagating the cardinality distrib-
ution to the PHD with the second-order statistical moment,
the cardinalized PHD (CPHD) filter offers a perfect cure by
adding memory to the number estimation process (Mahler
et al. 2011), which works efficiently in most of the applica-
tions.

In the recent years, a variety of relatedmaterial and further
information about the CPHD filter can be found in Mahler
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et al. (2011), Mahelr (2007b) and Ulmke et al. (2007). To
estimate the nonlinear and non-Gaussian dynamic state, the
sequentialMonte Carlo (SMC) implementation of the CPHD
filter was presented in Mahelr (2007b). On the other hand,
the Gaussian mixtures (GM) implementation of the CPHD
filter was applied to track targets with the linear andGaussian
dynamic state in Ulmke et al. (2007). Furthermore, Ulmke
et al. (2008) proposed the improved CPHD filter, where the
local target number estimates close to the missed detection
were artificially reduced in the case of zero false alarm rate.
However, the solutions are based on the single-model (SM)
method that cannot reflect the state variation (Daniel et al.
2013; Ma et al. 2013). For comparison, the multiple-model
(MM) method provides plenty of motion models, operating
in parallel, and the target state can be achieved by a weighted
sum of estimates, for example (Georgescu and Willet 2011;
Pasha et al. 2009) and the references therein. Georgescu
and Willet (2012) derived the MM version of the CPHD fil-
ter and its GM implementation, where a track management
strategy was developed on the basis of the bin-occupancy
filter. In Chen et al. (2011), the GM implementation of the
variable state space CPHD filter with the constant velocity
(CV)model and the constant turn (CT) model was described.
To estimate the nonlinear and non-Gaussian dynamic state,
the extended CPHD filter was briefly discussed in Ouyang
et al. (2012), so as to improve the estimation accuracy by the
weighted particles. However, the imperfection of the tradi-
tional particle filter (PF) limits tracking performance, such
as the particle impoverishment after iterations.

This paper lays a lot of emphasis on the answer to themen-
tioned problemanddevelops an adaptive genetic (AG)CPHD
filter in the MM framework, named AG-MM-CPHD filter.
Different from the existing MM-CPHD filters in Georgescu
and Willet (2012), Chen et al. (2011) and Ouyang et al.
(2012), the main contributions of this work are summarized
as follows:

(i) the AG algorithm (AGA) is presented to improve the
target state estimation accuracy at the time of state
switching with excellent particles;

(ii) the undetected component of measurement-updated
weight of survival particle is compensated by the excess
weight of newborn particle to correct the target number
estimates.

The remainder of this note is arranged as follows: In Sect. 2,
the principle and the SMC implementation of theMM-CPHD
filter are presented. In Sect. 3, we discuss the improvements
of the AG-MM-CPHD filter and illustrate its SMC imple-
mentation. The simulation is showed with results to verify
the tracking performance of the proposed filter in Sect. 4. In
the last section, the conclusions are summarized by providing
the future work.

2 The MM-CPHD filter

Considering targetmotion, birth and death varyingwith time,
we define Nk targets and Mk measurements at scan k, where
Nk andMk are timedependent.Assume thatXk andZk are the
target state vector and the measurement vector, respectively
(Punithakumar et al. 2008; Wen et al. 2011; Xu and Wang
2007; Panta et al. 2009; Liu et al. 2014); the collections of
them are given by

Xk = Fk|k−1Xk−1 + �kWk = {xk,1, . . . , xk,Nk }, (1)

Zk = HkXk + Vk = {zk,1, . . . , zk,Mk }, (2)

where Fk|k−1 and Hk are the state transition matrix and the
measurement matrix, Wk and Vk are the state noise vector
and the measurement noise vector, and �k is the state noise
input matrix.

In the actual detection scene, most targets may survive
or transition into a new dynamic state, others may disap-
pear and new targets may appear. The available measurement
Zk,ζ (ζ = 1, . . . , Mk)may be generated by targets or clutters
at each scan. In view of target maneuvers, the MM method
is more attractive, which allows the target state to transition
from one motion model to another in the Bayesian frame-
work,where themodel has different structure, state andnoise.
Its switching follows a Markov chain with the known transi-
tion probability. In this section, an MM version of the CPHD
filter is derived in one cycle. First, we make two remarks in
order:

(i) without respect to target spawning, assume target
motions are statistically independent, targets appear in
the scene independently of the existing targets and tar-
gets disappear from the scene;

(ii) the probability of detection is set to a constant pD regard-
less of the target state.

2.1 Filtering process

We present the filtering process of the MM-CPHD filter in
one cycle, which includes the time update, the measurement
update and the state estimation.

2.1.1 Time update

Assume rk−1 is the index of models, Nr is the number
of models, v(v = 1, . . . , Nr ) is the previous motion model
and the initial PHD Dk−1(xk−1,rk−1 = v) can match the
current motion model u(u = 1, . . . , Nr ). Given that each
model-matched CPHD filter is fed with different PHDs, the
time-updated PHD is given by Pasha et al. (2009), Georgescu
and Willet (2012) and Nadarajan et al. (2011),
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Dk|k−1(xk , rk = u)

= bk|k−1(xk , rk = u)

+
∫

ps,k|k−1(xk−1) fk|k−1(xk |xk−1, rk = u)

×
Nr∑

v=1

Dk−1(xk−1, rk−1 = v) fk|k−1(rk = u|rk−1 = v)dxk−1,

(3)

where ps,k|k−1(xk−1) is the target-survival probability,
fk|k−1(xk |xk−1, rk = u) is the Markov transition probability
for targets, bk|k−1(x, rk = u) is the target-appearance PHD
and fk|k−1(rk = u|rk−1 = v) is the Markov transition prob-
ability for motion models.

It is noteworthy that the integral of Dk|k−1(xk, rk = u)

within a certain region represents the expected number of
targets

Ñk|k−1(rk = u) =
∫

Dk|k−1(xk−1, rk = u)dxk−1. (4)

Assume n is the current number of tracks; the cardinality
distribution of the target appearance RFS is given by Mahelr
(2007a, b)

ρB(n, rk = u) =
∫

bk|k−1(xk, rk = u)dxk . (5)

Then the cardinality generation function (p.g.f.) of the target
appearance RFS is

Bk(x, rk = u) =
∞∑
n=0

ρB(n, rk = u)xn . (6)

Define the integral function s[h] = ∫
h(x)D(x)dx/N ; the

predicted cardinality distribution and its corresponding p.g.f.
are given by

ρk|k−1(n, rk = u)

=
n∑
j=0

ρB(n − j, rk = u)

j ! Gk−1(1 − s[pS,k|k−1(xk−1)],

rk−1 = v)s[pS,k|k−1(xk−1)] j , (7)

Gk|k−1(x, rk = u)

= Bk(x, rk = u)Gk−1(1 − s[pS,k|k−1(xk−1)]
+ xs[pS,k|k−1(xk−1)], rk−1 = v). (8)

2.1.2 Measurement update

The measurement-updated cardinality distribution and its
p.g.f. are given by

ρk(n, rk = u)

=
∑m

j=0 C
〈m− j〉
k (0) 1

(n− j)! Ĝ
〈 j〉〈n− j〉
k|k−1 (0, rk = u)s[1 − pD]n− jσ j (Zk)∑m

i=0 C
〈m−i〉
k (0)Ĝ〈i〉

k|k−1(s[1 − pD], rk = u)σi (Zk)
,

(9)
Gk(x, rk = u)

=
∑m

j=0 x
jC 〈m− j〉

k (0)Ĝ〈 j〉
k|k−1(x − xs[pD], rk = u)σ j (Zk)∑m

i=0 C
〈m−i〉
k (0)Ĝ〈i〉

k|k−1(1 − s[pD], rk = u)σi (Zk)
, (10)

where Ck(·) is the p.g.f. of the false alarm process ck(z),
σ j (Zk) is the elementary symmetric function ofZk , and (·)〈 j〉
denotes the j th derivative, Ĝ〈 j〉

k|k−1(x) = Gk|k−1(x)/N
j
k|k−1.

We have in hand the multitarget likelihood function
gk(z|xk); the measurement-updated PHD at scan k is

Dk(xk, rk = u)

=
⎛
⎝(1− pD)ϒ0(rk = u)+

∑
z∈Zk

pDgk(z|xk)ϒk(rk = u)

⎞
⎠

× Dk|k−1(xk, rk = u), (11)

Where ϒ0(rk = u) and ϒk(rk = u) are given by

ϒ0(rk = u) =
∑m

j=0 C
〈m− j〉
k (0)Ĝ〈 j+1〉

k|k−1(s[1 − pD], rk = u)σ j (Zk)∑m
i=0 C

〈m−i〉
k (0)Ĝ〈i〉

k|k−1 (s[1 − pD], rk = u) σi (Zk)
,

(12)
ϒk(rk = u)

=
∑m

j=0 C
〈m− j−1〉
k (0)Ĝ〈 j+1〉

k|k−1 (s[1 − pD], rk = u) σ j (Zk − {z})
ck(z)

∑m
i=0 C

〈m−i〉
k (0)Ĝ〈i〉

k|k−1 (s[1 − pD], rk = u) σi (Zk)
.

(13)

The measurement-updated number of targets under the
model u is

Ñk(rk = u) =
∑m

j=0 C
〈m− j〉(0)

(
Ĝ〈 j+1〉

k|k−1 (s[1− pD], rk =u) (s [1− pD]) Ĝ
〈1〉
k|k−1(1)+ j Ĝ〈 j〉

k|k−1 (s[1− pD], rk =u)
)

σ j (Zk)∑m
i=0 C

〈m−i〉
k (0)Ĝ〈i〉

k|k−1 (s[1 − pD], rk = u) σi (Zk)
. (14)

2.1.3 State estimation

We use the maximum a posteriori (MAP) method to estimate
the number of targets

N̂k(rk = u) = arg sup
n

ρk(n, rk = u). (15)

Since that each filter corresponds to a peculiar motion model
and Nr CPHD filters run in parallel, the total number of tar-
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gets can be estimated by

Nk = round

(
Nr∑
u=1

N̂k(rk = u)

)
, (16)

where round (·) denotes the nearest integer.
Finally, Nk largest local peaks {x̂( j)

k }Nk
j=1 of the PHD are

extracted as the state estimates of target tracks.

2.2 SMC implementation

Devised to approximate the PHD, the SMC implementation
can give the closed-form solution to intractable integrals in
the filtering recursion (Zhou et al. 2012; Ouyang and Ji 2012;
Lin et al. 2006).

2.2.1 Time update

Define the Dirac delta function δ(·) and the motion model
index set {r (i)

k−1}Lk−1
i=1 , the PHD Dk−1(xk−1, rk−1) at scan k−1

can be approximated as

Dk−1(xk−1, rk−1)

=
Lk−1∑
i=1

w
(i)
k−1δ(xk−1 − x(i)

k−1, rk−1 − r (i)
k−1). (17)

The weighted approximation of the time-updated PHD is

Dk|k−1(xk, rk)

=
Lk−1+Jk∑
i=Lk−1+1

w
(i)
k|k−1δ(xk − x(i)

k|k−1, rk − r (i)
k|k−1), (18)

where Lk−1 particles are the predicted forward from scan
k−1, and the additional Jk particles are drawn to the newborn
target at scan k.

Considering the motion model r (i)
k|k−1 in Eq. (18), we can

draw the predicted particle as follows:

x(i)
k|k−1 =

⎧⎨
⎩
qk(·|x(i)

k|k−1, r
(i)
k|k−1,Zk), i = 1, . . . , Lk−1

pk(·|r (i)
k|k−1,Zk), i = Lk−1 + 1, . . . , Lk−1 + Jk ,

(19)

where qk(·|x(i)
k|k−1, r

(i)
k|k−1,Zk) and pk(·|r (i)

k|k−1,Zk) are the
proposal distributions of the survival target and the newborn
target (Panta 2007; Vo 2008), and the motion model r (i)

k|k−1
can be drawn from the proposal distributions αk(·|rk−1) and
βk(·)

r (i)
k|k−1=

{
αk(·|rk−1), i = 1, . . . , Lk−1

βk(·), i = Lk−1 + 1, . . . , Lk−1 + Jk
.

(20)

Then, the time-updated particle weight is

w
(i)
k|k−1 =

{
w

(i)
S,k|k−1, i = 1, . . . , Lk−1

w
(i)
B,k|k−1, i = Lk−1 + 1, . . . , Lk−1 + Jk,

(21)

where w
(i)
S,k|k−1 and w

(i)
B,k|k−1 are weights of the survival and

newborn particles, that is

w
(i)
S,k|k−1

= fk|k−1(r
(i)
k|k−1|r (i)

k−1)

αk(r
(i)
k|k−1|r (i)

k−1)

× pS,k|k−1(x
(i)
k|k−1) fk|k−1(x

(i)
k|k−1|x(i)

k−1, r
(i)
k−1)w

(i)
k−1

qk(x
(i)
k|k−1|x(i)

k−1, r
(i)
k−1,Zk)

,

(22)

w
(i)
B,k|k−1 =

fk
(
r (i)
k|k−1

)

βk

(
r (i)
k|k−1

) bk|k−1

(
x(i)
k|k−1|r (i)

k−1

)

Jk pk
(
x(i)
k|k−1|r (i)

k−1,Zk

) . (23)

Remark 1 In Eqs. (22) and (23), we note that w
(i)
S,k|k−1 and

w
(i)
B,k|k−1 are represented by the product of the originalweight

under the current motion model (the first term) and the prob-
ability of the corresponding model (the second term). The
values ofw(i)

S,k|k−1 andw
(i)
B,k|k−1 are scaled down, as the prob-

ability of the motion model is not more than 1.

Further, we have the expected number of the predicted targets
for each model:

Nk|k−1(rk) =
Lk−1+Jk∑

i=1

w
(i)
k|k−1. (24)

The predicted cardinality distribution and its p.g.f. are

ρk|k−1 (n, rk)

=
n∑

i=0

ρB(n − i, rk |rk−1)

i
Gk−1(1 −

s[pS,k|k−1(x
(i)
k|k−1)], r (i)

k|k−1)s[pS,k|k−1(x
(i)
k|k−1)]i , (25)

Gk|k−1(x, rk)

= Bk(x, rk|k−1)Gk−1

(
1 − s

[
pS,k|k−1

(
x(i)
k|k−1

)]

+ xs
[
pS,k|k−1

(
x(i)
k|k−1

)]
, r (i)

k|k−1

)
. (26)

2.2.2 Measurement update

The measurement-updated equations for the cardinality dis-
tribution and its p.g.f. are
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ρk(n, rk)

=
∑m

j=0 C
〈m− j〉
k (0) 1

(n− j)! Ĝ
〈 j〉〈n− j〉
k|k−1 (0, rk)s[1− pD]n− jσ j (Zk)∑m

i=0 C
〈m−i〉
k (0)Ĝ〈i〉

k|k−1(s[1 − pD], rk)σi (Zk)
,

(27)

Gk(x, rk)

=
∑m

j=0 x
jC 〈m− j〉

k (0)Ĝ〈 j〉〈n− j〉
k|k−1 (x − xs[pD], rk)σ j (Zk)∑m

i=0 C
〈m−i〉
k (0)Ĝ〈i〉

k|k−1(1 − s[pD], rk)σi (Zk)
.

(28)

Assume that 〈·, ·〉 denotes the inner product operation; the
measurement-updated equation for weightw∗(i)

k can be writ-
ten as

w
∗(i)
k = (1 − pD)

〈
ϒ1
k [wk|k−1;Zk ](n, rk ), ρk|k−1(n, rk )

〉
〈
ϒ0
k [wk|k−1;Zk ](n, rk ), ρk|k−1(n, rk )

〉w(i)
k|k−1

︸ ︷︷ ︸
undetected component

+
∑
z∈Zk

pDgk (z|x(i)
k|k−1)

〈1,Ck 〉
Ck (z)

〈
ϒ1
k [wk|k−1;Zk−{z}](n, rk ), ρk|k−1(n, rk )

〉
〈
ϒ0
k [wk|k−1;Zk ](n, rk ), ρk|k−1(n, rk )

〉 w
(i)
k|k−1

︸ ︷︷ ︸
detected component

.

(29)

Define the cardinality distribution of clutters pC,k(·), the
elementary symmetric function e j (·) and the permutation
coefficient Pn

j+u , the related parameters in Eq. (29) are given
by

ϒn
k [wk|k−1;Zk ](n)

=
min(|Zk |,n)∑

i=0

ei (	k (wk|k−1,Zk ))

× (|Zk |−i)!pC,k (|Zk |−i)Pn
j+u

〈
1− pD , wk|k−1

〉n−i−u

〈
1, wk|k−1

〉n ,

(30)
	k (wk|k−1,Zk )

=
{〈

wk|k−1,
〈1,Ck (z)〉 pDgk(z|x(i)

k|k−1)x
(i)
k|k−1

Ck (z)

〉
: z ∈ Zk

}
. (31)

Let round (·) denote the integer approximation, then the
expected number of targets is given by

Ñk(rk) =
Lk−1+Jk∑

i=1

w
∗(i)
k . (32)

Then the normalized weight is

w
(i)
k = w

∗(i)
k

Ñk(rk)
. (33)

Considering the particle number per target χ , we resample
Lk = χ Ñk particles from {w∗(i)

k , x∗(i)
k }Lk−1+Jk

i=1 and obtain

the new particle set {w(i)
k , x(i)

k , r (i)
k }Lk

i=1. Then, the discrete
approximation of the PHD at scan k is given by

Dk(xk, rk) =
Lk∑
i=1

w
(i)
k δ(xk − x(i)

k , rk − r (i)
k ), (34)

where Dk(xk, rk) is as the posterior PHD in the next cycle.

2.2.3 State estimation

The number estimates of targets for one certainmotionmodel
can be written as

N̂k(rk) = arg sup
n

ρk(n, rk). (35)

Then the number of the total targets under Nr parallel motion
models at scan k is estimated by

Nk = round

(
Nr∑
u=1

N̂k(rk)

)
, (36)

where Nk means the selected posterior PHDs corresponding

to the highestweights (w
(i1)
k , . . . , w

(iNk )

k ). Therefore,we esti-

mate the target states {x̂( j)
k }Nk

j=1 matching the largest peak j .

Remark 2 In terms of the SMC implementation, we note that
the motion state has variety and complexity for the maneu-
vering target. Quantities of particles are required to represent
the target state. However, the particle impoverishment of the
traditional PF is partly inherited. The impoverishment of
effectiveness and diversity causes the estimation deviation
of the target state. Especially, the deviation is greater when
the motion model is switching. Secondly, the corresponding
particle weight is transferred to other targets in proportion
when a target is undetected. On the other hand, when a clut-
ter near the target trajectory is similar to the measurement
of the newborn particle, a random false alarm may occur.
Although the occurrence probability is very small, the filter
still generates many newborn particles to find the newborn
target. In the case of small noise variance, a small amount of
preserved false alarms are mistaken for true targets. There-
fore, the target number is overestimated.

3 The proposed filter

To solve the above problems, we present an AG-MM-CPHD
filter and its SMC implementation in this section. The pro-
posed filter mainly contains the particle weight assignment
and AGA techniques.

3.1 Particle weight assignment

In the SMC implementation, the PHD would be dis-
carded if the sensor cannot collect the target-originated
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measurement. Note that the undetected term (1 − pD)

× 〈ϒ1
k [wk|k−1;Zk ](n,rk ),ρk|k−1(n,rk )〉

〈ϒ0
k [wk|k−1;Zk ](n,rk ),ρk|k−1(n,rk )〉w

(i)
k|k−1 in Eq. (29) leads to

the loss of targets in the case of pD < 1. At this time, the
detected component does not concentrate on the true target,
but moves proportionally to other targets. On another aspect,
all newborn particles for newborn targets and false alarms
may lead to the overestimated number. If a clutter-originated
measurement near the track is similar to the value of new-
born particles, the increasing weight would lead to unreliable
number estimates. Some false alarms are mistaken for true
targets when the variance of clutters is small.

Note that w(i)
k|k−1 is determined by Lk−1 and Jk particles,

and w
∗(i)
k also is given by the weights w

(i)
S,k and w

(i)
B,k of the

survival particle and the newborn particle, that is

w
∗(i)
k =

{
w

(i)
S,k, i = 1, . . . , Lk−1

w
(i)
B,k, i = Lk−1 + 1, . . . , Lk−1 + Jk .

(37)

Similarly, the modified weight corresponding tow
∗(i)
k can be

written as

w̃
∗(i)
k =

{
w̃

(i)
S,k, i = 1, . . . , Lk−1

w̃
(i)
B,k, i = Lk−1 + 1, . . . , Lk−1 + Jk,

(38)

where w̃
(i)
S,k and w̃

(i)
B,k are the modified weights of the survival

particle and the newborn particle.

Proposition 1 Assume that ε is the weight threshold for
w

(i)
B,k; to find the newborn target mixed up with the clutters,

the weight w(i)
m,k is assigned as

w
(i)
m,k =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w
(i)
S′,k =

(
1 +

Lk−1+Jk∑
i=Lk−1+1

w
(i)
B,k−w

(i)
B′ ,k∑Lk−1

i=1 w
(i)
S,k

)
w

(i)
S,k , i = 1, . . . , Lk−1

w
(i)
B′,k =

⎧⎨
⎩

ε, w
(i)
B,k ≥ ε

w
(i)
B,k , w

(i)
B,k < ε

, i = Lk−1+1, . . . , Lk−1+ Jk ,

(39)

where w
(i)
S′,k and w

(i)
B′,k are optimized weights for survival

particles and newborn particles.

Proof We assign excess weight to all survival particles when
w

(i)
B,k ≥ ε. Then the sum of w

(i)
m,k is

Lk−1+Jk∑
i=1

w
(i)
m,k

=
Lk−1∑
i=1

w
(i)
S′,k +

Lk−1+Jk∑
i=Lk−1+1

w
(i)
B′,k

=
Lk−1∑
i=1

w
(i)
S,k +

Lk−1∑
i=1

⎛
⎝

Lk−1+Jk∑
i=Lk−1+1

w
(i)
B,k − w

(i)
B′,k∑Lk−1

i=1 w
(i)
S,k

⎞
⎠w

(i)
S,k

+
Lk−1+Jk∑
i=Lk−1+1

w
(i)
B′,k

=
Lk−1∑
i=1

w
(i)
S,k +

Lk−1+Jk∑
i=Lk−1+1

(w
(i)
B,k − w

(i)
B′,k) +

Lk−1+Jk∑
i=Lk−1+1

w
(i)
B′,k

=
Lk−1∑
i=1

w
(i)
S,k +

Lk−1+Jk∑
i=Lk−1+1

w
(i)
B,k

=
Lk−1+Jk∑

i=1

w
(i)
k . (40)

In Eq. (40), we note that the sum of weights keeps unchanged
after the weight is assigned. 	

Proposition 2 If i1 survival particles have weightw

(i1)
S′,k ≥ 1

and i2 survival particles have weight w
(i2)
S′,k < 1, the weight

of survival particles w
(i)
S′′,k is reassigned as

w
(i)
S′′,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, w
(i1)
S′,k ≥ 1⎛

⎝1 +∑
i1

w
(i1)

S′,k−1
∑
i2

w
(i2)

S′,k

⎞
⎠w

(i2)
S′,k, w

(i2)
S′,k < 1

(41)

Proof We reassigned excess weights to other survival parti-
cles when w

(i1)
S′,k ≥ 1. Then the sum of w

(i)
S′′,k is

Lk−1∑
i=1

w
(i)
S′′,k =

∑
i1

1 +
∑
i2

⎛
⎜⎜⎝1 +

∑
i1

w
(i1)
S′,k − 1∑
i2

w
(i2)
S′,k

⎞
⎟⎟⎠w

(i2)
S′,k

=
∑
i1

1 +
∑
i2

w
(i2)
S′,k +

∑
i1

(w
(i1)
S′,k − 1)

=
∑
i1

w
(i1)
S′,k +

∑
i2

w
(i2)
S′,k

i1 + i2 = Lk−1

Lk−1∑
i=1

w
(i)
S′,k . (42)

In Eq. (42), we also note that the sum of weights remains
unchanged after the weight is reassigned. 	


After Propositions 1 and 2, we rewrite Eq. (24) to meet
the needs of the particle weight assignment scheme

Ñk(rk) = round

⎛
⎝

Lk−1∑
i=1

w
(i1)
S′,k

⎞
⎠+round

⎛
⎝

Lk−1+Jk∑
i=Lk−1+1

w
(i)
B′′,k

⎞
⎠ .

(43)

Remark 3 In Eq. (43), we note that Ñk(rk) not only repre-
sents the number of the survival target and the newborn target,
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but also balances the number of the undetected target and that
of the false alarm. Therefore, the particle weight assignment
can inherently correct the number estimates of targets.

3.2 AGA

To pave the way toward the proposed filter, we also apply the
AGA to reflect the dynamic state of targets. Aswe know, John
Holland proposed the conventional genetic algorithm (GA)
in 1975, where the probabilities of crossover and mutation
were constant. It can possess hill-climbing properties essen-
tial for the MM optimization, but they are too vulnerable to
achieve a local optimization. As a result, the conventional
GA has slow convergent speed and premature phenomenon
in actual applications. Todealwith this problem,M.Srinvivas
proposed the AGA in 1994, which is an approach for adapt-
ing operator probabilities in the conventional GA, where the
probabilities of crossover and mutation are varied depending
on the fitness value of solutions (Srinivas and Patnaik 1994;
Ma et al. 2009; Yu and Yu 2015).

According to the SMC implementation of theMM-CPHD
filter, the particle set can act as a population in the AGA,
where each particle can be regarded as an individual. The
population size is the number of individuals in a population,
that is, the number of the required particles.Besides, the parti-
cle weight is an important function for both number and state
estimates. Especially, the sum of the measurement-updated
weights can represent the expected number of targets. Since
the measurement-updated weight directly determines the fil-
tering performance, we use it as the fitness function in the
proposed AGA.

3.2.1 Selection

In the proposed AGA, we use the effective population size
to represent the number of breeding particles in an actual
population which would show the same amount of disper-
sion of allele frequencies under random genetic drift or the
same amount of inbreeding as the population under consid-
eration. Considering the assigned weightw(i)

m,k , we define the
effective population size as follows:

Neff = 1∑Lk−1+Jk
i=1 (w

(i)
m,k)

2
. (44)

Usually, the AGA has convergence when the variance of
w

(i)
m,k is less than the given threshold. Considering the com-

putational complexity, we perform the AGA in the case of
Neff ≤ 2(Lk−1 + Jk)/3. Otherwise, the AGA is neglected
and it is not necessary that the AGA is executed in the mea-
surement update step. Subsequently,we select a proportion of
the existing populations to breed a new generation based on
the fitness-based process during each successive generation,

where the roulette wheel method is invoked and the weight
w

(i)
m,k is set to the fitness function. The larger the weight, the

more likely is the chromosome selected. Then, we define a
random number R and add together the fitness of the popula-
tions until the sum is more than R. The last added individual
x(i)
k is regarded as the selected one, and a copy is passed to
the next generation (Dai et al. 2006; Wang et al. 2011). Due
to the selection probabilityps, the number of the selection
particles can be set to ps(Lk−1 + Jk).

3.2.2 Crossover

We define the crossover probability as follows:

pc =

⎧⎪⎨
⎪⎩

ρc exp

(
− ηc

2

(
w

(i)
m,k−w̄

(i)
m,k

w
(i)
m,k,max−w

(i)
m,k

)2
)

, w
(i)
m,k ≥ w̄

(i)
m,k

ρc, w
(i)
m,k < w̄

(i)
m,k,

(45)

wherew
(i)
m,k,max and w̄

(i)
m,k are the maximum fitness value and

the average fitness value, respectively, ηc is the crossover
regulator that can adjust the convergent speed, and ρc is the
coefficient.

In Eq. (45), we note that pc keeps the uniform distribution
ρc under the condition of w

(i)
m,k < w̄

(i)
m,k and follows the

exponent-conic distribution on the trailing edge. Besides, the
value is adaptively adjusted with the related regulator ηc that
can present the actual change of pc.

On the basis of pc, we choose a pair of particles x
(α)
k and

x(β)
k from the selection particles to mate. The new particles
are given by

⎧⎨
⎩


x

(α)

k = ζx(α)
k + (1 − ζ )x(β)

k


x

(β)

k = ζx(β)
k + (1 − ζ )x(α)

k ,

(46)

where ζ follows the uniform distribution in the period
[0, 1], and the number of the crossover particles is set to
pc(Lk−1 + Jk).

3.2.3 Mutation

Assumeηm is themutation regulator andρm is the coefficient,
then the mutation probability is given by

pm =

⎧⎪⎨
⎪⎩

ρm exp

(
− ηm

2

(
w

(i)
m,k−w̄

(i)
m,k

w
(i)
m,k,max−w

(i)
m,k

)2
)

, w
(i)
m,k ≥ w̄

(i)
m,k

ρm, w
(i)
m,k < w̄

(i)
m,k,

(47)

where the difference between ρm and pc is ρm < ρc.
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Fig. 1 Curve of pc or pm

According to ρm , we can get themutated particle x̃(i)
k from

the crossover particles

x̃(i)
k =

⎧⎨
⎩


x

(i)
k + (mk − 

x
(i)
k )(1 − ζ (1−i/�)ξ ), w

(i)
m,k ≥ w̄

(i)
m,k


x

(i)
k + (


x

(i)
k − lk)(1 − ζ (1−i/�)ξ ), w

(i)
m,k < w̄

(i)
m,k ,

(48)

where mk and lk are the maximum and minimum of x̃(i)
k , �

and ξ denote the iteration number and the mutation factor,
respectively, and the number of the mutation particles is set
to pm(Lk−1 + Jk). In addition, we consider the termination
condition of the generation number τk . If τk > �, the AGA
loop operation will terminate.

Remark 4 The proposed AGA makes full use of the particle
information in each generation to adaptively maintain parti-
cle convergence. It chooses the perfect individual and then
utilizes the crossover and mutation to generate new indi-
vidual (Vo 2008). It also ensures the particle effectiveness
and the particle diversity. A new solution shares the typi-
cal characteristics of its parents. New parents are selected
for each offspring, and the process continues until a new
particle is generated. The processing results in the next-
generation particle of the chromosomes being different from
the initial generation (Zhang et al. 2010, 2007). The average
fitness increases in this process, since only the best organ-
ism from the first particle is selected for the breeding, along
with a small proportion of the lesser one which ensures
genetic diversity. Figure 1 illustrates the change of pc or pm,

respectively. As seen, the curve on the trailing edge of the
conventional GA is linear, while the proposed AGA has the
characteristics of being nonlinear on the trailing edge. With
regard to the particles with lower weight, both the crossover
and the mutation can generate the particles with larger
weight. For the particles with larger weight, the fast impact of
crossover andmutation should be properly reduced. The non-
linear variation of the curves also indicates that the crossover
and the mutation look for the robust particle with the optimal
fitness.

3.3 Computational step

Considering the particle set {x(i)
k−1, w

(i)
k−1, r

(i)
k−1}Lk−1

i=1 and the
PHD Dk−1(xk−1, rk−1) at scan k − 1, we summarize the
recursion of the AG-MM-CPHD filter at scan k in Algo-
rithm 1. Steps 2–4 describe the time-updated weight w(i)

k|k−1

when r (i)
k|k−1 and x(i)

k|k−1 are drawn. Especially in step 4, the
expected time-updated number of targets Nk|k−1(rk) and
the time-updated cardinality distribution ρk|k−1(n, rk) are
obtained, respectively. The same method is also applied for
calculation of the measurement-updated weight w

∗(i)
k and

the measurement-updated cardinality distribution ρk(n, rk)
in steps 5–6. Steps 7–9 compute the expected measurement-
updated number of targets Ñk(rk) using the modified weight
w

(i)
m,k based on the particle weight assignment. The most

important is the proposed AGA in steps 10–14. The selected
particles x(i)

k , the crossover particles x(α)
k and x(β)

k , and the

mutation particles x̃(i)
k are obtained based on the correspond-

ing probabilities ps , pc and pm, respectively. In steps 15–16,
a new particle set is achieved by the normalized weight w(i)

k .

For the state estimation, the number estimates N̂k(rk) and
the state estimates {x̂( j)

k }Nk
j=1 are obtained, respectively, in

steps 17–18. Finally, the set {x(i)
k , w

(i)
k , r (i)

k }Lk
i=1 and the PHD

Dk(xk, rk) at scan k are output in step 19.

4 Simulation results and discussions

This section presents the numerical study for the AG-MM-
CPHD filter, and 100 Monte Carlo trials are performed to
validate the tracking performance of the proposed filter. Our
experimental environment was: IntelTM CoreTM i5, 4 GB
Memory, and MATLABTM v8.0.

4.1 Scenario

In the scenario, three targets move in a two-dimensional sur-
veillance region [−100, 1200] × [−100, 1800] m2.

(i) Target 1 moves from the initial position (100, 0) m on
1st s at CV motion with the velocity of (50, 20) m s−1

for 6 s before executing 9◦ s−1 CT motion for 9 s, and
then returns the original CV motion until 40th s.

(ii) Target 2 travels from the initial position (0, 0)mon16th
s at CV motion with the velocity of (20, 50) m s−1for
20 s before executing −9◦ s−1 CT motion for 10 s.

(iii) Target 3 keeps CV motion with the velocity of (30, 20)
m s−1 from the initial position (0, 500) m during 11th–
50th s.

We use Xk = [xk, xk, yk, yk]T to define the target motion
state with the position (xk, yk) and the velocity ẋk, ẏk , where
[·]T denotes the transposed matrix.
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Algorithm 1 Pseudo–code of the improved AG–MM–CPHD filter
Input (At scan 1k − )

{ } ( )1 1 1,k k kD r− − −x

( )
| 1
i

k kr −
( )

| 1
i

k k −x
( )
| 1 ( )D r− − −

( )N r ( ) ( )
Measurement update

[ ]( );n
k k            nϒ Z ( ),k kΛ Z ( )

( )k kn r ( )k kG x r

( )
m,
i

k

( )

( )k kN r

effN ( )2 3N L J
( ) p

cp ( )
k
αx ( )

k
βx

p ( )

1k kτ τ← + τ Γ

k k k

{ }              r ( ) ( ){ } 1

m, 1
,

k kL Ji i
k k i

− +

=
x

( )ˆ
k kN r N

( ),k k kD rx ( ){ }
1

ˆ kNj
k j=

x

k

{ } ( ),k k kD rx

Algorithm 1 Pseudo–code of the improved AG–MM–CPHD filter
Input (At scan 1k − )

1. Input ( ) ( ) ( ){ } 1

1 1 1 1
, ,

kLi i i
k k k i

         r
−

− − − =
x and ( )1 1 1,k k kD r− − −x ;

Time update
2.  Draw ( )

| 1
i

k kr − by Eq. (20) and draw ( )
| 1
i

k k −x by Eq. (19);

3.  Compute ( )
| 1
i

k k − by Eq. (21) and obtain ( )| 1 1 | 1,k k k k kD r− − −x by Eq. (18);

4.  Compute ( )| 1k k kN r− by Eq. (24) and compute ( )| 1 ,k k kn rρ − and ( )| 1 ,k k kG x r− by Eqs. (25) and (26);

5. Compute [ ]( )n
k kϒ Z and ( ),k kΛ Z by Eqs. (30) and (31) and compute ( )* i

k by Eq. (29);

6.  Compute ( ),k kn rρ and ( ),k kG x r by Eqs. (27) and (28);
Particle weight assignment
7. Compute ( )

m,
i

k by Eq. (39);

8.  If ( )
S , 1i

k′ , then compute ( )
S ,
i

k′′ by Eq. (41); else goto step 9;

9. Compute ( )k kN r by Eq. (43);
AGA
10. Compute N by Eq. (44); if ( )12 3eff k kN L J− + , then goto step 11; else goto step 15;

11. Obtain ( )i
kx based on sp with the roulette wheel method;

12. Compute cp by Eq. (45) and obtain ( )
k
αx and ( )

k
βx by Eq. (46);

13. Compute mp by Eq. (47) and obtain ( )i
kx by Eq. (48);

14. 1k kτ τ← + ; If kτ Γ , then return step 10; else goto step 15;
Resampling

15. Compute ( ) ( ) ( )
1

m, m,
1

k kL J
i i i

i

− +

=

= ∑ ;

16. Obtain the new set ( ) ( ) ( ){ }
1

, ,
kLi i i

k k k i=
x form ( ) ( ){ } 1

1
,

k kL Ji i
k k i

− +

=
x ;

State estimation
17. Compute ( )ˆ

k kN r by Eq. (35) and compute kN by Eq. (36);

18. Obtain ( ),k k kD rx by Eq. (34) and obtain ( ){ }
1

ˆ kNj
k j=

x ;

Output (At scan k )

19. Output ( ) ( ) ( ){ }
1

, ,
kLi i i

k k k i
     r

=
x and ( )k k kD rx .

For the CV motion model (rk = 1), the transition matrix
is defined as

F1k|k−1 =

⎡
⎢⎢⎢⎣

1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

⎤
⎥⎥⎥⎦ . (49)

For the CT motion model (rk = 2), assume ωk−1 is the turn
rate, then the transition matrix is defined as

F2,k|k−1 =

⎡
⎢⎢⎢⎢⎣

1 sinωk−1T/ωk−1 0 −(1 − cosωk−1T )/ωk−1

0 cosωk−1T 0 − sinωk−1T

0 (1 − cosωk−1T )/ωk−1 1 sinωk−1T/ωk−1

0 sinωk−1T 0 cosωk−1T

⎤
⎥⎥⎥⎥⎦ .

(50)

Further, the other matrices in Eqs. (1) and (2) are given by

�k =

⎡
⎢⎢⎢⎣

T 2/2 0

T 0

0 T 2/2

0 T

⎤
⎥⎥⎥⎦ , Wk ∼ N

(
0,

[
1 0

0 1

])
,

Vk ∼ N
(
0,

[
0.01

0.01

])
, Hk =

[
1 0 0 0

0 0 1 0

]
,

where T is the sampling period that is set to 1 s, and N (·)
denotes the Gaussian distribution.

At scan k, the target-survival probability is pS,k = 0.97.
Let diag(·) denote the diagonal matrix; the intensity of the
newborn target is given by
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bk(Xk) = 0.2
3∑

i=1

N (Xk;m(i)
b ,Pb), (51)

where m(1)
b = [100, 50, 0, 20]T, m(2)

b = [0, 20, 0, 50]T,

m(3)
b = [0, 30, 500, 20]T and Pb = diag([10, 5, 10, 5]).
Further, the sensor located on (−100,−100) m has the

probability of detection pD = 0.95. The clutter is modeled
as the Poisson distribution with the uniform density in the
surveillance area, and the average number of clutters returns
per scan is 1. Assume the initial probabilities for the CV
motion model and the CT motion model are PCV = PCT =
0.5; the weight threshold is ε = 0.5, and the number of the
required particles per target is χ = 200. The regulators of
the crossover and the mutation are ηc = ηm = 10, and the
coefficient of the crossover and the mutation are ρc = 1 and
ρm = 0.5. Considering the running time, we define the initial
effective population size as N (0)

eff = 100 and the termination
condition as � = 10. The optimal subpattern assignment
(OSPA) distance is used to evaluate the proposed filter and
the referenced filter in Georgescu and Willet (2012). As we
know, the OSPA distance is used to measure two filters. Let
X = {xi }gi=1 be the ground truth track set and X̂ = {x̂i }ei=1
the estimated track set; the OSPA distance is given by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d̄(c)
p

(
X, X̂

)

=
(

1∣∣∣X̂
∣∣∣

(
min

π∈�|X̂|
|X|∑
i=1

d(c)(xi , x̂π(i))
p + cp(|X̂| − |X|)

))1/p

|X| ≤
∣∣∣X̂
∣∣∣

d̄(c)
p (X, X̂) = min(c, ‖x − x̂‖) |X| >

∣∣∣X̂
∣∣∣

,

(52)

where�|X̂| is the set of permutations in |X̂|, and c is the cutoff
parameter that determines the sensitivity of divergence from
the cardinality error, p is the order parameter that determines
the sensitivity of localization error. There is d̄(c)

p (X, X̂) =
0 under the condition of |X| = |X̂| = 0. Therefore, the
OSPA distance presents both the target-number accuracy and
the localization accuracy. As a result, the overall tracking
accuracy decreaseswith the increasingOPSAdistance. Here,
the related parameters are p = 2 and c = 350.

4.2 Simulation results

Figure 2 demonstrates a three-target trajectory and the related
measurements in the dense clutter area. It is obvious that
Targets 1 and 2 are maneuvering and Target 3 is non-
maneuvering in the two-dimensional coordinates. We note
that the proposed filter can track all the targets in spite of the
clutter interference.

For simplicity, Fig. 3 shows the true trajectory and the state
estimates by clutter suppression. In this figure, the junction
points P1, P2 and P3 can be obviously observed. By analysis,
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Fig. 2 Target trajectory and measurement
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Fig. 3 Target state estimates

we find that Target 1 is close to Targets 3 and 2 at P3 and P2
at the 23rd s and 27th s, Target 2 is nearing Targets 3 and 1
at P1 and P2 at the 29th s and 38th s, and Target 3 makes
a stealthy approach to Targets 2 and 1 at P1 and P3 at the
20th s and 29th s. All the trajectories have no intersections in
the surveillance region at a certain time. Both the referenced
filter in Georgescu and Willet (2012) and the proposed filter
can track three targets. The favorable performance of the
proposed filter is more efficient. However, the standardMM-
CPHDfilter can describe the target trajectorywith estimation
error.

The target number estimates are shown in Fig. 4. It can
be seen that the referenced MM-CPHD filter has unstable
number estimates. It overestimates a target at the 29th s and
underestimates a target at the 45th s.The reason for the former
can be because a clutter is close to Target 1 at the 29th s. The
referenced filter mistakes this clutter for the appearing target
due to the increasing weight of the newborn particle. For the
latter, the sensor cannot collect any measurement in real time
from Target 3 at the 45th s because of the actual probability
of detection. Lesser measurement-updated weights lead to
the undetected target. In contrast, the proposed filter com-
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pensates the undetected component of the survival particle
when the weight of the newborn particle exceeds the weight
threshold, which rectifies the exaggerated weight of the new-
born particle. Simultaneously, the increasing weight of the
survival particle is beneficial to the survival target. Therefore,
the proposed filter produces estimation results essentially in
agreement with the true number of targets.

Figure 5 demonstrates the OSPA distance of two filters.
For the referenced filter, theOSPAdistance is largerwhen the
target number is incorrect at the 29th s and 45th s. In addition,
the filter shows poor adaptation to the target maneuvers at the
7th s, 18th s and 36th s. In the process of motion transition,
there is a short adjustment time between the previous motion
model and the current motion model. During this period,
owing to lack of the diversity and robustness, the particle
cannot immediately switch to the current model to approx-
imate the actual state. Therefore, they deviate from the true
target position to a certain extent. For example, since Targets
1 and 2 switch to the CT motion at the 18th s and 36th s, the
related OSPA distance is larger. By comparison, the position
deviation from the proposed filter is smaller, and the OSPA

Table 1 Comparison of tracking performance

Target
number

OSPA
distance (m)

Running
time (s)

Referenced filter 2.02 91.47 2.43

RBPF-CPHD tracker 2.14 67.15 2.17

Proposed filter 2.20 58.93 2.79

distance is limited to 73.58 m. This may be because the AGA
improves the diversity and robustness. Many excellent par-
ticles concentrate on the true target. As a result, the OSPA
distance decreases due to the reduced distance between the
particles and the true target.

Table 1 shows the average comparison results of the track-
ing performance under the same scenario after 500 Monte
Carlo trials. In this table, we can analyze the tracking perfor-
mance of the referencedfilter, theRao-Blackwellized particle
CPHD (RBPF-CPHD) tracker in Yang and Ji (2012) and the
proposed filter. In terms of tracking efficiency, it can be found
that the running time of the proposed filter is longer than that
of two other filters. The reason is that the proposed filter has
a natural mechanism for the particle weight assignment and
AGA techniques in the MM framework, which is used as
computational expensive tool for estimating the number and
state of targets. For comparison, the RBPF-CPHD tracker
saves the running time to the greatest extent, because it uses
the RBPFmethod to reduce the state space and the only posi-
tion components in the nonlinear state space using sampling
particles. But above all, it utilizes the SM that saves compu-
tational cost. In terms of tracking reliability, two improved
filters can improve the tracking accuracy. The investigation
shows that the estimated target number of the referenced fil-
ter is the smallest owing to its inherent defect of undetected
targets. Since it keeps the cardinal balance only when the
number of false alarms is equal to that of undetected tar-
gets, the referenced filter has the maximal OSPA distance.
For the RBPF-CPHD tracker, the track maintenance algo-
rithm based on the cross entropy (CE) and RBPF techniques
in the framework of CPHD filter was achieved, where the
CE technique is utilized as a global optimization scheme to
compute the optimal feasible associated event. As a result, it
further improved the accuracy of the state estimates and the
number estimates. By comparison, the proposed filter has
promising performance for various dynamic targets under
the different dynamic models such as maneuvering multitar-
get owing to the MM-based structure. Besides, the AGA is
used to improve the target state estimation accuracy at the
time of state switching with the excellent particles as well as
the undetected component of the weight of survival particle
is compensated to correct the number estimates of targets.
From this table, we note that the proposed filter has the min-
imal OSPA distance with approximated number estimates. It
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also indicates that the proposed filter enhances the number
estimation accuracy and the state estimation accuracy.As for
the overall tracking performance, we can conclude that the
proposed filter is acceptable for the MTT.

5 Conclusion

This paper has developed an improved MM version of the
CPHD filter, which tracks the multitarget in the noisy set of
measurements. The challenges lie in handling imprecise esti-
mates of the existing MM-CPHD filter. Our work employs
the particle weight assignment scheme and then the number
of the false alarm and that of the missing target is corrected.
Moreover, the particle impoverishment was alleviated using
the AGA that provided the diversity and robust particles to
reflect target maneuvers. The numerical study shows that the
proposed filter has significant improvement in tracking per-
formance with promising results. As future developments of
this work, we plan to shorten the running time under the
current tracking precision.
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