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Abstract Multi-objective particle swarm optimization
algorithm (MOPSOs) has been found to exhibit fast con-
vergence speed but with high probability to fall into local
optimum. To overcome this shortcoming, a population
recombination strategy is combined with a new mutation
strategy to strengthen the ability to jump out of local opti-
mum. From the investigation conducted, it can be found
that, when the MOPSO falls into local optimum, the pop-
ulation will stop producing effective particles to update the
archive. Population recombination strategy, which utilizes
the information of the best variable found so far to con-
struct the new population. This can increase the probability
for population to approach the Pareto optimal front, while
additional mutation operation can enhance the diversity of
population. Experimental study on the bi-objective and three-
objective benchmark problems shows that theMOPSObased
on proposed strategies is superior to previous multi-objective
algorithms in the literature.
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1 Introduction

Since the real-world problems need to optimize multiple
conflicting objectives simultaneously (Tate et al. 2012),
multi-objective optimization problems (MOPs) get wide-
spread attention in recent decades. The MOPs need to find
the optimal solution set named Pareto optimal Front (PF) that
consists of multiple solutions. As Evolutionary Algorithms
(EAs) are population-based algorithms which can find mul-
tiple solutions in a run, researchers try to extend it to solve
the MOPs. Thus, multi-objective evolutionary algorithms
(MOEAs) get intensive and extensive study (Deb 2001; Xia
et al. 2014).

Particle swarm optimization algorithm (PSO) (Kennedy
and Eberhart 1995; Shi and Eberhart 1998) is a population-
based algorithm that simulates the movements of a flock of
birds to find food. Because of the fast convergence and sim-
ple implementation, PSO is also extended to solve MOPs
(Margarita et al. 2006) (named MOPSO), and successfully
applied in dealing with many real-world problems (Lalwani
et al. 2013; Xue et al. 2013). Compared with other algo-
rithms (such asMOEAs),MOPSOhas unique particle update
method and personal best (pbest) to record particle experi-
ences. In fact, there are two types of archives (Coello et al.
2004) in MOPSOs, one is composed of global optimum
(gbest) and another is composed of all of the pbest which
are recorded by particles.

However, similar to other multi-objective optimization
algorithms, MOPSOs also encounter the problem of prema-
ture convergence for the complex MOPs. Many researchers
noticed this problem, and learned from Genetic Algorithm
(GA) which utilizes a mutation operation to enhance the
ability to avoid the local optimum, thus the mutation opera-
tion was introduced in the PSOs and MOPSOs as well (Paul
2006). Other researchers try to combine variety of algorithms
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to solve MOPs (Luis et al. 2006; Daneshyari and Yen 2011).
Besides, the comprehensive learning PSO (CLPSO) (Liang
et al. 2006) aims to enhance the diversity of the popula-
tion to improve the algorithm’s ability to escape from local
optima. Based on this, the Multi-objective comprehensive
learning particle swarmoptimizer (MOCLPSO) (Huang et al.
2006) was proposed to solve MOPs with excellent perfor-
mance.

For the simple and effective characteristics, most ofMOP-
SOs use the Pareto relationship to update gbest and pbest.
Moore and Chapman (1999) utilized a ring topology to solve
the MOPs problems. In the proposed topology, the pbest of
a particle is a list of all non-dominated solutions found in
its trajectory. In the process of updating the velocity and
position, one pbest is selected randomly from the list. Li
(2003) proposed the non-dominated sorting particle swarm
optimizer (NSPSO) that incorporates the main mechanisms
of the NSGA-II (Deb et al. 2002). In NSPSO, once a par-
ticle has updated its position, all thepbest of the particles
and all the new positions obtained recently are combined
as a solution set and sorted into various non-domination
levels using the non-dominated sorting technology. Niche
count and crowding distance are used to estimate the den-
sity. N (population size) best particles are selected as the new
swarm. This approach applies a mutation operator only on
the particle with the smallest crowding distance value (or the
largest niche count). Mostaghim and Teich (2003) proposed
sigma-MOPSO, in which the gbest is selected according to
the closest sigma value. Speed-constrained Multi-objective
PSO (SMPSO) (Nebro et al. 2009) is an improved ver-
sion of OMOPSO (Sierra and Coello 2005), which uses an
adaptive grid technology to update external archive and uti-
lizes roulette-wheel method to select gbest. In MOCLPSO,
the gbest is selected randomly from archive, but the pbest
is selected from different particles of swarm to enhance
the diversity of algorithm. The co-evolutionary multi-swarm
PSO (CMPSO) (Zhan and Zhang 2013) introduced a multi-
ple populations for multiple objectives (MPMO) technology
with each objective corresponding to a population. The elitist
learning strategy (ELS) is also applied in the archive to
strengthen the ability of exploring.

Inspired by the MOEA/D (Zhang and Li 2007) which
decomposes the original MOP into a number of scalar aggre-
gation problems, Moubayed et al. (2010) proposed a novel
smart MOPSO using decomposition (SDMOPSO), which
associates every particle with a vector according to the best
scalar aggregated fitness value and utilizes archival storage
of non-dominated solutions. Hybrid technologies had been
also applied to enhance the MOPSOs. In literature (Tang
and Wang 2013), the hybrid multi-objective evolutionary
algorithm (HMOEA) was reported. A self-adaptive selection
mechanism is developed to choose an appropriate crossover
operator from several candidates.

The MOPSOs exhibits a strong ability to learn but with
weakness in exploration.Assume that there is only one global
optimum, particles in the population will soon fly to the
global optimum and begin to explore new areas. As the popu-
lation concentrates to a small area, the ability to explore new
areas becomes weaker. MOPSOs can benefit from the intro-
duction of archive which contains multiple global optimum,
but exploring ability has not been strengthened.

Through the investigation on the size of archive, it can
be found that it will soon increase to the maximum value
for simple problems. However, the archive size for complex
functions tends to be small and remains unchanged over a
period of time. For verification, Fig. 1a shows the trend for
the archive size (na) for the ZDT1 and ZDT4 issues obtained
by the conventional PSO algorithm. As can be seen from the
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Fig. 1 a Archive size and convergence curve of the ZDT1 and ZDT4
problems. For ZDT1 problem, to facilitate the observation, the conver-
gence value multiplied by 100. b The distribution of each generation of
the archive for ZDT4 problem
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figure, the archive size for ZDT1 problems quickly increases
to the limit of archive (NA = 100) and remains unchanged.
For ZDT4 problem, the archive size does not reach NA, and
maintains a very small value. Furthermore, there is no change
in the size of the archive (such as 400 and 500 generations),
and the convergence value (generational distance indicator
GD) of the algorithm did not change during this period. To
observe the results intuitively, the solutions in the archive
of 400, 500, 600, 700, 800, 900 generations are also shown.
Figure 1b shows the distribution of archive for 400–500 and
600–900 generation. It can be observed the archive remains
unchanged, because there is no new particle added to the
archive when the archive is updated. There exist two cases:
one is the new particle does not dominate any solution in
the archive, this would be possible to make the archive size
smaller. The other is the population did not generate any
particle that non-dominates any solution in archive, which
will increase the size of the archive. This trend should be a
manifestation of complex problems, the population cannot
produce effective particle to update the archive.

To overcome this problem, the population recombination
strategy (PRS) and a newmutation strategy are proposed. The
main idea is to discard most of current position information
which is useless for generating better solution, and effectively
use the information contained in the archive and all of the
pbest to construct a new particle. Moreover, the mutation
operator is introduced to enhance the algorithm’s ability to
escape from local optimum. PRS was implemented using
the best variables information found to construct the new
population, which can increase the probability of particles to
be included in the archive. At the same time, the mutation
operation is also combined to strengthen the ability to jump
out of local optimum.The detailed description aboutPRS and
new mutation strategy will be described in the paper. Based
on the PRS and new mutation strategies, a multi-objective
particle swarm optimization algorithm called RMOPSO is
proposed and verified.

The novelties of proposed RMOPSO algorithm lie in:

1. Different from existing algorithms in which the swarm is
updated continuously, the PRS recombines the swarm in
a certain stage to discard some useless informationwhich
is likely to mislead the direction of evolution. The chance
for the swarm to regroup, therefore, increases.

2. Different from existing algorithms thatmutate particle by
probability or the value of density like the NSPSO, the
new mutation strategy aims to mutate particles that had
been included in the archive. Therefore, it becomes more
effective when the algorithms fall into local optimum.

The rest of this paper is organized as follows. Section 2
constructs a MOPSO framework based on the predecessors’
research and describes the PRS and new mutation strategy

in detail. The experimental analysis of proposed strategy
is presented in Sect. 3. Section 4 reports and analyzes the
experimental results on benchmark problems. The compari-
son with other state-of-the-art MOEAs and MOPSOs is also
conducted. Finally, some conclusions are drawn in Sect. 5.

2 RMOPSO

2.1 Basic framework of RMOPSO

Based on previous studies, RMOPSO which utilizes the
Pareto relationship to evaluate the quality of the solutions
is constructed. The basic framework is composed of 3
processes, which are swarm initialization process, swarm
update process and archive update process. The detailed
pseudo-code can be found in Fig. 2.

In Swarm_update_process described in Fig. 2b, the
updated velocity and position may exceed their correspond-
ing boundary, they should be adjusted to meet the velocity
constraints Vi and position constraints Xi after the update
process:

Case 1: if Vi > Vmax,i , then set Vi as Vmax,i .
Case 2: if Vi < Vmin,i , then set Vi as Vmin,i .

Here Vmax,i = θXmax,i and Vmin,i = θXmin,i . Litera-
ture (Zhan et al. 2009) suggests that θ = 0.2 (Vmax,i =
0.2Xmax,i and Vmin,i = 0.2Xmin,i ). However, it was found
that θ = 1.0 can improve the diversity of the algorithm, thus
1.0 is used in this paper. For the position constraints are given
as follow:

Case 1: if Xi > Xmax,i , then Xi = Xmax,i and Vi = −Vi.
Case 2: if Xi < Xmin,i , then Xi = Xmin,i and Vi = −Vi.

The archive denoted as A is adopt to store all non-dominated
solutions found so far; it is initialized to be empty andupdated
in every generation. Research shows that it is better to use an
archive with a fixed maximum size, as the number of non-
dominated solutions may increase very fast. Therefore, the
maximum size of the archive is denoted asNA and the current
size is denoted as na. In the update process of archive, all the
particles in swarm and solutions in archive are combined as a
set firstly, and all particles dominated by any other particles
are deleted. The density of each solution is calculated and
sorted using the crowding distance technology. If the index
value is larger than themaximum limitNA, the corresponding
solution will be deleted.

2.2 Population recombination strategy

The pseudo-code of the PRS is given in Fig. 3. The position
information of current particle is not completely useless and
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Procedure Swarm_initialization_process
Begin

For each particle in swarm: i=1 to NP
For each dimension in X: j=1 to n

Xij=random[Xmax,j , Xmin,j] and Vij=0;
pbestij = Xij;

End of j
Evaluate objectives;

End of i
End

(a)

Procedure Swarm_update_process
Begin

For each particle in swarm: i=1 to NP
Select gbest by binary tournament selection from the archive.
For each dimension in X: d=1 to n

Vid=w×Vid+c1×r1d×(pbestid - Xid)+ c2×r2d×(gbestd - Xid)
Xid = Xid+ Vid
Adjust Vid and Xid to satisfy constraints;

End of d
Evaluate objectives;
Update pbest, if the new X dominates pbest, update pbest;

End of i
End

(b)
Procedure Archive_update_process
Begin

Add all particles to archive A and mark all as non-dominated;
For each particle Ai in A

For each particle Aj in A and j != i
If Aj dominate Ai

mark Ai as dominated;
break;

End if
End of j

End of i
Delete all particles, mark them as dominated;
Calculate density using the crowding distance technology;
If the length of A beyond of NA, sort A from big to small according to
the density, and then remove the particles beyond the limit NA;

End
(c)

Procedure Basic_framework RMOPSO
Begin

gen = 0;
Swarm_initialization_process;
Archive_update_process;
While not stop

Swarm_update_process;
Archive_update_process;
gen = gen + 1;

End of While
Output A

End
(d)

Fig. 2 The pseudo-codes of the basic RMOPSO, a pseudo-code of the swarm initialization process; b pseudo-code of the swarm update process;
c pseudo-code of the archive update process; d pseudo-code of the basic framework of the RMOPSO

Procedure of PRS
Begin
For each particle in swarm: i=1 to NP

For  j=1 to n        
If (random[0,1] > p1)

If (random[0,1] > p2)
solution = floor(random[0,1] na);  // randomly select a solution from archive

POPi,X[j]= Asolution,X[j] // jth variable is replaced by the jth variable from solution
Else

POPi,X[j]= POPi,pbest [j] // variable is replaced by variable from pbest 
POPi,V[j] = 0;                               // reset speed as 0

End for j
Evaluate the new particles;
Update pbest

End for i
End

Fig. 3 The pseudo-code of the PRS. random[0,1] is used to generate a random number between 0 and 1, and A denotes the archive

PRS do not discard all of the position information belong to
the particles, it will be replaced by the pbest or gbest based
on the probability p1 for each dimension.

As a storage pool, the archive saves all optimal solu-
tions found so far. However, when the algorithms fall into
a local optimum, the stored information is not reliable. pbest
is the best position that each particle in swarm discovers and
records. In most cases, pbest should also be included in the
archive, but when the archive size is smaller than the size of
population, obviously, some pbest of the particle in swarm is
significantly different from the solutions in archive. Thus, all

of the pbest have some diversity information of the swarm.
Therefore, all of the information stored in archive and pbest
in swarmare important and should be fully utilized.However,
it is difficult to know whether the information is valid in the
process. Thus, the probability p2 is introduced to determine
the use of pbest and gbest.

After PRS, the velocity is set as 0. It should be noted
that the PRS utilizes variables information directly and does
not create any new position information and the pbest which
belongs to each recombined particle is unchanged.
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A problem arises when the PRS is used to construct new
swarm. The PRS cannot be used in every generation, because
it cannot create any new position information but involves
adjustment based on existing variables. Therefore, a parame-
ter called generation interval T is introduced, which means
the PRS is used for every T generation. In the Sect. 3, experi-
mental analysis on this parameter is conducted and the results
show that the algorithm exhibits better performance when T
is chosen between 5 and 10.

2.3 New mutation strategy

As themutation operator can enhance the diversity of popula-
tion and strengthen the exploration ability of the algorithm.
It was introduced in the PSO and MOPSO by researchers.
Similar to the MOEAs, the probability for the mutation of
one particle is 1/n, where n is the number of variables.
Besides, MOPSO uses a mutation operation whose probabil-
ity decreases with increasing iterations. While the NSPSO
mutates the particles which has a smallest density value.

The mutation operator is also employed here. During the
archive update process, some particles will be added to the
archive if these particles dominate or non-dominate solu-
tions in archive. When updating the population, especially
when the algorithms fall into local optimum, some particles
in swarm are the global optimum and located in archive, the
pbest will choose agbest from the archive to learn. However,
they have the same level, and the effective of explore variable
space is reduced. Accordingly, mutation of these particles is
a good choice. When the particle is selected for mutation, a
random dimension d is selected to perform Gaussian pertur-
bation as:

If random[0, 1] > 0.5

POPi [d] = POPi [d]
+ (Xmax,d − Xmin,d) ∗ gasussian(0, 1)

else

POPi [d] = POPi [d]
− (Xmax,d − Xmin,d) ∗ gasussian(0, 1)

where i is particle index selected to mutation, Xmax,d and
Xmin,d are the upper and lower bounds of thedth dimension,
respectively. gasussian(0,1) is a random value generated by
a Gaussian distribution with a mean value of 0 and a standard
deviation of 1.

2.4 Population recombination multi-objective particle
swarm optimization algorithm

Based on the PRS and new mutation strategy, Population
Recombination Multi-objective particle swarm optimization

Algorithm RMOPSO
Begin

Input: 1) Size of population NP, maximum size of archive NA and current 
size na = 0.

2) Parameters: w, c1, c2.
3) Position constraints and Velocity constraints:

Xi [Xmax,i , Xmin,i] ,Vi [Vmax,i , Vmin,i].
4) Stopping criterion: maximum number of function evaluation FEs

and set count = 0 which is used to record number of the 
function evaluation.

Output: archive of the last generation.
Initialization:

Initialize the swarm by Swarm_initialization_process;
Update archive by Archive_update_process;

End Initialization
Iteration:

if  t%T = 0 
use PRS to recombination swarm;

else Update particles:
For i=1 to NP

Select gbest from archive;
Update the velocity and position;
//Mutation operator;
If  POPi ,min-distance= 0, mutation this particles.
Evaluate the new particles and count+1.
Update pbest.

End of i
2).Update archive:

Find all non-dominated solutions from the union set of swarm and 
archive, then truncate it when na > NA.  In this process, if ith particle 
in the current swarm is added into the archive, mark it using
POPi ,min-distance = 0.

End Iteration:
Criterion:

If count> FEs, then output archive and stop, otherwise go to Iteration.
END 

Fig. 4 The pseudo-code of complete RMOPSO algorithm

algorithm (RMOPSO) is implemented. The detailed flow-
chart is described in Fig. 4. In the flowchart, t is the number
of generation of the RMOPSO, T is the Generation Interval,
and t % T is themodulo operation used to determine whether
the PRS process will be utilized. The swarm update process
is same as the Swarm_update_process described in Fig. 2b
except the new mutation operation.

The archive update process is similar to the Archive_
update_process, as described in Fig. 2c. The particles
included in the archive from swarm are marked for further
mutation operation. The count is a variable used to record
the number of the function evaluations (FEs).

3 Experimental analysis

To verify the effectiveness of newmutation strategy and PRS
described in Sects. 2.2 and 2.3, an experimental analysis was
carried out in this section. It includes analysis on different
generation interval T for PRS, and the impacts of PRS and
mutation operator. The basic framework of the RMOPSO
described in Fig. 2d without the PRS and mutation opera-
tion will be used as the baseline algorithm in this section to
demonstrate the advantages of the PRS and mutation opera-
tion.
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3.1 Test problems

Six benchmark problems are adopted as test problems in this
section. Among them, the problems (ZDT1, ZDT2, ZDT3,
ZDT4 and ZDT6) are selected from the ZDT test set, and
the WFG1 is selected from the WFG test set (Huband et al.
2005). ZDT1 and ZDT2 are simple problems and their PF is
convex and concave, respectively, while the PF of ZDT3 is
convex and disconnected. WFG1 has a mixed PF. ZDT4 is
multimodal problems that have local optimum, thus it is used
to test the ability of algorithm to jump out of the trap. These
test problems consider various characteristics of the MOP
and can be used to evaluate the performance of proposed
algorithm regarding different issues.

3.2 Performance metric

In this section, the generational distance (GD) and � indi-
cators are used to evaluate the convergence and diversity
performance, respectively. The detailed definition can be
found in Appendix 1. As these indicators require sufficient
reference points to simulate the PF, 500 reference points are
generated based on the known PF for each problem.

3.3 The impact of generation interval T

In this subsection, the impact of T on the RMOPSO is
studied. The related parameter setting of the RMOPSO is:
NP = 50, NA = 100, w = 0.729, c1 = c2 = 2.05,

p1 = 0.05, p2 = 0.5. In the experiment, each algorithm
is run independently for 30 times and the maximum num-
ber of function evaluations (FEs) is 25,000 (If there are no
special instructions, in the subsection 3.4, this setting will
be also applied). The T is set to 100, 50, 20, 10, 7, 5 and 3,
respectively, for comparison, T = 0 means that the PRS has
not been used, which refers to the original MOPSO.

Table 1 shows the results for the RMOPSO with differ-
ent values of T . The result shows that for convergence, with
the decrease of T , convergence value significantly improves,
especially for ZDT4 which is a complex problem. Over-
all, with the decrease of T, standard deviation of the value
decreases as well, which indicates that the probability for
the algorithm to converge to the optimal front increases. It is
worthy to mention that for simple problems, the correspond-
ing convergence values for T = 10, 7, 5 and 3 have the trend
to decrease, but the differences between them are not signif-
icant. While for the complex problems (ZDT4 problem), the
corresponding differences are still large. Thus, for the com-
plex problems, the proposed algorithm is superior favorable
to jump out of local optimum with smaller T .

The results of the diversity performance are summarized in
Table 1. It can be observed that diversity value also decreases
with decreasing T, but it is different from the convergence
values (ZDT4 excluded) which decrease monotone with the
decreasing T .When T = 10, diversity performance is found
to be the best. However, for ZDT4 andDTLZ1diversity value
also reduces with decreasing T, and achieves the best when
T = 3.

Table 1 Generational distance (GD) and the diversity performance (�) of RMOPSO with different values of T

T ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 WFG1

GD

T = 0 (MeanStd) 0.23761.47E−3 0.54872.46E−02 0.15348.04E−04 26.41012.41E+01 0.76355.81E−02 0.03218.97E−06

T = 100 (MeanStd) 0.09849.20E−04 0.08773.07E−03 0.08238.01E−04 8.01695.45E+00 0.04349.00E−04 0.01688.73E−06

T = 50 (MeanStd) 0.03871.28E−04 0.01422.07E−04 0.02882.24E−04 3.49363.70E+00 0.00142.36E−07 0.00852.77E−06

T = 20 (MeanStd) 0.00361.60E−06 0.00124.40E−07 0.00393.74E−06 0.41141.05E−01 0.00121.16E−07 0.00251.23E−07

T = 10 (MeanStd) 0.00115.70E−08 0.00049.73E−09 0.00177.79E−08 0.04641.18E−03 0.00118.31E−08 0.00175.76E−08

T = 7 (MeanStd) 0.00086.77E−08 0.00038.55E−10 0.00164.12E−08 0.02123.07E−04 0.00126.67E−08 0.00174.51E−08

T = 5 (MeanStd) 0.00078.00E−08 0.00031.46e−09 0.00167.42E−08 0.00472.95E−04 0.00144.98E−07 0.00165.31E−08

T = 3 (MeanStd) 0.00081.09E−07 0.00031.04E−09 0.00177.41E−08 0.00091.33E−05 0.00132.89E−07 0.00146.08E−08

�

T = 0 (MeanStd) 0.90656.43E−03 0.83261.15E−03 0.93656.70E−03 0.96281.93E−03 1.13631.44E−02 0.60381.12E−02

T = 100 (MeanStd) 0.88181.96E−02 0.91091.48E−02 0.91441.14E−02 0.95969.80E−03 1.18845.44E−02 0.62724.43E−03

T = 50 (MeanStd) 0.86291.63E−02 0.74655.76E−02 0.91985.69E−03 0.87597.90E−04 0.35841.44E−03 0.59984.24E−03

T = 20 (MeanStd) 0.77078.71E−03 0.52614.67E−02 0.99612.70E−03 0.84045.88E−03 0.32139.37E−04 0.45512.64E−03

T = 10 (MeanStd) 0.29584.57E−04 0.29711.20E−03 0.78628.80E−04 0.66242.97E−02 0.35724.00E−04 0.30204.13E−04

T = 7 (MeanStd) 0.30958.73E−04 0.31025.27E−04 0.73271.13E−03 0.51341.07E−02 0.38121.07E−03 0.30592.52E−04

T = 5 (MeanStd) 0.32527.15E−04 0.34741.02E−03 0.71289.53E−04 0.33441.67E−02 0.37897.68E−04 0.31916.04E−04

T = 3 (MeanStd) 0.36415.09E−04 0.40422.42E−03 0.74206.04E−05 0.32281.32E−03 0.39861.20E−03 0.33867.19E−04
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From the convergence and diversity results, it can be con-
cluded that for the convergence of the MOPs, the smaller T
can result in better performance for simple problems, and
the smaller T (less than 5) affects diversity performance
insignificantly. Hence, to improve the convergence perfor-
mance without causing deterioration in diversity, the interval
T is recommended to be between 5 and 10.

3.4 The impacts of the PRS and new mutation strategy

The effects of T hadbeen studied in previous section; it is also
necessary to investigate the impact of thePRS and newmuta-
tion strategy separately compared to the originalMOPSO.As
the supplement to the proposed PRS, the purpose of the new
mutation strategy is to strengthen the diversity of population,
and thereby enhance the ability of the algorithm to avoid local
optimum. To analyze the impact of mutation operation inde-
pendently, the related operation in the RMOPSO is deleted.

Therefore, the results obtained with mutation operator
eliminated can be employed to investigate the effects of PRS,
and the results given in Sect. 3.3 can be used to show the
effects of new mutation strategy.

Table 2 shows the convergence and diversity values with
only PRS employed. The results in Table 2 show that: (1)
for convergence performance, with decreasing T for the sim-
ple problems, the convergence value becomes smaller.While
for the complex problems ZDT4, although they exhibit the
same trend for smaller value, but the results obtained do not
fully converge to thePF until T = 3. (2) For diversity perfor-
mance, the trend is similar. However, the best values obtained
when T = 3 (for the ZDT6, the best value is obtained when

T = 7) are always larger than the corresponding results in
the Table 1. This is because the PRS does not involve vari-
able information for population and cannot enhance diversity
performance.

Therefore, it can be concluded that thePRS can strengthen
the convergence performance of the MOPSO, but for the
diversity performance, the effect is not significant.

Figure 5 shows the comparison between the results in
Tables 1 and 2. In the figure, “PRS + Mutation” denotes
the results obtained by the algorithm with the combination
of PRS and the new mutation strategy, while the “only PRS”
denotes the results obtained by algorithm with PRS only.
The comparison shows that: (1) in terms of convergence, for
ZDT1, ZDT2, ZDT3 and ZDT4 problems, convergence per-
formance is better for the case using PRS only when T > 20,
and the case with the combination of PRS and mutation has
better performance when T < 20. For the ZDT6 and WFG1
problems, the case with the combination of PRS and muta-
tion has better performance. However, it should be noticed
that the best value is obtained when T < 20, which is similar
to the case for the simple problems. (2) With the mutation
operation employed, the diversity performance is better than
that of approach with onlyPRS used.As can be seen from the
above comparison, the mutation operation can improve the
diversity of population and strengthen the algorithm’s abil-
ity to jump out of local optimum simultaneously. It can be
concluded from the above results that:

1. PRS can effectively improve the convergence perfor-
mance of the algorithm, because it utilizes the informa-
tion of individual optimal and global optimal variable to

Table 2 The generational distance (GD) and diversity performance (�) of RMOPSO for different values of T with population recombination only

T ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 WFG1

GD

T = 100 (MeanStd) 0.05718.02E−05 0.03032.73E−04 0.03311.94E−04 2.48513.82E+00 0.07082.62E−03 0.01917.29E−06

T = 50 (MeanStd) 0.03676.94E−05 0.01189.76E−05 0.01832.79E−05 1.04741.69E−01 0.02819.76E−04 0.01354.23E−06

T = 20 (MeanStd) 0.00994.23E−06 0.00416.73E−06 0.00645.69E−06 1.53773.32E+00 0.00193.48E−06 0.00759.93E−07

T = 10 (MeanStd) 0.00551.34E−06 0.00282.99E−06 0.00294.84E−07 0.47293.61E−02 0.00121.81E−07 0.00608.01E−07

T = 7 (MeanStd) 0.00372.01E−06 0.00087.15E−07 0.00264.02E−07 0.33512.19E−02 0.00145.21E−07 0.00451.90E−06

T = 5 (MeanStd) 0.00346.80E−07 0.00041.17E−07 0.00222.07E−07 0.44915.81E−02 0.00131.46E−07 0.00291.06E−06

T = 3 (MeanStd) 0.00141.10E−07 0.00064.76E−08 0.00171.09E−07 0.58261.25E−01 0.00121.21E−07 0.00188.27E−08

�

T = 100 (MeanStd) 1.43061.55E−03 1.39914.55E−02 1.46127.40E−04 1.01113.05E−04 1.44232.64E−03 1.42513.58E−03

T = 50 (MeanStd) 1.51933.36E−03 1.42207.72E−02 1.43427.41E−04 1.01221.34E−03 1.40872.07E−02 1.36471.87E−03

T = 20 (MeanStd) 1.40965.30E−03 1.24993.00E−02 1.33371.10E−03 1.11026.35E+00 0.73533.54E−02 1.23152.16E−03

T = 10 (MeanStd) 1.16273.27E−03 1.11921.33E−02 1.16436.84E−04 1.00276.44E−05 0.43591.15E−03 1.09213.80E−03

T = 7 (MeanStd) 0.95971.46E−02 0.98818.33E−04 1.10804.37E−04 0.98115.47E−04 0.47032.37E−03 0.98401.85E−02

T = 5 (MeanStd) 0.90353.07E−02 0.98033.48E−03 1.03964.47E−03 0.94111.91E−03 0.47881.12E−03 0.79269.72E−03

T = 3 (MeanStd) 0.63505.65E−03 0.82633.20E−02 0.90027.31E−04 0.96832.36E−03 0.53501.42E−03 0.72216.02E−03
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Fig. 5 The comparison between theRMOPSO (denote as PRS+Muta-
tion) and the RMOPSO deleted the mutation operation (denote as only
PRS). 1Comparison of the convergence performance.Where a is ZDT1

problem, b is ZDT2, c is ZDT3, d is ZDT4, e is ZDT6, f is WFG1. (2)
Comparison of the diversity performance. Where a is ZDT1 problem,
b is ZDT2, c is ZDT3, d is ZDT4, e is ZDT6, f is WFG1
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generate new population, so the new particle has higher
probability to approach the PF compared to the original
particles.

2. The introduction of new mutation strategy can improve
the diversity of population, and then strengthen the ability
to jump out of local optimum.

3. The combination of PRS and mutation strategy can
improve both the convergence and diversity performance
simultaneously.

3.5 Conclusion of the experimental analysis

In this section, through the experimental study on the influ-
ence of T for RMOPSO, it can be concluded that the
convergence and diversity performance can be improved at
the same time with decreasing T . The impacts of the PRS
and mutation operators for the algorithm are investigated,
the experimental results show that the case using only PRS
can effectively strengthen the convergence performance, but
it has no obvious advantage in diversity performance. The
introduction of the mutation operators enhances the diversity
of the population and then strengthens the ability to jump out
of local optimum. The experimental results also verify that
the combination of two proposed strategies always has better
performance in both convergence and diversity.

4 Comparison with state-of-the-art algorithms

This section is devoted to present the comparison between
proposed algorithms and state-of-the-art algorithms. The
brief introduction and corresponding parameter setting for
some state-of-the-art algorithms are given first. Next, the
benchmark and performance indicator are used to evalu-
ate the convergence and diversity performance. Finally, the
results obtained by different algorithms are compared.

4.1 Algorithm and parameters settings

In this paper, NSGA-II, generalized differential evolution
3 (GDE3) (Kukkonen and Lampinen 2009), MOCLPSO,
SMPSO, MOEA/D-DE (Li and Zhang 2009), CMPSO,
6 MOEAs and MOPSOs are selected to compare with
RMOPSO. NSGA-II is the classical multi-objective evo-
lutionary algorithm based on the Pareto dominate relation.
GDE3 is a MOEA based on differential evolution (DE),
which has a competitive performance.MOCLPSO is amulti-
objective version of the CLPSO and famous for its ability of
avoiding the local optimum. SMPSO introduces a velocity
constriction mechanism and extends the range of parameters
ci forOMOPSO. It had been found to exhibitmuchbetter per-
formance comparedwith some of theMOPSOs (Durillo et al.
2009). MOEA/D-DE is the DE version of MOEA/D which

Table 3 Parameters setting for all algorithms

Algorithms Parameters setting

NSGA-II N = 100, pc = 0.9, pm = 1/n, ηc = 20 and
ηm = 20

GDE3 N = 100, CR = 0.9 and F = 0.5

SMPSO N = 100, w = rand(0.1, 0.5)
c1 = rand(1.5, 2.5) and c2 = rand(1.5, 2.5),
pm = 1/n

MOCLPSO N = 50, pc = 0.1, pm = 0.4, w = 0.9–>0.2 and
c = 2.0

MOEA/D-DE N=100,CR=1.0, F=0.5,η = 20, pm = 1/n,T=
20, δ = 0.9, nr=2

CMPSO N = 20, w = 0.9–> 0.4, c1 = c2 = c3 = 4.0/3

RMOPSO N = 50, w = 0.729, c1 = c2 = 2.05, T = 5,
p1 = 0.05, p2 = 0.5

employs SBX crossover operator as DE operator, CMPSO
has competitive performance based onMPMP and ELS com-
pared with some MOPSOs. Therefore, these algorithms are
representative and helpful to make the comparisons more
comprehensive and convincing.

The related parameters for all of algorithms are set accord-
ing to the original literatures, as given in Table 3. In the
experiments, each test problems will be independently exe-
cuted for 30 times for each algorithm. Regarding different
properties of problems, the maximum FEs is 25,000 for ZDT
problems, 1105 for DTLZ problems, 3 × 105 for UF prob-
lems. Except RMOPSO and CMPSO, the population size of
algorithms is set to 100 for ZDT problems, 200 for DTLZ
problems, 300 for UF problems, respectively. While the pop-
ulation size is 50 for RMOPSO, and 20 for CMPSO. The
results obtained by different algorithms are compared with
that by RMOPSO using the Wilcoxon rank sum test with
significant level α = 0.05.

4.2 Test problems

To verify the ability of the algorithm to deal with vari-
ous problems, three-objective problemsDTLZ1, DTLZ2 and
DTLZ3 are added in this section, as they are complex prob-
lems with local optimum. The UF (Zhang et al. 2009) test
set (UF1-7) with complicated Pareto sets is adopted here as
well.

4.3 Performance metric

In this section, inverted generational distance (IGD) indica-
tor is adopted, because it can measure the convergence and
diversity performance simultaneously and had been widely
used in the MOP community. The main difference between
IGD and GD indicators is the changed order of the reference
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set. IGD utilizes the Pareto set obtained by the algorithm as
reference and then calculates the minimum distance away
from the reference point that is generated before running to
the Pareto set. If the Pareto set is not widely distributed, the
distance will be large for the some reference point resulting
in large IGD value. Therefore, only when the solutions are
close to the PF and widely distributed, small IGD value can
be obtained. The detailed description of the IGD indicator
had been given in the Appendix 1.

4.4 Experimental results

The experimental results for the IGD indicator are given in
Table 4. Table 5 reveals that the proposed RMOPSO obtains
the best values in 7 out of the 15 test MOPs. NSGA-II
and GDE3 have a competitive result for 1 problem. While
MOEAD/D-DE and CMPSO achieve competitive results for
3 problems. Moreover, for all of the ZDT series of MOPs,
RMOPSO obtains the best result except the ZDT1 and ZDT2
cases, but the values obtained for these two cases are com-
parable with the best results obtained by CMPSO. For the
three-objective DTLZ series of MOPs, RMOPSO obtains
best result in 2 out of 3 problems, which are both com-
plex problems. For DTLZ3 problem, the result obtained by
RMOPSO is much better than others. For DTLZ2 problem,
RMOPSO does not obtain the best result, but the result is still
close to the best values obtained by CMPSO. In addition,
RMOPSO has the best value of standard deviation (Std.),
indicating a good robustness.

The ZDT4, DTLZ1, DTLZ3 are the complex problems
used in the experiment to verify the algorithm’s ability
to jump out of local optimum. For the ZDT4 problem,
RMOPSO has a much better performance compared with
others, with a value of 0.0425. It should be noticed that this
value is the mean of all the 30 independent runs, but the best
value is 0.0036. The best value obtained by other algorithm
is about 0.05. As can be seen from the above results, the
RMOPSO exhibits best ability to jump out of local optimum
for ZDT4 problem. For the DTLZ1 problems, the result for
MOCLPSO is 18.75 and that for SMPSO is 0.65, and the
CMPSO is 0.0567, all of these three algorithms are based on
particle swarmoptimization algorithm.Therefore,RMOPSO
obtainsmuch better result comparedwithMOPSOs (SMPSO
and MOCLPSO, CMPSO). For the DTLZ3, all of the algo-
rithms do not get convergence results but the result obtained
by RMOPSO is found to be close to the PF.

From above results, the RMOPSO has been found to have
stronger ability to overcome premature convergence prob-
lem and exhibits the best performance among the existing
MOPSOs.

For UF series problems, RMOPSO obtains best value for
UF2 and UF5, and MOEA/D-DE performs best on UF1,
UF3 and UF7. CMPSO performs best on UF4 problem,

and NSGAII performs best on UF6 problem. For MOP-
SOs, RMOPSO performs best on UF2 and UF5 problems
and has similar value on UF4 compared with the best one
obtained by CMPSO. For other problems, it is obvious that
MOEA/D-DE obtains best performance. Except MOEA/D-
DE, other algorithms utilize the Pareto dominate relation
to judge the merits of the solutions. The purpose to use
Pareto-domination-based selection is to drive the whole pop-
ulation towards the PS or PF. However, it has no direct
control on the movement of each individual in its popula-
tion. No mechanism is employed to control the distribution
of its computational efforts for different regions of the PF or
PS. In contrast, MOEA/D decomposes MOPs into a set of
single-objective sub-problems, the computational effort can
be evenly distributed among these sub-problems. Therefore,
MOEA/D-DE is found to outperform on UF series problems
which have complicated PS.

Since none of algorithms can outperform all others on
all the problems, the ranks of each algorithm on different
problems are summedup to evaluate the overall performance,
as shown in Table 4. Based on this definition, it can be found
that the proposed RMOPSO ranks the first of all algorithms.

4.5 Impact of parameter settings

In Sect. 4.1, the parameter settings for RMOPSO are: w =
0.729, c1 = 2.05 and c2 = 2.05. To investigate the impact
of w and ci , the performance of RMOPSO with different
values of w and ci is studied. The study is conducted on
umimodal objective functions (ZDT1 and DTLZ2) and mul-
timodal objective functions (ZDT4 and DTLZ1).

The parameter settings used in SMPSO and MOCLPSO
are adopted for comparison.Thedetailed information is listed
as following:
Parameter 1: w = 0.729, c1 = 2.05 and c2 = 2.05.
Parameter 2: w = random(0.1,0.5), c1 = random(1.5,2.5)
and c2 = random(1.5,2.5).
Parameter 3: w is linearly decreasing from 0.9 to 0.2, and
c1 = c2 = 2.05.

The two new parameter settings (parameter 2 and 3) are
applied in ROMPSO, respectively. The obtained results are
compared with those for the original parameters settings
(parameter 1). The IGD indicator will be employed to eval-
uate the convergence property.

Table 5 shows the results obtained by different parameter
settings. It reveals that parameter 2 exhibits better perfor-
mance on RMOPSO to solve the complex problems (e.g.
ZDT4 and DTLZ1). This is because the RMOPSO utilizes
the recombination of every T generations and population
distribution changes after recombination. The impact of the
linear change of parameters is not obvious. So the random
variation used by the SMPSO can achieve better results.
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Table 4 IGD performance of all algorithms on different problems

NSGAII GDE3 MOEA/D-DE SMPSO CMPSO MOCLPSO RMOPSO

ZDT1

MeanStd 0.00512.33E−04 0.01271.56E−03 0.00561.93E−04 0.00717.83E−04 0.00418.30E−05 0.00481.76E−04 0.00497.06E−08

Rank 4≈ 7− 6− 5− 1+ 2≈ 3

ZDT2

MeanStd 0.0092.80E+00 0.00291.82E−02 0.00533.07E−05 0.00613.81E−04 0.00431.03E−04 0.00383.11E−04 0.00466.64E−08

Rank 7− 1+ 5− 6− 3≈ 2+ 4

ZT3

MeanStd 0.00752.71E−02 0.01162.24E−03 0.00552.49E−04 0.0235.99E−03 0.01393.49E−03 0.0552.49E−04 0.00161.01E−04

Rank 3− 4− 2− 6− 5− 7− 1

ZDT4

MeanStd 0.294.00E−01 0.343.70E−01 0.310.23 0.564.12E−01 0.790.26 3.261.35E+00 0.04251.25E−02

Rank 2− 4− 3− 5− 6− 7− 1

ZDT6

MeanStd 0.00627.02E−04 0.07369.16E−02 0.00540.13E−04 0.00463.36E−04 0.00371.47E−04 0.00871.31E−04 0.00285.91E−08

Rank 5− 7− 4− 3− 2≈ 6− 1

DTLZ1

MeanStd 0.00422.86E−04 0.00241.34E−04 0.00284.36E−04 0.658.06E−01 0.05672.21E−02 18.757.36E+00 0.00215.79E−04

Rank 4− 2≈ 3≈ 6− 5− 7− 1

DTLZ2

MeanStd 0.00584.70E−04 0.00556.85E−04 0.03333.02E−03 0.00676.08E−04 0.00461.50E−04 0.00888.06E−04 0.00563.98E−05

Rank 4− 2≈ 7− 5− 1+ 6− 3

DTLZ3

MeanStd 0.82716.50E−01 0.72165.90E−01 0.56136.32E−03 0.965.32E−01 0.62682.95E−03 12.351.62E+01 0.06951.90E−01

Rank 5− 4− 2− 6− 3− 7− 1

UF1

MeanStd 0.0732.46E−02 0.05952.48E−02 0.05762.15E−02 0.09817.91E−03 0.06641.99E−02 0.107.17E−03 0.10221.15E−04

Rank 4+ 2+ 1+ 5+ 3+ 6≈ 7

UF2

MeanStd 0.02063.67E−03 0.02023.81E−03 0.06631.32E−02 0.07243.54E−03 0.01693.37E−03 0.113.39E−03 0.01192.81E−06

Rank 4− 3− 5− 6− 2− 7− 1

UF3

MeanStd 0.06951.14E−02 0.166.66E−02 0.03891.57E−02 0.379.71E−03 0.0981.39E−02 0.481.55E−02 0.37041.49E−04

Rank 2+ 4+ 1+ 5≈ 3+ 7− 6

UF4

MeanStd 0.04264.46E−04 0.04721.03E−03 0.02951.59E−03 0.161.39E−02 0.02381.90E−03 0.121.10E−02 0.03382.59e−06

Rank 4− 5− 2+ 7− 1+ 6− 3

UF5

MeanStd 0.328.41E−02 0.211.61E−02 0.335.41E−02 0.740.12 0.202.01E−02 0.510.18 0.19411.60e−04

Rank 4− 3− 5− 7− 2− 6− 1

UF6

MeanStd 0.121.93E−02 0.301.72E−02 0.149.05E−02 0.403.40E−02 0.14912.04E−02 0.40464.30E−02 0.28411.89e−02

Rank 1+ 5− 2+ 6− 3+ 7− 4

UF7

MeanStd 0.160.16 0.02971.02E−03 0.00839.40E−04 0.220.15 0.120.13 0.190.15 0.04592.68E−06

Rank 5− 2+ 1+ 7− 4− 6− 3
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Table 4 continued

NSGAII GDE3 MOEA/D-DE SMPSO CMPSO MOCLPSO RMOPSO

Sum of rank 58 55 49 86 44 89 40

Final rank 5 4 3 6 2 7 1

≈ 1 2 1 1 2 2

+ 3 4 5 1 6 1

− 11 9 9 13 7 12

Wilcoxon’s rank sum test at a 0.05 significance level is performed between RMOPSO and each of algorithms. “≈”, “+” and “−” denote that the
performance of the corresponding algorithm is similar, significantly better than or worse than that of RMOPSO, respectively. The row of “≈”, “+”
and “−shows the number of “≈”, “+” and “−” for each algorithm. The best mean is highlighted in boldface

Table 5 The IGD performance
of RMOPSO with different
parameter settings

ZDT1 ZDT4 DTLZ1 DTLZ2

Parameter 1 0.00451.30E−05 0.05692.47E−03 0.00735.90E−05 0.00362.21E−04

Parameter 2 0.00452.35E−05 0.00752.52E−03 0.00463.09E−05 0.00353.09E−04

Parameter 3 0.00493.25E−05 0.00911.36E−03 0.00573.16E−05 0.00351.87E−04

4.6 Discussion

In the pseudo-code of the PRS given in Fig. 3, p1 is used to
determine how themutationwill be applied on corresponding
dimension. If p1 = 1, the PRS will be no any effect. If
p1 = 0, then each dimension will be replaced. To maximize
the effectiveness of PRS, p1 is set to 0.05. p2 is used to
determine the selection of pbest and gbest. If p2 = 1, the
gbest will not be selected; if p2 = 0, the pbest will not be
selected; if p2 is set to 0.5, pbest and gbest have the same
probability to be selected. Therefore, p2 is used to balance the
effects of the pbest and gbest. However, the accurate sets of
p1 and p2 need further experimental studies. PRS is similar
to the cross operation used in GA, although the comparison
with some cross operations like SBX (only replacedPRSwith
SBX in RMOPSO) found that PRS outperforms SBX. The
relevant investigation will be considered as the future work.

5 Conclusion

In this paper, the population recombination strategy is first
proposed to avoid premature convergence occurred in MOP-
SOs. The PRS effectively uses all variable information found
by MOPSO to construct new population and makes the new
population inherit the original particle’s position informa-
tion. Since there is no new variable information created in
the population recombination process, a new mutation strat-
egy is introduced to strengthen diversity performance. The
experiment to analyze the effects of the proposed mutation
strategy is also carried out. Experimental results show that
mutation operation can improve the diversity and conver-
gence performance simultaneously.

The proposed algorithms are also compared with other
state-of-the-art MOEAs and MOPSOs. According to the

results, for the simple test problems, the performance of
the proposed algorithm and other algorithms is comparable.
However, for the complex test problems, the performance of
the proposed algorithm is better even superior to other algo-
rithms. It has been also proved that the use ofPRS and new
mutation strategy strengthen the ability to jump out of local
optimum.
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Appendix 1: Performance measures

The three performance indicators used in this paper are
described as follows.

Generational distance (GD): The GD metric is defined as:

GD(A, P) =
∑|A|

i=1 d(Ai , P)

|A|
where A is the archive found by the algorithm and P is the
reference point set (500 point in the experiment) in PF gen-
erated prior. di is the minimum distance between the Ai and
the point inP. Obviously, this value can only measure the
distance from the archive to the PF, and the distribution of
the archive cannot be evaluated. Therefore, the� indicator is
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employed for the comprehensive evaluation of the algorithm
together with GD.

Diversity indicator: � measures the extreme and spread
among the obtained solutions:

� = d f + dl + ∑N−1
i=1 |di − d̄|

d f + dl + (N − 1)d̄

Here, di is Euclidean distance between nearby solutions in
A and d− is the average of these distances. d f and dl are the
Euclidean distances between the extreme solutions and the
boundary solutions of the A. N is the number of solutions
in A.

Inverted generational distance (IGD): The IGD metric is
defined as:

IGD(P, A) =
∑|P|

i=1 d(Pi , A)

|P|

Here the definition of P and A is the same as those for GD
indicator, but di is the closest distance from the point in P to
the point in A. It can be used to evaluate both convergence
and diversity performance simultaneously.
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