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Abstract In this paper, a sequential intelligent method-
ology is implemented to estimate the sea-ice thickness
along the Labrador coast of Canada based on spatio-
temporal information from the moderate resolution imaging
spectro-radiometer, and the advanced microwave scanning
radiometer-earth sensors. The proposed intelligent model
comprises two separate sub-systems. In the first part of the
model, clustering is performed to divide the studied region
into a set of sub-regions, based on a number of features.
Thereafter, this learning system serves as a distributor to dis-
patch the proper information to a set of estimation modules.
The estimation modules utilize ridge randomized neural net-
work to create a map between a set of features and sea-ice
thickness. The proposed modular intelligent system is best
suited for the considered case study as the amount of collected
spatio-temporal information is large. To ascertain the verac-
ity of the proposed technique, two different spatio-temporal
databases are considered, which include the remotely sensed
brightness temperature data at two different frequencies (low
frequency, 6.9 GHz, and high frequency, 36.5 GHz) in addi-
tion to both atmospheric and oceanic variables coming from
validated forecasting models. To numerically prove the accu-
racy and computational robustness of the designed sequential
learning system, two different sets of comparative tests are
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conducted. In the first phase, the emphasis is put on evalu-
ating the efficacy of the proposed modular framework using
different clustering methods and using different types of esti-
mators at the heart of the estimation modules. Thereafter, the
modular estimator is prepared with standard neural identifiers
to prove to what extent the modular estimator can increase
the accuracy and robustness of the estimation.

Keywords Sea-ice thickness - Ridge randomized neural
network - Unsupervised information clustering - Differential
evolution

1 Introduction

Estimation of sea-ice thickness in the Arctic is a very crucial
task. Improved estimates of sea-ice thickness should lead to
safer navigation in ice-infested waters, as well as improved
estimates of ocean-atmosphere heat transfer, and improved
weather forecasting. It has been reported that there is an
increasing need for developing accurate and comprehensive
forecasting tools that can estimate crucial sea-ice parameters,
such as sea-ice thickness, in different regions (Eicken 2013).
It is clearly necessary to conduct research on novel tools that
can estimate sea ice thickness from observational data, as
well as on improving the accuracy of the existing prognostic
forecast models. The present contribution is on the first of
these two objectives and proposes an intelligent method to
retrieve sea-ice thickness from geophysical data. The method
is different from those commonly used in the sea ice commu-
nity (Iwamoto et al. 2013; Nihashi et al. 2009; Kaleschke et al.
2012), in that it is a black box approach, meaning that it is not
based on any physical principles. While the method presented
here uses brightness temperatures from passive microwave
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radiometers in addition to data from forecast models, it could
in principle be modified to accommodate other types of data.

Data from passive microwave sensors are widely used
for sea ice monitoring because these sensors are capable of
returning surface information during both dark and cloudy
periods. In addition to providing indispensable ice concen-
tration estimates to the scientific community, it has been
observed that ice thickness information can be obtained from
these data by exploiting the correlation between the horizon-
tally and vertically polarized emissions measured by passive
sensors and the thickness of thin ice (Nihashi et al. 2009;
Iwamoto et al. 2013). It has been found that this correlation
is stronger for the lower frequency channels on a passive
microwave sensor than for the higher frequency channels,
even when the data from the higher frequency channels have
been screened for atmospheric contamination (Scott et al.
2014). This is due to the fact that the emitting layer is farther
below the surface for lower frequencies (Weeks 2010).

Research conducted on how to select the most influen-
tial observational data, or on how to use this information for
developing estimation tools, is often based on the underlying
physical/environmental characteristics of the remote sensing
measurement and the region of study. However, when devel-
oping physical laws, several important issues may arise. First,
if the objective is to develop high-fidelity physical models,
and if it is optimistically assumed that most of the important
elements are taken into account in these models, there is a
possibility that the resulting model possesses a complicated
structure. Significant effort may be required to identify the
unknown structural parameters of the model (Pratama et al.
2014b). The model may also be computationally very expen-
sive.

The difficulties associated with developing accurate and
efficient physical models have led to alternative and com-
plementary research on establishing new surrogate models.
Indeed, as the quantity of available data is increasing, there
is a possibility to develop accurate black-boxes, which are
ignorant of the physical situation. Such a trend is, in fact, in
line with a global interest towards concentrating on develop-
ing automated machines for reducing the amount of human
inference in data analysis (Pratama et al. 2014a).

Over the past decade, enormous progress has been made
to foster the applicability of intelligent techniques as black
boxes capable of creating an accurate nonlinear map between
a set of input and output data pairs (Meireles et al. 2003).
In this context, most of the proposed learning systems are
designed to prepare intelligent systems for a wide range of
applications in which there is need for incremental and recur-
rent learning (Pratama et al. 2015a), evolving classification
and regression (Pratama et al. 2015b, ¢). However, there exist
rare reports in the literature of sea-ice thickness estimation
focusing on the use of intelligent identifiers. By surveying
the archived literature, a limited number of relevant research
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papers have been found with a meaningful contribution
toward advocating the use of intelligent identifiers for mod-
eling of sea-ice thickness. Haverkamp et al. (1995) proposed
an intelligent technique for estimation of sea-ice thickness
from a synthetic aperture radar (SAR) database. The simu-
lation results clearly verified that the developed intelligent
system can accurately identify the variations in ice thickness
to regional and seasonal changes. Soh et al. (2004) developed
a hybrid intelligent system for satellite sea-ice image analy-
sis. The developed intelligent framework was able to perform
both feature selection and rule-base classification using the
data coming from sensors. The simulation results endorse
the efficiency of the proposed intelligent paradigm. Lin and
Yang (2012) proposed a hybrid algorithm based on chaotic
immune genetic algorithm and back-propagation neural net-
work (BP-NN) to predict the sea-ice thickness in the Bohai
Sea and the northern region of the Yellow Sea. The results
of the conducted simulations clearly demonstrated both the
accuracy and robustness of the proposed estimator. Belchan-
sky et al. (2008) developed an in-situ learned and empirically
derived neural network model to estimate the fluctuation of
Artic sea ice thickness. One of the important characteristics
of the developed neural network was that it could accurately
predict the sea-ice thickness under different conditions with
a very high accuracy.

In the pursuit of addressing the main open concerns on
the potential of intelligent methods for the estimation of
geophysical varaibles, here, the authors would like to pro-
pose a novel technique based on the concept of modular
neurocomputing (Rojas 1996). To the author’s best knowl-
edge, this is the first time such an intelligent system has
been used for the estimation of a geophysical variable, such
as sea-ice thickness. Furthermore, this research intends to
clearly demonstrate how a relatively sophisticated intelligent
tool can be used to (1) process spatio-temporal data coming
from two satellite sensors, the moderate resolution imag-
ing spectro-radiometer (MODIS), and advanced microwave
scanning radiometer-earth (AMSR-E) observing system,(2)
develop a modular intelligent tool that can separate the infor-
mation coming from different regions, and (3) estimate the
sea-ice thickness using a set of independent identification
modules allocated to each of those independent regions.

The rest of the paper is organized as follows: Section 2
is devoted to a brief review of the background of modular
identification systems. Also it is discussed why a modular
system is potentially a good approach for estimation of sea-
ice thickness over a given geographic region, which is chosen
here as the Labrador coast, along the east coast of Canada.
The description of the studied region along with the traits
of the collected data from MODIS and ASMR-E sensors are
presented in Sect. 3. The details of the developed model are
given in Sect. 4. Section 5 is devoted to the description of
experimental setup. Finally, conclusions are given in Sect. 6.
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2 Modular neural networks: a concise review

In the field of data mining, one often encounters complicated
databases comprising several independent sub databases
each having its own characteristics and features. To process
such complicated information, the human brain uses an
automatic procedure that first tries to discriminate the sub-
processes and then processes the data corresponding to each
sub-process. Inspired by the approach taken by the human
mind, a novel computing field has emerged within the realm
of intelligent computing, known as modular data process-
ing (Fodor 1983). Modular data processing can be used for
developing both modular regression and modular classifica-
tion tools. The main idea behind such a scheme is to use
some similarity and discrimination criteria to first divide
the database into a set of sub databases that has similar
characteristics, and thereafter allocate independent regres-
sion/classification methods to each of those independent
databases (Melin 2012). Modular computational frameworks
can have any type of identifiers, e.g. neural networks (NNs),
neuro-fuzzy systems, and fuzzy inference systems, in their
architecture (Melin 2012). Each of these identifiers has its
own pros and cons, and thus, can give specific features to the
resulting modular system. Due to the straightforward and
beneficial computational characteristics of neurons in neural
networks, most of the existing modular architectures use such
identifiers in their structure. A modular NN has a relatively
complex architecture including a series of independent NNs
working together in a systematic fashion to predict the same
output (Rojas 1996).

The key point lies in the fact that each of those sole NNs
try to fulfill a specific task by focusing on separate portions
of the input space from the database. So, the systemic inte-
gration of the prediction of those independent NNs can result
in a modular NN capable of performing a unique task. Such
an approach has an obvious advantage from the data mining
viewpoint, especially when dealing with complicated infor-
mation systems with multiple data streams. In fact, by doing
so0, a complex large data-mining task is reduced to a number
of smaller and manageable data mining tasks, and a higher
level of manipulation can be achieved to have a much more
robust and accurate result. The other advantage of modu-
lar NN lies in their intrinsic parallel architecture enabling
them to perform the entire task in a parallel fashion. This
intuitively increases the speed and efficacy of computation
(Farooq 2000).

An enormous amount of applied and theoretical research
has been carried out to demonstrate the applicability of such
systems for different tasks. Providing a detailed chrono-
logical review on the progress of modular intelligent data
processing is clearly beyond the scope of the current inves-
tigation. The interested readers are referred to some special
issues and seminal books published regarding the advances

in modular data processing (Rojas 1996; Farooq 2000). In
general, the present research clearly indicates that modular
NNs not only can increase the robustness and accuracy of
the data mining task, but also can do this job very efficiently.
The same observation has been reported by the scientists
working within various realms, such as medicine, systems
sciences, and manufacturing (Ding et al. 2014; Javadi et al.
2013). Such promising reports have instigated the authors to
evaluate the potential of modular intelligent computing for
estimating sea-ice thickness. The main reasons behind such
a motivation can be listed as follows:

(a) The quantity of data collected from satellites is quite
large, and are often combined with data from other
sources (e.g., forecast model output) to produce several
streams of spatio-temporal information. It is desirable to
develop a modular data mining tool capable of reducing
the complexity of the resulting database, while achieving
accurate and robust estimates of geophysical variables.

(b) Modular neural networks have clearly demonstrated
their high potential in various fields of engineering.
However, there are fewer applications of such systems
for geoscience tasks, in particular estimation of sea-ice
thickness. Therefore, the current investigation tries to
excavate the computational potential of modular identi-
fiers for the estimation of sea-ice thickness.

(c) The current investigation also contributes to the field
of modular computing by proposing a novel sequential
system that uses a differential evolutionary algorithm for
clustering, and ridge randomized neural network for esti-
mation. To demonstrate the computational advantages of
the proposed modular architecture, here, the authors use
some well-known rival modular neural networks for the
same estimation task.

The detailed procedures required for the implementation
of the proposed modular estimator will be given in the next
sections.

3 Description of collected database

In this section, the details of the studied region located along
the east coast of Canada as well as the characteristics of data
from the two considered remote sensors, i.e. ASMR-E and
MODIS, are discussed.

3.1 Region of Study

As mentioned, in this study, the emphasis is put on measuring
the sea-ice thickness along the east coast of Canada including
sea-ice along the Labrador coast, and the northern coast of
Newfoundland, as indicated in Fig. 1.
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Fig. 1 Region of study is the Labrador Coast and Newfoundland

The database used in this study covers the period of Feb-
ruary 2, 2007, to February 20, 2007. For this portion of the
year, the ice cover along the Labrador coast is bounded to
the west and south by land and to the east by the Labrador
current. The ice starts to appear along the Labrador coast in
December and gradually becomes thicker through January
and February. The ice cover contains a marginal ice zone
composed of small ice floes near the open water, with the ice
becoming thicker toward the land boundaries. In addition,
sometimes, there may be some coastal polynyas between the
consolidated ice region and the landfast ice.

3.2 AMSR-E data

To capture the radiation within the passive microwave range
of electromagnetic spectrum, the AMSR-E sensor uses six
different frequencies, 6.9, 10.7, 18.7, 23.8, 36.5, and 89 GHz.
The footprint of each of these frequencies is approximately
elliptical, with sizes ranging from 74 km x 43—6 km x 4 km.
Swath data are used in this study to mitigate the effects of
uncertainties that can arise when data are averaged or resam-
pled. Furthermore, due to the land contamination associated
with the sensor footprints, in this study, the information com-
ing from pixels a distance of up to half of the sensor footprint
from the land boundaries has been neglected. Brightness
temperatures are used from both a low-frequency channel
(6.9 GHz) and a high-frequency channel (36.5 GHz). The lati-
tude, longitude, and brightness temperature values are entries
X1 to x3 in the database (see Table 1).

3.3 MODIS data

The MODIS sensor measures radiation in the VIS/IR range
of electromagnetic spectrum. To calculate the sea-ice thick-
ness, the surface temperature calculated from the MODIS
infrared channels (Hall et al. 2004) is used in a heat balance
equation (Yu and Lindsay 2003). In this study, the heat bal-
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Table 1 Characteristics of the collected features used for designing
M-RRNN

Notation Features

X1 Longitudinal position
X2 Latitudinal position

X3 Brightness temperature
X4 Wind speed

X5 Water vapour

X6 Cloud water

X7 Ice temperature

Xg Sea surface temperature
X9 Ice concentration

X10 Ice thickness

58°N 270
265
56°N
260
54°N 255
250
52°N
245

-62°W —-60°W -58°W -56°W -54°W

Fig. 2 Ice temperature from MODIS, January 24, 2007

ance equation uses the atmospheric variables from the Global
Environmental Multiscale (GEM) model and the MOD29 ice
surface temperature product prepared by the National Snow
and Ice Data Center (Hall et al. 2007). The MODIS data
are swath data at a 1-km resolution in which each pixel has
been screened for cloud contamination. The observed data
include surface temperatures from 243 to 271K. To reduce
the rate of uncertainty of the collected database, nighttime
images are used as those are not affected by uncertainties
associated with the surface albedo and shortwave radiation
(Wang et al. 2010). Figure 2 depicts a sample ice tempera-
ture image obtained by the MODIS sensor. The ice thickness
from MODIS is entry x1¢ in the database (see Table 1).

3.4 Data from the forecasting system

Variables from an atmospheric weather forecasting model
(the GEM model) and a coupled ice-ocean model are used
in addition to the AMSR-E and MODIS data. The variables
from these models are those that impact brightness tempera-
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ture, such as surface temperature, windspeed, water vapour,
and cloud liquid water. The dataset has been described in
a previous study (Scott et al. 2012). The variables from the
forecasting system used in the present study are listed as x4
to xg in Table 1.

4 Methodology

In this section, the details of the architecture of modular ridge
randomized neural network (M-RRNN) is presented. The
considered M-RRNN is comprised of two parts: a distribu-
tor with a modified differential evolutionary algorithm at its
heart and a modular estimation phase with ridge randomized
neural network (RRNN) at each of the considered modules. In
the first sub-section, the algorithmic description of the mod-
ified differential evolutionary algorithm is presented, and in
the second sub-section, the steps required for the implemen-
tation of the RRNN and for creating a modular architecture
are proposed.

4.1 Implementation of distributor: differential
evolutionary algorithm

For the implementation of the clustering methodology,
a modified version of differential evolutionary algorithm
(DEA), called scale factor local search differential evolution
(SFLSDE) (Neri and Tirronen 2009), is taken into account.
This method has been proven to have a very robust per-
formance and is not sensitive to the dimensionality of the
problem. In previous theoretical and numerical investiga-
tions, it has been observed that the local search operators used
at the heart of SFLSDE can result in a very fast convergence
towards the optimum solution regardless of the character-
istics of the landscape of the objective function (Neri and
Tirronen 2009; Mozaffari et al. 2014). These local search
operators are known as golden sectioning search (GSS) and
hill-climbing (Neri and Tirronen 2009), which are used to
update the scale factor parameter and crossover rate of the
standard DEA. The salient asset of SFLSDE lies in its capa-
bility to allocate an independent scale factor to each of
the potential solutions in the solution space. This enables
SFLSDE to devise an independent searching strategy for each
of the agents that in turn increases the diversity of the algo-
rithm. One of the other salient assets of SFLSDE compared
to other variants of DEA lies in its capability to update the
scaling factor value in a self-organizing fashion. To the best
knowledge of the authors, SFLSDE has not been applied to
clustering so far. However, it has the following computational
advantages that clearly indicate it may have high potential for
the clustering task:

(a) It has been proven that SFLSDE has an efficient per-
formance, independent from the dimensionality of the

optimization problem. This is due to the insensitivity of
the local searches to the scale of the solution landscape
(Neri and Tirronen 2009).

(b) The algorithmic structure of SFLSDE not only results
in a high diversity of the search over the solution space,
but also enables it to neatly balance the exploration and
exploitation capabilities to ensure the convergence to the
optimum regions within the objective landscape (Neri
and Tirronen 2009).

(c) One of the main features of SFLSDE lies in its capabil-
ity to fix a major flaw associated with a large number
of modified DEAs, namely the phenomenon of stag-
nation. Indeed, a large portion of proposed DEAs may
become trapped in a local minimum during the optimiza-
tion procedure. This is known as stagnation. However,
diversified refreshing of the characteristics of geno-
types participating in the optimization procedure helps
SFLSDE to escape from local minima, which in turn
impedes stagnation (Neri and Tirronen 2009).

(d) SFLSDEisindeed a memetic algorithm based on Lamar-
ckian learning which is the integration of DEA and two
local search operators (Neri and Tirronen 2009). How-
ever, despite most of the existing memetic methods, the
local searches used at the heart of SFLSDE does not
increase the computational complexity of the resulting
architecture, as both hill climbing and golden sectioning
search mechanisms have quite simple architectures.

The abovementioned remarks have motivated us to adopt
SFLSDE to develop a clustering methodology, which will be
used as a distributor in the considered modular ridge random-
ized neural network. By inspecting the literature of heuristic
clustering, the authors realized that adding a general operator
known as acceleration can effectively boost the performance
of clustering metaheuristics (Chuang et al. 2011). Thus, in
this study, the authors embed the acceleration strategy into
the algorithmic structure of SFLSDE to make sure it has
an acceptable clustering behavior. Let us call the resulting
clustering method as SFLSDE-clust. The following steps are
taken to implement the method:

Step 1: Set the controlling parameters of SFLSDE-clust
according to those given in Table 2.

Step 2: Uniformly spread the position of S chromosomes
[denoted by vectors s(1), s(2), ..., s(S)] through the solu-
tion space. Each solution in this space represents the centroids
of a set of clusters (different centroid points in a 2D space are
shown in the first panel of Fig. 3). Assume that K clusters are
going to be used for partitioning the collected information,
and the destined information possesses d features. Then, each
chromosome has K x d bits that should be optimized. In a
previous work by the authors, it was observed that the opti-
mum number of chromosomes for clustering is 10 x K x d
(Chuang et al. 2011).
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Table 2 Controlling parameters of SFLSDE—clust for the current
simulations

Parameter Notation Value
Number of chromosomes Py 40
Minimum scale factor value Fy 0.1
Maximum scale factor value F, 0.9
Random number 71 0.1
Random number %) 0.1
Random number 3 0.03
Random number 7 0.07
Initial climbing value h 0.6
Lower bound of GSS a -1
Upper bound of GSS b 1
Crossover rate CR 0.8
Golden value ] 1.6181
Golden search iterations iterspgss 10
Hill climbing iterations iterspac 10

Step 3: Prior to starting the clustering procedure, proceed
with the acceleration process. In this way, select the one third
of the chromosomes randomly and use the standard K -means
clustering (Chuang et al. 2011) to update their position. Each
chromosome will cluster the information in the database to
minimize the Euclidean distance

d

Ixp =il = | D (pi — )’

i=1

where ¢; is the centroid of the jth cluster C;, c;; indicates
the ith coordinate of the centroid ¢, x, ; is the ith coordinate
of the pth data in the database, and d is the dimensionality
of the data points x,,. The centroid of the jth cluster C; is
determined using the set of data points in cluster j according
to

where n; represents the number of data points in cluster C;.
Step 4: After the termination of acceleration phase, calculate
the objective function of all chromosomes using the sum of
intra-cluster distance, given as

K

J:J(cl,...,ck)zzz Ix, — ¢;ll. (1)
j=1 XpECj

The above objective function is minimized to find the ¢;

corresponding to optimal clustering and is referred to as the
fitness.
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Step 5: For each chromosome select 5 random numbers, u1,
uy, u3, ug, and us, from a uniform distribution (Neri and
Tirronen 2009).

Step 6: For each chromosome s(i), randomly select three
individuals, i.e. s1 (i), s2(7) and s3(i), from the existing pop-
ulation pool.

Step 7: For chromosome s(i), if the selected solution has the
best fitness value and also us is less than a given threshold
73, proceed with golden sectioning search (GSS) strategy to
update the scale factor of the agent F (i) (the steps required
for GSS is given in Appendix 1). Archive the resulting off-
spring as u(i).

Step 8: For chromosome s(i), if the selected solution has the
best fitness value and also us5 is greater than the threshold
73 and at the same time less than the threshold t4, proceed
with the hill-climbing search to update the scale factor of the
agent, F'(i) (the steps required for GSS is given in Appendix
2). Archive the resulting off-spring as u(i).

Step 9: For the chromosome s(7), if us is greater than the
threshold 74, proceed with the conventional evolutionary
steps of standard DEA (the steps required for GSS is given
in Appendix 3). Archive the resulting off-spring as u(7).
Step 10: Calculate the fitness of the calculated solution. If
the resulting solution u(7) has a higher fitness than the parent
s(i), then replace the old solution with the new one.

Step 11: Check the stopping criteria. If the stopping criteria
are satisfied terminate the procedure; otherwise, return to
Step 2.

A schematic illustration of the procedures taken by
SFLSDE-clust to partition the information to a number of
clusters is shown in Fig. 3. At this point, K partitions have
been created, which can be used to develop a modular esti-
mator with K modules.

4.2 Implementation of the modular architecture

As it was pointed out previously, a modular architecture com-
prises of K modules where each of them has an estimator
at their heart. In this sub-section, we first concentrate on
explaining the mathematical structure of each estimator, i.e.
RRNN. Thereafter, we explain how those independent mod-
ules should be put together to form the modular framework,
i.e. M-RRNN.

In the proposed modular frame, random based neural
networks are used for function approximation. Through the-
oretical studies, it has been proven that a multi-layer neural
network with a single hidden layer including bounded and
nonconstant activation functions can serve as a universal
approximator (Hornik 1991). In parallel, in the same year,
Park and Sandberg (1991) demonstrated that radial-basis net-
works with the same width for all radial-basis neurons or
different widths for different RBF neurons in the network
can also serve as universal approximators. Such findings
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Fig. 3 Schematic illustration of
the proposed clustering
procedure in 2D space: (1)
initialization of centroids in the
information space, (2) selection
and updating of one third of the
clusters, (3) proceed with the
operators of SFLSDE to update
all of the clusters

initialization

acceleration

have enabled the researchers of neural computation soci-
ety to search for much flexible learning schemes which
reduce the complexity of optimization process required for
training the network’s computational units (neurons). In
line with such activities, over the past decades, a compre-
hensive investigation has been carried out which clearly
demonstrated the potentials of random based learning sys-
tems for designing feed-forward neural networks (Schmidt
et al. 1992), radial basis neural networks (Broomhead and
Lowe 1988; Lowe 1989), and functional link nets (Pao et al.
1994). Based on the promising reports on the computa-
tional power of feed-forward randomized neural networks
(RNN) (Schmidt et al. 1992), which is in a good agree-
ment with the authors own experiments, this network is used
at the heart of the proposed modular network to form the
approximator.

It should be mentioned that, nowadays, a large number
of research groups are trying to improve the performance
of RNNs and modified versions of random neural networks
are being proposed. In this context, one can find different
architectures of RNNss in the literature which are known by
specific names. Among the existing vairants of RNNs meth-
ods such as extreme learning machines (ELMs) (Huang et al.
2006), random vector functional link nets (RVFLNs) (Zhang

SFLSDE evolution

and Suganthan 2015), random kitchen sinks (RKSs) (Rahimi
and Recht 2007), fast foods (Le et al. 2013), convex net-
work (Huang et al. 2013), no-prop algorithm (Widrow et al.
2013), liquid state machines (LSMs) (Yamazaki and Tanaka
2007), echo state networks (ESNs) (Rodan and Tino 2011),
and reservior computing machines (LukoSEviclus and Jaeger
2009), have relatively found their reputation in commputa-
tional intelligence society.

Proposed in Wu and Moody (1996), ridge neural net-
work is a modified version of standard RNN which tries
to tame the numerical difficulties associated with the ana-
lytical solving methodology used in analytically trained
least square based neural networks. To be more precise, the
modification is made by applying the concept of Tikhonov
regularization instead of simple least square solution to tune
the synaptic weights of RNN (Burger and Neubauer 2003).
Assume that the collected database has n training sam-
ples ® = {(x1, y1), (X2, 2), ..., (Xp, Y»)} in which x; =
(Xi1y .-y xi’d)T represents the d-dimensional input vector
and y; represents the response value for the ith observation,
respectively. Assume that neural network has N hidden nodes
in its architecture. Then, the mathematical formulation below
is used to create a map between the input vectors, X;’s, and
the target values, f(x;)
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N

S wig (ofxi+b;) = fox, i=1....m, @)
j=1
where o; = (aj1,...,ajq)T are the synaptic weight vec-

tors connecting the input nodes to the jth hidden node, w;
indicates the weight connecting the jth hidden node to the
outputnodes, and g is a continuous activation function, which
is the sigmoid function in this paper (Pao et al. 1994), i.e.

X

glx) = T for x € R.

Let
glax; +by) ... glayx| + by) i

H = : : : cy=|
8@ Xy +b1) ... gl@yX, +b) Y
wi

W =
wy

To estimate the function f defined in Eq. (2), the RNN algo-
rithm discussed in Schmidt et al. (1992) allows the user to
choose o ;’s and b arbitrarily at random and apply the least
square method to estimate the hidden output weight vector
w, that is

. 2
min [y — Hwl|2,
w

where ||a]|, represents the Euclidean norm of an arbitrary
vector a. See also Wu and Moody (1996). It is known that if
the matrix HTH is invertible the least square solution is

—1
W= (HTH) H'y.

In practice though, often the condition value of the matrix
HTH is close to zero and, therefore, the solution W is not sta-
ble. To resolve this problem, Schmidt et al. (1992) suggested
using the Moore—Penrose generalized inverse. A better and
more numerically stable solution is obtained by a penalized
least square problem known as Tikhonov regularization or
the ridge regression. Therefore, we do the following opti-
mization (Hastie et al. 2009):

in{lly — HW)|2 + 2 2}.
ggg{ny w2 + Aallw]?

The solution to this optimization problem is given by the
ridge regression estimate

W= HTH + 1,1~ 'HTy, 3)
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where Ao > 0 is the ridge or Tikhonov regularization para-
meter. In the present study A, was obtained by means of
Bayesian information criterion (BIC) (Hastie et al. 2009).

At this point, the steps required for the implementation
of an estimation module, i.e. RRNN, is completed. Now it
should be discussed as to how those independent modules
are concatenated to form the final M-RRNN.

As mentioned earlier, the number of independent modules
at the heart of M-RRNN is directly related to the number
of clusters formed by the SFLSDE-clust distributor. Let us
assume that the observed input vectors are given by C =
{x1, X2, ..., X,} and is clustered into K separated partitions
Ci,...,Cg.Forj=1,...,Kandl=1,...,d,let
aje¢=min{x; ¢ | X; = (xj1,.. . Xja) €Cj,
. Xjq) €Cjl.

.y Xj,e, .
bj,g = max{xj,g | Xj = (xj’l, e Xje,
Then, for each cluster j = 1,..., K

Cj Claji,bj1l xlajo2,bj2]1x - xlaja,bjal,
K

c=Jc¢;.
j=1

Then, all of the training samples in cluster j are used to train
jthmodule of M-RRNN. It can be clearly understood that by
assigning an independent module to each of the above parti-
tions, the following can be assured: (1) whole C is covered by
the resulting M-RRNN, and at the same time; (2) a precise
estimator is developed for each of the separated clusters, as
the information in each cluster shares relatively similar char-
acteristics. Besides, by decomposing the complexity of the
dataset to a number of separated clusters with independent
characteristics, it can be ensured that simpler estimators with
smaller sizes of hidden layers can be used for estimating each
cluster, and also the accuracy of estimation is increased.

4.3 Architecture of M-RRNN

By integrating the distributor with the modular estimator,
the architecture of M-RRNN is formed. The architecture of
M-RRNN is presented in Fig. 4.

S Experimental setup

In this section, the steps required for setting the parameters
for the simulations are outlined. As discussed, the experi-
ments are performed in two different stages. As the proposed
modular scheme has two different sections, i.e. distributor
and estimator, different sorts of rival techniques should be
considered to test the efficacy of the proposed technique.
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Fig. 4 Architecture of the
designed modular ridge extreme
learning machine

Information

5.1 Distributor performance

To check the performance of distributor, which is based
on a differential evolutionary algorithm, several well-known
nature-inspired clustering methods, genetic algorithm (GA)
(Sheikh et al. 2008), artificial bee colony (ABC) (Karaboga
and Ozturk 2011), chaotic particle swarm optimization
(CPSO) (Chuang et al. 2011), and firefly algorithm (FA)
(Senthilnath et al. 2011), are taken into account. It is worth
mentioning that all of the considered clustering techniques
are equipped with an acceleration phase that can improve the
performance of any given stochastic/metaheuristic cluster-
ing algorithm (Chuang et al. 2011). To tune GA, the number
of chromosomes of 40, the crossover probability (P;) of
0.8, the mutation probability (Py) of 0.02, and the num-
ber of elite chromosomes (¢) of 1, are considered. Besides,
the arithmetic graphical search (AGS), tournament selection
and simulated binary crossover (SBX) operators are adopted
from the literature to form the algorithmic structure of GA.
For optimal implementation of ABC, the number of onlooker
and employed bees of 20 and the limit number of 10 are
taken into account. The limit size of 10 implies that the
first bee that fails to update its position after 10 trials is
sent to scout bee search phase to update its solution vec-
tor. For CPSO, the particle size of 40, inertia weight of 0.9,
and cognitive and social coefficients of 1.4 are taken into
account. To prepare FA, the number of fireflies of 40, the
maximum attraction (8max) of 1, and the absorption rate (1)
of 1 are selected for the sake of optimization. All of the above
mentioned parameters are set based on the recommendations
given in the seminal cited papers as well as the author’s own
assessments. Besides, all of the rival algorithms start the opti-
mization using the same population seeding (distribution) to
impede obtaining any biased results. All of the considered
clustering techniques perform the optimization for 10,000
function evaluations, and each algorithm is executed for ten
independent runs. Well-known statistical measures, i.e. stan-
dard deviation (std.), accuracy (mean), best (min), and worst

Distribution of information Estimators

Portion 1 >

PortiomK | +————»| K*RELM

(max), are also taken into account, which are defined as fol-
lows:

10
1
Mean fitness = To Zl: Ji
1=

Best fitness = min{J;|i =1, ..., 10}
Worst fitness = max{J;|i =1, ..., 10}

1 Jo
Robustness = ) ;(J,- — Mean ﬁtness)2

It is also worth pointing out that the clustering process is
conducted using four different numbers of clusters (K =
5, 6,7 and 8) to find the optimal number of clusters.

It is expected that either the ice surface temperature or the
ice thickness can be used together with the spatial informa-
tion (latitude and longitude values) to optimally partition the
database. In this way, two different sets of clustering experi-
ments are carried out to evaluate which method leads to the
best results. The two sets of data used for the two clustering
scenarios are

Experiment 1 : features x1, x2, x7

Experiment 2 : features x1, x2, X190,

which correspond to latitude/longitude/ice temperature and
latitude/longitude/ice thickness, respectively.

5.2 Performance analysis

To evaluate both the accuracy and robustness of the esti-
mation part of the proposed M-RRNN, several well-known
variants of neural networks, back-propagation neural net-
work (BP-NN) with steepest descent optimization algo-
rithm (Mozaffari and Fathi 2012), optimally pruned RNN
(OPRNN), randomized neural network (RNN) (Schmidt
et al. 1992), and multi-layer feed-forward neural network
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Table 3 Statistical

characteristics of the collected x1 2 3 . s o Y 8 0 1o

dgtabases for low- and Low frequency

high-frequency databases
Mean 300.9 57.9 228.2 8.91 1.15 2E—4 251.8 272.0 0.75 0.35
Min 295.4 533 161.7 223 0.88 —1E—-4 244.0 271.1 0.001 6E—4
Max 305.0 66.0 252.6 16.0 1.73 1E-3 267.1 274.6 0.999 1.26
Std. 221 3.65 23.49 3.18 0.16 4E—4 4.52 0.86 0.322 0.261

High frequency

Mean 300.8 57.3 239.1 8.29 1.14 1E—4 249.8 271.7 0.862 0.431
Min 295.1 53.3 203.2 1.42 0.85 —4E—4 242.1 271.1 0.002 TE—4
Max 304.8 66.1 249.7 14.5 1.57 0.001 263.0 274.8 1.000 1.924
Std. 2.27 347 7.24 2.83 0.16 3E—4 3.42 0.64 0.234 0.278

For the low-frequency database there are 14,639 data pairs, while for the high-frequency database there are

17,162 data pairs

with interior point optimization (MLFF-IPO) (Raja and
Samar 2014), are replaced with RRNN modules of the mod-
ular architecture. All of the identification modules have 10
neurons in their hidden layer. For the steepest descent opti-
mization method, a learning rate of 0.1 is used. The iterative
optimizers perform the learning for 100 iterations. It should
be pointed out that OPRNN comprises of a standard RNN
in which the most influential neurons are retained in the
architecture through multiresponse sparse regression neu-
ron pruning. Also, the pruning procedure takes advantage
of leave-one-out validation criterion to ensure the optimal
selection of active neurons (Hastie et al. 2009).

The database used for the analysis has eight features. The
considered features are listed in Table 1. As it was men-
tioned, the considered databases contain ice thickness from
the MODIS sensor, brightness temperatures from the ASMR-
E sensor, and geophysical variables from forecast models.
The database covers the period from 2 February to 20 Feb-
ruary and has 14,639 and 17,162 temporal data-pairs for low
(6.9 GHz) and high (36.5 GHz) frequency AMSR-E chan-
nels, respectively. In the rest of this paper, these two datasets
are referred to as the low- and high-frequency databases. The
collected databases have been normalized within the range of
unity for increasing the efficiency of the computation. Table
3 lists the statistical characteristics of the gathered features
for both low and high frequencies.

5.3 Verification of method complexity

Itis necessary to verify that the complexity of the final modu-
lar network is not greater than the complexity of non-modular
systems. In this regard, after finding a modular network with
K modules, single models of each of the above identifiers
with K x 10 neurons are taken into account for estimation of
the sea-ice thickness. This is mainly due to the fact that the
complexity of the resulting networks in terms of O notation

@ Springer

strictly depends on the number of hidden nodes (which is 10
in this study).

Finally, it is necessary to mention that all of the simula-
tions are carried out on the Matlab software with Microsoft
Windows 7 operation system on a PC with a Pentium IV,
Intel core 17 CPU, and 4 GBs RAM.

6 Results and discussion

In this section, the results from several experiments are
reported to evaluate the performance of the proposed intel-
ligent approach. In the first stage of the experiments, the
potential of the proposed method is tested for efficient par-
titioning of the dataset. Thereafter, the proposed estimation
tool together with the other rival estimators is used to develop
a map between the input features and the sea-ice thickness.
Some mathematical formulations are also presented to calcu-
late the complexity of the resulting modular framework and
also to evaluate the estimation error of the modular architec-
ture based on the errors of each of the independent modules.

Figures 5 and 6 indicate the real-time evolution of the
rival clustering methods for partitioning the low- and high-
frequency information, using different numbers of clusters.
The clustering scenarios differ in that one is conducted using
the ice surface temperature as the third features, while the
other uses the ice thickness.

Figure 5 indicates that for both of the clustering exper-
iments, increasing the number of clusters decreases the
convergence speed of the metaheuristic algorithms. This is
logical, as increasing the number of clusters increases the
dimensionality of the clustering problem and makes the opti-
mization landscape more intricate. Looking more closely at
the results, it can be seen that for both of the experiments of
the low-frequency scenario, SLFSDE-clust and CPSO have
the fastest convergence speed. Also, the simulation results
indicate that for most of the clustering scenarios, ABC cannot
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gi'l}’;:s"vaﬁ‘:s“g‘rﬂi‘:’n."vgihe SFLSDE  CPSO ABC FA GSA K-means
clustering techniques for Ist experiment
low-frequency database
Mean
5 clusters 686.393 701.983 705.289 737.317 702.405 813.072
6 clusters 730.888 739.334 765.138 790.889 743.352 823.643
7 clusters 924.837 941.147 1016.831 949.601 942.647 1058.192
8 clusters 875.665 1021.737 1022.921 974.824 1031.121 1048.114
Best
5 clusters 685.129 701.203 704.399 736.795 701.692 812.374
6 clusters 728.635 736.593 764.025 788.238 742.897 821.283
7 clusters 923.882 940.571 1014.354 946.778 941.392 1051.719
8 clusters 874.014 1019.422 1019.389 972.588 1028.861 1044.273
Worst
5 clusters 688.923 703.023 706.625 738.102 703.475 814.121
6 clusters 733.142 741.391 766.622 792.663 744.262 825.217
7 clusters 925.475 942.012 1018.384 951.483 943.485 1054.312
8 clusters 878.142 1023.153 1025.269 976.316 1032.616 1049.417
Std.
5 clusters 0.959 0.972 1.219 1.715 0.976 1.541
6 clusters 1.468 1.564 1.388 1.728 0.704 1.154
7 clusters 0.872 0.789 2.207 2.577 1.146 2.802
8 clusters 2.261 2.043 3.220 2.041 2.056 2.572
2nd experiment
Mean
5 clusters 702.363 718.489 716.492 704.372 712.950 817.741
6 clusters 743.245 772.333 761.568 780.800 747.848 826.799
7 clusters 868.277 845.697 967.730 919.404 907.398 1058.021

8 clusters 964.811
Best

5 clusters 701.623

6 clusters 742.008

7 clusters 864.813

8 clusters 962.558
Worst

5 clusters 703.475

6 clusters 745.102

7 clusters 873.475

8 clusters 968.192

Std.
5 clusters 1.014
6 clusters 1.694
7 clusters 4.744
8 clusters 3.085

1005.625 1051.512 1010.815 1019.425 1052.736

717.681 714.325 702.009 710.814 816.283
771.026 760.115 779.744 746.885 825.374
840.182 962.264 916.599 899.839 1045.495
1004.49 1050.296 1009.094 1017.692 1051.495
719.029 717.938 705.948 714.375 819.928
774.294 763.748 782.384 749.293 828.938
849.374 971.374 921.274 912.438 1066.384

1006.283 1053.203 1013.246 1021.873 1054.385

0.738 1.978 2.157 1.950 1.996
1.790 1.989 1.446 1.318 1.952
5.034 4.989 2.560 6.901 11.441
0.982 1.592 2.274 2.290 1.582

compete with the other rival techniques in terms of the accu-
racy of the final solution as well as the convergence speed. By
inspecting the real-time evolution results of high-frequency
scenario, presented in Fig. 6, it can be seen that similar per-
formance is observed. The only interesting observation refers

to the obvious superiority of SFLSDE-clust for K = 5 and 7
(first experiment), and K = 7 (second experiment). Taking
into account that the number of datapairs of high-frequency
database is larger than that of low-frequency database, it can
be inferred that by increasing the complexity of the informa-
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Table 5 Comparison of the

fitness values for the rival SFLSDE CPSO ABC FA GSA K-means
clhustering techniques for Ist experiment
high-frequency database
Mean
5 clusters 521.307 573.047 564.530 553.165 576.274 723.110
6 clusters 596.196 611.849 663.606 647.349 638.230 805.126
7 clusters 751.953 801.822 806.098 800.826 793.113 823.057
8 clusters 710.680 758.257 1068.621 765.606 815.858 870.477
Best
5 clusters 519.859 571.605 562.736 551.493 572.447 721.485
6 clusters 593.202 610.894 658.623 645.797 636.195 802.948
7 clusters 749.655 799.469 804.154 798.627 791.193 821.293
8 clusters 708.305 756.145 1062.731 764.396 814.934 863.273
Worst
5 clusters 523.483 575.241 567.236 554.285 578.826 724.194
6 clusters 598.192 613.283 666.928 648.384 641.283 808.395
7 clusters 753.485 803.392 807.395 802.293 794.394 824.234
8 clusters 714.243 761.426 1077.316 767.423 817.245 881.283
Std.
5 clusters 1.983 1.974 2.464 1.526 3.493 1.483
6 clusters 2.733 1.308 4.548 1.417 2.786 2.983
7 clusters 2.097 2.148 1.775 2.008 1.753 1.610
8 clusters 3.252 2.892 7.988 1.658 1.265 9.864
2nd experiment
Mean
5 clusters 519.763 527.548 557.784 541.608 522.848 530.914
6 clusters 577.025 602.906 604.176 595.642 580.677 595.988
7 clusters 600.462 697.795 691.430 690.477 708.564 773.216
8 clusters 798.613 864.862 916.250 848.113 893.427 934.927
Best
5 clusters 518.757 526.398 556.718 539.193 520.695 527.374
6 clusters 575.091 600.826 602.365 592.878 578.419 594.384
7 clusters 599.142 696.937 689.791 689.447 706.707 767.878
8 clusters 794.624 862.581 913.051 845.758 892.194 931.273
Worst
5 clusters 521.273 529.273 559.384 543.218 524.284 533.274
6 clusters 579.928 604.294 605.384 597.485 582.183 598.394
7 clusters 602.443 699.082 693.889 692.023 709.803 771.225
8 clusters 801.273 866.384 918.384 849.684 895.278 937.364
Std.
5 clusters 1.378 1.574 1.460 2.204 1.965 3.231
6 clusters 2.649 1.899 1.653 2.523 2.061 2.196
7 clusters 1.808 1.174 2.244 1.410 1.695 2.310
8 clusters 3.641 2.083 2.921 2.150 1.689 3.336

tion to be partitioned, the superiority of SFLSDE, at least in
terms of convergence speed, becomes much more obvious.
Tables 4 and 5 list the details of the statistical results
for both experiments of low-frequency and high-frequency
databases. The presented results indicate that by consider-
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ing x7 (ice temperature) as the third clustering feature, the
performance of the clustering methods for partitioning both
the low-frequency and high-frequency database is slightly
improved. However, as it was mentioned, the best clustering
should satisfy some other conditions. The std. values indicate
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Table 6 Computational time for the rival clustering approaches for
low-frequency database (s)

Table 7 Computational time for the rival clustering approaches for
high-frequency database (s)

SFLSDE  CPSO ABC FA GSA SFLSDE  CPSO ABC FA GSA

1st experiment 1st experiment

5 clusters 7.663 7.362 8.102 7.711 7.585 5 clusters 8.231 8.113 8.332 8.214 8.523

6 clusters 8.221 8.018 8.625 8.322 8.212 6 clusters 9.902 9.341 9.901 9.763 9.182

7 clusters 9.256 9.008 9.412 9.302 9.121 7 clusters 11.473 10.212 12.663 12.411 9.839

8 clusters 10.434 10.123 10.728 10.503 10.219 8 clusters 14.735 13.426 15.902 15.464 13.273
2nd experiment 2nd experiment

5 clusters 6.304 6.115 7.894 7.703 7.602 5 clusters 9.452 9.293 9.873 9.637 9.557

6 clusters 8.211 8.003 8.749 9.373 8.414 6 clusters 11.666 10.912 12.384 11.374 11.102

7 clusters 9.201 9.013 10.793 10.512 9.803 7 clusters 15.089 14.452 16.212 15.503 14.857

8 clusters 12.666 12.293 13.237 12.831 12.121 8 clusters 17.557 17.283 17.839 17.583 17.364

that the computational robustness of the rival methods is rel-
atively similar. However, in most of the clustering scenarios,
the robustness of ABC is less than the other methods, as its
std. value is larger than the others. By checking the results of
K-means clustering approach, it can be easily inferred that for
all of the clustering scenarios, the heuristic clustering meth-
ods show superior results. Also, the results of the conducted
simulations indicate that the performance of GSA and CPSO
are relatively the same for most of the clustering scenarios.
However, none of them can beat SFLSDE-clust algorithm
for the considered clustering scenarios. All in all, the con-
vergence and performance evaluation results indicate that
SFLSDE-clust can be considered as a very powerful infor-
mation partitioning scheme and can be used as the distributor
of M-RRNN.

In addition to all of the above experiments, the authors
would like to test the computational complexity of the con-
sidered rival clustering techniques. This will uncover whether
the better performance of SFLSDE-clust is obtained at the
cost of a higher computational burden. Tables 6 and 7 list the
computational time of the rival clustering methods for both
of the experiments on low-frequency and high-frequency
datasets, respectively. The obtained results clearly demon-
strate that the algorithmic complexity of SFLSDE is close to
CPSO and GSA. Indeed, the obtained results indicate that the
complexity of ABC is higher than the other rival techniques
which implies that it has a much more complex algorithmic
structure. The presented results of the computational com-
plexity indicates that SFLSDE-clust not only has a very good
performance, but also requires an acceptable rate of compu-
tational complexity to carry out the clustering task.

Itis also important to find out the effect of using x7 and x1¢
features on the partitioning of the considered region. To this
aim, the clusters formed for low-frequency database using
each of the mentioned clusters are indicated in Fig. 7. The
presented results clearly indicate that the final partitions are

quite different when considering either x7 or xq as the third
feature. This graphical illustration clearly proves the impor-
tance of using the two experiments for extracting the best
clustering scenario.

As mentioned earlieer, some additional performance eval-
uation metrics are required to realize which clustering
scenario can better partition the data into a set of clusters.
Table 8 lists the results of clustering for the two experiments
on low-frequency dataset. By checking the reported values,
it can be seen that K = 7 for the first experiment leads
to the best results in terms of the considered performance
evaluation indices. Table 9 lists the results of information
clustering for high-frequency dataset. It can be seen that, for
this case, the best performance is achieved for K = 7, con-
sidering x1¢ as the third clustering feature. Interestingly, for
both of the datasets, the best clustering results are achieved
when the number of clusters are equal to 7. The details of the
formed centroids for the considered clusters of both of the
experiments are given in Tables 10 and 11 for low-frequency
and high-frequency datasets, respectively. The details of the
centroid positions for K = 7 are shown in bold font.

Tables 12 and 13 list the number of data handled by each of
the clusters for both of the experiments on low-frequency and
high-frequency databases, respectively. The results disclose
the sharing of information among clusters, and also indicates
the number of data pairs used by each module.

By having the information regarding the distribution of the
datapairs for each module, it is possible to calculate the distri-
bution of computational complexity of the resulting modular
structure as follows:

Complexity = ﬁNj for j=1,...,K, @)
n

where N; indicates the number of hidden nodes of jth mod-
ule, n is the number of datapairs, and n; represents the
number of data handled by jth module. As the number of
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Table 8 Comparison of the performance measures for each partitioning schemes for low-frequency data
Metrics 1st experiment 2nd experiment

5 6 7 8 5 6 7 8
Compactness 0.6915 2.7848 1.5225 1.9055 0.3595 2.4335 1.6293 2.1672
Separation 0.1219 0.1829 0.3113 0.2905 0.1894 0.2065 0.2944 0.3103
Ray-Turi’s index 15.9889 12.0367 10.2752 11.2583 7.1098 11.2607 10.8090 12.6560
Dunn’s index 0.06125 0.0584 0.0788 0.0546 0.0615 0.0683 0.0927 0.08221
DB index 13.7172 14.3314 16.4956 15.3746 14.1723 15.1724 16.2734 16.3543
Table 9 Comparison of the performance measures for each partitioning schemes for high-frequency data
Metrics Ist experiment 2nd experiment

5 6 7 8 5 6 7 8
Compactness 2.0665 3.3250 2.8849 3.2080 1.2794 1.0877 1.0115 1.2220
Separation 0.1034 0.1721 0.1992 0.2317 0.1132 0.1756 0.2050 0.3665
Ray-Turi’s index 9.8837 12.2712 10.2635 11.7522 9.9554 8.5567 7.7767 9.4602
Dunn’s index 0.0758 0.08118 0.0874 0.08323 0.0878 0.0711 0.0912 0.0665
DB index 12.2734 13.2817 14.2773 13.3235 14.2213 15.3441 16.2212 16.0032

hidden nodes at each module is fixed and equal to 10, the com-
putational complexity of the modular frames corresponding
to the selected distribution of data can be calculated as fol-
lows:

2940 3290 2030 4390 540
16670 16670 16670° 16670 16670°

1st scenario :

1950 1530
16670 16670
1830 990 2470 4170 3630

2 io : , ) ’ ’ ’
nd seenario : 16670° 16670° 16670° 16670° 16670

1070 54
16670° 16670°

The above information indicate that most of the designed
modules have a relatively equal computational complexity.
It seems that 1st, 2nd, and 4th modules of the first modular
architecture, and 4th and 5th modules of the second architec-
ture have a little bit more complexity as compared to the other
modules. All in all, the results indicate that a neat balance
is held between the modular architectures, which indicates
that the proposed distributor does an acceptable job. Tables
14 and 15 list the MSE error of each of the modules for
both first and second experiments on low-frequency and high-
frequency databases. To calculate the total estimation error of
each modular frame based on the MSE error of its modules,
the following formulation is taken into account:

K
1
MSEar = ~ > nMSE;. 5)

j=1

The total MSE of each of the modular frames is also included
in Tables 14 and 15. Based on the reported values, it can
be easily seen that the estimation error of modular frames
with 7 modules is less than the other counterparts. This is in
concurrence with the results of clustering which suggests the
use of 7 modules to form the modular framework.

Figures 8 and 9 depict the correlations between the estima-
tion of M-RRNN with 7 modules for both of the experiments
on the low-frequency data, and those observed by MODIS
sensor. It can be easily seen that, for both training and testing
phases, the ice thickness estimates and the observed values
are in a very good correlation. In particular, it can be seen
that the correlation is higher when the low-frequency data-
base is used, in agreement with earlier studies (Scott et al.
2014; Kaleschke et al. 2012) that indicate the potential of
low-frequency microwave data for ice thickness estimation.

After selecting the most promising architecture for M-
RRNN, that would be necessary to continue the experiments
to find out whether the use of RRNN at the heart of the mod-
ular frames can afford the best results, and also to realize
the computational advantage of the modular frames as com-
pared to the standard estimators with the same number of
hidden nodes (the same structural complexity). Tables 16 and
17 compare the accuracy and robustness of modular frames
with different types of estimators at their heart. The results
of the estimation indicate that the performance of modular
frames with RRNN and OPRNN is better than the other rival
techniques. However, the RRNN does a slightly better job.
Moreover, it should be mentioned that the training proce-
dure of OPRNN is a little bit more complex than RRNN as
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Table 10 Details of the cluster

centers obtained by SFLSDE for Clusters 1st 2nd 3rd 4th 5th 6th 7th 8th
low—frequer}cy data 1st experiment
(un-normalized)
5 cluster
X1 301.63 302.36 301.76 301.58 301.22 - - -
X2 56.29 56.53 56.40 55.37 54.96 - - -
X7 250.34 251.77 252.36 253.67 252.72 - - -
6 cluster
X1 300.34 300.81 301.46 299.81 301.23 299.87 - -
X2 58.91 58.83 57.73 57.83 58.13 57.30 - -
X7 250.73 249.07 250.59 249.96 253.36 252.96 - -
7 cluster
X1 299.31 300.70 301.79 299.62 300.61 298.62 299.25 -
X2 59.44 60.49 59.27 59.78 59.10 58.45 57.64 -
X7 256.48 250.13 251.23 256.41 255.47 255.35 251.08 -
8 cluster
X1 303.15 301.24 300.50 301.61 303.51 299.38 301.95 303.72
X2 60.43 61.27 56.32 59.58 59.30 57.15 55.80 58.41
X7 251.48 251.10 248.08 256.04 247.60 256.30 253.39 251.10
Ist experiment
5 cluster
X1 299.95 300.95 300.50 300.04 299.75 - - -
X2 57.53 57.08 57.64 57.70 57.16 - - -
X10 0.288 0.264 0.369 0.248 0.332 - -
6 cluster
X1 301.41 299.77 300.79 301.58 299.42 301.12 - -
X2 57.38 57.29 58.13 58.13 56.77 56.87 - -
X10 0.380 0.421 0.410 0.297 0.255 0.259 - -
7 cluster
X1 300.85 299.33 302.48 302.57 302.12 300.96 300.11 -
X2 56.43 56.42 57.59 58.75 59.61 59.24 57.49 -
X10 0.320 0.238 0.150 0.371 0.422 0.368 0.096 -
8 cluster
X1 298.33 298.75 299.55 301.72 298.09 301.20 300.18 301.50
X2 55.21 58.31 56.67 61.16 56.70 57.39 60.88 57.60
X10 0.744 0.520 0.397 0.512 0.112 0.495 0.512 0.737

it includes both Lasso and ridge regression techniques. So, it
can be inferred that the use of RRNN at the heart of M-RRNN
can afford the best results. Moreover, the robustness results
indicate that all of the considered frames have an acceptable
robustness. This in turn implies that using modular architec-
ture can improve the robustness of the estimation.

The final experiment intends to evaluate the efficacy of the
proposed modular architecture in comparison with a number
of rival architectures with the same structural complexity.
Tables 18 and 19 list the results of the estimation. By checking
the obtained results, it can be observed that the accuracy of
the modular frame is higher than the other standard rival esti-
mation approaches. It can be seen that the modular estimator
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has a significantly better performance. Moreover, by compar-
ing the estimation error of the standard estimators with their
modular architectures presented in the previous experiment,
it can be seen that considering a modular frame for each
of the considered estimators can drastically improve their
performance. However, it can be also seen that the robust-
ness of the standard estimators is relatively the same as their
modular counterparts, and the robustness improvement of the
modular estimators is not significant. All in all, the results
of the simulations indicate that the modular frames can sig-
nificantly improve the accuracy of the estimation; however,
it was observed that the robustness of the both standard and
modular structures is relatively equal to each other.
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fﬁﬁiﬁ:ﬁbﬁﬁ‘fZ;’fgfﬁigé‘ét?;  Clusters st 2nd 3rd 4th 5th 6th 7th sth
?;i:g:;g;gg)data Ist experiment
5 cluster
X1 301.37 300.80 300.33 301.13 301.12 - - -
X2 57.48 56.47 56.81 56.92 57.64 - - -
X3 250.14 249.58 250.73 249.73 250.74 - - -
6 cluster
X1 301.33 300.46 300.44 301.77 301.21 300.35 - -
X2 57.91 57.98 57.08 58.34 57.46 58.25 - -
X3 248.65 251.35 250.44 249.84 250.56 249.27 - -
7 cluster
X1 301.11 300.13 300.89 302.91 300.97 300.18 298.59 -
X2 53.74 59.90 59.99 57.21 53.38 59.73 54.54 -
X3 252.03 249.33 249.99 248.79 250.67 249.09 252.76 -
8 cluster
X1 300.05 301.04 299.91 300.28 300.53 302.15 300.72 300.91
X2 53.38 58.10 53.38 54.47 58.58 59.72 57.71 55.65
X3 252.19 253.56 251.56 254.59 252.33 249.44 248.63 246.63
2nd experiment
5 cluster
X1 301.23 301.17 300.74 300.497 300.04 - - -
X2 55.91 55.34 56.40 55.25 56.80 - - -
X3 0.440 0.393 0.219 0.280 0.329 - - -
6 cluster
X1 300.45 299.78 300.39 300.90 300.12 300.17 - -
X2 56.34 55.38 56.10 57.77 57.70 56.85 - -
X3 0.161 0.387 0.215 0.130 0.497 0.036 - -
7 cluster
X1 300.29 301.97 300.34 300.30 300.11 300.77 301.50 -
X2 57.94 57.24 53.42 53.38 57.38 58.14 55.32 -
X3 0.567 0.292 0.423 0.602 0.676 0.546 0.732 -
8 cluster
X1 301.22 300.96 302.02 303.82 297.89 300.06 302.74 298.76
X2 57.89 59.66 60.42 56.35 54.90 59.02 57.86 53.38
X3 0.917 0.124 0.46 0.51 0.469 0.722 0.007 0.413
Table 12 Number of data handled by each module for the two experiments (low-frequency database)
1st experiment 2nd experiment
5 modules 6 modules 7 modules 8 modules 5 modules 6 modules 7 modules 8 modules
Module 1 426 150 294 284 248 96 136 313
Module 2 559 283 329 835 609 146 105 48
Module 3 210 375 203 12 83 97 372 149
Module 4 351 70 439 22 122 342 395 21
Module 5 121 311 54 50 505 562 72 816
Module 6 0 478 195 40 0 424 284 42
Module 7 0 153 381 0 303 116
Module 8 0 0 43 0 0 162
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Table 13 Number of data handled by each module for the two experiments (high-frequency database)

1st experiment

2nd experiment

5 modules 6 modules 7 modules 8 modules 5 modules 6 modules 7 modules 8 modules
Module 1 507 379 165 293 159 58 183 126
Module 2 232 414 471 129 544 194 99 59
Module 3 406 80 155 138 84 66 247 168
Module 4 212 46 80 198 90 238 417 390
Module 5 113 274 253 217 593 565 363 374
Module 6 0 277 70 203 0 349 107 116
Module 7 0 0 276 107 0 0 54 122
Module 8 0 0 0 185 0 0 115
Table 14 MSE error of each of the modules for low-frequency data

1st experiment 2nd experiment

5 modules 6 modules 7 modules 8 modules 5 modules 6 modules 7 modules 8 modules
Module 1 0.0279 0.0308 0.0302 0.0308 0.0302 0.0305 0.0305 0.0305
Module 2 0.0288 0.0309 0.0300 0.0303 0.0314 0.0302 0.0312 0.0302
Module 3 0.0305 0.0294 0.0291 0.0294 0.0305 0.0289 0.0289 0.0285
Module 4 0.0313 0.0293 0.0270 0.0275 0.0293 0.0293 0.0294 0.0294
Module 5 0.0289 0.0284 0.0274 0.0284 0.0284 0.0295 0.0304 0.0298
Module 6 0 0.0288 0.0265 0.0311 0 0.0306 0.0295 0.0305
Module 7 0 0 0.0301 0.0306 0 0 0.0308 0.0305
Module 8 0 0 0 0.0308 0 0 0 0.0308
Total 0.0293 0.0294 0.0292 0.0304 0.0300 0.0298 0.0298 0.0300
Table 15 MSE error of each of the modules for high-frequency data

1st experiment 2nd experiment

5 modules 6 modules 7 modules 8 modules 5 modules 6 modules 7 modules 8 modules
Module 1 0.0287 0.0252 0.0294 0.0285 0.0294 0.0294 0.0282 0.0275
Module 2 0.0294 0.0294 0.0278 0.0294 0.0288 0.0284 0.0276 0.0284
Module 3 0.0297 0.0312 0.0265 0.0297 0.0286 0.0266 0.0254 0.0255
Module 4 0.0304 0.0341 0.0231 0.0254 0.0278 0.0274 0.0229 0.0264
Module 5 0.0286 0.0319 0.0265 0.0258 0.0315 0.0286 0.0283 0.0293
Module 6 0 0.0214 0.0238 0.0241 0 0.0241 0.0226 0.0243
Module 7 0 0 0.0243 0.0255 0 0 0.0237 0.0254
Module 8 0 0 0 0.0266 0 0 0 0.0279
Total 0.0293 0.0275 0.0265 0.0268 0.0299 0.0273 0.0256 0.0271

7 Conclusions and future work

In this investigation, the authors proposed a modular ridge
randomized neural network (M-RRNN) with a nature-
inspired distributor to sea ice thickness along the Labrador
coast. The proposed modular estimator used unsupervised
learning to partition the spatio-temporal information con-
sisting of latitude and longitude values and either sea ice
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thickness or sea ice temperature. Thereafter, each of the
K partitions is fed to K independent RRNNSs to create a
nonlinear map between the input features, consisting of the
AMSR-E brightness temperatures and data from the forecast-
ing system, and the sea-ice thickness from MODIS. Based
on a comprehensive comparative analysis, the following con-
clusions were derived:
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Fig. 9 Correlation of the estimation ice thickness using the M-RRNN vs. ice thickness from MODIS for training and testing phases for high-

frequency database

(a) It was observed that the modified scale-factor local
search differential evolutionary algorithm (SFLSDE)
can be used as an efficient distributor to partition the
captured data into a set of subgroups. Furthermore, the
comparative studies clearly demonstrated that SFLSDE
can surpass PSO, FA, GA, and ABC for the same prob-
lem.

(b) Theresults of the analysis revealed that the use of RRNN

as module at the heart of the proposed modular architec-
ture can outperform the modular identifiers using BPNN,
OPRNN, RNN, and MLFF-IOP modules for estima-
tion. Furthermore, it was indicated that RRNN has an
analytical training strategy which always gets around
singularity because of using the ridge norm.
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Table 16 MSE of the modular

. . M-RRNN M-RNN M-OPRNN M-BPNN M-MLFF
frameworks with different
estimation modules for Accuracy
low-frequency database o
Training error 0.0292 0.0297 0.0292 0.0301 0.0298
Testing error 0.0308 0.0311 0.0310 0.0312 0.0309
Robustness
Training error 0.0003 0.0004 0.0004 0.0004 0.0003
Testing error 0.0004 0.0005 0.0006 0.0008 0.0007
Table 17 MSE of the modular M-RRNN M-RNN M-OPRNN M-BPNN M-MLFF
frameworks with different
estimation modules for Accuracy
high-frequency database .
Training error 0.0256 0.0276 0.0260 0.0285 0.0291
Testing error 0.0336 0.0355 0.0341 0.0321 0.0334
Robustness
Training error 0.0003 0.0005 0.0004 0.0004 0.0005
Testing error 0.0003 0.0005 0.0004 0.0005 0.0007
Table 18 Comparing the M-RRNN RNN OPRNN BPNN MLFF
accuracy and robustness of the
proposed modular estimator Accuracy
with standard counterparts with .
the same structural complexity Training error 0.0292 0.0299 0.0293 0.0304 0.0302
for low-frequency database Testing error 0.0308 0.0315 0.0313 0.0318 0.0312
Robustness
Training error 0.0003 0.0007 0.0006 0.0005 0.0006
Testing error 0.0004 0.0005 0.0006 0.0007 0.0008
Table 19 Comparing the M-RRNN RNN OPRNN BPNN MLFF
accuracy and robustness of the
proposed modular estimator Accuracy
with standard counterparts with o
the same structural complexity Training error 0.0256 0.0302 0.0293 0.0308 0.0306
for the high-frequency database Testing error 0.0336 0.0378 0.0368 0.0377 0.0359
Robustness
Training error 0.0003 0.0007 0.0003 0.0007 0.0008
Testing error 0.0003 0.0005 0.0006 0.0008 0.0008

(c) By comparing the resulting modular randomized neural
network (M-RNN) with standard identifiers of the same
computational complexity, it was realized that the mod-
ular estimator has a higher robustness and accuracy.

(d) The successful performance of M-RRNN inspires fur-
ther studies of intelligent approaches in a comple-
mentary manner with the current physical and semi-
empirical estimation tools. The findings of the current
research contributes to the use of advanced methods
from intelligent computing to geophysical problems.

In future, the authors would like to further expand this
study by trying to add a degree of uncertainty to the model
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using the fuzzy numbers theory to find out its impact on
suppressing the undesired effects of random white noise asso-
ciated with the sensory data.
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Appendix 1

Algorithm 1. Golden sectioning local search

. Verify the upper and lower bounds of searching domain
(a=—1land b =1).

. Generate two intermediate values, i.e. F!(i) and F2(i),
as below:

b—a
¢
b—a
é

where ¢ = 1.6181.
. Proceed with the mutation operator to find two different
mutant solutions:

v/ (i) = s1() + F/ (i) (s3() — s2(0)) ,

Fl()=b—

3

F*(i)=a+

ji=12.

. Proceed with the crossover mechanism to determine the
final solutions:

. (i
ul () = [Sk (’)

vl (i)

if rand(0, 1) < CR(i)

otherwise

for j = 1,2and k = 1, ...,d, where d represents the
dimensionality of the optimization problem.

. Evaluate the fitness of each of the two obtained off-
springs.

. Iffitness(u! (i))>fitness(u?(i)), then u(@) = u' (@), F (i)
= F2() and b = F2(i); else, u(i) = u2(@i), F(i) =
F%(i) and a = F'(i).

. If the termination criteria are satisfied stop the process,
otherwise return to Step 2.

Appendix 2

Algorithm 2. Hill climbing local search

1. Define an initial value for climbing A.
2. Produce three intermediate values, i.e. F1(i), F2(i) and

F3(i), as below:
Fl'()=F@i)—h
F2(i) = F(i)
F3(@i) = F(i) + h.

. Perform the mutation operator using the obtained scale
factors to find the mutant solutions:

v/ (i) = s1() + F/ () (s3() —s200)), j=1,2,3.

4. Proceed with the crossover mechanism to calculate the

final solutions:
i [s,{(i) if rand(0, 1) < CR(7)
ul () =14" .
v (i)  otherwise
forj=1,2,3andk=1,...,d.

5. Calculate the fitness of each of the three obtained off-
springs and extract the scale factor that yields the best
fitness F™*(i).

6. If F*(i) = F(i) then h = h/2; else, u(i) = u*(i) and
F@i) = F*@i).

7. If the termination criteria are satisfied stop the process;
otherwise, return to Step 2.

Appendix 3

Algorithm 3. Standard operators

1.

Let Fy and F,, be the minimum and maximum scale factor
values in Table 2, respectively. Update the scale factor
using the following formula:

| Fe+ Fuuy
F(l)_[m)

ifu, <11

otherwise.

Update the crossover rate factor using the following for-
mula:

us ifus <o

CR@® = [CR(i)

otherwise.

Proceed with the mutation operator to find the mutant
solutions:

V(i) = s1() + F(i) (s3() —s2(0)) -

Proceed with the crossover mechanism to calculate the
final solutions:

) {sk@

vk (i)

if rand(0, 1) < CR(i)
otherwise.

fork=1,...,d.
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