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Abstract Private image data, especially including the bio-
metric data with an authentication property, has received
more and more attention along with the development of
researches on big data. Consequently, to protect the private
image data while enabling outsourced image computations
becomes a major concern. In this present paper, we study the
privacy-preserving face recognition by using a method that
is different from the method of fuzzy classification recog-
nition, which is scale-invariant feature transform (SIFT) as
our key technical tool. We first propose a scheme in which
the client encrypts his private image data locally and out-
sources the corresponding results to a company. The latter
performs most of the computations, but remains ignorant of
the original data. To prevent some potential adversary from
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forging the data, we introduce a third party who can decrypt
any given valid ciphertext. Based on these ideas, we adopt the
BCP double-decryption cryptosystem for our scheme. Some
analyses show that our proposed scheme is secure, efficient
and scalable.

Keywords Cryptography · Privacy preserving · Face
recognition · Fuzzy recognition · Homomorphic encryption

1 Introduction

Biometric techniques have rapidly developed over the past
decades to a reliable means of authentication, which are
increasingly deployed in various application areas. For
example, face recognition, electrocardiograms (ECG) signal,
finger code and iris code can be used for biometric authen-
tication. In particular, feature point detection and matching
as one step of the biometric authentication is an essential
research topic with wide current interest in many computa-
tional vision applications. Note that some specific locations
may exist in images, such as mountain peaks, building cor-
ners or doorways. These kinds of localized features usually
called keypoint features or interest points are recognized as
important and invariant features that can be utilized for the
design of content authentication, face recognition and robust
watermarking. There are many image recognition classifi-
cation recognition methods, template matching, statistical
classification and fuzzy classification recognition. Specific
methods, such as PCA, FLD, Harris, Mexican-Hat wavelet
filtering and fuzzy K means clustering, have been widely
used in various applications.

Recently, scale-invariant feature transform SIFT is a hot
issue in computer vision to extract and describe local features
in image. Low (2004) showed that there are four major com-
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putational stages to generate a set of image features; here we
denote two points:

Scale space extreme detection: Use a Difference-of-
Gaussian (DoG) function to convolve with image at multiple
scales, then the potential feature points are chosen as local
extremes of the DoG images across scales, which are invari-
ant with respect to scale and orientation. Each sample point
is compared with its eight neighbors (called pixels) in the
current scale and nine corresponding neighbors above and
below. If this sample point is the extreme among all neigh-
bors, then it is selected as a key point.

Keypoint descriptor: Based on the gradient directions
of the local image, each key point location is assigned
orientations. The descriptor is represented as a vector con-
taining the values of all assigned orientation histogram
entries.

However, because of the importance of the feature key
point, if the attacker compares with feature key point in a
benchmark image database, he can deduce the content of the
image or even recover part of the image based on these feature
key points. Meanwhile, the ubiquitous use of face biomet-
rics raises important privacy concerns, such as the increasing
deployment of surveillance cameras in public places: bank,
airport, railway station and evenwhere youwork. This allows
to trace people against our will.

Under this kind of situation, researches on the privacy-
preserving sensitive data (not only image feature detection)
over the encrypted domain become necessary, such as image
search (Jégou and Zisserman 2014; Grauman and Fergus
2013), and anonymous authentication and keyword search
(Wang et al. 2014, 2013; Tang and Liu 2015; Li et al.
2007).

Usually, to achieve privacy preserving, clients operate
homomorphic encryption techniques, such as Paillier (1999),
Damgård et al. (2007), Boneh et al. (2005) and Bresson
et al. (2003) on the sensitive data before outsourcing. Here,
researchers outsource the encrypted sensitive data to the
cloud for its abundant computing resources and benefits,
since the computational ability of mobile devices is con-
strained and limited.

Someworks on privacy-preserving feature extraction over
the encrypted domain were proposed in (Hsu et al. 2012;
Qin et al. 2014; Zhou et al. 2015). In (Hsu et al. 2012), the
authors realized privacy-preserving SIFT over the encrypted
domain. However, they used Paillier cryptosystem, in which
the decryption mechanism for the data owner is unpractical,
since the computational complexity on the encrypted image
data of the mobile devices is resource constrained. In (Zhou
et al. 2015), the authors used full homomorphic encryption
as the technique of privacy preserving and realized a CCA2
security for cloud-assisted health-care system. The security
of their model is improved; however, the running time of the
model is also increased accordingly.

In this paper, we consider the following scenario to realize
a secure and efficient privacy-preserving outsourced image
feature extraction scheme over the encrypted domain.

Note that for usual image recognition, the image always
has a explicit, clear and positive pattern. However, for may
practical problems, the image itself has a kind of fuzziness,
such as license plate in intelligent transportation system and
remote sensing images. In this case, we need to use fuzzy
image processing. Anyway, this is another research theme,
and we will not consider this situation here. Thus, we still
assume that our image is clear and explicit. For the secret
image data, we use BCP (Bresson et al. 2003) as our encryp-
tion scheme, which is an additively homomorphic scheme
with double decryption mechanisms. (That is, such scheme
has two independent, additively homomorphic decryption
mechanisms). The master key is stored on a third party (T)
who can decrypt any given ciphertext without the consent of
a client. To protect the privacy of the client’s data, we require
to restrain the unlimited ability of the third party. Hence, in
our scheme, the third party is only responsible for generating
and issuing public parameter for the other clients. Keeping
this in mind, our basic construction consists of three steps:

1. A client P has his own public and secret keys and sends
his encrypted data and public key to a companyS, respec-
tively.

2. After receiving the encrypted input, the company S gen-
erates a DoG image (over the encrypted domain).

3. Client P and company S together run the Extreme pro-
tocol to obtain the feature key point.

4. Once the company S obtains the feature key point in
the encrypted domain, he needs to compute the feature
key point descriptor in the encrypted domain. Next, he
executes the descriptor and matching.

The remainder of this paper is organized as follows. In
Sect. 2, we introduce some preliminaries. In the next section,
we construct our scheme. In Sect. 4, we formally discuss the
privacy-preserving SIFT problem in the encrypted domain.
In Sect. 5, we discuss multiparty privacy-preserving SIFT in
the encryption domain. In Sect. 6,we analyze the security and
complexity of our scheme. Finally, conclusions and future
work are given in Sect. 7.

2 Preliminaries

2.1 Notations and security model

Throughout this paper, we use the following basic knowl-
edge: let Z, R and N be integer, real and natural number set,
respectively. We denote some finite set by D. Then, d ← D
is used to denote the fact that d is chosen randomly from
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the uniform distribution over D. For some algorithm A, we
say y ← A(x); this simply means that y is the output of the
algorithm A with a fixed input x ← D.

Assume that two-dimensional functions of the form
f (x, y) denote a discrete image. From a physical point of
view, the value (or amplitude) of f at spatial position (x, y)
is a positive scalar quantity determined by the source of the
image, which means that the image f (x, y) can be defined
as:

f (x, y) =

⎛
⎜⎜⎜⎝

f (0, 0) . . . f (0, N − 1)
f (1, 0) . . . f (1, N − 1)

...
. . .

...

f (M − 1, 0) . . . f (M − 1, N − 1)

⎞
⎟⎟⎟⎠ .. (1)

Here, the pair (x, y) = (i, j) does not stand for any actual
values of physical coordinates when the image was sampled,
but we mention that the j−th samples along the i−th row.
The value f (i, j) at coordinates (i, j) is called a pixel. For
the sake of simplicity, the image f (x, y) will be denoted as

f (x, y) = ( f (x = i, y = j))M×N = ( f (i, j))M×N . (2)

2.2 Cryptographic techniques

2.2.1 Additively homomorphic encryption

We say a public key cryptosystem E = (KeyGen,EncPK ,

DecSK ) is additively homomorphic, if there exists an oper-
ation on ciphertexts EncPK (x) and EncPK (y) such that the
result of that operation corresponds to a newciphertextwhose
decryption yields the sum of the plaintext x + y, i.e.,

DecSK (EncPK (x) + EncPK (y)) = x + y.

For this property, the multiplication of EncPK (x) with a con-
stant λ can be computed as follows,

DecSK (EncPK (x)λ) =DecSK (

λ terms︷ ︸︸ ︷
EncPK (x) · . . . · EncPK (x))

=
λ terms︷ ︸︸ ︷

x + x . . . + x = x · λ.

As instantiation, we use the BCP cryptosystem by Bres-
son, Catalano and Pointcheval (2003), which is an additively
homomorphic scheme with two independent decryption
algorithms. The master decryption algorithm has a master
secret key and the client decryption algorithmhas a client key.
Once a certain master key is known, the master decryption
algorithmcandecrypt a given ciphertext.We require the secu-
rity of such homomorphic scheme with double decryption
algorithm to be IND-CPA (also semantic security), which

means that the adversary should not be able to distinguish
the encryption of two arbitrary messages.

2.2.2 BCP encryption scheme

The BCP encryption scheme consists of three stages as fol-
lows:

(pp,mk) ←− Setup(κ): Assume that p, q, p′, q ′ are
distinct odd primes with p = 2p′ + 1 and q = 2q ′ + 1.
Given a safe parameter κ , let n = pq with bit length κ . For
the group Z

∗
n2
, let G be a cyclic group of quadratic residues

modulo n2, and we have ord(G)=pp′qq ′. Actually, there are
exactly n elements of order n in Z

∗
n2
, and all of them in the

form 1 + kn(k ∈ [0, n − 1]); the maximal order of element
in G is pp′qq ′. Choose a random element α ∈ Z

∗
n2

and set

g = α2mod n2. Then the outputs of this algorithm contain
public parameters pp = (n, k, g) and the master secret key
mk = (p′, q ′).

(pk, sk) ←− KeyGen(pp) : choose a random a ∈
[1, ord(G)] and set h = ga mod n2, and the algorithm’s
outputs pk = h and sk = a as the client of public and secret
key, respectively.

(A, B) ←− Enc(pp,pk)(m): given a message m ∈ Zn,

choose a random r ∈ Zn2 , the output the ciphertext

A = gr mod n2, B = hr (1 + mn) mod n2. (3)

The client decryption algorithmDec(pp,sk) can be descri-
bed as

m ←− Dec(pp,sk)(A, B): given a ciphertext (A, B) and
a secret key sk = a, compute the m as

m =
B
Aa − 1 mod n2

n
. (4)

The master decryption algorithmmDec(pp,mk) is as follows:
m ←− mDec(pp,pk,mk)(A, B): given a ciphertext (A, B),

a client’s public key pk = h and the master secret key mk,
we can compute the client’s secret key sk = a which corre-
sponds to pk = h as follows:

a mod n = h p′q ′ − 1modn2

n
· k−1 mod n. (5)

Since we use public key pk = h and a random r ∈ Zn2 to
encrypt plaintext m ∈ Zn , for the decryption algorithm, it is
necessary to compute

r mod n = Ap′q ′ − 1 mod n2

n
· k−1 mod n. (6)
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According to a mod n and r mod n, we can compute τ =
ar mod n. So the algorithm outputs

m = ( B
gτ )

p′q ′ − 1mod n2

n
· π mod n, (7)

where k−1 denotes the inverse of k mod n and π =
(p′q ′)−1 mod n. We use [·] to denote the encryption of mes-
sage m, that is

[m] = Enc(pp,pk)(m, r)

= (gr mod n2, hr (1 + mn)mod n2)

= (A, B).

(8)

ADD denotes additive gates securely, based on “Blinding”
techniques in our construction. That is, given [m] = (A, B)

and [m′] = (A′, B ′), ADD([m], [m′]) = (A · A′ mod n2, B ·
B ′ mod n2) = [m + m′]. For an integer a ∈ Z, (A, B)a =
(Aa mod n2, Ba mod n2).

2.2.3 Secure multiplications

Theblinding can carry out the securemultiplications between
two encrypted data. Assume that Bob has ciphertext [x] and
[y], whichwere encrypted byAlice’s public key. IfBobwants
to obtain [xy], he needs an interactive protocol with Alice.
Firstly, he picks up randomly values rx , ry as homomorphic
blinding factors of [x], [y], respectively. More precisely,

[zx ] = [x + rx ] = [x][rx ],

and

[zy] = [y + ry] = [y][ry],

thenBob sends [zx ] and [zy] toAlice. SinceAlice has a secret
key, she can decrypt [zx ], [zy], compute and re-encrypt the
multiplier zx zy and then sends the final ciphertext to Bob.
After receiving the value [zx zy], Bob is ready to finish the
following computation:

[xy][xy] = [zx zy − (xrx + yry + rxry)]
= [zx zy][x]−ry [y]−rx [rxry]−1. (9)

Here, the random values rx , ry are required to be uniformly
distributed overZn , and the blinding values x+rx and y+ry
are not allowed to leak any information toAlice. In particular,
if x = y, Alice computes [x2] = [z2x ][x]−2rx [r2x ]−1.

2.2.4 Extreme protocol

Oneof themost famous protocols for securely comparing two
private data between two computationally bounded parties is

based on Yao’s garble circuit (Yao 1982, 1986; Kolesnikov
et al. 2009). However, in (Damgård et al. 2007, 2009), the
authors used homomorphic encryption and SMC by compar-
ison.

Inspired by their ideas, we also use SMC to construct our
Extreme protocol.

Initially, Company S has access to both [a] and [b], and
computes [x] = [2l + a − b] = [2l ][a][b]−1. Since 0 ≤
a, b ≤ 2l , l ∈ Z, x is a positive (l + 1)-bit value. Assuming
xl is the most important bit of x , there is

xl = 0 ⇐⇒ a < b.

• If S has [x mod 2l ], then

[xl ] = ([x][x mod 2l ]−1)2
−1

.

Once S has [xl ] = [a < b], usingm = (a < b)(a−b)+
b, the encryption of the minimum m is easily obtained.

• If S does not know [x mod 2l ], then he needs to compute
the [x mod 2l ]. To obtain this value, S takes a protocol
with cline P.
S chooses uniformly random value r as an additively
blind factor of x and computes

[y] = [x][r ] = [x + r ], r mod 2l ,

then [y] is also a uniformly random value, company S
can safely send it to client P, who will learn non-useful
information after decryption. Client P then computes
d mod 2l , and returns [y mod 2l ] back to S.

Now, S removes the initially add random value r as fol-
lows:

[x ′] = [y mod 2l ][r mod 2l ]−1,

since x ′ mod 2l = (ymod 2l −r mod 2l) mod 2l .We remark
that if y mod 2l > r mod 2l , x ′ is a result value; and if
y mod 2l < r mod 2l , then an underflow has occurred. So,
consider a parameter s = (y mod 2l < r mod 2l), that is
s ∈ {0, 1}, if S has [s], then

[x mod 2l ] = [x ′][s]2l = [x ′ + s2
l ].

As long as S knows [s], the [x mod 2l ] is obtained. This
question is transformed into the comparison of two private
inputs: y′ = y mod 2l (held by S) and r ′ = r mod 2l (held
by P). This problem is known as Yao’s millionaire problem
(Yao 1982). Hence, we use Yao’s millionaire problem as a
subprotocol, where the details can be described in (Tuyls
et al. 2005; Blake and Kolesnikov 2006; Naor et al. 1999).
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2.3 Security model

Our scheme is composed of three major entities: a company
S (or server or cloud), a third party (T) and the clients. We
assume T is trusted by all the clients, its only task is to gen-
erate a public system parameter of the encryption scheme
which will be issued to the clients, and owning a master
key which can decrypt any given ciphertext. Meanwhile, we
require that Twill not interact with the companyS other than
the clients and will not participate in any computation. The
existence of S is reasonable; it can play the role of super-
vision, when some malicious entity interrupts the system,
forges and makes bogus sensitive data intentionally. Govern-
ment agents, medical organization or Public Security Bureau
(PSB) can be the T in real life; it is important and necessary
for our socirty.

From a theoretical point of view, executing protocols in
semi-honest model (Goldreich 2004) is necessary, which
means that S, T and the client P can be honest and follow
the protocols, but try to gather or discover information about
the (intermediate) results of the computation just by viewing
or looking at the protocol’s transcripts as much as possible.
In addition, we assume that there is no collusion among any
of the clients.

3 Our construction

In our scheme, the clients provide an encrypted image to
the company for some service (i.e., face recognition), and
the semi-honest company S is required to provide the cor-
responding service. We stress that T does not collude with
cloud S and the client P.

An original SIFT key point is a pixel which possesses
a local extremum in the scale space defined by difference-
of-Gaussian (DoG) filters. In the scale space, if some one
maliciously generates another extremum near the true one,
there can be several equal extrema (eight neighbors of the
true one) in a detection region get away with key point detec-
tion. On the other hand, to ensure the security of the data of
the client, we consider a secret information transformation
process.

Equipped with these preliminary points, we encrypt the
secret data before operating the SIFT algorithm; this makes
the output feature of the algorithm not dominant.

3.1 Enrollment

Third party T runs the algorithm Setup of the BCP encryp-
tion scheme, sets up the system parameters and sends public
parameters pp = (n, k, g) to the client P. The master secret
key mk = (p′, q ′) is stored in the third party T.

3.2 Data upload

After receiving the public parameterspp = (n, k, g), clientP
generates its own public and secret keys: pk = h and sk = a
under the received public parameters pp = (n, k, g) by the
algorithm KeyGen of the cryptosystem. Using Enc, client
P encrypts its private message, and then uploads encrypted
data and pk to the company S.

3.3 Interaction between the company and client

After receiving the encrypted data from the client, company
S wants to compute a privacy-preserving SIFT algorithm,
including DoG transform, key point extraction, feature
descriptor extraction and descriptor matching. When the
client P gets the result of the encrypt outputs, he can decrypt
and obtain the plaintext result.

It should be pointed out that in these protocols, we have
used the secure multiparty computation (SMC) based on gar-
bled circuit to solve the Extrema protocol, which has been
shown to be more efficient than only homographic compari-
son in Sadeghi et al. 2010.

4 Privacy-preserving SIFT in the encrypted
domain

Operating on plaintext space can be performed on corre-
spondingly ciphertext space without disclosing the plaintext,
satisfying that this operation is homomorphic encryption.
Thus, privacy-preserving SIFT can be realized.

4.1 Scale space in encrypted domain

The first step of the SIFT algorithm is to construct scale
space, while the element of this space is an image f (x, y)
convolved with Gaussian function G(x, y, σ ):

L(x, y, σ ) = G(x, y, σ ) ∗ f (x, y)

=
∑
u,v

G(u, v, σ ) f (x − u, y − v), (10)

where G(x, y, σ ) = 1
2πσ 2 e

− x2+y2

2σ2 , σ notes variance and the
scale size. If the size is bigger, the Guassian-blurred image
is coarser, with more contrast and finer.

To detect stable key point locations efficiently in scale
space, we need to take difference-of-Gaussians function con-
volved with the image, and such difference-of-Gaussians
compose a new space, defined as DoG space. The element of
DoG space can be computed like this:
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D_ f (x, y, σ ) = (G(x, y, kσ) − G(x, y, σ )) ∗ f (x, y)

= L(x, y, kσ) − L(x, y, σ ), (11)

which means the difference of nearby scales convolved with
an image f (x, y).

Here, for practical implementation, the BCP cryptosys-
tem scheme can only operate in integer domain, so we take
an integer DoG function which is assigned different scales
σi and σ j :

L(x, y, σ ) = 	sG(x, y, σ )

GD(u, v, σi j ) = 	s(G(x, y, σi ) − G(x, y, σ j ))
,

∀ u and v.

(12)

Since the Gaussian function G(·) is smaller than 1, s as a
scaling factor is used to enlargeG(·) such that it is an integer.

Client P provides an encrypted face image

Enc(pp,pk)( f (x, y), rx,y) = [ f (x, y)]
= ([ f (i, j)])M×N

= ((Ai j , Bi j ))M×N (13)

to the company S for recognition. After receiving an
encrypted image [ f (x, y)], S convolves it with the DoG
function, so the encrypted image in the DoG space can be
expressed as

D_[ f (x, y)]
=

∏
u,v

((Ai−u, j−u, Bi−v, j−v)
GD(u,v,σ ))M×N

=
∏
u,v

Enc(pp,pk)( f (x − u, y − v), rx−u,y−v)
GD(u,v,σ )

= Enc(pp,pk)

(∑
u,v

GD(u, v, σ ) f (x − u, y − v), rx,y

)

= Enc(pp,pk)(GD(x, y) ∗ f (x, y), rx,y)

= Enc(pp,pk)(L(x, y, kσ) − L(x, y, σ )), (14)

where rx,y is chosen uniformly random and depends upon
the location of a pixel on the DoG image.

According to the homomorphic property, the above equa-
tion can be recast as:

D_[ f (x, y, σ )]
=

∏
u,v

Enc(pp,pk)( f (x − u, y − v), rx−u,y−v)
GD(u,v,σ )

=
∏
u,v

(grx−u,y−v mod n2, hrx−u,y−v (1 + f (x − u, y − v)n)

mod n2)GD(u,v,σ )

= (grσ mod n2, hrσ (1 + GD(x, y, σ ) ∗ f (x, y)n)

mod n2)

= Enc(pp,pk)(D_ f (x, y, σ ), rσ )

= [D_ f (x, y, σ )], (15)

where rσ = ∑
u,v rx−u,y−vGD(u, v, σ ) is used to encrypt a

pixel GD(x, y, σ ) ∗ f (x, y).
Above, Eqs. (14)–(15) indicate that the client P sends

the encrypted image [ f (x, y)] to the company S for oper-
ating difference-of-Gaussian function in ciphertext space
identical to encrypting the difference-of-Gaussian image
D_ f (x, y, σ ) under rσ with the scale parameter σ .

Next, for brevity, we use ( Āi j , B̄i j ) to indicate the DoG
image pixel at position (i, j), i.e.,

D_[ f (x, y, σ )] = (( Āi j , B̄i j ))M×N , (16)

where Āi j = ∏
u,v AGD(u,v,σ )

i−u, j−u mod n2, and B̄i j = ∏
u,v

BGD(u,v,σ )
i−v, j−v mod n2. Figure 1 shows that the original image

′girl ′a and ′Girl ′b and its encrypted image c and d, respec-
tively.

Fig. 1 a 256-bit image; b 512-bit image; c, d is BCP encrypted image
of a and b, respectively
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4.2 Local extrema detection via comparison of
encrypted data

Once the company S obtains the DoG images, it wants to
detect the local extrema of DoG images as a candidate key
point. That is, each sample point in the DoG images is com-
pared to 8 neighbors in current scale as well as 19 neighbors
in adjacent scales, and only a pixel value as an extrema of
all neighbors is selected as a candidate key point. Homomor-
phic encryption scheme guarantees that comparison between
encrypted data is equivalent to obtaining the local extrema
value in the original space (plaintext space). Due to the
computational difficulty, company S needs to interact with
client P to detect the extrema value using the Extreme
protocol.

4.3 Feature descriptor generation

In this step, the detected key point is assigned orientations
based on local image gradient directions. So, the key point
descriptor can be represented related to this orientation. First,
we describe an SIFT feature descriptor over the plaintext
domain.

An SIFT feature descriptor is made for the actual 16×16
region, which is further broken down into 16 4 × 4 blocks,
around a center: feature point. For every detected feature
point, the feature descriptor is accomplished at the corre-
sponding scale. Then for these 4 × 4 blocks, we compute
the gradient value and orientation for each position (x, y) as
follows,

m(x, y) =
√
L2
x + L2

y,

θ(x, y) = arctan
Ly

Lx
, (17)

where Lx and Ly can be difference approximations as L(x+
1, y, σ )−L(x−1, y, σ ) and L(x, y+1, σ )−L(x, y−1, σ ),
respectively. Once Eq. (17) is obtained, a number of restric-
tive directions can be defined by the histogram of weighted
magnitudes.

Due to high computational complexity and impracticality
in the encrypted domain, we use a modify descriptor to gen-
erate the weighted magnitudes located at four directions (0◦,
45◦, 90◦, and 135◦) in this paper, which constitutes a new
four-dimensional vector. So, to calculate the feature descrip-
tor in the encrypted domain, company S does the following
steps: for each 4 × 4 block, let V (k), k = 0, 1, 2, 3 denote
a four-dimensional feature descriptor and Enc(V (k), rk) =
[V (k)]:

[V (0)] = [V (0)][Diff0◦ ]
= [V (0)][L(x + 1, y, σ )][L(x − 1, y, σ )]−1,

if L(x + 1, y, σ ) ≥ L(x − 1, y, σ );
[V (1)] = [V (1)][Diff90◦ ]

= [V (1)][L(x, y + 1, σ )][L(x, y − 1, σ )]−1,

if L(x, y + 1, σ ) ≥ L(x, y − 1, σ );
[V (2)] = [V (2)][Diff45◦ ] (18)

= [V (2)][L(x−1, y−1, σ )][L(x+1, y + 1, σ )]−1,

if L(x − 1, y − 1, σ ) ≥ L(x + 1, y + 1, σ );
[V (3)] = [V (3)][Diff135◦ ]

= [V (3)][L(x+1, y−1, σ )][L(x−1, y + 1, σ )]−1,

if L(x + 1, y − 1, σ ) ≥ L(x − 1, y + 1, σ ),

where [V (k)] are all initialized to be 1 and need Extreme
protocol for comparison in the above equations. In Fig. 2,
images e and f are the feature extractions of the original
images a and b bySIFT, respectively. Images g and f indicate
the feature extractions corresponding to the encrypted images
c and d by piracy-preserving SIFT.

Fig. 2 e, f feature extraction in plaintext domain; g,h feature extraction
in encrypted domain
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4.4 Feature descriptor matching

As shown in the previous section, each descriptor has a
split 64-dimensional vector Vd and is normalized to unit
length. Once the company S obtains the descriptors for each
encrypted image, it needs to compare the descriptors of two
encrypted images. An original match of SIFT is accepted
only if its distance is less than disRatio (a threshold value)
times the distance to the second closest match. However, in
the ciphertext space, we need to decide a matching strategy.
The simplestway tofindall corresponding feature descriptors
is to compare all feature descriptors against all other fea-
ture descriptors in each pair of potentially matching images.
Unfortunately, this is quadratic in the number of extracted
feature descriptors, which means it is impractical for most
applications.

For efficiency (Hsu et al. 2012), some researchers used
similar metric for evaluation, which is to compute dot prod-
ucts between unit vectors:

Sim(Vi , Vj ) =
63∑
k=0

Vi (k)Vj (k), (19)

where Vi and Vj are descriptors. Indeed, in plaintext space,
using similarity metric, Eq. (19) is really effective. However,
it is not effective for match in ciphtertext space, since in the
cipertext space Eq. (19) is expressed as

Sim([Vi ], [Vj ]) =
63∏
k=0

[Vi (k)]Vj (k) mod n2. (20)

To calculate Eq. (20) in ciphertext space, the company
S has to know the descriptor Vj first. This means that the
privacy of the client P cannot be protected. Likewise, if S
using Euclidean metric in the ciphertext space for similarity
evaluation,

Sim2([Vi ], [Vj ])

=
[

63∑
k=0

(Vi (k) − Vj (k))
2

]

=
63∏
k=0

[Vi (k)2][Vi (k)Vj (k)]−2[(Vj (k)
2] mod n2, (21)

S only knows the encrypted descriptors [Vi ] and [Vj ];
to achieve the desired goal, he needs to obtain [Vi (k)2],
[Vi (k)Vj (k)]−2 and [(Vj (k)2] via SMC with client P. How-
ever, this process costs large time.

To reduce the computational cost, we take the l1 norm as
our matching metric. In the plaintext space, the l1 norm is
defined as

Sim(Vi , Vj ) = |Vi − Vj |l1 =
63∑
k=0

|Vi (k) − Vj (k)|. (22)

Then, in the ciphertext space, because of the homomorphic
property, the above equation can de denoted as:

Sim([Vi ], [Vj ])
= |[Vi ] − [Vj ]|l1

=
63∑
k=0

|[Vi (k)] − [Vj (k)]|

=
∏

k∈{t |Vi (t)>Vj (t);0≤t≤63}
[Vi (k)][Vj (k)]−1

×
∏

k∈{t |Vi (t)�Vj (t);0≤t≤63}
[Vi (k)][Vj (k)]−1 mod n2.

(23)

Equation (23) the computation of |[Vi ] − [Vj ]| is dependent
on our proposed Extreme protocol. Therefore, the matching
can be realized.

5 Multiparty for privacy-preserving SIFT in the
encrypted domain

In the previous section, we discussed privacy-preserving
SIFT for one client P; however, there are more general
cases where two or more people want to recognize encrypted
images under different public keys. Usually, the SMC only
deals with the data under the same public key; so, before
using SMC, we need to transform these encrypted images
(with different public keys) into the encrypted data with a
single public key. If we use secret sharing scheme (Shamir
1979; Blakley et al. 1979; De Santis et al. 1994; Blundo
et al. 1997, 1994, 1993) for multiparty case, all parties
need to interact with each other and should be online
since the decryption algorithm needs the secret key of the
parties.

In this section, we will consider how to build a system
with multiparty. In this case, our scheme needs to be modi-
fied as follows: the third party T sets up the BCP encryption
scheme, generates the system parameters, holds the mas-
ter key mk = (p′, q ′) and distributes public parameters
pp = (n, k, g) to the company S. Assume that T only inter-
acts with the company S and the client Pi (1 ≤ i ≤ N ) only
interacts with S. After clients receive the public parameters
from the company S, they can use their own key genera-
tion algorithm to generate their own public and secret keys,
respectively, and to upload encryption of their secret data
and public key to S. Then, S and T execute some crypto-
graphic protocols, to transform all ciphertexts encrypted by
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those clients’ individual keys to other new kind of cipher-
texts encrypted by the same public key. Using these new
ciphertexts, S and T can operate the SMC protocol to com-
pute anypolynomial function.After the result (also encrypted
under the same public key) is given, S needs to run a final
SMC protocol with T so as to transform this result back into
ciphertexts that are encrypted by the clients’ individual public
keys. During this process, the clients have no interactionwith
each other. We stress that every party in this model is semi-
honest and the company S and T do not collude with each
other.

6 Security and complexity analysis

6.1 Security analysis

Informally speaking, the Diffie–Hellman problem has two
variants, a computational version and a decision version. For
a computationalDiffie–Hellmanproblem, given amultiplica-
tive group (G, ·), an element g ∈ G having order ord(G), and
two elements a, b ∈ [1, ord(G)], it is hard to find gab, when
ga and gb, g and n are given.

6.1.1 Decision Diffie–Helleman (DDH) problem over Z∗
n2

We say DDH problem is hard if for all probabilistic,
polynomial-time algorithmsA, there exists a negligible func-
tion negl() such that for large enough l,

|P[A(G, n, gx mod n2, gy mod n2, gxy mod n2) = 1]
− P[A(G, n, gx mod n2, gy mod n2, gz mod n2) = 1]|

≤negl(l),

where x, y, z ∈ Z
∗
n2

are randomly chosen. Note that when z
is chosen at random from Z

∗
n2
, independent of anything else,

the element gz mod n2 is uniformly distributed in G.
This clearly shows that the ensemble of tuples of the type

(G, n, gx mod n2, gy mod n2, gxy mod n2) is computation-
ally indistinguishable from the ensemble of tuples of the type
(G, n, gx mod n2, gy mod n2, gz mod n2).

According to (Bresson et al. 2003), the authors defined
some concepts, as follows.

6.1.2 Lift Diffie-Hellman problem

The Lift Diffie–Hellman computational problem is said to
be hard if, for any probabilistic polynomial time algorithm
A, one negligible function negl() exists such that for large
enough l,

P[A(n, X,Y, Z mod n) = Z(mod n2)|p, q ← SP(l/2);
n=pq; g←G; x, y, z←[1, ord(G)];
X = gx mod n2; Y = gy mod n2;
Z = gxy mod n2; ] = negl(l),

where SP denotes the sets of safe prime numbers of length
l.

6.1.3 Partial discrete logarithm over Z∗
n2

For all probabilistic polynomial time algorithm A, a negligi-
ble function negl() exists such that for large enough l,

P[A(n, g, h) = a mod n)|p, q ← SP(l/2); n = pq;
g ← G; a ← [1, ord(G)];
h = ga mod n2; ] = negl(l).

The relationship between theLiftDiffie–Hellmanproblem
and the Partial Discrete Logarithm problem can be described
by the following theorem:

Theorem (see Bresson 2003, Theorem 10). If the Partial
Discrete Logarithm problem is hard, then so is the Lift Diffie-
Hellman problem.

Theorem (One-wayness) (see Bresson (2003), Theorem 9).
The BCP encryption scheme is one way if and only if the Lift
Diffie–Hellman problem is hard.

Proof We use converse-negative proposition to prove the
theorem. Necessarily, we assume that if one can efficiently
solve the LDH problem, namely given g, X = A =
gr mod n2,Y = gx mod n2 and t = B mod n =
pkr (1 + mn) mod n2 = pkr mod n2, one can calculate
Z = pkr mod n2, where (A, B) = (gr mod n2, pkr (1 +
mn) mod n2) is an encryption of message m. Once one
calculates Z = pkr mod n2, then he can calculate the
inverse of Z , namely Z−1, finally he recovers the message:
m = Z−1B−1

n mod n2.
Sufficiently, we assume that BCP is not one-way, namely

the message m can be recovered from a correctly encrypted
data (A = X, B = Z(1 + mn) mod n2), indeed, B can be
expressed by the formula B = Z(1+mn) = Z+Zmn = Z+
(Z mod n)mn = Z + tmn mod n2, where g, t = Z mod n
are given. For a randomly chosen message m′, we use (A =
X, B = t (1 + m′n) mod n2) as its ciphertext, then Z +
tmn = t + tm′n mod n2, we can calculate Z = t (1− (m′ −
m)n) mod n2.

Now, we describe the definition of the semantic security.
Semantic Security, IND-CPA. Let	 = (KeyGen,Enc,

Dec) be an encryption scheme, and let A = (A1,A2) be an
adversary. We say that 	 is secure in the sense of IND-CPA,
if
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Avdind−cpa
A,	

(k) = 2 · P[(pk, sk) ← (KetGen(1k));
(m0,m1, s) ← A1(pk); b ← {0, 1};

y ← Encpk(mb);A2(m0,m1, s, y) = b] − 1

is negligible for k ∈ N. For the first adversary A1, just like a
message generator, given the public key pk, he can generate
amessage space and from that sample twomessagesm0, m1,
then output a triple (m0,m1, s), where s is a secret state infor-
mation, possibly including pk. We require that the length of
the above twomessages is the same, i.e., |m0| = |m1|. For the
second adversaryA2, after receiving an encryption y of a ran-
dommessagemb and the previously saved state s, he outputs
a bit b. Thus, the semantic security shows that whatever is
efficiently computable about the plaintext, given the cipher-
text, is also efficiently computable without the ciphertext. ��
Theorem (Semantic Security) (see Bresson (2003), Theo-
rem 11) If Decisional Diffie–Hellman Assumption in Z

∗
n2

holds, then the BCP scheme is semantically secure.

Proof First, we assume the BCP encryption scheme is not
semantic security, namely there is a polynomial time adver-
sary A that can break semantic security, then the Decisional
Diffie–Hellman assumption does not hold over Z∗

n2
. How-

ever, DDH assumption relies on the hardness of computing
discrete logarithm over Z∗

n2
, so our assumption is a contrac-

tion.
Now, the details can be described as follows: given pk =

(n, g, h) where h = ga , the adversary A chooses distance
message m0, m1 and sends it to the challenger. Then the
challenger tosses a fair coin b ∈ {0, 1}, performs the
encryption scheme, c∗ = Enc(pk)(mb) = (A, B) where
A = gγ mod n2 and B = gβ(1+mbn)mod n2 and sends c∗
to the adversary. Upon receipt of c∗, A must answer either 0
or 1 as his working out of challenger’s coin tossing.

Let G = (g, ga, gγ , gβ); if G is not a Diffie–Hellman
quadruple, in a information theoretic sense, the adversary
gains nothing about mb from Enc(pk) even he has a polyno-
mially unbounded computingpower. IfG is aDiffie–Hellman
quadruple, then the encryption Enc(pk) is valid and will give
the correct answer with non-negligible probabilistic advan-
tage.

Assume that β = aγ + r mod ord(G), then

B = gβ(1 + mbn) mod n2

= gaγ+r (1 + mbn) mod n2

= gaγ gr1gr2 p
′q ′

(1 + mbn) mod n2

= gaγ+r1(1 + n)(1 + mbn) mod n2

= gaγ+r1(1 + (r2 + mb)n) mod n2.

Since r ∈ [1, ord(G)] and r is coprime with ord(G), we
have r and p′q ′ coprime and r can be written as r = r1 +

Fig. 3 Encryption and decryption time with different size images

r2 p′q ′ where r1, r2 ∈ Zn . We assume that gr2 p
′q ′ = (1 +

n) mod n2. In the above equation, r2 hides mb and A cannot
guess b.

Since our privacy-preserving SIFT scheme is based on
BCP encryption scheme and SMC, our scheme is semanti-
cally secure. ��

6.2 Complexity analysis

For the experiments, we use lenovo computer with a
2.67GHz Intel Core i5 CPU. We choose p = 59, q = 23,
then n = pq = 1357, n2 = 1841449. When the image size
of (‘girl’) is 512 × 512, α = 915122, sk = 78656, then
g = α2 mod n2 = 1464460, h = gskmod n2 = 462141.
Its encrypted time is 50 s, and the operation powermod takes
most of that time. The decryption time is 95 s. The original
SIFT in the plaintext domain is 9 s.However, in the encrypted
domain, the feature detection time is 55 s. From Fig. 3, we
know that the encryption and decryption time is linear (or
approximated) for different size images with different para-
meters.

Thus, the client can pre-compute all randomization factors
gr and hr during idle times. In this case, the feature descriptor
matching an image takes less time.

7 Conclusion

In this present paper, we propose a double decryption-based
privacy-preservingSIFT scheme over the encrypted domain.
This scheme can be used to handle the privacy-preserving
problem encountered in a cloud computing environment. We
hope that the clients do no or little computation, while the
company, server or cloud can finish almost all the tasks of
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SIFT-based applications without learning anything to obtain
the client’s privacy. The experimental result shows that the
proposed scheme is correct and appropriate for many types
image database. As future works, we will continue to study
on privacy-preserving image and improve the homomorphic
comparison efficiency.
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