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Abstract Elephant nose fish searches its food such as larvae
by active electrolocation. It discharges electric pulse through
its electric organ in tail and detects the object by analyzing
the geometrical property of projected electrical image on it.
The capacitance value found out from that electric image
helps the fish to reach near the food source. Shark also uses
passive electrolocation for the same purpose. It can target its
prey by sensing the electrical wave generated due to the mus-
cle twitching of small living beings in water. Both the above
physiological phenomena, concerning the active and passive
electrolocation of fish, has been mathematically developed
as nature-inspired meta-heuristic technique named fish elec-
trolocation optimization (FEO). A comparative study based
on benchmark functions has been done amongst real coded
genetic algorithm, accelerated particle swarm optimization,
particle swarm optimization, harmony search and the pro-
posed algorithm. Furthermore, comparative study has been
done with simulated annealing and differential evolution on
eggcrate function. The proposed technique has also been
implemented on real-world optimization problem related to
cost-based reliability enhancement in radial distribution sys-
tem. It can be said by comparing percentage of success,
mean number of function evaluation and standard deviation
that FEO algorithm works better than other mentioned meta-
heuristic techniques.
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Abbreviations

di f f Difference between maximum and
minimum limit of solution variable

longrange A set of discrete values in long
range

shortrange A set of discrete values in short
range

p1l , p2l , p3l Constant terms for longrange for-
mulation

p1s, p2s, p3s Constant terms for shortrange for-
mulation

vshortrange Aset of discrete values in very short
range

i, k, j Index terms
slope, vs Electrical image slope, short dis-

tance interval value
xnew, xmin and xmax Calculated solution value after evo-

lution, minimum and maximum
limit of solution variable ‘x’

elecpulse Value of electric pulse for genera-
tion of new electrical wave

capu, capl Capacitor upper limit, capacitor
lower limit

capint, caphover Initial capacitor value, capacitor
value when the conceptual electro-
fish is hovering and searching

rand, floor, fix,
randperm, randn
and length

Standard MATLAB® 7.0 library
functions
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randi , randij Random value for i th individual
amongst population,random value
for i th individual and j th variable

probdiv, probsel Probability of divergence, proba-
bility of selection

probrng Probability of range
xtbest , x

t
worst Best found variable value at t th iter-

ation, worst found variable value at
t th iteration

ch1 and ch2 Minimum and maximum value of
objective function for the first iter-
ation

g1, g2 Constant terms for distance calcu-
lation

caprun Running capacitor value
toggle Toggle switchor changeover switch
σ(xi ) Symbol for standarddeviation func-

tion
slopeconst A constant value for elecpulse gen-

eration
S,m1 and m2 Array of random index terms con-

cerning the length of longrange,
shortrange and vshortrange

n, h1 and h2 Selected random values from s,m1
and m2

c2 and c3 Values concerning shortrange and
vshortrange

1 Introduction

Many natural procedures were mimicked as soft computing-
based optimization tool. In the early 1970s Holland (1975)
adopted the idea of Charles Darwin’s theory of natural selec-
tion to formulate genetic algorithm. Later Goldberg (1989)
studied that elaborately for making it fit for optimization and
machine learning. Kirkpatrick et al. (1983) developed sim-
ulated annealing considering the metal’s annealing process.
That process behind the algorithm includes the metal’s cool-
ing and freezing phenomena into crystalline state with larger
crystal size and minimum energy. Moscato (1989) had estab-
lished mimetic algorithm derived from genetic algorithm
and martial art. Deb (1991) applied genetic algorithm for
engineering optimization problem.He also developed an effi-
cient constraint handling method for genetic algorithm (Deb
2000). Reynolds (1994) proposed cultural algorithm con-
sidering belief space and population space as the two main
ingredients. Kennedy andEberhat (1995) established particle
swarm optimization (PSO) on the basis of swarm behavior of
birds. Later that algorithmhadbeen improved.That improved
PSO was applied for optimal power flow (Vo and Scheg-
ner 2013). Storn (1996) proposed differential evolution (DE)
as a useful tool for function optimization. Later Storn and

Price (1997) applied that technique for global optimization
over continuous spaces. Foraging behavior of ants especially
built on chemicalmessenger pheromonewas studied (Dorigo
1992). Dorigo and Caro (1999) presented that meta-heuristic
technique as ant colony optimization.

On the other hand, meta-heuristic techniques had been
generated from swarm intelligence and bee colony behavior.
Honey bee mating optimization was developed by Afshar
et al. (2007) for doing optimal reservoir operation. Artificial
bee colony algorithm was proposed by Karaboga and Bas-
turk (2007). Bee colony optimization was also developed in
this regard (Teodorovic’ and DelĺOrco 2005). Nakrani and
Tovey (2004) proposed honey bee algorithm. Later Yang
(2005) proposed virtual bee algorithm for implementation
in engineering optimization. Pham et al. (2005) studied the
concept of honey bee’s behavior and developed bee algo-
rithm. Later bee algorithm was also studied and applied to
find optimal solution (Yuce et al. 2015). Geem et al. (2001)
proposed harmony search algorithm inspired by harmony
of music. Later that technique was applied for continuous
engineering optimization problem (Lee and Geem 2005).
Biogeography-based optimization technique was developed
by Simon (2006). Firefly algorithm was formulated on the
basis of flashing characteristics of fireflies (Yang 2009).
Bat’s echolocation (Muhaureq et al. 2010; Yang 2010a, b)
had also been considered to develop meta-heuristic tech-
nique conceptualizing prey catching phenomena of it. Later
firefly algorithm and bat algorithm had been implemented
for optimal placement and sizing of static VAR compen-
sator for enhancement of voltage stability (Rao and Kumar
2015). On the other hand, cuckoo’s breeding procedure had
also got the attention of researcher to build a meta-heuristic
technique (Yang and Deb 2009). Foraging behavior of few
animals was also mathematically studied as optimization
method. Passino (2002) developed bacterial foraging algo-
rithm conceptualizing survivalmechanismofEscherecia coli
in changing environment. Monkey search algorithm was for-
mulated imitating the behavior of monkey climbing trees in
its search for food (Seref and Akcali 2002). Biolumines-
cence (Krishnanand and Ghose 2005; Olivera et al. 2011)
had also been selected for developing higher level searching
tool. Not only the animal’s behavior was imitated, but also
the plant’s growth (Tong et al. 2004) and its photosynthesis
process (Yang 2010a, b) was also considered for this kind
of technique development. Cai et al. (2008) developed plant
growth optimization on the basis of leaf growth, branching,
phototropism and spatial occupancy. Most of the above algo-
rithms were modified and also hybridized to have better soft
computing tool (Hedar and Fukushima 2006; Das et al. 2008;
Haldar and Chakraborty 2011a, b).

However, prey searching technique had also become an
encouraging research context for developing meta-heuristic
technique. Group hunting of animals such as lions, wolves,
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and dolphins was studied as a soft computing technique
named hunting search algorithm (Oftadeh et al. 2010). On
the other hand, collective animal (Cuevas et al. 2012) and
animal searching behavior (He et al. 2009) were also chosen
to formulate optimization algorithm. Fish’s electrolocation
is an interesting prey searching procedure. This is identified
in this research work for developing an optimization method.

Elephant nose fish Gnathonemus petersii has electric
discharge organ (Baffet et al. 2008; Emde 1998, 1999,
2004a, b). Generated electric wave from that organ strikes
surrounding objects inside water. The difference in sens-
ing, the electrical field with and without objects, creates an
electrical image on the surface of that fish’s body. It then ana-
lyzes that image minutely. Depending on image parameters
it calculates electrical capacitance value of that object. The
capacitance value of food particles is already known to fish.
If it feels that the targeted object is within the range of known
capacitance then proceeds towards it calculating the distance
from the targeted object. Otherwise it generates electric wave
of new amplitude. On finding the desired object, it stops its
electric organ discharge.

On the other hand, like active electrolocation, passive
electrolocation is used by shark fish Scyliorhinus canicula
for food catching purpose (Kalmijn 1971; Passive electrolo-
cation in fish). Shark does not generate electric wave like
elephant nose fish. It can sense feeble electric pulse gener-
ated from the muscle contraction of other living beings in the
water. If the shark finds out that kind of electric pulse, then it
quickly targets the direction from which the electrical wave
is coming. This food searching technique of the above said
electric fishes can be useful as an optimization technique.

However, active electrolocation of elephant nose fish
was studied on robotic sensor technology (Startchev et al.
2011). Algorithm inspired from the electrolocation behav-
ior of electric fish has been implemented in autonomous
robot. Artificial sensor array was developed by mimicking
that biological process (Maciver and Nelson 2001). That
could provide electro-sensory capabilities to a submarine
robotic explorer. Robotic sensing system was designed to
locate objects underwater (Solberg et al. 2008, 2013). This
was done through active movement of an electric field emit-
ter and sensor apparatus. Echolocation and electrolocation
were both biologically studied as sensory acquisition in
active sensing system (Nelson and Maciver 2006). Recently
Ammari et al. (2013) proposed a complex conductivitymodel
problem for the quantitative analysis of that electrolocation
phenomenon. However, concept of electrlocation as an opti-
mization method has been hardly found in the literature.
Passive electrolocation of shark has also not been conceptual-
ized as searching tool hitherto. Here a soft computing-based
meta-heuristic method called fish electrolocation optimiza-
tion (FEO) is developed by mixing both active and passive
electrolocation procedure of two fish, viz. elephant nose fish

and shark, respectively. This has been implemented on some
test bed functions. However, the proposed algorithm’s the-
oretical background has been briefly described in the next
section.

2 Theoretical background of fish electrolocation
optimization (FEO)

Fish electrolocation optimization has been thought on the
context of electro-sensory perception of electric fish. Noctur-
nal animals generally rely on other senses instead of vision
for object localization and prey catching. Weakly electric
fish strongly depends on its electro-sensory organs which
are more or less situated throughout its whole body (Emde
and Schwarz 2002). Electrolocation is an adopted naviga-
tional approach for finding food item. Elephant nose fish G.
petersii adopts this navigational procedure in dark and fulfills
basic need. Its electric organ discharges in water. It generates
electrical wave of a certain voltage amplitude and waveform
from its tail electric organ. This is shown in Fig. 1.

Figure 1 depicts electric field lines as circular lines fenc-
ing the electric fish. After the electrical discharge in water,
electric image is projected on the skin of that fish. The black
circular spots shown in Fig. 1, on the fish’s body, are denoted
as the projected electric image of food and other non-food
particles inside water. The electric image is formed on the
basis of change in electrical voltage amplitude and wave-
formdistortionwith andwithout the object in the surrounding
water. The fish searches its food depending on that image
slope, image width; distance from the object, resistance
and capacitance value (active electrolocation). Food objects,
which are water plant or larvae, have specific impedance
in respect of electrical characteristics. Additionally, food
objects have a certain range of electrical capacitance value.
The fish’s electro-sensory organs are sensitive within that
certain interval of electrical capacitance value. Beyond that
limit whether it is in the lower or upper boundary area con-
cerning electrical capacitance value, the fish is insensitive.
That means it cannot sense any more. Depending on this
judged electrical capacitance value and distance from the
targeted object, it approaches towards the prey. Interestingly,
the resistance value depends on the voltage or electrical wave
amplitude, but capacitance value depends on the wave form
distortion. On the other hand, image slope is considered as
transition from rim to center area of image and its necessary
to obtain the distance from the prey. The ratio of image slope
and voltage peak amplitude has been considered as distance
from the targeted object. Depending on both targeted object
distance from fish’s body and quantity and quality of that
object, the fish develops electric pulse and proceeds towards
it. Finally, it fetches the food object without using any vision
but using active electrolocation intelligently (Hopkins 2005).
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Fig. 1 Active electrolocation of elephant nose fish (G. petersii) (elec-
tric fish identifies the food objects or prey by judging the electric image
projected on their body surface. The big circular lines in the water sig-

nify the electric field developed due the tail organ discharge. The black
circular spot on the fish’s body is denoted as the projected electric
image)

Unlike elephant nose fish, shark utilizes its sense of pas-
sive electrolocation for detecting small fishes inside water
(Shieh et al. 1996; Electric fish)). A glimpse of passive elec-
trolocation by shark is shown in Fig. 2. Dotted circular lines
surrounding small fishes in Fig. 2 show the low-voltage sig-
nals. The shark has such strong electro-sensory organ that
it can sense muscular twitch of a fish dug in sand. It also
uses passive electrolocation for navigation purpose analyz-
ing ocean currents and earth’s magnetic field.

In this work, a conceptual electro-fish has been consid-
ered to develop FEO. The fish has both the sense of active
and passive electrolocation like the previously discussed ele-
phant nose fish and shark, respectively. Not only it can create
electrical wave and judge the electric image on the basis of
electrical characteristics, but also can sense meagre electric
pulse from other fishes. How it detects and localizes an object
that has been mathematically developed as an algorithm in
the next section.

3 Mathematical development of FEO as
optimization tool

Fish electrolocation optimization has been mathematically
developed through logical expression related to the concep-
tual electro-fish. The fish searches its food item by sensing
feeble electric wave and also analyzing projected electric
image. It simultaneously emanates electric pulse and senses
feeble electricalwave. Feeble electricalwave is sensed in nar-
row range, whereas projected electric image gives the vision
of surrounding environment. Sometimes it acts like elephant
nose fish and sometimes it acts like shark. It toggles between
active and passive electrolocation. This role reversal is linked

with the capacitance and distance value owing to toggle
switch judgment. Resistance value, discussed in the previ-
ous section as a judgmental issue of elephant nose fish, has
not been taken into consideration. This is done to restrict the
list of parameters of this developed technique.However, FEO
algorithm works through range discrimination/development,
electric pulse calculation from slope analysis, distance cal-
culation from the prey object; capacitance detection from
waveform distortion value, toggle switch judgment through
capacitance evaluation and finally electric organ discharge
with tuned voltage amplitude. How these have been mathe-
matically developed is described below sequentially.

3.1 Range development/discrimination

The developed electro-fish uses electrolocation dividing their
search domain in a few zones. These zones have certain
solution values with a definite difference between two con-
secutive values inside two limiting margins. Three kinds of
range have been formulated based on difference between
variable’s maximum and minimum value, i.e., di f f and dif-
ferent multiplication factors. The di f f value is shown in (1).
The longrange is defined as the constant long search domain
in (2). Constant terms p1l p2l and p3l are multiplied with
the di f f value for defining the lower margin, gap value and
higher margin, respectively. The domain consists of solu-
tion points between higher range, i.e., di f f × p1l and lower
range, i.e., di f f × p3l with interval of di f f × p2l between
any two consecutive values. Similarly, shortrange is also
restricted between di f f × p1s and di f f × p3s with a gap of
di f f × p2s between two consecutive values in (3). The last
solution domain which is used by the conceptual electro-fish
is the vshortrange mimicking the feeble electric pulse sen-
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Fig. 2 Passive electrolocation of shark (S. canicula) (shark can judge meagre electric pulse coming out due to the muscular organism of small
fishes. The dotted circular lines fencing the small fishes define that weak electric wave. Shark in the picture fetches its prey by sensing those electric
signals)

sation of shark. This range is constrictedwithin xmin

di f f and
xmax

di f f
with an interval gap of vs between two consecutive values in
(4).

di f f = xmax − xmin (1)

longrange = {di f f × p1l : di f f × p2l : di f f × p3l}
(2)

shortrange = {di f f × p1s : di f f × p2s : di f f × p3s}
(3)

vshortrange =
{
xmin

di f f
: vs : xmax

di f f

}
(4)

3.2 Electric pulse calculation from longrange and
slope analysis

The electric pulse, i.e., elecpulse is calculated depending on
projected image slope and developed longrange. The slope
of the projected image is considered as the absolute dif-
ference between the best and worst found individual value
amongst population at iterationt in (5). The value of elecpulse

is important for formation of electric organ discharge by
the conceptual electro-fish discussed later. However, the
elecpulse is mathematically developed as a product of two
terms in (6). The first term is chosen by taking a random
value from longrange. The other term is considered as the
ratio of slope and addition of two terms.

slope = ∣∣xtbest − xtworst

∣∣
S = randperm {length(longrange)}
n ∈ S (5)

elecpulse = longrange(n)× slope

[(slopeconst × rand) + xtbest ]
(6)

However, the distance from the targeted object by the con-
ceptual electro-fish need to be found just like calculation of
elecpulse. This has been detected below.

3.3 Distance calculation from the prey object

The obtained minimum and maximum objective function
value for all the individuals amongst population is consid-
ered as ch1 and ch2 at first iteration in (7). The nearness
value towards targeted prey or food object is conditionally
evaluated in (8).

ch1 = min { f (xi )} i = 1, . . . . . . , n
ch2 = max { f (xi )} i = 1, . . . . . . , n

(7)

Distance =
{ g1

1+g2|ch1−ch2| if xtbest = ch1
g1

1+g2|xtbest−ch1| otherwise

}
(8)

After calculation of distance value, the conceptual electro-
fish tries to find out the capacitance value of the targeted
object.

3.4 Capacitance detection from waveform distortion
value

Running capacitor value, i.e., caprun is found by taking the
standard deviation value amongst all the objective function
values generated from every individual of population. The
waveform distortion value is considered as the standard devi-
ation value shown in (9). Capacitor upper limit, for judging
whether the object is a food particle or not, is selected as
capint and caphover for first and next iterations, respec-
tively. This is shown in (10).

caprun = σ { f (x1), f (x2), . . . , f (xn)} (9)
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capu =
{
capint if i ter = 1
caphover otherwise

}
(10)

Conceptual electro-fish reaches the decision formation part
when it gets the capacitance value.

3.5 Toggle switch judgment through capacitance
evaluation

Toggle switch acts like changeover switch for the conceptual
electro-fish’s action. It is made ‘1’ when running capacitor
value is within the upper and lower limit and Distance value
is less than setdist. It is made ‘0’ if the above condition is
not satisfied. This is shown in (11). The setdist value works
like a variable throughout the iterations guiding the distance,
i.e., nearness from the targeted object. This is manipulated
as represented in (12).

toggle =
{
1 if capl < caprun < capu and Distance < setdist
0 otherwise

}

(11)

setdist = Distance i f capl < caprun < capu

and Distance < setdist (12)

After the decision formation, conceptual electro-fish gears
up its electric organ for emanation of next electrical wave.

3.6 Electric organ discharge with tuned voltage
amplitude

The conceptual electro-fish generates new electric wave as
xnew considering toggle switch operation in (13). If tog-
gle switch shows ‘1’ then xnew is generated incorporating
elecpulse obtained earlier by doing slope analysis.

xnew = xtbest + elecpulse × randn i f toggle = 1 (13)

When the toggle switch shows ‘0’ then electrical wave is
generated analyzing three kinds of probabilities. The three
probabilities are probsel , probdiv and probrng , respec-
tively. Probability of selection, i.e., probsel selects either
randomization/diversification operation or localization oper-
ation. Randomization operation has taken place when the
random variable rand is greater than probsel . Apart from

the above condition the conceptual electro-fish does local-
ization. This is shown in (14).

i f rand > probsel

do : randomization/diversi f ication

else

do : locali zation
end (14)

3.6.1 Divergence operation

Divergence operation helps to create new electrical wave
governed by the probdiv . The new electrical wave is gen-
erated randomly by the conceptual electro-fish in the whole
search region. This is nothing but the randomization concept
described in (15).

xnew =
{
xmin + di f f × randi if rand > probdiv

xmin + di f f × rand j
i otherwise

}

(15)

3.6.2 Localization operation

Under the localization operation the imagined electro-fish
emanates electric wave around the best found individual, i.e.,
xtbest at iteration t . It does that with the influence of prob

rng .
The two terms c2 and c3 are taken randomly from the set of
shortrange and vshortrange, respectively. How those terms
have been chosen is shown in (16) and (17), respectively.
When the random variable rand is greater than probrng , the
new electrical wave xnew is formulated in vicinity of c2 and
c3 shown in (18). It is also shown in (18) that if the random
variable rand is not greater than probrng , new electrical
wave is generated around the xtbest taking elecpulse and c3
into consideration.

m1 = randperm(length(shortrange))

h1 ∈ m1

c2 = shortrange(h1) (16)

m2 = randperm(length(vshortrange))

h2 ∈ m2

c3 = shortrange(h2) (17)

xnew =

⎡
⎢⎢⎣

{
xtbest − c2 + 2 × c2 × rand for j = 2, . . . , pop − 1
xtbest + c3 for j = 1

}
if rand > probrng{

xtbest + elecpulse × randn for j = 2, . . . , pop − 1
xtbest + c3 for j = 1

}
otherwise

⎤
⎥⎥⎦ (18)
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How this newly developed FEO works as a meta-heuristic
algorithm is written in the next section.

3.7 Algorithmic steps of fish electrolocation
optimization (FEO)

Fish electrolocation optimization works through a few steps.
These have been described below.

Step 1. Initialize longrange, shor t range
and vshor t range

Step 2. Set capint , caphover , capl and setdi st
Step 3. Set maximum iteration number
Step 4. Select three probabilities

probdiv , probrng and probsel

Step 5. Generate electrical wave
randomly in the total search
domain

Step 6. Analyze the objective function
values tocalculate slope, caprun

and xtbest and xtworst .
Step 7. Determine the elecpulse value and

Distance or nearness value from
the targeted object.

Step 8. Do toggle switch judgement and
evaluate setdi st value

Step 9. If toggle switch shows ‘1’ then
do longrange operation otherwise
consider shor t range and vshor t range
for doing diversification and
localization operation based
on three mentioned
probabilities to generate
electrical wave.

Step 10. Repeat steps 6 to 9 until the
convergence criterion is met
or maximum iteration number is
reached otherwise stop
iteration process.

4 Fish electrolocation optimization (FEO)
implementation and evaluation

Fish electrolocation optimization could not have been an
optimization algorithmwithout proper testing. In this section,
this testing has been shownwith different kinds of benchmark
functions. The developed meta-heuristic technique is simu-
lated in the technical software MATLAB® 7.0. The code is
written in Intel Core i3 2.4 GHz personal computer. While
doing simulation it has been observed that FEO has two types
of parameters. One is generalized parameters which remain

Table 1 Generalized parameter of FEO

No. of electro-fish (pop) 8

vs 10−2

slopeconst 1.8

g1 104

g2 102

setdist 106

tolerance 103

capl 0

caphover 105

capint 108

more or less same irrespective of nature of the problem. The
other one is objective function-dependent parameters. Thir-
teen different kinds of objective functions have been chosen
considering the dimension of the problem for examining the
effectiveness of FEO. The best values are achieved by fixing
the generalized parameters and problem-dependent parame-
ters to certain values. These are shown in Tables 1 and 2,
respectively, for the chosen benchmark functions.

The performance of the developed FEO has been com-
pared with other well-known algorithms, viz. Real coded
genetic algorithm (RCGA), accelerated particle swarm opti-
mization (ACPSO), particle swarm optimization (PSO) and
harmony search (HS). The study has been done for 100
time single independent run for every soft computing tech-
nique. These selected techniques apart from FEO have been
implemented with population 50 and maximum number of
iteration as 5000. The proposed algorithm FEO has also
been implemented with the same maximum iteration num-
ber. Population, i.e., the number of electro-fish, has been
considered here as eight. It would be a reasonable question
as to why the population has not been fixed at 50 like oth-
ers. The answer is that the performance of FEO is good at a
certain range of population, but deteriorates with increment
of population from that range. This has been demonstrated
through extensive study done on Schwefel function in later
section. However,Camel Back (CB),Martin&Gaddy (MG),
two-dimensional (d = 2) Rosenbrock (Rk), Branin (Br),
Goldstein & Price (GP), four-dimensional (d = 4) Shekel
(Shk), six-dimensional (d = 6) Sphere (Sp), B2, Shubert
(Su), Rastrigin (Ra), two- and five-dimensional (d = 2, 5)
Schwefel (Sch) and two-dimensional (d = 2) Michaelwicz
(Mi) functions have been considered for implementation pur-
pose (Hedar 2005). The range and expression of these chosen
functions are shown in Table 3.

Real coded genetic algorithm (RCGA) has been applied
in two variant forms. Two variations have been considered on
the basis of mutation phenomena, whereas crossover opera-
tion is taken as in literature (Wright 1991). One variant, i.e.,
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Table 2 Objective function or problem-dependent parameters of FEO

Test functions longrange multiplying factor shortrange multiplying factor probsel probdiv probrng

p1l p2l p3l p1s p2s p3s

Camel back (CB) 10−2 5 × 10−3 5 × 10−2 10−3 10−4 10−2 0.47 0.85 0.10

Martin & Gaddy (MG) 10−1 5 × 10−2 5 × 10−1 10−5 10−6 10−4 0.50 0.01 0.01

Rosenbrock (Rk) 10−1 5 × 10−2 5 × 10−1 10−5 10−6 10−4 0.50 0.01 0.01

B2 10−2 5 × 10−3 5 × 10−2 10−5 10−6 10−4 0.50 0.05 0.10

Branin (Br) 10−2 5 × 10−3 5 × 10−2 10−4 10−5 10−3 0.79 0.50 0.10

Goldstein & Price (GP) 10−2 5 × 10−3 5 × 10−2 10−4 10−5 10−3 0.65 0.85 0.10

Shekel (Shk) 10−2 5 × 10−3 5 × 10−2 10−4 10−5 10−3 0.38 0.50 0.10

Sphere (Sp) 10−2 5 × 10−3 5 × 10−2 10−5 10−6 10−4 0.50 0.05 0.10

Rastrigin (Ra) 10−2 5 × 10−3 5 × 10−2 10−4 10−5 10−3 0.33 0.50 0.10

Schwefel (Sch) 10−2 5 × 10−3 5 × 10−2 10−4 10−5 10−3 0.75 0.32 0.15

Michalewicz (Mi) 10−1 5 × 10−2 5 × 10−1 10−3 10−4 10−3 0.79 0.50 0.21

Table 3 The selected test bed functions with chosen range for doing minimization

CB x1, x2 ∈ (−3, 3) f (x1, x2) =
(
4 − 2.1x21 + x41

3

)
x21 + x1x2 + (−4 + 4x22 )x

2
2

MG xd ∈ (−20, 20) f (x1, x2) = (x1 − x2)2 +
[
x1+x2−10

3

]2
Rk xd ∈ (−5, 5) f (x) = ∑d

i=1

[
100(xi+1 − xi )2 + (1 − xi )2

]
Br x1, x2 ∈ (−15, 15) f (x1, x2) = a(x2 − bx21 + cx1 − d)2 + e(1 − f ) cos(x1) + e

a = 1, b = 5.1
4π2 , c = 5

π
, d = 6, e = 10, f = 1

8π

GP x1, x2 ∈ (−2, 2) f (x1, x2) = [
1 + (x1 + x2 + 1)2(19 − 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22 )

] ×[
30 + (2x1 − 3x2)2(18 − 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22 )

]

Shk x j ∈ (0, 10) f (x) = − ∑d
i=1

{∑d
j=1

[
(x j − ai j )2

] + c j
}−1

ai j =

⎡
⎢⎢⎣
4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6

⎤
⎥⎥⎦ c j =

⎡
⎢⎢⎣
0.1
0.2
0.2
0.4

⎤
⎥⎥⎦

Sp xi ∈ (−5.12, 5.12) f (x) = ∑d
i=1 x

2
i

B2 xi ∈ (−100, 100) f (x1, x2) = x21 + 2x22 − 0.3 cos(3πx1) − 0.4 cos(4πx2) + 0.7

Su x1, x2 ∈ (−5.12, 5.12) f (x1, x2) = − ∑d
i=1 i cos((i + 1)x1 + 1)

∑d
i=1 i cos((i + 1)x2 + 1)

Ra xi ∈ (−5.12, 5.12) f (x) = 10d + ∑d
i=1

[
x2i − 10 cos(2πxi )

]
Sch xi ∈ (−500, 500) f (x) = ∑d

i=1

[−xi sin(
√ |xi |)

]

Mi m = 10, xi ∈ (0, π) f (x) = − ∑d
i=1 sin(xi )

[
sin(

i x2i
π

)

]2m

RCGA1 is considered by doing mutation according to (19).
Another one, i.e., RCGA2 is considered as (20).

i f rand > Pmut

i f f i x(2 × rand) > 0

k = f loor(pop × rand) + 1

xki = xmin
i + di f f × rand

end

end (19)

i f rand > Pmut

k = f loor(pop × rand) + 1

i f rand > 0.5

xki = xki +
∣∣∣xmax

i − xki

∣∣∣ × rand

else

xki = xki −
∣∣∣xki − xmin

i

∣∣∣ × rand

end

end (20)
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The probability of mutation and crossover, i.e., Pmut and
Pcross for RCGA1 and RCGA2 are taken to be considered as
0.01 and 0.98 and 0.05 and 0.88, respectively.APSOandPSO
have been implemented according to (21) and (22) where
xnewi , xbesti and gbestdefine the newly calculated variable
value, current and global best value, respectively (Wright
1991). The parameters alpha, γ and beta values are chosen
as 0.7, 8 and 2, respectively, for ACPSO. On the other hand,
parameters alpha and beta for PSO have been selected as
1.8 and 1.7, respectively.

xnewi = xi + alphaγ × (rand − 0.5) + beta × rand

×(gbest − xi ) (21)

xnewi = xi + alpha × rand × (xbesti − xi ) + beta × rand

×(gbest − xi ) (22)

Harmony search (HS) has also been applied with harmony
memory accept rate, pitch adjusting rate, harmony size and
pitch range as 0.85, 0.7, 20 and [100, . . . , 100], respectively
(Yang 2010a, b). All the above-mentioned parameters for
different kinds of algorithms have been chosen after sev-
eral trials. This is done for doing comparative study with
the proposed FEO. The parameters of FEO have also been
selected by doing several trials shown earlier in Tables 1 and
2. The chosen evolutionary algorithms are implemented on
above-mentioned objective functionswith convergence crite-
rion shown in (23). That has been implemented for 100 times
single independent run said earlier. Mean number of function
evaluation (NF), standard deviation (dev) and percentage of
success (% S) are considered as the evaluation criteria. The
defined maximum iteration number is considered as 5000.

∣∣ f − f ∗∣∣ < ε1 f + ε2 (23)

The constants ε1 and ε2 in (23) are selected as 10−4. The
term f and f ∗ define the optimal value achieved and global
optimal value, respectively, as shown in (23). The compara-
tive study amongst the algorithms is shown in Tables 4, 5, 6
and 7, respectively.

It has beenobserved fromTables 4, 5, 6 and7 that proposed
FEO outperforms other algorithms in 9 amongst the cho-
sen 13 minimization problems in respect of mean number of
function evaluation and percentage of success. It is shown in
Table 4 that proposed FEO outperforms RCGA1 and RCGA2

in large difference but remains slightly ahead to ACPSO,
PSO and HS for Camel Back function. Fish electrolocation
optimization takes 184 mean number of function evaluation
with standard deviation of 100 for Martin & Gaddy func-
tion. RCGA1, RCGA2, ACPSO, PSO and HS take 65,095,
8456, 420, 420 and 1909 mean number of function evalua-
tion with standard deviation of 19,964, 3562, 58, 85 and 970,

respectively. It has also been shown that forRosenbrock func-
tion FEO outperforms other chosen algorithms with mean
number of function evaluation and standard deviation as 337
and 227, respectively. It is shown in Table 5 that in case
of Branin function ACPSO and PSO perform better than
FEO. RCGA1, RCGA2 and HS takes more number of func-
tion evaluation than FEO to reach the desired convergence
for Branin function. In the case of Goldstein & Price func-
tion, PSO outperforms all the other evolutionary algorithms
including FEO. It has also been observed from Table 5 that
FEO reaches desired convergence for Shekel function with
mean number of function evaluation and standard deviation
as 838 and 396, respectively. It fulfills the convergence crite-
ria with 100 % success. RCGA1, RCGA2, ACPSO, PSO and
HS achieve that desired convergence with 80, 18, 29, 36 and
45 % success, respectively. The other chosen soft comput-
ing techniques viz. RCGA1, RCGA2, ACPSO, PSO and HS
takemean number of function evaluation and standard devia-
tion as 71,269 and 25,519; 237,808 and 112,495; 15,753 and
11,964; 7373 and 22,056 and 10,380 and 4068, respectively.
On the other hand, it is shown in Table 6 that FEO outper-
forms other chosen algorithms in respect of mean number
of function evaluation and percentage of success for Sphere,
B2 and Shubert function, respectively. It is shown in Table 7
that FEO takes less number of function evaluations in Ras-
trigin and five-dimensional Schwefel function. On the other
hand, FEO takes more number of function evaluations for
two-dimensional Michalewicz and Schwefel function. Inter-
estingly it has been observed that RCGA1 does not achieve
the said convergence for two- and five-dimensional Schwefel
function. RCGA2 remains unsuccessful for doing mini-
mization in five-dimensional Schwefel and two-dimensional
Michalewicz function. Harmony search (HS) fails to achieve
set convergence criteria similar like RCGA1. It has been
observed that proposed FEO has achieved 100 % success
in both two- and five-dimensional Schwefel function. APSO
and PSO have achieved 49 and 85 and 3 and 13% success for
two- and five-dimensional Schwefel function, respectively. It
can be stated that FEO outperforms in 10 amongst 13 min-
imization problems if two-dimensional Schwefel function
is considered. This new win is on the basis of percent-
age of success as an addition to nine win in comparison
to other algorithms stated earlier. From this comparative
study it has been typically observed that chosen soft com-
puting techniques apart from FEO severely stumble to get
desired convergence for minimization of Schwefel function.
On the other hand, only generalized parameters of FEO have
been fixed for doing all the comparative study. Problem-
dependent parameters have been suitably changed for getting
the above shown results in Tables 4, 5, 6 and 7, respectively.
A special study has been done on Schwefel function for that
chosen solution range described in Table 3. This is done to
make the fuzziness of generalized and problem-dependent
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Table 4 Comparative study amongst soft computing techniques

Soft computing techniques Camel Back (CB) Martin & Gaddy (MG) Rosenbrock (Rk) (d = 2)

Mean % S Mean % S Mean % S
NF ± dev NF ± dev NF ± dev

RCGA1 18,094 ± 6468 100 65,095 ± 19,964 100 362,102 ± 84,895 14

RCGA2 4946 ± 1985 100 8456 ± 3562 100 135,895 ± 97,465 100

ACPSO 309 ± 60 90 420 ± 58 100 2043 ± 1555 100

PSO 290 ± 60 100 420 ± 85 100 3131±1738 100

HS 708 ± 262 100 1909 ± 970 100 23,669 ± 18,245 100

Proposed FEO 265 ±114 100 184 ± 100 100 337 ± 227 100

Table 5 Comparative study amongst soft computing techniques contd

Soft computing techniques Branin (Br) Goldstein & Price (GP) Shekel (Shk) (d = 4)

Mean % S Mean % S Mean % S
NF ± dev NF ± dev NF ± dev

RCGA1 15726 ± 8575 100 56,230 ± 49,422 65 71,269 ± 25,519 80

RCGA2 7776 ± 5881 100 15,847 ± 8439 100 237,808 ± 112,495 18

ACPSO 464 ± 94 94 1212 ± 858 98 15753 ± 11,964 29

PSO 500 ± 784 100 378 ± 63 99 7373 ± 22,056 36

HS 1648 ± 638 100 1870 ± 1337 86 10380 ± 4068 45

Proposed FEO 713 ± 277 100 592 ± 290 100 838 ± 396 100

Table 6 Comparative study amongst soft computing techniques contd

Soft computing techniques Sphere (Sp) (d = 6) B2 Shubert (Su)

Mean % S Mean % S Mean % S
NF ± dev NF ± dev NF ± dev

RCGA1 37,144 ± 8377 100 26,549 ± 13,880 100 166,829 ± 128,473 86

RCGA2 238,686 ± 131695 30 209,478 ± 149,314 68 199,556 ± 136,587 57

ACPSO 8772 ± 8378 100 779 ± 255 99 550 ± 159 95

PSO 1876 ± 2375 75 559 ± 69 100 631 ± 180 100

HS 17699 ± 6550 100 6867 ± 3636 100 1167 ± 443 100

Proposed FEO 363 ± 257 100 374 ± 144 100 476 ± 243 100

parameter clear. This has been briefly discussed in the next
segment.

5 More implementation of FEO on Schwefel
function

Fish electrolocationoptimizationhas been extensively applied
on Schwefel function. The optimization tool FEO has been
implemented on this said function for various dimensions. It
has been applied by varying number of electro-fish or popula-
tion for 100 time single independent run, maximum iteration
number as 5000 and convergence criteria shown in (22). This
is shown in Tables 8 and 9, respectively, starting with lower

dimension 10 and ending with higher dimension 200. It has
been noticed that FEO achieves 100% success for all the test
conditions. That is why it is not shown in Tables 8 and 9,
respectively.

It has been observed from Tables 8 and 9 that computation
time increases with the increase in dimension number. Com-
putation time varies with population, but not like the just
said variation with dimension number. It can be observed
from Table 8 that for dimension 60, the computation time in
second for 5, 10, 20, 40, 60, 80, 100, 150, 200 and 300 num-
ber of electro-fish are 11.971, 10.491, 7.867, 7.411, 6.913,
8.676, 8.938, 9.838, 10.329 and 11.929, respectively. This
can be comprehended that when the number of electro-fish
is 60 the run time is least. On the contrary, when it comes
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the case of mean number of function evaluation then FEO
reaches 100 % success by taking mean number of function
evaluation and standard deviation as 722 and 543; 1081 and
651; 1280 and 861; 1695 and 1151; 1839 and 1208; 2518
and 1531; 2722 and 1909; 3180 and 2175; 2175 and 2383
and 4074 and 2500 for 5, 10, 20, 40, 60, 80, 100, 150, 200
and 300 number of conceptual electro-fish, respectively. It
can be comprehended that FEO takes lesser number of func-
tion evaluations as the population or number of fish decreases
and vice versa. There is only one defaulter at population 150.
This trend of taking less number of function evaluations at
lesser number of population remainsmore or less constant for
the entire tested dimension shown in Tables 8 and 9, respec-
tively. There is one defaulter at population number 150 for
60- and 80-dimensional Schwefel function. This outcome of
mismatch or default value is due to stochastic nature of FEO.
One thing is common in entire tests shown in Tables 8 and
9, i.e., FEO achieves 100 % success to get the desired con-
vergence. The convergence criterion has been made more
stringent by considering number of objective function eval-
uation as a limit. This is done to have variation in percentage
of success. This study is shown in Tables 10 and 11, respec-
tively.

It can be observed from Tables 10 and 11 that maximum
number of function evaluation has been varied from 4000 to
500 as an extra convergence criteria to that of (22). It has been
observed from Table 10 that FEO reaches 100 % success for
all its chosen populationwhen themaximumnumber of func-
tion evaluation is 4000. The set limit of function evaluation
is 3000. Fish electrolocation optimization gets 90, 94, 94, 83,
82, 70, 65, 62, 56, 54 and 42 percentage of success for chosen
population number of 5, 10, 20, 40, 60, 80, 100, 150, 180, 200
and 300, respectively. This trend of decreasing percentage of
success with the increase in population number continues up
to 500 maximum number of function evaluation. Percentage
of success (%S) increases with the increase of population
number. There are some defaulters also in that said pat-
tern for maximum limit of 2000, 1000 and 500, respectively.
Maximum number of function evaluation is set at 1000. The
percentage of success increases from 21 to 27, from 11 to 19
and from 9 to 12with the increase of population number from
40 to 60, from 80 to 100 and from 180 to 200, respectively. It
is also shown in Table 11 that FEO becomes unsuccessful to
achieve the convergence coupled with maximum number of
function evaluation as 500 for population number of 180, 200
and 300, respectively. It has also been noticed that computa-
tion time is highest at population number 5. That gradually
decreases up to population number 60, 60, 100, 60 and 60,
respectively. Then it increases up to 300 for maximum num-
ber of function evaluation of 4000, 3000, 2000, 1000 and
500, respectively. However, from the total above analysis it
can be concluded that percentage of success is higher with
the lower number of electro-fish. Mean number of function
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evaluation is lower with the lower number of electro-fish.
Run time is lower with the moderate number of electro-fish.
This analysis more or less justifies the cause of fixing pop-
ulation number at lower value, i.e., 8 for doing comparative
study. Though study of variation in population number and
also set convergence condition gives clarification of inner
strength of FEObut can’t accommodate the entire parameters
of this technique. There are problem-dependent parameters
too apart from generalized parameters. That is number of
electro-fish or population. These parameters include different
range discrimination constants and probabilities. The study
of variation of shortrange and longrange constants are
described in the next section.

5.1 Variation in shor t range constants

shortrange constants p1s , p2s and p3s are varied by fixing
the longrange constants at 10−2, 5 × 10−3 and 5 × 10−2,
respectively. The mean number of function evaluation (NF)
and standard deviation (dev) and computation time are cal-
culated for population number 5, 20, 60, 100, 150, 200 and
300, respectively, in Tables 12 and 13. This is done for 200-
dimensional Schwefel function with selected Table 3. This
study is done without disturbing the other parameters of FEO
shown in Table solution domain as depicted in 1 and Table 2,
respectively.

It has been observed from Table 12 that the run time
in seconds, for a particular population number 5, gradually
increases from23.876 to 43.848. That has been observedwith
the decrease of shortrange constants value from 10−2, 10−3

and 10−1–10−3, 10−4and 10−2. Then it decreases to 40.584
when shortrange constants values are 10−4, 10−5 and 10−3,
respectively. It can be noticed from Table 13 that run time
in seconds again decreases to 25.553 from the just said run
time in Table 12. It remains more or less constant within
24.738 and 25.553 with the decrease in shortrange con-
stants value. Not only the runtime is restricted to a small span,
but also the mean number of function evaluation is observed
to be restricted between 529 and 541. Fish electrolocation
optimization achieves better results when the shortrange
constant values exceed a certain boundary in comparison
to sticking with a certain value. That can be observed from
Tables 12 and 13, respectively. However, this study is done
considering the longrange constants at a fixed value. The
variation of the constant values regarding longrange is con-
sidered for study purpose in the very next segment.

5.2 Variation in longrange constants

The longrange constants, i.e., p1l , p2l and p3l has been var-
ied while the shortrange constants are kept fixed at 10−4,
10−5 and 10−3, respectively. It is done for implementation of
FEO on 200-dimensional Schwefel function. The computed
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Table 11 Study of
implementation of FEO on
Schwefel function (d = 200) by
varying maximum number of
function evaluation as an extra
convergence criterion contd

No. of electro-fish (pop) Max function evaluation = 1000 Max function evaluation = 500

Mean % S Run time in s Mean % S Run time (s)
NF ± dev NF ± dev

5 480 ± 229 82 55.224 347 ± 116 37 39.179

10 581 ± 243 61 29.254 332 ± 108 27 34.894

20 582 ± 254 43 25.028 360 ± 118 23 25.524

40 577 ± 233 21 24.896 375 ± 124 8 20.097

60 580 ± 210 27 17.553 340 ± 116 9 18.542

80 603 ± 287 11 22.090 390 ± 90 8 22.014

100 726 ± 199 19 20.050 425 ± 95 4 19.401

150 613 ± 156 11 22.377 450 ± 0 1 22.717

180 740 ± 60 9 23.515 Unsuccessful

200 800 ± 147 12 21.580 Unsuccessful

300 900 ± 0 4 29.113 Unsuccessful

Table 12 Study of application of FEO on Schwefel function (d = 200) by varying the shortrange constants (p1s , p2s , p3s) fixing longrange
constants (p1l , p2l , p3l ) at (10−2, 5 × 10−3, 5 × 10−2)

No. of electro-fish (pop) (10−2, 10−3, 10−1) (10−3, 10−4, 10−2) (10−4, 10−5, 10−3)

Mean Run time in s Mean Run time in s Mean Run time (s)
NF±dev NF±dev NF±dev

5 500 ± 272 23.876 928 ± 1288 43.848 861 ± 1199 40.584

20 1003 ± 563 16.437 1468 ± 1705 23.904 1279 ± 1138 20.622

60 1809 ±1084 16.840 1803 ± 1664 16.545 2242 ± 2015 20.716

100 2169 ± 1477 17.192 2251 ± 1630 18.362 2529 ± 1651 19.914

150 2943 ± 1735 21.477 2800 ± 1785 20.477 2865 ± 1884 20.821

200 3494 ± 1720 24.914 3124 ± 2142 22.362 3152 ± 2205 22.514

300 4269 ± 2548 31.190 4095 ± 3207 30.200 4233 ± 2808 30.878

Table 13 Study of application of FEO on Schwefel function (d = 200) by varying the shortrange constants (p1s , p2s , p3s) fixing longrange
constants (p1l , p2l , p3l ) at (10−2, 5 × 10−3, 5 × 10−2) contd

No. of electro-fish (pop) (10−5, 10−6, 10−4) (10−21, 10−22, 10−20) (10−99, 10−100, 10−98)

Mean Run time in s Mean Run time in s Mean Run time (s)
NF ± dev NF ± dev NF ± dev

5 541 ± 284 25.553 523 ± 293 24.738 529 ± 298 25.003

20 1160 ± 671 18.718 1094 ± 618 17.688 1125 ± 648 18.457

60 1816 ± 1150 16.925 1924 ± 1100 17.740 1815 ± 985 16.769

100 2473 ± 1610 19.304 2388 ± 1604 18.854 2282 ± 1328 18.284

150 3222 ± 2143 23.326 2809 ± 1799 20.897 2724 ± 1695 20.596

200 3512 ± 2189 24.780 3444 ± 1988 24.521 3680 ± 2416 26.950

300 4083 ± 2753 30.155 3627 ± 2480 28.149 3915 ± 2480 29.897

results are shown in Tables 14 and 15, respectively. The lon-
grange. constants are varied for population number 5, 20, 60,
100, 150, 200 and 300, respectively.

It has been observed from Tables 14 and 15 that mean
number of function evaluation (NF) and computation time
changes with the decrement of longrange constant values.
That said change is more in comparison to previously dis-

cussed changes observed in Tables 12 and 13, respectively.
It can be observed from Tables 14 and 15 that for popula-
tion number 100, run time in seconds and mean number of
function evaluation are 18.914 and 2345; 23.493 and 2685;
88.108 and 11,022 and 422.243 and 49,812 for longrange
constant values of 10−1, 5 × 10−2 and 5 × 10−1; 10−3,
5 × 10−4 and 5 × 10−3; 10−4, 5 × 10−5 and 5 × 10−4and
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Table 14 Study of application of FEO on Schwefel function (d = 200) by varying the longrange constants (p1l , p2l , p3l ) fixing shortrange
constants (p1s , p2s , p3s) at (10−4, 10−5, 10−3)

No. of electro-fish (pop) (10−1, 5 × 10−2, 5 × 10−1) (10−3, 5 × 10−4, 5 × 10−3)

Mean Run time in s % S Mean Run time in s % S
NF ± dev NF ± dev

5 983 ± 1331 46.264 100 1116 ± 1073 53.140 100

20 1400 ± 1565 22.878 100 2580 ± 2210 42.958 100

60 2313 ± 2174 21.635 100 3040 ± 3368 29.998 100

100 2345 ± 1487 18.914 100 2685 ± 2106 23.493 100

150 3144 ± 2089 23.792 100 2959 ± 2478 24.693 100

200 3898 ± 2570 27.733 100 3086 ± 1979 24.957 100

300 4575 ± 4062 33.502 100 4080 ± 3202 33.565 100

Table 15 Study of application of FEO on Schwefel function (d = 200) by varying the longrange constants (p1l , p2l , p3l ) fixing shortrange
constants (p1s , p2s , p3s) at (10−4, 10−5, 10−3) contd

No. of electro-fish (pop) (10−4, 5 × 10−5, 5 × 10−4) (10−5, 5 × 10−6, 5 × 10−5)

Mean Run time in s % S Mean Run time in s % S
NF ± dev NF ± dev

5 3593 ± 2433 170.263 100 4971 ± 3334 233.883 100

20 13,647 ± 14,245 220.940 100 35,526 ± 26333 908.186 68

60 12,687 ± 16,970 118.084 100 55,392 ± 53658 641.240 94

100 11,022 ± 9898 88.108 100 49,812 ± 48047 422.243 99

150 8227 ± 7845 61.881 100 54,709 ± 60463 381.211 100

200 11,260 ± 11,493 79.895 100 51,466 ± 63006 340.964 100

300 9513 ± 11,195 67.787 100 41,844 ± 56317 225.976 100

10−5, 5 × 10−6 and 5 × 10−5, respectively. It is also shown
earlier in Table 9 that the run time in seconds and mean
number of function evaluation are 21.985 and 2823 for lon-
grange constant value of 10−2, 5 × 10−3 and 5 × 10−2 at
population number 100. The other selected population num-
ber more or less obeys this kind of drastic change. That is
shown in Tables 14 and 15, respectively, with the changes
of longrange constant. This said pattern of function eval-
uation and computation time describes that the change in
longrange constant value in this way can be very sensitive
to computation. Even the percentage of success value drops
down to 68, 94 and 99 for population number 20, 60 and
100, respectively. That has been observed for the longrange
constant are 10−5, 5 × 10−6 and 5 × 10−5, respectively. It
can be stated from the study done on Schwefel function that
longrange constants should be strictly restricted within a
definite zone. That is to avoid bad results. On the other hand,
shortrange constants analyzed in the previous section can
be fine-tuned to have better results.

However, FEO has not been compared with well estab-
lished technique differential evolution and simulated anneal-
ing. This has been done on eggcrate function in the next
section.

6 Comparative study of fish electrolocation
optimization with differential evolution and
simulated annealing on eggcrate function

Fish electrolocation optimization has been compared with
differential evolution (DE) and simulated annealing (SA)
in this section. This extra comparative study has been
done to show the effectiveness of FEO with other well
established meta-heuristic techniques such as DE and SA.
These stated algorithms have been implemented on two-
dimensional eggcrate function shown in expression (24).

f (x, y) = x2 + y2 + 25((sin x)2 + (sin y)2) (24)

The range of eggcrate function has been considered here as
[−5, 5]. The global minimum value of this function is at
(0, 0) for each variable and the global minimum value is
0. The convergence criterion for this comparative study has
been considered same as earlier denoted expression (23). The
number of population individual has been chosen as 30 for
all the considered soft computing techniques. In this case, the
number of population individuals has not been considered as
eight as described earlier. The population number has been
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considered here as stated thirty for the proposed technique to
have similarity with other algorithms’ implementation. The
maximum iteration number of this comparative study has
been chosen as the stopping criteria if the desired conver-
gence has not been achieved. This has been chosen as 5000
for every soft computing technique. The study has been done
for hundred time single independent run by changing the
random number seed every time. Differential evolution has
been implemented for two schemes on eggcrate function.
The scheme I and scheme II regarding differential evolution
varies on the principle of generation of mutation matrix. The
genesis of mutation vector

−→
Vm for scheme I and scheme II

have been shown in expressions (25) and (26), respectively.

−→
Vm = −−−→

Xr1,G + Fm .(
−−−→
Xr2,G − −−−→

Xr3,G) (25)

−→
Vm = −−→

Xi,G + λ.(
−−−−→
Xbest,G − −−→

Xi,G) + Fm .(
−−−→
Xr2,G − −−−→

Xr3,G)

(26)

The notations
−−−→
Xr1,G ,

−−−→
Xr2,G and

−−−→
Xr3,G define the different

population individual values inside population at Gth iter-
ation. The terms

−−→
Xi,G and

−−−−→
Xbest,G in (26) denote the ith

individual and current best individual at the Gth iteration,
respectively. The Fm value has been considered as 0.8 for
both the schemes after several trial runs. The value of λ is
chosen as 0.3 for the scheme II related to differential evolu-
tion in (26). On the other hand, the initial temperature for the
simulation of simulated annealing (SA) has been considered
as 1. The minimum temperature for SA has been chosen as
10−10. The Boltzmann constant for SA has been selected as
1. The cooling factor value for SA has been chosen as 0.9.
The energy norm value for SA has been selected as 10−5.
The above said parameters for implementation of simulated
annealing have been chosen after several trial runs. In the case
of FEO, the generalized parameter values except the number
of electro-fish have been chosen for optimization of eggcrate
function. This is already shown in Table 1 in the earlier sec-
tion. The number of electro-fish, i.e., the population size has
been considered as 30 as said earlier. The three probabili-
ties values have been considered same as Martin and Gaddy
function optimization in Table 2. The longrangemultiplying
factors have been chosen same as for Michaelwicz function
optimization in Table 2. The shortrangemultiplying factors
have been selected same as for Sphere function optimization
in Table 2. The problem-dependent and generalized parame-
ters of FEO have been chosen after several trial runs.

The comparative study is shown in Table 16. It has been
observed from Table 16 simulated annealing takes mean
number of function evaluation and standard deviation as 5854
and 3289, respectively. The percentage of success of simu-
lated annealing has been found as 84 in Table 16 for 100

time single independent runs. The total running time taken
by simulated annealing is 167.08 s. It has been noticed from
Table 16 that mean number of function evaluation and stan-
dard deviation taken by differential evolution (Scheme I) are
3138 and 378 for achieving the desired convergence. The per-
centage of success is 100 in this case in Table 16. The total
running time taken by this differential evolution (scheme I)
is 83.71 s for 100 time single independent run in Table 16.
Finally, mean number of function evaluation and standard
deviation have been observed as 2813 and 480, respectively,
for differential evolution (scheme II) in Table 16. Again the
percentage of success in this case is 100. The total running
time taken by this algorithm is 75.08 s for 100 time single
independent run in Table 16. Lastly, it has been noticed from
Table 16 that FEO takes mean number of function evaluation
and standard deviation as 1076 and 591 for eggcrate function
optimization with the desired convergence. The percentage
of success for 100 time single independent runs is 100. Sig-
nificantly the total running time for FEO is 11.87 s. It can be
said from the above description that FEO works quite better
than differential evolution and simulated annealing for this
kind of continuous function optimization.

The newly developed soft computing technique FEO has
been successfully implemented on eggcrate function to find
the global minimum point. The simulation study regarding
FEO has been done for continuous variable related opti-
mization problem hitherto. The proposed technique has not
been tested for real-world discrete combinatorial optimiza-
tion problem. This study has been done in the next section
for reliability worth enhancement by optimal capacitor and
distributed generator placement.

7 Implementation of FEO on real-world
optimization problem

Fish electrolocation optimization has been applied to real-
world optimization problem. The real-world problem is cost-
based reliability enhancement in radial distribution system.
Cost-based reliability has been improved by suitably placing
capacitors and distributed generators at the sensitive buses.
Capacitor allocation and distributed generation penetration
havebeen considered tominimize the reliabilityworth aswell
as real power loss. The objective function has been described
in (27) as:

Minimize S. (27)

The term S is reliability worth. That is depicted in (28) as
Relworth.

S = Relworth (28)

The reliability worth value has been illustrated in (29) as:
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Table 16 Comparative study
with differential evolution and
simulated annealing for 100
independent runs

Parameter/methods Mean number of
function evaluation

Standard
deviation

Percentage of
success

Total running
time (s)

Simulated annealing 5854 3289 84 167.08

Differential evolution (scheme I) 3138 378 100 83.71

Differential evolution (scheme II) 2813 480 100 75.08

Fish electrolocation optimization 1076 591 100 11.87

Relworth =
nbr∑
j=1

La( j).C( j).λ( j). (29)

In that expression, La( j) is the connected load at branch j
and C( j) is the interruption cost at branch j . Furthermore,
λ( j) in expression (29) is the failure rate of branch j . The
value of αi is depicted in (30) as:

αi = I newi

I oldi
. (30)

It is a ratio between absolute or modal value of new current
to old current. The new current value is generated after DG
penetration and capacitor placement. The old current value is
the current amplitude of original configuration, i.e., without
capacitor placement and DG penetration. The expression of
new failure rate is illustrated in (31) as:

λnew = αi (λ
uncomp − λcomp) + λcomp. (31)

In that Eq. (31), λuncomp is the failure rate of AC cable with-
out anyDG penetration and capacitor allocation. The another
term in Eq. (31) is λcomp. This term is considered as the
minimum failure rate owing to capacitor placement and DG
penetration. The Eq. (31) is valid when the value of αi is
greater than 0.5. Otherwise the minimum failure rate is con-
sidered as the new failure rate. The expression of cost-based
reliability index called CBRI is illustrated in (32) as:

CBRI = (Relworthini − Relworthit ) × lossini

lossit × cost it
. (32)

It can be observed from the RHS of expression (32) that
CBRI is a ratio of two terms. The numerator of that ratio is
the multiplication of two terms. One term is the difference
of two reliability worth. The first reliability worth is without
any capacitor placement and DG penetration. The second
reliability worth is after capacitor placement and DG pene-
tration. The multiplication factor with that said difference of
two reliability worth is the initial real power loss without any
capacitor placement and DG penetration. The denominator
term of the discussed ratio related to CBRI is the multiplica-
tion of two terms. One term is the real power loss at certain

iteration. The second term is the cost term connected to the
real power loss in (33) as:

cost it = KP · lossit . (33)

The discussed ratio CBRI is actually one type of difference
of two reliability worth connected with real power lost and
concerning cost. As discussed earlier the objective is to mini-
mize reliability worth. So the reliability worth after capacitor
allocation and DG penetration is necessarily lower than the
reliability worth of original configuration, i.e., without any
capacitor and DG placement. That is why the ratio value is
positive if the objective of the optimization problem is ful-
filled. Andmore to it, the CBRI value will be proportionately
higher with the decrement of reliability worth value after
capacitor and DG placement.

Fish electrolocation optimization has been implemented
for cost-based reliability enhancement. It has been intelli-
gently done by suitable choosing DG and capacitor values at
particular bus positions. The DG penetration has been con-
sidered as the 10 % of the total active power load. The DG
values have been chosen as 100 and 200 kW, respectively,
for implementation of the soft computing techniques. The
dollar conversion constant term KP has been chosen as US$
168/kW. The simulation work is done on technical software
MATLAB. A standard 34 bus radial distribution system has
been considered for implementation of this said soft comput-
ing technique (Mekhamer et al. 2003). The scheme chosen
for capacitor allocation and DG penetration in this radial
distribution system is applying disconnects between buses
and fuse gear protection at lateral junction point. The failure
rate for maximum impedance and minimum impedance of
line data has been considered as 0.5 and 0.1, respectively.
The other failure rate has been enumerated between the two
mentioned limits linearly with the rest impedance value. The
value of failure rate after full compensation related to capaci-
tor allocation andDG penetration has been chosen as 85% of
the uncompensated failure rate as denoted earlier. The inter-
ruption cost value has been chosen as US$ 15.4752, US$
7.6317 and US$ 1.86 for 4, 2 and 0.5 h of outage time,
respectively. A comparative study with real coded genetic
algorithm (RCGA2) and PSO is shown in Table 17. It can be
observed from the Table 17 that without placing any capaci-
tor and DG into the radial distribution system, the real power
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Table 17 Comparative study of results after DG and capacitor placement

Parameters Without any DG and
capacitor placement

RCGA2 PSO FEO

Loss (kW) 221.5 152.12 150 145.59

Reliability worth (US$) 163,478.43 159,690 160,150 156,100

CBRI 0 0.2162 0.1949 0.4591

DG value (kW) – 200, 200 200 100, 100, 200

DG placement – 26, 29 18 15, 31, 32

Capacitor value (kVAR) – 900, 150, 300, 150 300, 900, 450, 600, 150, 450 1200, 1200, 150, 150, 600

Capacitor placement – 5, 15, 21, 22 1, 18, 21, 22, 29, 33 5, 6, 14, 21, 23

loss has been found out at 221.5 kW. The reliability worth
for that mentioned situation is found out at US$ 163,478.43
in Table 17. It has been observed from Table 17 that the cost-
based reliability index named CBRI has been found at zero
for that said condition. It is shown in Table 17 that utilizing
RCGA2, the real power loss has been reduced from 221.5
to 152.12 kW. It has been observed from Table 17 that with
the implementation of PSO, the real power loss has been
decreased from 221.5 to 150 kW. On the other hand, the real
power loss has been observed to be reduced from 221.5 to
145.59 kW with the implementation of the proposed algo-
rithm FEO in Table 17. This said reduction of real power
loss has been occurred due to the reactive power compensa-
tion by capacitor placement and reduction of line loading by
DG penetration. It has been observed from Table 17 that reli-
ability worth has been reduced from US$ 163,478.43 to US$
159,690 with the application of RCGA2. Reliability worth
has beenobserved to be reduced fromUS$163,478.43 toUS$
160,150 with the implementation of PSO. On the other hand,
with the implementation of proposed algorithm FEO relia-
bility worth has been reduced from US$ 163,478.43 to US$
156,100. The reliability worth value in (29) is linked with the
failure rate of the cable. After doing capacitor allocation and
DGpenetration the failure rate decreases. That iswhy the reli-
ability worth reduces after suitable choosing capacitor and
DG’s location and value, respectively, by those mentioned
techniques. It has been noticed from Table 17 that the reli-
ability index CBRI has been increased from zero to 0.2162
with the implementation of RCGA2. The reliability index
CBRI has been observed to be increased from zero to 0.1949
with the utilization of PSO in Table 17. On the other hand,
it is shown in Table 17 that the reliability index CBRI has
been increased from zero to 0.4591 with the implementation
of the said algorithm FEO. The proposed algorithm FEO has
got higher and better CBRI value amongst all the chosen soft
computing techniques. It has been observed from Table 17
that RCGA has chosen DG values as 200 and 200 kW for bus
positions 26 and 29, respectively. It is shown in Table 17 that
PSO has selected 200 kW DG value for the bus number 18.
On the other hand, three DG values are chosen by proposed

algorithm FEO for bus locations 15, 31 and 32, respectively.
The selected DG values for those said locations are 100, 100
and 200 kW in Table 17. As said earlier reactive power com-
pensation by capacitor allocation has been done by all the
mentioned techniques. It is shown in Table 17 that capaci-
tor value of 900, 150, 300 and 150 kVAR have been chosen
by RCGA2 for bus position 5, 15, 21 and 22, respectively.
It has been noticed from Table 17 that six capacitor values
have been selected by PSO for bus position 1, 18, 21, 22, 29
and 33, respectively. The six capacitor values for those men-
tioned locations are 300, 900, 450, 600, 150 and 450 kVAR
in Table 17. On the other hand, it has been observed from
Table 17 that capacitor values of 1200, 1200, 150, 150 and
600 kVAR have been chosen by FEO for 5, 6, 14, 21 and
23, respectively. It can be concluded from the discussion that
proposed algorithm FEO has beaten other chosen soft com-
puting techniques viz. RCGA2 and PSO. The said algorithm
FEO has reduced the real power loss at a higher degree in
comparison to RCGA2 and PSO. It has also been discussed
that the reliability worth related to customer interruption cost
has been decreased by FEO at a higher degree in comparison
to RCGA2 and PSO. Furthermore, the cost-based reliability
index CBRI has been increased at a higher degree by FEO
in comparison to RCGA2 and PSO as discussed in this sec-
tion. Finally, it can be said that the proposed algorithm FEO
works better in finding the suitable DG and capacitor value
for certain locations. It does the above engineering work to
enhance the reliability economically and also technically.

However, the FEO has been successfully applied on real-
world optimization problem. The critical issues regarding the
proposed algorithm should be discussed. This has been stated
in the next section.

8 Analysis of critical issues of fish electrolocation
optimization

There are many critical issues of an algorithm. They are
robustness, flexibility, benefits, feasibility, divergence and
convergence capability, stopping criteria, stability and reli-
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Table 18 Experiment on eggcrate function applying FEO for 10 times run

Pop. size Probabilities Objective function value Computation time (s)

Prng Pdiv Psel Max. Min. Mean Std. dev.

5 0.01 0.01 0.5 9.7985 × 10−5 6.0048 × 10−6 5.1630 × 10−5 3.5532 × 10−5 1.7

5 0.01 0.02 0.6 9.9598 × 10−5 6.6110 × 10−7 6.4478 × 10−5 3.9409 × 10−5 0.68

5 0.02 0.02 0.6 9.5121 × 10−5 6.0826 × 10−6 7.0631 × 10−5 2.9134 × 10−5 0.89

15 0.01 0.01 0.5 9.9797 × 10−5 4.0349 × 10−6 5.9242 × 10−5 2.7204 × 10−5 1.14

15 0.01 0.02 0.6 8.5023 × 10−5 1.7428 × 10−6 4.9021 × 10−5 2.6253 × 10−5 0.96

15 0.02 0.02 0.6 7.4022 × 10−5 5.3016 × 10−6 4.6947 × 10−5 2.2949 × 10−5 0.79

30 0.01 0.01 0.5 8.2354 × 10−5 1.4460 × 10−5 4.9109 × 10−5 2.4547 × 10−5 1.38

30 0.01 0.02 0.6 9.7812 × 10−5 3.4143 × 10−5 7.0763 × 10−5 2.0640 × 10−5 1.61

30 0.02 0.02 0.6 9.1455 × 10−5 1.2644 × 10−5 5.7065 × 10−5 2.4121 × 10−5 1.49

ability, efficiency and effectiveness, productivity, computa-
tional complexity and advantages and disadvantages of the
proposed method, etc. The important issues amongst the
above-mentioned criteria have been discussed here for FEO.

• Robustness In computer science, robustness of an algo-
rithm is defined as the capability to pursue computation
despite abnormalities in input, enumeration, etc. Though
random number generation is the governing factor for
creation of population individual in FEO, there are three
kinds of probabilities and three kinds of ranges in the pro-
posed technique. If there are any abnormalities in input,
the three kinds of ranges, i.e., longrange, shortrange and
vshortrange make it feasible to have some nearness to
the global optimal point. Furthermore, electrical capac-
itance value by the toggle switch judgment helps it to
continue enumeration in the converging path. An experi-
ment has been done to show the robustness of FEO. This
is shown in Table 18. It has been observed from Table
18 that with the tuning of probabilities the minimum and
maximum objective function value for the minimization
problem change very little. Whereas it has been observed
thatwith less population numberFEOperformsbest. This
simulation study tells about the robustness of FEO.

• Flexibility FEO is flexible in nature. It can be applied
to one-dimensional problem as well as multidimensional
objective function. The discussion in the earlier sections
is the evidence of that. It has been applied to continuous
optimization problem. It can also be applied to discrete
optimization problem if the three kinds of ranges have
been chosen judiciously. It can be said from the descrip-
tion stated in the previous sections that proposed FEO is
more flexible than simulated annealing and differential
evolution and it performs well for combinatorial opti-
mization problem. This has been shown in Sect. 7.

• Benefits Benefits of FEO are primarily the advantages
of utilizing the proposed method. The simulation studies

done in the entire research work tell that FEO algorithm
is robust, flexible, efficient and effective in finding not
only theoretically correct optimal solution but also it can
find real-world feasible optimal solution. This also states
about the stability of the proposed method.

• Feasibility FEO has been tested for continuous opti-
mization problem as well as combinatorial optimization
problem. The simulation results show that the solutions
are feasible especially for real-world optimization prob-
lem studied in Sect. 7.

• Divergence and convergence capability Divergence and
convergence capability of an evolutionary algorithm
are considered as the randomization and localization
capability towards the global optimal point. The ran-
domization of the FEO is expressed through Eq. (15).
The localization phenomenon of the proposed technique
has been illustrated by the expressions (16), (17) and
(18), respectively. The proposed algorithm divergence
and convergence criteria are governed by the probdiv

and probrng , respectively. It has been observed in earlier
sections that FEO has better divergence and convergence
capability than PSO and real coded genetic algorithm.
In Sect. 6, it has been found that the randomization
and localization quality of FEO is better than simulated
annealing and differential evolution.

• Stopping criteria stopping criteria of the FEO have
been considered as the desired convergence criterion as
expressed in Eq. (23) and maximum iteration number.

• Stability and reliability Stability of an algorithm is
defined as how changes to the training data influence
the result of the algorithm. It can be said that from earlier
discussion that proposed FEO is more stable than genetic
algorithm and PSO. The proposed method as discussed
earlier is also able to find out the real-world feasible solu-
tion in Sect. 7. On the other hand, reliable product in
computer science means that it would be totally free of
technical errors. So, it depends on the carefulness and
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Table 19 Experiment on
system of linear equations

System of linear equations FEO Gaussian elimination method Actual solutions

x1 + 2x2 + 3x3 = 14 x1 = 1 x1 = 0 x1 = 1

x1 + x2 + x3 = 6 x2 = 2 x2 = 4 x2 = 2

3x1 + 2x2 + x3 = 10 x3 = 3 x3 = 2 x3 = 3

x1 = 0

x2 = 4

x3 = 2

x1 = 2

x2 = 0

x3 = 4

diligence of the person coding FEO in a certain computer
language. Furthermore, it can be said from the discussion
written in the earlier section that proposed FEO is more
stable and reliable than simulated annealing and differ-
ential evolution.

• Efficiency and effectiveness Previous simulation studies
tell about the efficiency of FEO. The various parameters
of FEO have been set on the basis of several run and best
efficiency. The effectiveness of FEO has been tested with
Gaussian elimination method on system of linear equa-
tions (Ikotun et al. 2011). It has been observed fromTable
19 that FEO has obtained all the three sets of solutions
for the system of linear equations, whereas the Gaussian
elimination method has found out only one set of results.
This simulation study shows the effectiveness of FEO.

• Productivity Productivity has been considered here as the
ratio of number of source code line and computation time
in i3, 2.4 GHz machine. The source code line in MAT-
LAB is 206 for implementingFEOon the systemof linear
equations in Table 19. The computation time is 0.62 s.
The productivity for this case is 332.25.

• Computational complexity Computational complexity is
a subject of computer science. It is of two types. One
is time complexity and the other one is space complex-
ity. Time complexity of an algorithm is defined as the
amount of time taken by that algorithm to run. It is quan-
tified as a function of the length of string representing
the input. Generally, time complexity is calculated by
counting the number of elementary operations performed
by the algorithm. Significantly the elementary operation
takes a fixed amount of time. Time complexity is a prop-
erty of deterministic algorithm. But FEO is a stochastic
or non-deterministic algorithm. Time complexity of this
kind of algorithm would be number of generation multi-
plied by the population size.But the number of generation
varies with random number generation as the genesis of
population individual is governed by it. Furthermore, the
number of generation of this kind of evolutionary algo-
rithm is problem specific.

Space complexity of an algorithm is defined by the total space
taken by that algorithm with respect to input size. The space
complexity of the proposed FEO is O(m.NL). Here m is the
number of rows in one column vector or population individ-
ual. It can be said thatmis the dimensionality of the objective
function. The other term NL is the population size or number
of population individuals.

• Advantages and disadvantages There are a few advan-
tages and disadvantages of FEO. The advantages are as
follows:

1. The convergence time or computation time is quicker
than the other well established algorithms.

2. The algorithm is flexible and robust.
3. It has good divergence and convergence capability.

The disadvantages are as follows:

1. There are three kinds of ranges in the algorithm. One has
to carefully design the three ranges for continuous aswell
as discrete or combinatorial optimization problem.

2. There are a few parameters in the algorithm. Those are
more or less problem specific.

9 Conclusion

Optimization algorithm based on the behavior of electrolo-
cation technique of elephant nose fish and shark has been
successfully developed and tested. It has been observed that
FEO algorithm works better on test bed function than estab-
lished evolutionary algorithm such as genetic algorithm, par-
ticle swarm optimization, differential evolution, simulated
annealing, etc. Comparative study shows that the method
has got potential to be applied like other well established
techniques.Theproposedmethodhas also outperformedcho-
sen soft computing techniques for real-world optimization
problem related to reliability worth enhancement in radial
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distribution system. Finally, hybridization of this proposed
method with other well established techniques can also be
done to reap the benefit of the participating techniques.
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