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Abstract This article proposes to integrate the concept
of governance in human society with the nature-inspired
particle swarm optimization (PSO) algorithm. A population-
based iterative global optimization algorithm, called Demo-
cracy-inspired particle swarm optimization with the concept
of peer groups (DPG-PSO) has been developed for solving
multidimensional, non-linear, non-convex, and multimodal
optimization problems by exploiting the concept of the new
peer-influenced topology. Here the particles, each of which
model a candidate solution of the problem under considera-
tion, are given a choice to follow two possible leaders who
have been selected on the basis of a voting mechanism. The
leader and the opposition have their influences proportional
to the total number of votes polled in their favor. A detailed
empirical study comprising tuning of DPG-PSO parame-
ters and its optimizing mechanism has been presented in the
paper. The algorithm is tested in a standard benchmark suite
consisting of unimodal,multimodal, shifted and rotated func-
tions. DPG-PSO is found to statistically outperform seven
other well-known PSO variants in terms of final accuracy
and robustness over majority of the test cases, thus, proving
itself as an efficient algorithm.
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1 Introduction

In 1995, the idea of function-optimization was introduced
with the help of a swarm of conceptual particles that
fly through the parameter space searching for the optima
(Kennedy and Eberhart 1995; Eberhart and Kennedy 1995).
Currently, the basic particle swarm optimizer (PSO) and
its variants constitute one of the most well-known families
of global optimizers over the real or continuous parame-
ter space. In PSO, each candidate solution is modeled as
a particle and several such particles together form a swarm.
Particles fly through the multidimensional search space fol-
lowing a typical dynamics. At any instance, each particle has
a position and a velocity. Initially, a population of particles is
initialized with randomly chosen position-vectors and veloc-
ities. Each particle then adapts its search pattern by learning
from its own experience as well as the experience of the oth-
ers. The aim of each particle is to move into a better region
of the search space with a definite velocity influenced by the
information collected by its own self and the other members
of the swarm throughout its lifetime. PSO does not require
any gradient information to optimize a numerical objective
function. It is simple and only uses elementary mathematical
operators. Since 1995, PSOhas been extensively investigated
by the researchers and this has resulted into nearly uncount-
able number of variants of the algorithm. Dynamics of the
particles and parameter selection have been investigated both
theoretically and empirically. PSO has been applied to awide
range of real-world problems ranging from diverse domains.
For comprehensive surveys on the research on and with PSO,
the readers are directed to the references such as (Eberhart
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and Shi 2004; Engelbrecht 2006; Clerc 2008; Valle et al.
2008; Liang et al. 2006; Banks et al. 2007; Poli 2008).

The main drawback of PSO, being a stochastic process,
is false and/or premature convergence, especially for mul-
timodal functions. Multifariousness is lost as the globally
best member influences the dynamics of the particles in the
swarm. Premature convergence occurs when a globally best
particle, at one of the local optima, traps the population. This
had led researchers to propose alternate variants and mod-
ifications, which are mostly algorithmic and leads to better
performance. The modifications include tuning of selection
parameters to achieve a better exploration/exploitation trade-
off (Shi and Eberhart 1999; Ratnaweera et al. 2004; Clerc
and Kennedy 2002), designing various proximity topologies
to replace the traditional global topology (Kennedy 1999;
Suganthan 1999; Kennedy and Mendes 2002; Kennedy and
Mendes 2006), using multiswarm techniques (Nasir et al.
2012; Van den Bergh and Engelbrecht 2004; Liang and Sug-
anthan 2005; Lovbjerg et al. 2001), and hybridizing auxiliary
search methods with PSO (Chen et al. 2007; Andrews 2006;
Higashi and Iba 2003; Zhang and Xie 2003; Shelokar et al.
2007; Das et al. 2005). PSO has also been modified by using
deterministic sampling such as in the species-basedoptimiza-
tion algorithm (Cho et al. 2011) and using simplex search
techniques in unconstrained optimization problems (Fan and
Zahara 2007). However, majority of such variants preserve
the population diversity at the cost of slow convergence or
complicated algorithmic structures.Avoiding premature con-
vergencewithout greatly reducing the convergence speed and
without making the algorithmic structure too complicated
still remains a challenge for the PSO researchers. The find-
ings reported in this paper can be considered as a humble
attempt to eradicate some of these problems.

This article presents a new variant of nature-inspired
PSO algorithm that exploits the concept of governance in
human society. The new technique is called Democracy-
Inspired Particle Swarm Optimizer with the concept of Peer
Groups (DPG-PSO). Two leaders are selected on the basis
of votes, and these leaders have influence over the parti-
cles who vote for them. This technique can competitively
solve multidimensional, non-linear, non-convex, and multi-
modal optimization problems exploiting the concept of the
new peer-influenced topology. DPG-PSO is tested against
standard benchmark functions and is statistically found to be
more robust and accurate than seven other PSO variants.

The rest of the paper is organized in the following way.
Section 2 briefly explains the background of PSO along
with the concept of democracy and peer group. Section 3
introduces the democracy-inspired optimization technique
outlining the basic steps. Section 4 presents and discusses
the experimental comparisons of the proposed method with
other well-known PSO variants like Ageing Leader Chal-
lenger Particle SwarmOptimization (ALC-PSO) (Chen et al.

2013), Fully Informed Particle Swarm (FIPS) (Mendes et al.
2004), Dynamic Multi-Swarm Particle Swarm Optimiza-
tion (DMS-PSO) (Liang and Suganthan 2005), Orthogonal
Learning Particle Swarm Optimization (OLPSO) (Zhan et
al. 2010), Comprehensive Learning Particle Swarm Opti-
mization (CLPSO) (Liang et al. 2006), Hierarchical Particle
Swarm Optimization with Time Varying Acceleration Coef-
ficients (HPSO-TVAC) (Ratnaweera et al. 2004), and GPSO
(Shi and Eberhart 1998) and duly discusses the experimen-
tal results. Section 5 discusses on the control parameters
of the proposed technique to show its robustness. Section
6 compares the democratic and undemocratic approaches
for the DPG-PSO algorithm to show the superiority of the
proposed democracy-inspired algorithm. The absence of
center-seeking bias of the algorithm is illustrated in Sect.7
with the help of the experimental results on shifted functions.
Finally conclusions are drawn in Sect. 8.

2 Background

2.1 Basic PSO and related works on PSO

PSO, as the name suggests, uses a swarm of particles
each of which model a candidate solution of the problem
at hand. A particle is characterized by its position vector
xi ={x1i , x2i ,…,xD

i } representing apoint in the D-dimensional
real space (RD), and its velocity vector vi ={v1i , v2i , . . . , vD

i }.
The velocity and position of a particle are updated in the fol-
lowing way:

vd
i ← vd

i + c1 ∗ rand1d
i ∗ (pbestd

i − xd
i ) + c2 ∗ rand2d

i

∗(gbestd
i − xd

i ), (1)

xd
i ← xd

i + vd
i , (2)

where xd
i and vd

i , respectively, represent the d-th compo-
nent of the position and velocity of the i-th particle. The best
position of the particle, i.e., the position at which the i-th
particle yields its best fitness value is termed pbesti where
pbesti = { pbest1i , pbest2i ,…, pbest D

i }. Using similar ter-
minology the global best position of the i-th particle is given
by gbesti ={gbest1i , gbest2i ,…, gbest D

i }. Note that for the
gbest PSO topology gbesti denotes the best position found
so far in the entire swarm and the subscript i is not necessary.
On the other hand for the lbest PSO model, gbesti denotes
the best position found by some particle in a neighborhood
of the i-th particle. There are different types of neighbor-
hood topologies, namely the ring, pyramid, Von-neumann,
and others. Ring neighborhood topology has not only been
extensively used in PSO (Kennedy and Mendes 2002), but
also implemented in the differential evolution (DE) family
of algorithms, see for example (Omran et al. 2006; Das et al.
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2009). Without loss of generality, our method can be inte-
grated with both the gbest and lbest PSO models with any
proximity topology.

The constant c1 scales the attraction of a particle towards
the best position (hitherto-optimum position) it has found so
far. On the other hand, the constant c2 does the same with the
best position found so far by the entire swarm or in a neigh-
borhood of the current particle. These are often called accel-
eration coefficients. Venter and Sobieski (2003) termed ‘c1’
as self-confidence and ‘c2’ as swarmcon f idence.rand1d

i
and rand2d

i are uniformly distributed random numbers
bounded within the range [0,1] and are instantiated freshly
for each ordered pair (d, i). The velocity of a particle is limited
to a maximum denoted by vmax = [v1max, v2max, . . ., vD

max].
If the velocity exceeds this limiting condition, appropriate
steps are taken to reduce it. Reassignment of the velocity
component to a value of sign(|vd

i |)vd
max remains a popular

means of limitation.
Parameter control and adaptation have attracted the PSO

researchers for a long time. The inertia weight ω was first
introduced by Shi and Eberhart (1998) to dampen the inertial
velocity from previous iteration and thus to influence conver-
gence. They showed that while larger inertia weight is advan-
tageous inwide-scale exploration, a smaller onemay increase
the ability of local refinement. Since then, almost all the PSO
variants have used the inertia weight as an integral part of the
velocity update rule. To balance the local and global search
abilities, Shi and Eberhart put forth a scheme to decrease ω

linearly with number of iterations in the following way:

ω = ωmax − (ωmax − ωmin) .
g

G
, (3)

where gis the iteration index and G is a predefined max-
imum number of iterations. ωmaxand ωminare usually set
as 0.9 and 0.4, respectively. Thus, the use of time varying
inertia weight ω provides the necessary balance between
the local and global search abilities of a particle. A fuzzy
rule-based non-linear adaptation of ω was proposed by Shi
and Eberhart (2001). In context to the dynamic system opti-
mization, a significant modification of inertia weight as
ω = 0.5 + rand(0, 1) ∗ 5 was experimented (Eberhart and
Shi 2001). Logarithmic and exponential decreases of the iner-
tia weight have been investigated in Eberhart and Shi (2001);
Liao et al. (2012). Quande et al. presented a novel PSOwith a
piecewise-varied inertia weight. The piecewise function thus
chosen is a decreasing function as both its parts are so. The
first part of the piecewise function thus chosen is non-linear
which helps in the search for the global optimum and restricts
premature convergence. The second part is linear and found
in the conventional PSO (Shayeghi et al. 2010). A variation
for realizing the convergence behavior of the particles is by
the use of a constriction factor χ introduced by Clerc and
Kennedy (2002) in the following way:

vd
i ← (vd

i + c1 ∗ rand1d
i ∗ (pbestd

i − xd
i ) + c2 ∗ rand2d

i

∗(gbestd
i − xd

i )), (4)

where χ = 2∣
∣
∣2−φ−

√
φ2−4φ

∣
∣
∣

and φ = c1 + c2.

Besides the inertia weight and constriction factor, accel-
eration coefficients can greatly influence the performance
of PSO as indicated by the “social only” and “cognitive-
only” models (Quande et al. 2010). A fixed value of 2 as
suggested in Kennedy and Eberhart (1995), Eberhart and
Kennedy (1995) is mostly preferred by the researchers for
both the coefficients. TimeVaryingAccelerationCoefficients
(TVAC) employed in a PSO variant called HPSO (Hierar-
chical PSO)-TVAC (Ratnaweera et al. 2004) and the use
of ad hoc values of acceleration coefficients are some of
the modifications that highlight the influence of acceleration
coefficients on the performance of PSO. In lbestPSOmodels,
due to the neighborhood structures, the particles show better
resistance towards trapping in local optima.But the disadvan-
tage of these models is the deficient leadership capability in
the swarm as a result of which many particles exert greater
influence on any one particle, resulting in a de-centralized
behavior. Such PSO variants usually exhibit a slow conver-
gence characteristic. In context to the lbest PSOs, amultitude
of neighborhood topologies has been investigated; see for
example works like (Kennedy and Mendes 2002). Usually a
large neighborhood proves to be effective for simpler opti-
mization problems, while a restricted neighborhood is better
for complicated problems with multiple modes. Topologies
which change over time have also been researched and these
have been shown to be robust on various functional land-
scapes (Suganthan 1999; Kennedy 1997). Fully Informed
Particle Swarm (FIPS) algorithm was proposed by Mendes
et al. (2004). FIPS adjusts the particle velocity by taking into
account the positions found in other neighborhoods in addi-
tion to considering the particle’s neighborhoodoptimum.The
same idea was used in conjunction with Euclidean neighbor-
hoods to induce significant niching behavior in PSO (for the
detection ofmultiple optima simultaneously on amultimodal
fitness landscape) by Qu et al. (2012).

Even the particle in the optimum position may not have
the best fitness when all the dimensions are concerned. The
swarm should benefit fromutilizing the best possible position
along every dimension separately and this was the inspira-
tion for the Comprehensive Learning PSO (CLPSO) which
gave better results because of the increase in swarm diversity.
Randomized variable neighborhoods are used in the stan-
dard PSO model (SPSO’07) (Bratto and Kennedy 2007).
Janson and Middendorf proposed a hierarchical version of
PSO (HPSO) (Janson and Middendorf 2005) that arranges
the particles in a hierarchy, which defines the neighborhood
structure. Every particle has itself and its parents in the sys-
tem as neighbors.
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Several efforts have been made to devise an improved
hybrid algorithm by synergizing PSO with other local or
global optimization techniques. Incorporating the operators
of a Genetic Algorithm (GA) inside the conventional PSO
framework, such as selection (Angeline 1998), crossover
(Chen et al. 2007), and mutation (Andrews 2006; Higashi
and Iba 2003), have led to efficient optimization in many
instances. Several attempts have been made to hybridize the
features of PSO with another very powerful real-parameter
optimizer called Differential Evolution (DE) and a detailed
account can be found inXin et al. (2012). Apart from synergy
with other algorithms, deflection, stretching, and repulsion
techniques (Parsopoulos and Vrahatis 2004) were combined
with PSO to improve its performance.Mutation strategies for
parameters like inertia weight (Miranda and Fonseca 2002),
diversity maintaining scheme, as well as distance-dependent
schemes to prevent particles from congestion in a particular
area of the search space (Lovbjerg and Krink 2002; Black-
well and Bentley 2002) have also been proposed for PSO.

Some researchers attempted to integrate the concepts of
aging and lifespan in PSO framework for obtaining improved
search on multimodal landscapes. A trapezoidal aging func-
tion (Dehuri et al. 2006) was used to mark the lifespan of
particles in context to data clustering.APSOwith aging lead-
ers and challenger particles has been recently proposed (Chen
et al. 2012). Multipopulation approaches (also more famil-
iarly called multiswarms) (Tillett et al. 2005) have received
considerable attention from the PSO researchers over the
past few years. In case of PSO variants with multiple sub-
populations, the sub-populations themselves can be treated
as a special type of neighborhood structure. Considering this
fact, such category of PSO variants can also suffer from
slower convergence speed. Recently, a very competitive vari-
ant of PSO was proposed (Zhan et al. 2011) by using an
orthogonal learning strategy to discover more useful infor-
mation that lies in the learning experiences of a particle via
the orthogonal experimental design (OED).

Different types of topologies have been used to improve
the performance of PSO. Some PSO algorithms use a fully
connected neighborhood topology. The best solution found
by any particles acts as the focal point of aggregation for
all particles. Each particle has information concerning all
the particles in the swarm. On the other hand, there are
also topographies where every particle has knowledge per-
taining to only a restricted neighborhood. One common
topology is the ring topology (Kennedy and Mendes 2002),
in which each and every particle is connected with just two
neighbors. Kennedy claimed that PSOwith a small neighbor-
hood might perform better on complex problems, because it
slowly searches for the optimum while PSO with a large
neighborhood would perform better on simple problems
where it will converge faster albeit with a higher chance
of premature convergence, if possible for that function. A

dynamically adjusted neighborhood topology (Suganthan
1999) was introduced with a gradually increasing neighbor-
hood. Hu and Eberhart (2002) adopted a topology where
nearest particles on the basis of performance are included in
its new neighborhood in each generation. In fully informed
particle swarm (FIPS) proposed by Mendes and Kennedy,
each individual is influenced by the differently weighted suc-
cesses of all its neighbors, rather than just the best one and
itself. A particular problem may be better handled by one
structure but some other application might require another
structure to be correctly solved.

New adaptive techniques are introduced to classical parti-
cle swarm optimization to give an adaptive two-layer particle
swarm optimization algorithm with elitist learning strat-
egy (ATLPSO-ELS) (Lim and Isa 2014), which has better
search capability than classical. In ATLPSO-ELS, both the
current swarm and the memory swarm are evolved in a
certain fashion that the tendency of the latter swarm to
distribute around the problem’s optima. Better control of
exploration/exploitation searches in both current and mem-
ory swarms is achieved by two adaptive divisions of labor
modules to self-adaptively divide the swarms into explorative
and exploitative groups. Additionally, OED and stochas-
tic perturbation techniques are used to develop modules to
enhance the search efficiency of swarms and to mitigate pre-
mature convergence.

Traditional PSO consisting of only two searching layers is
also replaced by new multilayer particle swarm optimization
(MLPSO) (Wang et al. 2014) to overcome premature conver-
gence into the local minima. The MLPSO strategy increases
the diversity of searching swarms to efficiently solve com-
plex problems.

DPSO (Kaveh and Zolghadr 2013) was the first opti-
misation technique which was inspired by principles of
democracy. But its scope as well as implementation is
markedly different from the technique proposed in this paper.
Principally, as far as the algorithm is concerned, in DPSO,
democracy is implemented by engaging every particle in
decisionmaking directly,whereas inDPG, the particles enjoy
the right to select their own respective leader and exercise
their democracy in an indirect manner through this leader.
In DPSO, there is an extra term in the velocity update equa-
tion which is a direction vector constructed on the basis of
the entire population while in DPG, there is no extra term
in the velocity update equation. Additionally, in DPSO, the
basic topology remains the same as in basic PSO, but in DPG
a new variant of the ring topology, referred to as the peer-
based topology, is used.

2.2 Concepts of democracy and peer group algorithm

Basic PSO introduced the concept of leader (the globally
best particle) and it has already proved its importance. How-
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ever, single leadership does not always ensure a better result
in optimization algorithms and can lead to unwanted prema-
ture convergence. This realization calls for the introduction of
democratic form of government. In the present day, democ-
racy is based on the people electing people from their midst
who take the decisions and perform actions which can be
potentially beneficial to the state as a whole, thus making
democracy a form of governance by the people, of the peo-
ple, and for the people. Democracy also allows the concept of
cross fertilizations of ideas between people which are bene-
ficial to them, thus true democracy is seen when people gain
knowledge and advance together (Fishkin 2005).

Added advantage of democracy is that it checks themanip-
ulation of the totalmasses by one leader and introduces in real
sense the concept of Opposition. Choice is essential in any
democratic structure. The population should always have the
benefit of a competent alternative to the ruling party which
can replace the incumbent leader and lead the population into
a more advanced developmental state. The presence of the
Opposition forces the leader to perform and in the absence of
any competition the leader may not have enough inspiration
to perform as much as he/she can or should.

Without inherent stability and unity in a society, no leader
can guide it to its goals. Thus, each individual is influenced
by his/her friends and families to a large extent even though
individuals in their friend and family circle may not have
exceptionally strong leadership qualities. This realization
leads to the introduction of a new topology based on the
concept of peer group or peer circle in the PSO system.

In this paper, the focus is on exploiting the human society
concept of the freedom in governance and peer influence.
In basic principle, this novel strategy allows each particle to
choose their leader by using the concept of democracy. This
shifts from the previous use of democracy concept in PSO
(Kaveh and Zolghadr 2013; Kaveh 2014) in that the choice
of the people is carried out indirectly through the leader,
rather than directly as reflected by the direction vector in
the velocity update equation in DPSO. The particles use a
closed topology where they interact with only certain nearby
particles which form their respective peer groups. As the
result, the particles properly update themselves by choosing
the proper leader for themselves and by taking proper inputs
from its peer circle.

3 Democracy-inspired particle swarm optimization
with concept of peer group (DPG-PSO)

3.1 Procedure for DPG-PSO

The original PSO uses one leader of the swarm; however,
DPG-PSO uses two leaders. One of the leaders is as its basic
Governor who leads a majority of the particles and the other

acts as the Opposition who leads certain group of particles
and always checks the power and sees towhether the leader is
leading the society towards the optimum position. The selec-
tion of the leader is done by a voting mechanism where each
particle votes for the Governor or Opposition and selects
them as their leader to lead them for the particular run. The
concept of peer group states that the particles should consider
its lbest. Thus the concept of gbest in globally best topology
PSO ismodifiedwith the introduction of the concept of leader
with both Governor and Opposition having a chance of lead-
ing the society. Hence, the misleading effects which occur
due to gbest are expected to be reduced.

Thus the velocity and position update equation ismodified
to

vi j ← ω ∗ vd
i + c1 ∗ rand1 ∗ (pbestd

i − xd
i )

∗(1 − F E

F Emax
) + c2 ∗ rand2 ∗ (lbestd

i − xd
i ) ∗

(1 − F E

F Emax
) + c3 ∗ rand3 ∗ (Leaderd

i − xd
i )

∗ exp(1 − voteleader ), (5)

xd
i ← xd

i + c4 × rand4 × vd
i . (6)

3.2 Modified velocity update equation

The original PSO velocity equation has been modified to
include the ideas of peer group and democracy as shown in
(5) and (6). The velocity update equation now contains four
terms:

1) Inertia factor
The concept of inertia or the particle’s tendency to follow
its velocity is here as same as that of basic PSO equation,
given by ω × vd

i .
2) Personal best

The distance of a particle’s current position xd
i from

its personal best pbestdi is calculated. This is multiplied
by acceleration factor c1and a uniform random number
rand1 ∈ [0, 1]. However to ensure faster convergence,
this term is multiplied with another factor that controls
the impact of this term with time and slowly reduces it.
After each iteration, a particle is expected to reach prop-
erly to its optimum position. Consequently the distance
between the pbestdi and xd

i is expected to decrease and
thus, this term fails to update the velocity much. There-
fore the impact of this term is made to diminish with time
using the expression:

c2 × rand1 × (pbestd
i − xd

i ) × (1 − F E

F Emax
).

3) Local best
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Each particle searches its peer circle and finds the best
position among them. Encompassing the concept of peer
group, this term tends towards its own local best position.
Thus the difference between particle’s current position xd

i
from its local best lbestd

i is calculated and multiplied by
another acceleration factor c2 and a random real number
rand2 uniformly distributed within [0, 1]. Here also to
ensure fast convergence we slowly reduce the impact of
this term using the expression:

c2 × rand2 × (lbestd
i − xd

i ) ×
(

1 − F E

F Emax

)

.

4) Leader factor
This term embodies the concept of democracy and also
gives significance to the votes of the people. Leader is
chosen as either the Governor or the Opposition through
votes. The particles are attracted to their votedLeader and
tend to move towards it. Thus, the difference between
Leaderd

i and xd
i is taken and multiplied by new coef-

ficient c3 called attraction coefficient and a uniform
random number rand3 ∈ [0, 1]. It is seen that with pas-
sage of time oVotedecreases andgVotegoes on increasing
due to expected better leadership quality of Governor.
Thus, the influence of Opposition starts weakening. This
although good for much faster convergence but can ham-
per the convergence if the Governor who starts leading
a majority of mass gets caught up in local minima. It is
at time as these that the Opposition is expected to lead
people to the global optima. Thus the effect of those fol-
lowing Opposition should be strengthened even if oBest
is very less. Thus an empirically developed expression is
multiplied with this term to fight such scenario.

c3 × rand3 × (Leaderd
i − xd

i ) × exp(1 − voteLeader ).

Voting is the most essential factor of democracy. To imple-
ment voting mechanism a mathematical model of a biased
roulette wheel scheme is used where the asymmetric ranges
corresponding to the two candidates are constructed by divid-
ing the range [0,1] into twoparts eachofwhich is proportional
to the number of votes of the respective candidate namely
gV ote and oV ote calculated by the normalization proce-
dure. The need for initially biasing the range is that initially
the population is generated with random values hence they
lack the ability to decide on their own which Leader can lead
them better. Hence initially the best particle from the pop-
ulation is selected as Governor and second best particle as
Opposition and gVote is given a value � and the oVote is
set to 1−�. This initial value � bias the votes. However in
consecutive runs each particle for each dimension poll a vote
which is a random number generated within the range [0,
1]. Based on this vote its Leader is selected in the following
manner:

Leaderd
i =

{

Governord , voted
i ≤ gV ote

Opposi tiond , voted
i > gV ote

(7)

Once the Leader is selected the particles update the value
of gVote and oVote to show their Leader is more preferred
than the other. The vote count of each Leader is increased
with one part of N * M . Thus alongwith the Leader selection
the vote is updated in the following manner.

I f voted
i < gV ote, gV ote ← gV ote + 1

N∗M
Else, oV ote ← oV ote + 1

N∗M .
(8)

The votes polled in favor of any candidate are taken in a
cumulative format. This helps in realizing which Leader has
throughout the time acted as a better Leader. Thus votes got
at the end of each iterations are normalized using (9), (10)
and carried forward for the next iteration.

gV ote ← gV ote

gV ote + oV ote
(9)

oV ote ← oV ote

gV ote + oV ote
(10)

voteLeader is the normalized number of votes received by
a particular leader, be it the Governor or the Opposition. The
importance of the empirical expression exp(1 - voteLeader )

is seen in the following way:
Case1:Leaderdi ← Governord .In this case, voteLeader ←

gVote which almost tends to 1 with passage of time results
in exp(1 − gV ote) ≈ exp(0) ≈ 1∀gV ote → 1. Thus it
does not alter the impact for Governor much if he has taken
majority into confidence or the manner he used to influence
them.

Case2: Leaderd
i ← Oppositiond . In this case, voteLeader

←oVote and if oVote is very small then exp(1 − oV ote) ≈
exp(1) ≈ 2.3∀oV ote → 0. Thus the Opposition will still
be able to influence the people who vote for him and in case
when the Governor fails and leads the majority of swarm to
local optima. In such situations, Opposition leads his believ-
ers and slowly the whole swarm to the global optima. The
votingmechanism is illustrated under biased roulette scheme
in Fig. 1.

3.3 Modified position update equation

The basic position update equation of original PSO has also
been changed to introduce certain randomness and weight
factor to the velocity term. c4 is the velocity scaling factor.
rand4 is a uniform random number within the range [0,1].

In DPG-PSO, a particle does not change its position
depending largely velocity term. Here its current position is
made more dominant than its velocity term by scaling down
the latter using c4 which is taken to a value less than 1. To
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Fig. 1 Voting mechanism under biased roulette scheme. a shows the
division of range [0,1] in the initial run. b Shows the distribution of
range when the Governor is better Leader and hence gVote increases at
the cost of oVote. c Shows the distribution of range when theOpposition
is better Leader

understand the dynamics behind the above point let us take
a scenario where a particle has already reached global best,
however other particles are still distributed far apart from
him. Due to the tendency of the particle to move towards
the swarm it might get dislocated from the global optima.
Due to c4 the position term will try to dominate over the
velocity term and keep particle at the reached global optima.
The impact of velocity term has been stochastically varied
for different dimension to enhance the explorative nature of
particles using rand4.

3.4 Peer-based topology

The learning process of particles in any PSO is highly depen-
dent on the topology and how they interact in the defined
neighborhood structure. The basic PSO has a global neigh-
borhood (or mesh topology) where every particle can learn
from the best particle in the entire swarm. This results in
faster convergence but increases the liability of the swarm
to be trapped in a local optimum. The explorative nature of
the swarm can be enhanced by using a topology where the
neighborhood of a particle includes a few individuals rather
than only one particle such as the Ring topology.

An example of a simple ring topology defined on the index
graph of the particles is illustrated in Fig. 2. We assume there
are N particles to be organizedon a ring topologywith respect
to their indices, such that particles PN (t)and P2(t)are the
two immediate neighbors of particle P1(t). Only the imme-
diate neighbors play a role in the position and velocity update
equations of any particle.

Fig. 2 Diagram showing the ring neighborhood topology in PSO. The
shaded region indicates a neighborhood of the i th particle containing
two other particles when i = 1 and swarm size N

Drawing inspiration from ring topology we introduce a
new topology called peer-based topology in this paper where
particles interact not only with the immediate two neighbors
as in ring topology but certain particles beyond. Here the
neighborhood size is 2 and the particles are arranged in a
topology as shown in Fig. 3.

A partly connected topology is one where the population
does not have a global best. An influential variant of ring
topology is one where diffusion of possible knowledge of
optima is better conducted than in the basic ring topology of
PSO.A trade-off between the partly connected and influential
topology is necessary for a democracy-inspired voting-based
PSO so that the populism scheme can be successfully imple-
mented in the swarm of the particles without any particular
Leader being disproportionately influential.

In a ring topology all the particles may be thought to
form a ring where the neighborhood size is 2. In the pro-
posed topology the basic ring structure is altered by changing
the neighborhood size from the constant value of 2. The
neighborhood varies from 2 to 3 depending on the particle
dynamics.

To understand how this new topology works let us see
how lbest is updated by using this topology in contrast with
the ring topology. In ring topology structure, the local best of
each particle is updated by computing the cost function of the
particle iand comparing it with the cost value of lbest of its
neighboring particles i+ 1 and i−1. If cost value of particle
i is lower than lbest of its neighboring particles, then particle
iassumes the lbest position of the respective particle i+ 1 or
i− 1. In peer-based topology, in addition to the ring topology-
based interaction, each of the particles i can also assume the
lbest position of its immediate neighbors, if its cost function
is lower than the cost function of lbest of the particles i +
2 or i − 2. This results in a fundamental difference from
basic ring topology in a particular case: Suppose that the
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Fig. 3 Diagram showing
interaction between Particle
i(Pi ) and its neighbors in
peer-based topology

lbest of particle i+ 1 or i− 1 is the pbest of particle i,and
this pbest has a lower cost value than present cost value of
particle i.Even then the particle i is capable of assuming the
lbest position of particles i+ 1 or i− 1, if it manages to have
a lower cost function than that of lbest of particles i+ 2 or i−
2. Thus a particle can influence the behavior of its neighbors
even though it might be weaker than its own personal best,
reflecting the nature of peer-influenced human societies.

To illustrate the concept of the peer-based topology let
us consider a minimisation problem. Five connected parti-
cles (two on either side of the central particle i) among all
the population is shown in Fig. 3 having hypothetical cost
values of their lbest and pbest positions. Also shown is the
(hypothetical) cost value of current location of particle i,on
which the algorithm is stuck on at any particular time. Sim-
plified values are given for representative purposes and the
minimum is assumed to be at 0, such that smaller cost value
corresponds to better fitness.

Thus particles i- 2 and i+ 2 change their lbest values under
the influence of particle i’s new current value. This is because
cost value of lbest of particle i− 2 is 2 and cost value of lbest
of particle i+ 2 is 2.5, both of which are less than current cost
value of particle i , that is 1.5. The updated values of lbest are
shown in Fig. 4. And this updating action is indicated by the
arrows in Fig. 4.

3.5 Generation of opposition and its update equation

Opposition is generated by imbibing certain properties from
best particle of the swarm (Governor) and also having some
of its random properties. The basic aim while generating the
Opposition is to introduce certain randomness in its proper-
ties so that he is not a replica of Governor (the best particle).

This guarantees that the Opposition is different from Gover-
nor and he can lead the particles to better result when the
Governor fails to do so.

While generating Opposition, a random number rndd uni-
formly distributed within [0, 1] is generated for each dimen-
sion and is compared with a parameter pro. If rndd < pro,
then the Oppositiond is set to random real number within
the range [Xmin, Xmax] else Oppositiond is taken from best
particle.

Oppositiond =
{

rand × (Xmax − Xmin) + Xmin, rndd < pro
Governord , rndd ≥ pro

(11)

where d ∈ {1, 2, 3, …N}
TopreventOpposition having toomuch randomproperties

so that the convergences takes a lot of time, the parameter
pro is taken to be small and equal to 1/N empirically.

Oppositionupdates itself in each run in the same stochastic
manner as it is generated; by learning from the best particle
of swarm at the end of each iterations.

The flowchart of DPG-PSO is illustrated in Fig. 5 and the
steps involved are given as follows.

Step1 Initialization: The initial positions and velocity
of all the particles are randomly generated within the n-
dimensional search space. The best particle is selected as
Governor and Opposition is formed by process of mutations.
The vote for the Governor gVote and the Opposition oVote is
set to initial value to control voting mechanism using biased
roulette system.

Step 2Selecting theLeader using voting system:Each par-
ticles generate a randomnumberwithin the range [0, 1]which
acts as its vote. Based on this vote, its Leader is selected.

Fig. 4 Diagram showing a part of the particle population for illustration purposes: After updating cost values
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Fig. 5 Flowchart representation of the DPG-PSO algorithm.

Step 3 Velocity and position Updating: Each particle
updates its velocity and its position using (5) and (6), respec-
tively.

Step 4 Updating pbest, lbest, Governor, and Opposition:
If the new position of particle i(i ∈ {1, 2, . . . M}) is better
than pbesti , then pbesti is updated to xi . After the completion
of each iteration, lBesti is updated if the position of particles
in its peer group becomes better than lbesti . Governor also

updates itself to become the best position in this iteration and
Opposition updates itself taking certain properties of the best
particle.

Step 5 Updating the votes: The individual votes got
in this iteration is added to the previous votes of Gover-
nor and Opposition. In end of each iterations gVote and
oVote get normalized with respect to total votes in the itera-
tion.
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Step 6 Terminal Condition Check: If the number of FEs
exceeds xF E , the algorithm terminates. Otherwise go to Step
2 for next iteration.

According to the above procedure, DPG-PSO introduces
two new concepts of voting allowing each particle to choose
their Leader between Governor and Opposition. It also with-
draws the concept of gbest and uses lbest where the particles
interact with two or three of its neighboring particles and
finds lbest.

4 Experimental verifications and comparisons

4.1 Benchmark function tested

Experimental tests are performed on the eighteen standard
benchmark functions listed in Table 2. These functions have
been frequently used for the testing of new PSO variants.
Table 2 also shows the global optimum value and the search
ranges of the defined functions. Since they are minimizing
functions, the optimum is the globalminima for the problems.
These benchmark functions are tested on seven well-known
variants of PSO like GPSO, FIPS, HPSO-TVAC, DMS-PSO,
ALCPSO, CLPSO, and OLPSO. The eighteen benchmark
functions are classified into three categories, the first group
f1− f6 having six unimodal functions. The second group has
four multimodal functions f7− f10 which are more complex
with higher dimensionality and multiple local optima. The
last group f11 − f18 contains 3 rotated and 5 shifted func-
tions. For the details of the shift vector and the orthogonal
rotation matrices corresponding to functions f11 − f18, see
(Suganthan et al. 2005).

4.2 Experimental setup

The experimental results tabulated in Table 3 are obtained
by running these algorithms on the benchmark functions of
Table 2, are done with parameter settings indicated in Table
1. All the algorithms are tested for 30 dimensions with a
swarm size of 20 particles for the PSO variants. To remove

statistical dependence, the algorithms are independently run
30 times each and their results are tabulated in Table 2. The
simulation environment is Matlab 2013a in a workstation
with Intel Core i5 and 2.50 GHz Processor. For the com-
petitor algorithms, we use the same parametric settings as
mentioned in the respective literature. The parametric setup
for the compared algorithms has been provided in Table 1.

4.3 Experimental results

DPG-PSO algorithm and the other well-known variants of
PSO are tested on the eighteen benchmark functions f1 - f18
of Table 2. Table 3 gives the mean error, standard devia-
tion and least error value over a period of 30 runs to remove
statistical dependence. Ranking has been done according to
the mean error value obtained by the algorithms. For min-
imization problems, the best error value indicates the run
securing the least error among the 30 runs for a particular
algorithm. In Table 3, the best results comprising mean error
and the least error are marked in bold face for each of the
functions described in Table 2. Error value is defined as.
∣
∣ f (xbest) − f (xopt)

∣
∣where xbest is the best solution returned

by DPG-PSO and xopt is the global minimum position of
the corresponding function. The functions are tested with 30
dimensions, a swarm size of 20 and exhaustion of 2,00,000
function evaluations (FEs) is taken as terminating criteria.
If results of a particular test algorithm are unavailable for
certain benchmark functions, N/A or not available is writ-
ten. Average rank is next calculated by the mean of all the
ranks that could be evaluated for the benchmark functions
for all the algorithms to test the overall performance of the
algorithms.

4.4 Comparison

1. Unimodal functions:
Table 3 shows for the six unimodal benchmark functions
f1 − f6 of Table 2, DPG-PSO secures the 1st rank for 5
unimodal functions, and secures the 8th rank for Rosen-
brock’s function f5. Convergence plots of Fig. 6a, c, e, g,

Table 1 Parameter settings of the different variants of PSO used (meaning of the symbols are provided in the respective literatures)

Algorithm Parameter

GPSO ω = 0.9∼0.4; C1, C2 = 2; Vmax =0.2*Range

FIPS κ = 0.9 ∼0.4;
∑

ci = 4.1; c2 = 1.4; Vmax =0.5*Range

HPSO-TVAC ω = 0.9 ∼ 0.4; C1 =2.5∼0.5; C2 =0.5∼2.5; Vmax =0.5*Range

DMS-PSO ω = 0.9 ∼ 0.2; C1, C2 = 2; m =3; R = 5, Vmax =0.2*Range

ALCPSO ω = 0.4; C1, C2 =2;� = 60, (2, 1, 0, 1)}; Vmax =0.5*Range

CLPSO ω = 0.9 ∼ 0.4; C1 = 1.49445; m = 7; Vmax = 0.2*Range

OLPSO ω = 0.9∼0.4; C1, C2 =2; Vmax =0.5*Range

DPG-PSO ω = 0.2; C1 = 2, C2 = 1.5, C3 = 0.5, C4 = 0.8; � = 0.7; Vmax =0.5*Range
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Fig. 6 Convergence characteristics os DPG-PSO for various parame-
ter settings. a Varying ω1on sphere functionf1 b Varying ω1onf12, c
varying c1 on Schwefel’s problem 2.22 f2, d varying c1 on Rastrigin
function f7, e varying c2 on unimodal Schwefel’s problem 2.22 f2, f
varying c2 on Griewank function f9, g varying c3 on Quadric func-
tion f4, h varying c3 on rotated Ackley function f12, i Varying c4 on
Schwefel’s f2, j Varying c4 on non-continuous Rastrigin f10, k varying

c4 on Ackley f8, l varying c4 on rotated Rastrigin in f11, m varying �

on Griewank function f9, n convergence plot for shifted rotated high
conditioned elliptic f14, o convergence plot for shifted Rosenbrock’s
function f15. p Convergence plot for shifted rotated Weierstrass f16,
q convergence plot for Shifted Rotated Rastrigin’s f17, r convergence
plot for Shifted Sphere function f18
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Fig. 6 continued

i, and k show that the DPG-PSO descends to the global
optima quiet steeply. From Table 3, all the other tech-
niques fail to optimize them decently, except f6 where
the mean and least error value obtained by all the algo-
rithms are same and thus cannot be ranked. f3and f5 are
the only two functions where DPG-PSO stagnates and
fails to reach the global minimum. But despite that, it
manages to secure the 1st rank for f3 when compared to
other optimization techniques.

2) Multimodal functions:
Table 3 shows that for multimodal functions f7 − f10,
DPG-PSO gives the least mean error as well as the mean
best error among all the algorithms. Furthermore, the
standard deviation over a period of 30 runs is 0 for this
algorithm. Figures 6d, f, j, m show that the numerous
local minima fail to interfere with DPG-PSO while other
variants get stagnated in the local minima. DPG-PSO
finds the global minima for all the test functions except
f8, where it yields amean error value of 8.88e−16. How-
ever it still works better than other algorithms and secures
the first rank for f8.

3) Shifted and rotated functions:
Table 3 indicates that, for rotated multimodal functions
f11 − f13 of table 3, DPG-PSO finds the global minima
of the rotated functions successfully, shown in Fig. 6b,
h, and l despite the complicacies. Additionally it also
maintains zero standard deviations over a period of 30
runs. DPG-PSO performs more or less fairly for shifted
functions f14 − f18 when compared to other PSO vari-
ants. HPSO-TVAC and CLPSO obtain first ranks for
functions f14 and f15 respectively, whereas DMS-PSO
achieved first ranks for both functions f16 and f17. DPG-
PSO achieved ranks 4th, 3rd, 2nd, and 4th out of the 8
algorithms for these four functions, in respective order.
Function f18 is included to show that the proposed algo-
rithm performs at par with its peers for the shifted sphere
function. The convergence plots of the shifted functions
are shown in Fig. 6n, o, p, q, and r, respectively. For
the shifted functions, and the shifted as well as rotated
functions, none of the single PSO variants can perform

consistently good because of the complexity of the func-
tions.

In terms ofWilcoxon’s rank-sum test, this algorithms out-
performs the all the other competing algorithms in all but
three of the test functions, namely f5, f14, and f15. In f14and
f15 it still manages to secure a score of the order of 10−7and
10−4, respectively. In f5 it falls behind only two algorithms
to secure third rank with a score of the order of 10−5.

In terms of average ranking, DPG-PSO stands as rank 1
with a score of 1.87 followed by ALC-PSO ranking 2.47,
while other algorithms perform more or less in a similar
manner obtaining average rank between 4 and 6. This demon-
strates the efficiency of the proposed algorithm.

5 Parameter tuning

DPG-PSO contains 6 control parameters which control the
swarm behavior of the particles. The inertia factor ω is var-
ied between 0.1 and 0.5 to provide sufficient freedom to the
particles to link and interact with one another. It is tested on
unimodal sphere function andmultimodal Ackley’s function.
It is found to have similar results in terms of convergence
value and success rate. However, rate of convergence for
ω = 0.1 does not provide steep convergence for rotated Ack-
ley function as it gets entrapped in a local minima. The
acceleration coefficient c1 is set between 1 and 2.5 to test
its robustness. But it is found that performance of DPG-PSO
is not sensitive to c1 as test results on unimodal Schwefel’s
problem 2.22 and the multimodal Rastrigin’s function show
that it reaches the global minima for both the cases. The para-
meter c2 is tested within the range of 0.5 to 2 and is found to
be independent as found in convergence plots of Fig. 6e and
f showing the successful convergence on unimodal Schwe-
fel’s P2.22 and rotated Griewank functions. Parameter c3 is
varied between (0, 1] as it is associated with an exponential
term which tends to a very high value and thus the Opposi-
tion will overpower the Governor despite having low votes.
It is found that DPG-PSO is also independent of c3 as can be
seen from Fig. 6g, h showing convergence plot of Unimodal
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Fig. 7 Convergence plots of a
unimodal Sphere function, b
multimodal Rastrigin’s function,
and c rotated Griewank’s
function for democratic and
undemocratic approaches used
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Table 4 Comparison of shifted functions over a period of 30 runs and 2,00,000 FEs, showing mean Error, minimum error, standard deviation, and
P values from the Wilcoxon’s rank-sum test

Shifted functions Optima Performance metrics GPSO DPG-PSO

f2 o = −10+20* rand(1, D) Mean error 0.0189 9.82e-126

Least error 0.0166 2.406e-138

Standard deviation 0.0016 1.768e-137

P value 2.54e−18 NA

f3 o = −1.28+2.56* rand(1, D) Mean error 0.1542 2.81e-04

Least error 0.1225 9.63e-05

Standard deviation 0.0224 4.12e-05

P value 1.72e − 07 NA

f4 o = −100+200* rand(1, D) Mean error 8.1178e+03 6.532e-198

Least error 7.1946e+03 2.765e-218

Standard deviation 652.7402 4.641e-206

P value 3.15e−20 NA

f6 o = −100+200* rand(1, D) Mean error 0.5000 0.00

Least error 0.00 0.00

Standard deviation 0.3536 0.00

P value 1.66e−22 NA

f8 o = −32+64* rand(1, D) Mean error 10.7258 2.341e-14

Least error 1.3476 2.341e-14

Standard deviation 6.6314 0.00

P values 3.84e−10 NA

f9 o = −600+1200* rand(1, D) Mean error 0.0057 1.34e-139

Least error 5.9412e−04 2.94e-158

Standard deviation 0.0036 8.88e-149

P values 7.29e−20 NA

rand (1, D) denotes a vector of D uniformly generated random numbers in (0, 1)

Quadric function and rotated Ackley function. Parameter c4
is tuned in (0.4, 1). It is found that the parameters do not have
a significant influence on the convergence of the unimodal
Schwefel’s problem 2.22, multimodal non-continuous Rast-
rigin, multimodal Ackley, and rotated Rastrigin functions in
Fig. 6i–l, respectively. Parameter � is varied from 0.6 to 0.9
to show the robustness. DPG-PSO is found to perform more
or less in a similar manner, as can be seen in Fig. 6m for
the convergence plot of Griewank function, even if is varied
between the said limit.

6 Undemocratic approach

In this section, we investigate the performance of DPG-PSO
when the Opposition is absent and there is no democracy.
Hence, there will be a single Leader who is going to lead
the entire population. So there will be no voting scheme.
Only the Peer Group Topology will be present. This proves
the efficiency of the democracy system. Three functions, one
from each group of Unimodal, Multimodal, and Rotated and
Shifted Functions are analyzed for their convergence plots
with 6000 Function Evaluation as the ending criteria. All

the parameter values remain same. In Fig. 7a, it can be seen
that the convergence plot of Sphere function attains its min-
ima 0 within 5200 Function Evaluations for the proposed
algorithm, but for the undemocratic approach, the conver-
gence plot reaches a minima of around 10−150 and also the
convergence rate is very slow. Further it can be seen from
the convergence plots for multimodal Rastrigin function and
rotatedGriewank functions in Fig. 7b, c, respectively, that the
scenario is pretty much same for all the cases as the conver-
gence rate is slower for the undemocratic approach than the
proposed algorithm. Also the undemocratic approach gets
entangled to the local minima and remains stagnant for some
Function Evaluations before proceeding again. This results
in unnecessary consumption of time and Function Evalua-
tion. Thus the democratic approach is far superior than the
undemocratic approach.

7 The origin-seeking bias and DPG-PSO

Conventional PSO algorithms are often biased towards the
center of the search space (Monson and Seppi 2005; Spears
et al. 2010. If the search bounds are symmetrical (like
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∀d,−L ≤ xd ≤ L , L being a constant), the center coincides
with the origin (a vector of zeroes) and this is indeed the sit-
uation with all the 18 benchmarks reported in Table 2. If the
corresponding function has its global optimum at origin, it
may become easier for a PSO to detect the optimum. How-
ever, as has been shown in (Monson and Seppi 2005), if the
functions have a center offset, i.e., global optimum is shifted
to a location other than the origin of the feasible search vol-
ume, PSO can become fairly inefficient.

In this section, we demonstrate that the proposed DPG-
PSO algorithm is not biased towards the global optimum
at the absolute origin. For this we report the comparative
results between DPG-PSO and the usual PSO algorithm
(GPSO in Table 1) on the shifted versions of 6 functions
( f2, f3, f4, f6, f8 and f9)from Table 2. Out of the 18 bench-
marks shown in Table 2, these 6 functions were tested in their
original forms (with global optimum lying at the absolute ori-
gin of the search space) in Table 3. The global optimum of
each function is shifted by a random amount as indicated in
Table 4. In this table, o is the array containing the shift of each
of the dimensions from the origin. The proposed algorithm is
run 30 times and is compared with the basic variant of PSO.
We report the mean error, least error, and standard devia-
tion of the errors in Table 4. The same table also shows the
P values obtained from Wilcoxon’s rank-sum test between
DPG-PSO and GPSO. A close look through Table 4 reveals
that DPG-PSO yields statistically significantly better results
than GPSO on all the instances of the shifted functions. The
performance of GPSO on these shifted variants deteriorates
considerably as compared to its performance on their origi-
nal counterparts as can be seen from Table 3. These results
indicate the absence of origin-seeking bias in DPG-PSO on
the standard benchmarking instances.

8 Conclusion

In this paper, a new PSO variant called DPG-PSO has been
proposed employing the concepts of democracy form of
governance and social interaction of peer group. The new
strategy of using two leaders gives freedom to the particles
to choose their leader and breaks from the orthodox system
of following a single leader. The proposed Peer-Based Topol-
ogy enables the particles to learn more from its neighbors.
These emulations of human behavior and style of gover-
nance helps DPG-PSO to efficiently surmount the problem
of premature convergence. Experimental results on standard
benchmark functions along with competitive algorithms, we
can safely infer that DPG-PSO introduces a strategy to make
PSO perform better and provide more accurate result with
faster rate of convergence. It is also demonstrated that the
proposed algorithm does not possess origin-seeking bias of
the conventional PSO algorithm as it can keep up its good

performance on functions with randomly shifted optima. It is
also not much sensitive to the control parameters and hence
appears to be more robust.

For future research, the concept of democracy and peer
group can be extended to other evolutionary computational
algorithms and further studied. The democracy-based search
strategies may also be extended to the multiobjective opti-
mization scenarios.
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