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Abstract Recent studies have identified that multi-criteria
group analysis methods should take the concepts of risk
and uncertainty into account. In some real-life situations,
determining the exact values for the potential alternatives’
performances and criteria weights is so difficult. To over-
come with these situations, their values should be regarded
as fuzzy and fuzzy intervals. In this respect, interval-valued
hesitant fuzzy sets (IVHFSs) as a suitable modern fuzzy
sets theory can be considered because this theory allows
decision makers (DMs) to assign some interval-values mem-
bership degrees for an alternative in terms of selected criteria
under a set to margin of errors. Hence, this paper proposes a
novel soft computing approach, namely IVHF-MCGA, based
on new interval-valued hesitant fuzzy complex proportional
assessment (IVHF-COPRAS) method that can be applied in
solving the multi-criteria group decision-making (MCGDM)
problems under uncertainty. In this approach, preference val-
ues of potential alternatives versus the selected criteria and
weights of each criterion are expressed by linguistic variables
and then are transformed to interval-valued hesitant fuzzy
elements (IVHFEs). In addition, an interval-valued hesitant
fuzzy entropy (IVHF-entropy) method is extended to deter-
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mine the criteria weights by considering the DMs’ opinions
about the relative importance. Also, a new interval-valued
hesitant fuzzy compromise solution (IVHF-CS) method is
introduced to estimate the weight of each DM in the group
decision-making process along with the last aggregation for
the DMs’ judgments to avoid the data loss. Then, three prac-
tical applications about the robot selection, industrial site
selection and rapid prototyping process selection problems
are considered to explain steps of the proposed IVHF-MCGA
approach and to indicate its validity and applicability. Finally,
a comparative analysis between the proposed approach and
fuzzy group TOPSIS method is presented based on four
comparison parameters, including adequacy to changes of
alternatives and criteria, agility in decision process, influence
of DMs’ weights and impact of first and last aggregations, to
show its suitability.
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1 Introduction

In the last decade, industrial selection problems received
extensive attention by numerous researchers in the manu-
facturing industry. The industrial selection problem is an
important issue for manufacturing companies to enhance
their performance and productivity (Mousavi et al. 2013b).
Hence, an effective evaluation and decision method for
selecting the best industrial alternative among several poten-
tial candidates is very consequential when a company makes
a decision to choose a candidate for performing a special task
among various types and models according to different spec-
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ifications and factors, such as related cost, risk, complexity,
demand, service level and flexibility.

In the related literature, many studies have presented meth-
ods and tools to solve the selection problems under uncer-
tainty. In this regard, Ölçer and Odabaşi (2005) designed
a fuzzy multi-attribute group decision-making model for
solving the propulsion system selection problem. Li et al.
(2007) proposed a grey method for solving the supplier
selection problem under uncertainty. In addition, for solv-
ing the robot selection problem; for instance, Agrawal et al.
(1991) considered the technique for order preference by sim-
ilarity to an ideal solution (TOPSIS method); Goh (1997)
considered the analytic hierarchy process (AHP) method;
Malek et al. (2000) focused on a decision support sys-
tem (DSS) with respect to analytical algorithms; Chu and
Lin (2003) proposed a fuzzy TOPSIS method, in which
the rating of an alternative among the selected criteria and
the criteria weights are expressed basing on the linguis-
tic terms; Bhangale et al. (2004) used the graphical and
TOPSIS methods; Karsak (2005) presented a multi-criteria
decision-making (MCDM) method based on Choquet inte-
gral; Chatterjee et al. (2010) used two Vlse Kriterijumska
Optimizacija I Kompromisno Resenje (VIKOR) and elimina-
tion and choice translating reality (ELECTRE) methods; Rao
et al. (2011) proposed a decision-making method using fuzzy
logic to convert the qualitative attributes into the quantita-
tive attributes regarding objective and subjective preferences;
and İç et al. (2013) introduced a DSS based on fuzzy AHP
method.

For selection problems in reality for overcoming the
uncertainty in classical fuzzy sets theory, it is difficult for
decision makers (DMs) or experts to exactly specify their
opinions as a number under an interval [0,1] (e.g., Mousavi
et al. 2013b, 2015; Vahdani et al. 2014). Thus, it is more
appropriate to demonstrate their opinions by an interval
(Mousavi et al. 2013b, a; Zhao et al. 2014). Gorzałczany
(1987) and Turksen (1986) have been firstly introduced the
interval-valued fuzzy sets. This theory is widely used in
real-world selection problems such as approximate reasoning
(Bustince 1994; Gorzałczany 1987) and preference model-
ing (Türkşen and Bilgiç 1996). Yao and Yu (2004) illustrated
the unknown potential alternatives effectiveness scores using
the statistical data under an interval-valued fuzzy environ-
ment. Vahdani et al. (2010) and Vahdani and Hadipour
(2011) developed VIKOR and ELECTRE methods based on
interval-valued fuzzy sets for solving the MCDM problems,
respectively.

In addition, Devi (2011) focused on the VIKOR method in
intuitionistic fuzzy setting for solving the MCDM problems,
in which rating of the candidate alternatives and the criteria
weights were judged by triangular intuitionistic fuzzy sets.
Vahdani et al. (2013) proposed a modified TOPSIS method
based on the interval-valued fuzzy situations and the weight

of criteria and rating of alternatives were expressed by lin-
guistic terms which converted to triangular interval-valued
fuzzy numbers. Liu et al. (2014) hybridized an MCDM
method based on the TOPSIS with the interval 2-tuple lin-
guistic for selection and evaluation of the robot selection
problem. Wang (2015) extended an MCDM model based on
the simple additive weighting method and relative preference
index in which DMs assigned their judgments by triangular
fuzzy numbers.

Modern fuzzy sets theory has been introduced that
could help to solve the multi-criteria group decision-making
(MCGDM) problems. In this regard, one of the powerful and
effective fuzzy sets theories that could cope with uncertainty
is interval-valued hesitant fuzzy sets (IVHFSs). This concept
has been first introduced by Chen et al. (2013) by general-
izing the concept of hesitant fuzzy set (HFS) and interval
value form. The IVHFSs have expressed that experts or
DMs could assign some membership degrees for an element
under a set by interval values. Recently, some researchers
have focused on this concept and solved MCGDM prob-
lems with the HFS and IVHFS. Chen et al. (2013) developed
an approach to group decision making by considering the
interval-valued hesitant preference relations. In their study,
the opinions of each DM are considered unequal. Farhadinia
(2013) focused on relationship between entropy, distance
measure, and similarity measure for the HFS and IVHFS.
Then, two clustering algorithms are extended under the hes-
itant fuzzy environment. Xu and Zhang (2013) based on
the maximizing deviation method established an optimiza-
tion model to determine the criteria weights. Then, they
extend the TOPSIS method based on the hesitant fuzzy
and interval-valued hesitant fuzzy situations. Zhang and Xu
(2014) presented an interval-based programming model for
MCGDM problems under hesitant fuzzy environment with
incomplete preference over candidate alternatives. Li and
Peng (2014) proposed some Hamacher operations under
IVHFS and then extended a practical approach for selection
the shale gas areas. Consequently, the gap of recent literature
is shown in Table 1. This table shows that determining the
DMs’ weights and aggregating the DMs’ judgments in the
last steps are not considered in the literature as two important
features for decreasing the errors and loss of data.

The review thus suggests that there is a need for a new
group decision-making method for solving the selection
problems and for decreasing the errors by overcoming the
risk and uncertainty issues and by fulfilling the DMs’ require-
ments. This study proposes a soft computing approach based
on two new interval-valued hesitant fuzzy complex pro-
portional assessments (IVHF-COPRAS) and interval-valued
hesitant fuzzy compromise solution (IVHF-CS) methods
with last aggregation, and aims to fill the gap in the selection
problems and decrease the loss for the industrial selection
problems. In this presented interval-valued hesitant fuzzy
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Table 1 Fuzzy decision-making methods and their characteristics

Authors Characteristics of fuzzy decision methods

Assigning some
membership
degrees

Considering the
IVF approach

Group decision
making

Computing
decision
makers’ weights

Computing
criteria
weights

Utilizing the
linguistic terms

Last
aggregation

Chu and Lin (2003)
� � �

Byun and Lee (2005) � �
Devi (2011) � � �
Vahdani et al. (2013) � � � �
Xu and Zhang (2013) � � �
Liu et al. (2014) � � �
Zhang and Xu (2014) � � � � �
Wang (2015) � � �
Proposed approach � � � � � � �

multi-criteria group assessment (IVHF-MCGA) approach
under uncertain environment, some operators are needed to
be extended, such as summation, multiplication, subtraction,
and division that are introduced for making decisions under
uncertainty. Moreover, in the group decision analysis, deter-
mining the weight of each criterion and the weight of each
DM or expert is very significant issues that have been con-
sidered in the recent literature (Ayağ 2010; Yue 2011).

In this paper, a soft computing approach, IVHF-MCGA,
is presented, in which a new IVHF-CS method is devel-
oped for estimating the relative importance of each DM
under uncertainty. In addition, the classical entropy method
is extended under an interval-valued hesitant fuzzy environ-
ment for specifying the weight of each criterion. In sum, the
main contributions of this study are:

• Proposing a new version of the classical entropy method
for the weight of each criterion under interval-valued hes-
itant fuzzy environment;

• Presenting a new interval-valued hesitant fuzzy weight-
ing method based on the compromise solution for each
DM or expert;

• Extending a new version of the classical COPRAS
method under interval-valued hesitant fuzzy environment
for the evaluation process;

• Developing a novel soft computing approach based on
aggregating the DMs’ judgments at end of the group
decision-making process for the prevention of the data
loss; and

• Introducing some IVHF operators that are used in the
proposed soft computing approach.

The paper is arranged as follows: in Sect. 2, we review
some basic concepts and operations for IVHFSs. Also, some
operators that are considered in the proposed soft com-

puting approach are developed. In Sect. 3, we develop two
new COPRAS and compromise solution methods under
the interval-valued hesitant fuzzy environment to solve the
MCGDM problems. In Sect. 4, three illustrative examples
are provided to show the application of the proposed IVHF-
MCGA approach in selecting the most suitable candidates.
In addition, the comparative analysis for proposed IVHF-
MCGA approach and the fuzzy group TOPSIS method from
the literature is presented in Sect. 5. Finally, some conclu-
sions and suggestions are demonstrated in Sect. 6.

2 Preliminaries

In this section, some basic assumptions and relations for the
IVHFSs are defined. In the following, the subtraction and
division operations are extended for the IVHFS.

Definition 1 (Torra 2010; Torra and Narukawa 2009) Let X
be a universe set, then HFS on X in terms of a function E as
which applied to X returns to subset of [0, 1].

E = {< x, hE (x) > |x ∈ X} (1)

where hE (x) is defined as set of membership degrees for an
element in subset of [0,1].

Definition 2 (Atanassov 1986, 1989, 2000) Let X be a ref-
erence set, thenE on X is intuitionistic fuzzy set (IFS). In this
respect, the membership degree and non-membership degree
have been denoted by μE (xi ) and νE (xi ), respectively, such
that 0 ≤ μE (xi ) + νE (xi ) ≤ 1 for xi ∈ X .

E = 〈xi , μE (xi ), νE (xi )〉 for xi ∈ X (2)
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Definition 3 (Chen et al. 2013) Let X be a universe set, then
the IVHFS on X is demonstrated as follows:

Ẽ =
{〈
xi , h̃ Ẽ (xi )

〉
|xi ∈ X, i = 1, 2, . . . , n

}
(3)

where h̃ Ẽ (xi ) is represented by interval membership degrees
for an element xi ∈ X under set E . Interval-valued hesitant
fuzzy element (IVHFE) is shown by h̃ Ẽ (xi )that satisfies the
relation as below:

h̃ Ẽ (xi ) = {
γ̃ |γ̃ ∈ h̃ Ẽ (xi )

}
(4)

where γ̃ = [
γ̃ L , γ̃U

]
is an interval number where γ̃ L and

γ̃U express the lower and upper bound of γ̃ , respectively.

Definition 4 (Chen et al. 2013). Let h̃, h̃1and h̃2 be three
IVHFEs, then the following relations are defined:

h̃c =
{[

1 − γ̃U , 1 − γ̃ L
]
|γ̃ ∈ h̃

}
; (5)

h̃1 ∪ h̃2 =
{[

max(γ̃ L
1 , γ̃ L

2 ), max(γ̃U
1 , γ̃U

2 )
]

|γ̃1 ∈ h̃1, γ̃2 ∈ h̃2

}
; (6)

h̃1 ∩ h̃2 =
{[

min(γ̃ L
1 , γ̃ L

2 ), min(γ̃U
1 , γ̃U

2 )
]

|γ̃1 ∈ γ̃1, γ̃2 ∈ h̃2

}
; (7)

h̃λ =
{[

(γ̃ L)λ, (γ̃U )λ
]
|γ̃ ∈ h̃

}
, λ > 0; (8)

λh̃ =
{[

1 − (1 − γ̃ L)λ, 1 − (1 − γ̃U )λ
]
|γ̃ ∈ h̃

}
, λ > 0;

(9)

h̃1 ⊕ h̃2 =
{[

γ̃ L
1 + γ̃ L

2 − γ̃ L
1 γ̃ L

2 , γ̃U
1 + γ̃U

2 − γ̃U
1 γ̃U

2

]

|γ̃1 ∈ h̃1, γ̃2 ∈ h̃2

}
(10)

h̃1 ⊗ h̃2 =
{[

γ̃ L
1 γ̃ L

2 , γ̃U
1 γ̃U

2

]
|γ̃1 ∈ h̃1, γ̃2 ∈ h̃2

}
(11)

Definition 5 Let E = {
h̃1, h̃2, . . . , h̃n

}
be a collection of

IVHFEs, then we propose the following extended operations
based on Definition 4:

n⊕
i=1

h̃i = ∪γ̃1∈h̃1,γ̃2∈h̃2,...,γ̃n∈h̃n
{[

1 −
n∏

i=1

(1 − γ̃ L
i ), 1 −

n∏
i=1

(1 − γ̃U
i )

]}
(12)

h̃1 ⊗ h̃2 ⊗ · · · ⊗ h̃n = ∪γ̃1∈h̃1,γ̃2∈h̃2,...,γ̃n∈h̃n{[
n∏

i=1

γ̃ L
i ,

n∏
i=1

γ̃U
i

]}
(13)

Theorem 1 Let h̃1 = [
γ̃ L

1 , γ̃U
1

]
, h̃2 = [

γ̃ L
2 , γ̃U

2

]
, h̃3 =[

γ̃ L
3 , γ̃U

3

]
be three IVHFEs; then, we have

h̃c1 ⊕ h̃c2 ⊕ h̃c3 = (h̃⊗
1 h̃

⊗
2 h̃3)

c (14)

h̃c1 ⊗ h̃c2 ⊗ h̃c3 = (h̃1 ⊕ h̃2 ⊕ h̃3)
c (15)

Proof For three IVHFEs h̃1, h̃2 and h̃3, we have

h̃⊕
1 h̃

⊕
2 h̃

=
3 ∪

γ̃1∈h̃1,γ̃2∈h̃2,γ̃3∈h̃3{[
γ̃ L

1 + γ̃ L
2 + γ̃ L

3 − γ̃ L
1 γ̃ L

2 − γ̃ L
1 γ̃ L

3 − γ̃ L
2 γ̃ L

3 + γ̃ L
1

× γ̃ L
2 γ̃ L

3 , γ̃U
1 + γ̃U

2 + γ̃U
3 − γ̃U

1 γ̃U
2 − γ̃U

1 γ̃U
3 − γ̃U

2 γ̃U
3

+γ̃U
1 γ̃U

2 γ̃U
3

]}
(16)

h̃c1 ⊕ h̃c2 ⊕ h̃c3 = ∪
γ̃1∈h̃1,γ̃2∈h̃2,γ̃3∈h̃3{[

1 − γ̃ L
1 .γ̃ L

2 .γ̃ L
3 , 1 − γ̃U

1 .γ̃U
2 .γ̃U

3

]}
= (h̃⊗

1 h̃
⊗
2 h̃3)

c

h̃⊗
1 h̃

⊗
2 h̃=

3 ∪
γ̃1∈h̃1,γ̃2∈h̃2,γ̃3∈h̃3

{[
γ̃ L

1 γ̃ L
2 γ̃ L

3 , γ̃U
1 γ̃U

2 γ̃U
3

]}

× h̃c1 ⊗ h̃c2 ⊗ h̃c3 = ∪
γ̃1∈h̃1,γ̃2∈h̃2,γ̃3∈h̃3{[

(1 − γ̃ L
1 )(1 − γ̃ L

2 )(1 − γ̃ L
3 ), (1 − γ̃U

1 )(1 − γ̃U
2 )(1 − γ̃U

3 )
]}

=
[
1 − γ̃ L

1 − γ̃ L
2 − γ̃ L

3 + γ̃ L
1 γ̃ L

2 + γ̃ L
1 γ̃ L

3 + γ̃ L
2 γ̃ L

3 − γ̃ L
1 γ̃ L

2 γ̃ L
3 ,

1 − γ̃U
1 − γ̃U

2 − γ̃U
3 + γ̃U

1 γ̃U
2 + γ̃U

1 γ̃U
3 + γ̃U

2 γ̃U
3 − γ̃U

1 γ̃U
2 γ̃U

3

]

= (h̃1 ⊕ h̃2 ⊕ h̃3)
c (17)

The generalized of relation (16) is represented, equivalent to
Eq. (12), as follows:

h̃1 ⊕ h̃2 ⊕ · · · ⊕ h̃=
n ∪

γ̃1∈h̃1,γ̃2∈h̃2,...,γ̃n∈h̃n⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

n∑
i=1

γ̃ L
i −

n−1∑
i=1

γ̃ L
i .γ̃ L

j

∀ j=i+1,...,n

+
n−2∑
i=1

γ̃ L
i .γ̃ L

j .γ̃ L
k

∀ j=i+1,...,n−1
∀k= j+1,...,n

− · · ·

+
n∏

i=1

γ̃ L
i ,

n∑
i=1

γ̃U
i −

n−1∑
i=1

γ̃U
i .γ̃U

j

∀ j=i+1,...,n

+
n−2∑
i=1

γ̃U
i .γ̃U

j .γ̃U
k

∀ j=i+1,...,n−1
∀k= j+1,...,n

− · · · +
n∏

i=1

γ̃U
i

⎞
⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

∀i �= j �= k (18)

Thus, the proof of theorem 1 is complete �

Definition 6 (Liao and Xu 2014) The subtraction and divi-
sion operations for the HFS are defined by considering the
operations of the IFS and regarding the correlation between
IFS and HFS as follows:
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h̃1 − h̃2 = ∪
γ̃1∈h̃1,γ̃2∈h̃2

{
γ̃1−γ̃2
1−γ̃2

if γ̃1 ≥ γ̃2 and γ̃2 �= 1;
0 otherwise

}

(19)

h̃1

h̃2
= ∪

γ̃1∈h̃1,γ̃2∈h̃2

{
γ̃1
γ̃2

if γ̃1 ≤ γ̃2 and γ̃2 �= 0;
1 otherwise

}
(20)

Definition 7 We extend the subtraction and division opera-
tors based on definition 5 under IVHFSs as follows:

h̃1 − h̃2 = ∪
γ̃ l

1∈h̃1,γ̃
l
2∈h̃2,γ̃

u
1 ∈h̃1,γ̃

u
2 ∈h̃2⎧⎨

⎩

[
γ̃ l

1−γ̃ l
2

1−γ̃ l
2

,
γ̃ u

1 −γ̃ u
2

1−γ̃ u
2

]
if γ̃ l

1 ≥ γ̃ l
2, γ̃ u

1 ≥ γ̃ u
2 and γ̃ l

2, γ̃ u
2 �= 1;

0 otherwise

⎫⎬
⎭

(21)

h̃1

h̃2
= ∪

γ̃ l
1∈h̃1,γ̃

l
2∈h̃2,γ̃

u
1 ∈h̃1,γ̃

u
2 ∈h̃2

⎧⎨
⎩

[
γ̃ l

1
γ̃ l

2
,

γ̃ u
1

γ̃ u
2

]
if γ̃ l

1 ≤ γ̃ l
2, γ̃

u
1 ≤ γ̃ u

2 , γ̃ l
1.γ̃

u
2 ≤ γ̃ l

2.γ̃
u
1 and γ̃ l

2, γ̃
u
2 �= 0;

1 otherwise

⎫⎬
⎭ (22)

Theorem 2 Let h1 and h2 be two IVHFEs, then

(h̃1 − h̃2) ⊕ h̃2 = h̃1 (23)(
h̃1

h̃2

)
⊗ h̃2 = h̃1 (24)

Proof For two IVHFEs h̃1 and h̃2, we have

(h̃1 − h̃2) ⊕ h̃2 = h̃1

= ∪
γ̃ l

1∈h̃1,γ̃
l
2∈h̃2,γ̃

l
1≥γ̃ l

2,γ̃ l
2 �=1,γ̃ u

1 ∈h̃1,γ̃
u
2 ∈h̃2,γ̃

u
1 ≥γ̃ u

2 ,γ̃ u
2 �=1{

γ̃ l
1 − γ̃ l

2

1 − γ̃ l
2

,
γ̃ u

1 − γ̃ u
2

1 − γ̃ u
2

}
⊕ h̃2

= ∪
γ̃ l

1∈h̃1,γ̃
l
2∈h̃2,γ̃

l
1≥γ̃ l

2,γ̃ l
2 �=1,γ̃ u

1 ∈h̃1,γ̃
u
2 ∈h̃2,γ̃

u
1 ≥γ̃ u

2 ,γ̃ u
2 �=1{

γ̃ l
1 − γ̃ l

2

1 − γ̃ l
2

+γ̃ l
2 − γ̃ l

1 − γ̃ l
2

1 − γ̃ l
2

γ̃ l
2,

γ̃ u
1 − γ̃ u

2

1 − γ̃ u
2

+ γ̃ u
2 − γ̃ u

1 − γ̃ u
2

1 − γ̃ u
2

γ̃ u
2

}

= ∪
γ̃ l

1∈h̃1,γ̃
l
2∈h̃2,γ̃

l
1≥γ̃ l

2,γ̃ l
2 �=1,γ̃ u

1 ∈h̃1,γ̃
u
2 ∈h̃2,γ̃

u
1 ≥γ̃ u

2 ,γ̃ u
2 �=1{

γ̃ l
1(1 − γ̃ l

2)

1 − γ̃ l
2

,
γ̃ u

1 (1 − γ̃ u
2 )

1 − γ̃ u
2

}

= ∪
γ̃ l

1∈h̃1
= h̃1 (25)

(
h̃1

h̃2

)
⊗ h̃2 = h̃1

= ∪
γ̃ l

1∈h̃1,γ̃
l
2∈h̃2,γ̃

l
1≤γ̃ l

2,γ̃ l
2 �=0,γ̃ u

1 ∈h̃1,γ̃
u
2 ∈h̃2,γ̃

u
1 ≤γ̃ u

2 ,γ̃ u
2 �=0{

γ̃ l
1

γ̃ l
2

,
γ̃ u

1

γ̃ u
2

}
⊗ h̃2

= ∪
γ̃ l

1∈h̃1,γ̃
l
2∈h̃2,γ̃

l
1≤γ̃ l

2,γ̃ l
2 �=0,γ̃ u

1 ∈h̃1,γ̃
u
2 ∈h̃2,γ̃

u
1 ≤γ̃ u

2 ,γ̃ u
2 �=0{

γ̃ l
1

γ̃ l
2

.γ̃ l
2,

γ̃ u
1

γ̃ u
2

.γ̃ u
2

}

= ∪
γ̃ l

1∈h̃1,γ̃
u
1 ∈h̃1

{
γ̃ l

1, γ̃
u
1

}
= h̃1 (26)

Thus, the proof of theorem 2 is complete �


Definition 8 (Farhadinia 2013) Consider M̃ andÑ as two
IVHFSs on X . The component-wise ordering and the total
ordering are defined as two types of ordering of IVHFSs,
respectively, as follows:

M̃ ≤ Ñ i f hσ( j)L

M̃
(xi ) ≤ hσ( j)L

Ñ
(xi ),

hσ( j)U

M̃
(xi ) ≤ hσ( j)U

Ñ
(xi )

∀i = 1, 2, . . . , n; j = 1, 2, . . . , lxi (27)

M̃ ≺− Ñ i f Score(M̃) ≤ Score(Ñ ) (28)

Score(M̃) = 1

n

n∑
i=1

⎛
⎝ 1

lxi

lxi∑
j=1

⎡
⎣ hσ( j)L

M̃
(xi ) + hσ( j)U

M̃
(xi )

2

⎤
⎦
⎞
⎠

(29)

where hM and hN are IVHFSs which represented as

hσ( j)

M̃
(xi ) =

[
hσ( j)L

M̃
(xi ), h

σ( j)U

M̃
(xi )

]
, hσ( j)

Ñ
(xi ) =

[
hσ( j)L

Ñ

(xi ), h
σ( j)U

Ñ
(xi )

]
, respectively; also, hσ( j)

M̃
and hσ( j)

Ñ
are the

j th largest intervals in hM̃ (xi ) and hÑ (xi ), respectively.

Assumptions The number of intervals in various IVH-
FEs may be different. Assume that the number of intervals in
hM̃ (x) is denoted by l(hM̃ (x)). In this respect, two assump-
tions are made as follows:

(A1) In each hM̃ (x), all the elements have to be arranged in
increasing order, and
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(A2) If l(hM̃ (x)) �= l(hÑ (x)), then lx = max{l(hM̃ (x)),
l(hÑ (x))} for some x ∈ X . Two IVHFEs such as
hM̃ (x)and hÑ (x) should have the same length when
compared. If hM̃ (x) has less elements than inhÑ (x),
then hM̃ (x) should be extended based on an optimistic
approach, in which value it has to be added(hM̃ (x)).

Definition 9 (Chen et al. 2013) The interval-valued hes-
itant fuzzy Euclidean distance measure and the interval-
valued hesitant fuzzy hamming distance measure are defined,
respectively, as follows:

d(h̃M , h̃N ) =

√√√√√ 1

2lxi

lxi∑
j=1

(∣∣∣h̃σ( j)L
M (xi ) − h̃σ( j)L

N (xi )
∣∣∣
2 +

∣∣∣h̃σ( j)U
M (xi ) − h̃σ( j)U

N (xi )
∣∣∣
2
)

(30)

d(h̃M , h̃N ) = 1

2lxi

lxi∑
j=1

(∣∣∣h̃σ( j)L
M (xi ) − h̃σ( j)L

N (xi )
∣∣∣ +

∣∣∣h̃σ( j)U
M (xi ) − h̃σ( j)U

N (xi )
∣∣∣
)

(31)

Definition 10 (Chen et al. 2013) The interval-valued hesi-
tant fuzzy geometric (IVHFG) relation is defined below:

I V HFG(h̃1, h̃2, . . . , h̃n) =
(

n⊗
j=1

(h̃ j )
1
n

)

= ∪
γ̃1∈h̃1,γ̃2∈h̃2,...,γ̃n∈h̃n

⎧⎨
⎩

⎡
⎣

n∏
j=1

(γ̃ L
j )

1
n ,

n∏
j=1

(γ̃U
j )

1
n

⎤
⎦
⎫⎬
⎭
(32)

Definition 11 (Chen et al. 2013) The interval-valued fuzzy
hesitant weighted geometric (IVHFWG) relation is expressed
below:

I V HFWG(h̃1, h̃2, . . . , h̃n) =
(

n⊗
j=1

(h̃ j )
w j

)

= ∪
γ̃1∈h̃1,γ̃2∈h̃2,...,γ̃n∈h̃n

⎧⎨
⎩

⎡
⎣

n∏
j=1

(γ̃ L
j )w j ,

n∏
j=1

(γ̃U
j )w j

⎤
⎦
⎫⎬
⎭

(33)

where w = (w1, w2, . . . , wn)
T are the weight vector of

h̃ j ( j = 1, 2, . . . , n) and w j > 0,
n∑
j=1

w j = 1.

Definition 12 (Zhang et al. 2014) In MCGDM problems,
there are two kinds of attributes such as benefit and cost
types. In this respect, the cost attributes’ values are trans-
formed to benefit attributes’ values; i.e., the interval-valued
hesitant fuzzy decision matrix (H̃ = (h̃i j )m×n) is normal-
ized (B̃ = (b̃i j )m×n) based on the following relations:

b̃i j =
⎧⎨
⎩

{[
γ̃ l
i j , γ̃

u
i j

]}
for positive criteria{[

1 − γ̃ u
i j , 1 − γ̃ l

i j

]}
for negative criteria

∀i = 1, 2, . . . ,m; j = 1, 2, . . . , n (34)

3 Proposed soft computing approach based on
IVHF-MCGA method

In this section, the proposed IVHF-MCGA approach is intro-
duced, which is composed of three methods: the COPRAS
method is tailored based on the IVHFSs for sorting of the can-
didate alternatives; the IVHF-entropy method and IVHF-CS
method are developed to determine the weights of criteria
and DMs, respectively. In this respect, the structure of the
proposed IVHF-MCGA approach is depicted in Fig. 1.

Step 1. Determine important criteria which satisfy the
potential alternatives.

Step 2. Construct the interval-valued hesitant fuzzy deci-
sion matrix (IVHF-decision matrix) from a committee of
DMs as follows:
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Fig. 1 Structure of the
proposed IVHF-MCGA
approach

Form IVHF-MCGA structure

Determine the criteria to evaluate the 
candidate alternatives

Determine candidate alternatives

Establish a committee of DMs

Approve IVHF-
decision matrix

Form the IVHF-decision matrix

Establish the IVHF-decision matrix

Rank the candidate alternatives

Select the most suitable alternative

Problem 
description

Determine the DMs’ weightsIVHF-CS
method

IVHF-
COPRAS
method

Determine the criteria weights
IVHF-
entropy 
method

YesNo

M =
C1 · · · Cn

A1
...

Am

⎡
⎢⎣

{[
μL1

11 , μU1
11

]
,
[
μL2

11 , μU2
11

]
, . . . ,

[
μLk

11 , μUk
11

]} · · · {[μL1
1n , μU1

1n

]
,
[
μL2

1n , μU2
1n

]
, . . . ,

[
μLk

1n , μUk
1n

]}
...

. . .
...{[

μL1
m1, μ

U1
m1

]
,
[
μL2
m1, μ

U2
m1

]
, . . . ,

[
μLk
m1, μ

Uk
m1

]} · · · {[μL1
mn, μ

U1
mn

]
,
[
μL2
mn, μ

U2
mn

]
, . . . ,

[
μLk
mn, μ

Uk
mn

]}

⎤
⎥⎦
m×n

(35)

Step 3. Estimate criteria weights by the proposed IVHF-
entropy method regarding DMs’ opinions.

Step 3.1. Construct the aggregated IVHF-decision matrix
(MAgg) based on Definition 10 as follows:
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[
μL
i j , μ

U
i j

]
= IVHFG(h̃ p1, h̃ p2, . . . , h̃ pk) =

(
K⊗

k=1
(h̃ pk)

1
k

)

= ∪
γ̃p1∈h̃ p1,γ̃p2∈h̃ p2,...,γ̃pk∈h̃ pk

{[
K∏

k=1

(γ̃ L
pk)

1
k ,

K∏
k=1

(γ̃U
pk)

1
k

]}

(36)

MAgg =
C1 C2 · · · Cn

A1
...

Am

⎛
⎜⎝

[
μL

11, μ
U
11

] [
μL

12, μ
U
12

] · · · [
μL

1n, μ
U
1n

]
...

...
. . .

...[
μL
m1, μ

U
m1

] [
μL
m2, μ

U
m2

] · · · [μL
mn, μ

U
mn

]

⎞
⎟⎠

m×n

(37)

Step 3.2. Aggregate the DMs’ judgments about the relative
importance of criteria (h̃wk) by the following relation:

υ j = IVHFG(h̃w1, h̃w2, . . . , h̃wk) =
(

K⊗
k=1

(h̃wk)
1
k

)

= ∪
γ̃w1∈h̃w1,γ̃w2∈h̃w2,...,γ̃wk∈h̃wk{[

K∏
k=1

(γ̃ L
wk)

1
k ,

K∏
k=1

(γ̃U
wk)

1
k

]}
(38)

Step 3.3. Specify the Ti j =
[
T l
i j , Tu

i j

]
by the following rela-

tions:

T l
i j =

⎧⎪⎨
⎪⎩

μl
i j

1−
m∏
i=1

(1−μl
i j )

if μl
i j ≤ 1 −

m∏
i=1

(1 − μl
i j ) and 1 −

m∏
i=1

(1 − μl
i j ) �= 0

1 Otherwise

(39)

T u
i j =

⎧⎪⎨
⎪⎩

μu
i j

1−
m∏
i=1

(1−μu
i j )

if μu
i j ≤ 1 −

m∏
i=1

(1 − μu
i j ) and 1 −

m∏
i=1

(1 − μu
i j ) �= 0

1 Otherwise

(40)

Step 3.4. Specify the interval-valued hesitant fuzzy degree
of deviation or interval-valued hesitant fuzzy unreliability
of each criterion regarding interval-valued hesitant fuzzy
entropy (E j = [El

j , E
u
j ]) as follows:

d j =
⎡
⎣
(

m∏
i=1

(1 − T l
i j )

Ln(T l
i j )

)− 1
Ln(m)

,

(
m∏
i=1

(1 − T u
i j )

Ln(T u
i j )

)− 1
Ln(m)

⎤
⎦

(41)

Step 3.5.Determine the final criteria weights (w j ) by accord-
ing to DMs’ opinions.

w j =
υl
j .d

l
j

(∑n
j=1 υu

j .d
u
j

)
+ υu

j .d
u
j

(∑n
j=1 υl

j .d
l
j

)

2
(∑n

j=1 υl
j .d

l
j

) (∑n
j=1 υu

j .d
u
j

) ∀ j

(42)

Step 4.Estimate the DMs’ weights by the proposed IVHF-CS
method.
Step 4.1.Establish the weighted normalized IVHF-decision
matrix for each DM based on Definition 12.

Mk =
C1 C2 · · · Cn

A1
...

Am

⎛
⎜⎝

[
μLk

11 , μUk
11

] [
μLk

12 , μUk
12

] · · · [μLk
1n , μUk

1n

]
...

...
. . .

...[
μLk
m1, μ

Uk
m1

] [
μLk
m2, μ

Uk
m2

] · · · [μLk
mn, μ

Uk
mn

]

⎞
⎟⎠

m×n

(43)

Step 4.2. Estimate the interval-valued hesitant fuzzy positive
ideal solution (IVHF-PIS) and interval-valued hesitant fuzzy
negative ideal solution (IVHF-NIS) based on the following
relations:

A∗ =
([

μ∗L
i j , μ∗U

i j

])
m×n

=

C1 C2 · · · Cn

A1
.
.
.

Am

⎛
⎜⎝

[
μL∗

11 , μU∗
11

] [
μL∗

12 , μU∗
12

] · · · [μL∗
1n , μU∗

1n

]
.
.
.

.

.

.
. . .

.

.

.[
μL∗
m1, μ

U∗
m1

] [
μL∗
m2, μ

U∗
m2

] · · · [μL∗
mn, μ

U∗
mn

]

⎞
⎟⎠

m×n

(44)
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A− = (
[
μ−L
i j , μ−U

i j

]
)m×n

=

C1 C2 · · · Cn

A1
...

Am

⎛
⎜⎜⎜⎝

[
μL−

11 , μU−
11

] [
μL−

12 , μU−
12

]
· · ·

[
μL−

1n , μU−
1n

]

...
...

. . .
...[

μL−
m1 , μU−

m1

] [
μL−
m2 , μU−

m2

]
· · · [μL−

mn , μU−
mn

]

⎞
⎟⎟⎟⎠

m×n

(45)

where the average of group decision matrix is computed as
follows:

μ∗L
i j = 1

K

K∑
k=1

μLk
i j (46)

μ∗U
i j = 1

K

K∑
k=1

μUk
i j (47)

μ−L
i j = min

k

{
μLk
i j

}
(48)

μ−U
i j = max

k

{
μUk
i j

}
(49)

Step 4.3. Compute the separation measure for the matrix of
each DM from the IVHF-PIS and IVHF-NIS by applying
the interval-valued hesitant fuzzy Euclidean distance mea-
sure. In this regard, the distance measure is developed to the
n-dimensional interval-valued hesitant fuzzy Euclidean dis-
tance measure as below:

ξ∗
k =

√√√√√ 1

2lxi

m∑
i=1

n∑
j=1

lxi∑
λ=1

(∣∣∣μLkσ(λ)
i j (xi ) − A∗Lσ(λ)

i j (xi )
∣∣∣
2 +

∣∣∣μUkσ(λ)
i j (xi ) − A∗Uσ(λ)

i j (xi )
∣∣∣
2
)

∀k (50)

ξ−
k =

√√√√√ 1

2lxi

m∑
i=1

n∑
j=1

lxi∑
λ=1

(∣∣∣μLkσ(λ)
i j (xi ) − A−Lσ(λ)

i j (xi )
∣∣∣
2 +

∣∣∣μUkσ(λ)
i j (xi ) − A−Uσ(λ)

i j (xi )
∣∣∣
2
)

∀k (51)

Step 4.4. Determine the weight of each DM (�k) by consid-
ering the following relation:

�k = ξ−
k

(ξ−
k + ξ∗

k )

(∑K
k=1

ξ−
k

ξ−
k +ξ∗

k

) ∀k (52)

Step 5. Calculate sums pki = [
plki , puki

]
of positive criteria

values with respect to the weighted normalized IVHF-
decision matrix for each DM in Step 4.1:

pki =
⎡
⎣1 −

r∏
j=1

(1 − μlk
i j ), 1 −

r∏
j=1

(1 − μuk
i j )

⎤
⎦ ∀k, i (53)

where r is the number of positive criteria. It is sup-
posed that in the IVHF-decision matrix, first columns are
placed by positive criteria and negative criteria are placed
after.

Step 6. Computing sums Rk
i = [Rlk

i , Ruk
i ] of criteria val-

ues which are negative criteria for each potential alternative
with respect to weighted normalized hesitant fuzzy decision
matrix for each DM in Step 4.1.

Rk
i =

⎡
⎣1 −

n∏
j=r+1

(1 − μlk
i j ), 1 −

n∏
j=r+1

(1 − μuk
i j )

⎤
⎦ ∀k, i

(54)

Step 7. Determine the smallest value of Rk
i = [Rlk

i , Ruk
i ] as

follows:

Rk
min =

[
min
i

(Rlk
i ), min

i
(Ruk

i )

]
∀k (55)

Step 8. Calculate the interval-valued hesitant fuzzy relative
importance of each alternative (Qk

i = [
Qlk

i , Quk
i

]
) regarding

each DM as follows:

Qk
i =

⎡
⎢⎢⎢⎣Plk

i +(1 − Plk
i )

⎛
⎜⎜⎜⎝

1 − (∏m
i (1 − Rlk

i )
)Rlk

min

1 −
(∏m

i

(
1 − Rlk

min
Rlk
i

))Rlk
i

⎞
⎟⎟⎟⎠ , Puk

i

+ (1−Puk
i )

⎛
⎜⎜⎜⎝

1 − (∏m
i (1 − Ruk

i )
)Ruk

min

1 −
(∏m

i

(
1 − Ruk

min
Ruk
i

))Ruk
i

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦∀k, i (56)

Step 9. Determine each Qi value by utilizing the IVHFG by
considering the DMs’ weights as follows:
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Qi = IVHFWG(Ql1
i , Ql2

i , . . . , Qlk
i ) =

(
K⊗

k=1
(Q̃k

i )
�k

)

= ∪Q̃1∈h̃q1,Q̃2∈h̃q2,...,Q̃k∈h̃qk

×
{[

K∏
k=1

(Qlk
i )�

l
k ,

K∏
k=1

(Quk
i )�

u
k

]}
∀i (57)

Step 10. Compute the interval-valued hesitant fuzzy utility
degree of each possible alternative as below:

Ni =
[

Ql
i

max(Ql
i )

,
Qu

i

max(Qu
i )

]
100 % (58)

Step 11. Rank the alternatives by selecting the maximum
value of interval-valued hesitant fuzzy utility degree by order-
ing relation based on Definition 8.

4 Application of the proposed IVHF-MCGA
method in solving the MCGDM problems

4.1 Illustrative example 1: robot selection

The practical application from Vahdani et al. (2014) is used
to show the suitability and feasibility of the proposed IVHF-
MCGA method. Suppose that a manufacturing company
needs a robot for implementing the material-handling assess-
ment. In this respect, for further assessment, three robots (Ri ,
i = 1, 2, 3) are selected for the MCGDM problem. Also, six
criteria are considered for rating the potential alternatives as
follows:

• Man–machine interface (C1);
• Programming flexibility (C2);
• Vendor’s service contract (C3);
• Load capacity (C4);
• Positioning accuracy (C5); and
• Purchase cost (C6).

In the robot selection problem, consider four DM (DMk , k =
1, 2, 3, 4) to evaluate the alternatives with respect to criteria
and to choose the best robot candidate. Tables 2 and 3 provide
values of hesitant linguistic variables for relative importance
of criteria and ratings of the alternatives. Table 4 indicates
the IVHF-decision matrix by linguistic variables, and also
the relative importance of each criterion as assessed by DMs’
opinions is indicated in Table 5.

The interval-valued hesitant fuzzy entropy method is pro-
posed to determine the weight of each criterion. As indicated
in Table 6, firstly, we establish an aggregated IVHF-decision
matrix and then construct the Ti j matrix. In this regard,
the interval-valued hesitant fuzzy degree of deviation or the
interval-valued hesitant fuzzy unreliability is computed and

Table 2 Linguistic variables for rating the importance of criteria

Linguistic variables Interval-valued hesitant fuzzy elements

Very high (VH) [0.90, 0.90]

High (H) [0.75, 0.80]

Medium high (MH) [0.60,0.70]

Medium (M) [0.50, 0.55]

Medium low (ML) [0.40,0.50]

Low (L) [0.35, 0.40]

Very low (VL) [0.10, 0.10]

Table 3 Linguistic variables for rating the potential alternatives

Linguistic variables Interval-valued hesitant fuzzy elements

Extremely good (EG) [1.00, 1.00]

Very very good (VVG) [0.90, 0.90]

Very good (VG) [0.80, 0.90]

Good (G) [0.70, 0.80]

Moderately good (MG) [0.60, 0.70]

Fair (F) [0.50, 0.60]

Moderately poor (MP) [0.40, 0.50]

Poor (P) [0.25, 0.40]

Very poor (VP) [0.10, 0.25]

Very very poor (VVP) [0.10, 0.10]

Table 4 Performance rating of the alternatives by linguistic variables
for the first illustrative example

Criteria Alternatives Decision makers

DM1 DM2 DM3 DM4

C1 R1 F F G VG

R2 F G F F

R3 G F VG G

C2 R1 G P G F

R2 VG G VG F

R3 G F VG G

C3 R1 F F G F

R2 G F VG G

R3 G G G VG

C4 R1 G MG F F

R2 MG G MG MG

R3 F F G G

C5 R1 F P MP F

R2 MG F F MG

R3 G G MG G

C6 R1 G G G MG

R2 MG MG F F

R3 F F P MP
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Table 5 Decision makers’ judgments about criteria weights for the first
illustrative example

Criteria Decision makers

DM1 DM2 DM3 DM4

C1 H VH VH H

C2 VH H VH M

C3 M L M L

C4 VH VH H VH

C5 VH H H H

C6 M M M L

the DMs’ opinions for criteria weights are considered for
decreasing the error of determining the criteria weights. Thus,
the DMs’ judgments are aggregated and the final weights of
each criterion are computed by Eq. (42). Regarding the men-
tioned results given in Table 7, the weight of each DM is also
computed by the proposed IVHF-CS method as mentioned in
Steps 4.1–4.4. As represented in Table 8, the separation mea-
sure is calculated using the n-dimensional interval-valued
fuzzy Euclidean distance. In addition, the relative closeness
and the final weight of each DM are computed.

In the following, the process of the proposed IVHF-
MCGA method, the sum of positive criteria values/negative
criteria values and the minimum value of negative criteria val-
ues are determined by Eqs. (53)–(55). The above-mentioned
results are indicated in Tables 9 and 10. In addition, as
shown in Table 11, the interval-valued hesitant fuzzy rela-
tive importance of each potential alternative and each DM
(Qk

i ) is computed by Eq. (56). Hence, the Qk
i values are

aggregated for determining the interval-valued hesitant fuzzy
utility degree. Finally, the potential alternatives are ranked
by selecting the maximum value of interval-valued hesitant
fuzzy utility degrees. In this regard, two types of ordering as
component-wise ordering and total ordering are considered
to sort the interval-valued hesitant fuzzy utility degree. Thus,
the proposed approach shows that the R3 is the best alterna-
tive for the MCGDM problem. The results are compared to
the Vahdani et al. (2014) method that indicates the verifica-
tion and validation of the proposed IVHF-MCGA method.
Results are provided in Table 12.

In addition, the aforementioned case study is solved by
the decision method of Liu et al. (2014), and the same rank-
ing results are achieved and are shown in Table 12. Therefore,
the proposed IVHF-MCGA approach is investigated by com-

Table 6 Aggregated
IVHF-decision matrix and Ti j
matrix for the first illustrative
example

Aggregated IVHF-decision matrix

R1 R2 R3

C1 [0.611690, 0.713524] [0.543878, 0.644741] [0.665371, 0.766731]

C2 [0.497481, 0.626033] [0.687958, 0.789644] [0.665371, 0.766731]

C3 [0.543878, 0.644741] [0.665371, 0.766731] [0.723762, 0.823906]

C4 [0.569241, 0.670073] [0.623573, 0.723762] [0.591607, 0.692820]

C5 [0.397635, 0.518004] [0.547722, 0.648071] [0.673536, 0.773734]

C6 [0.673536, 0.773734] [0.547722, 0.648071] [0.397635, 0.518004]

Constructed Ti j matrix

R1 R2 R3

C1 [0.650228, 0.730875] [0.578141, 0.660420] [0.707291, 0.785376]

C2 [0.525032, 0.637736] [0.726055, 0.804405] [0.702218, 0.781064]

C3 [0.567819, 0.654289] [0.694659, 0.778086] [0.755621, 0.836108]

C4 [0.609611, 0.689373] [0.667795, 0.744608] [0.633562, 0.712774]

C5 [0.436453, 0.538678] [0.601192, 0.673941] [0.739289, 0.804616]

Table 7 Interval-valued
hesitant fuzzy unreliability (d j ),
aggregated DMs’ opinions (υ j )

and final weights of criteria (w j )

for the first illustrative example

d j υ j w j

d1 [0.292491, 0.326003] υ1 [0.821583, 0.848528] w1 0.198899

d2 [0.300071, 0.339370] υ2 [0.742384, 0.772652] w2 0.186451

d3 [0.305751, 0.350415] υ3 [0.418331, 0.469041] w3 0.111991

d4 [0.287705, 0.317675] υ4 [0.859898, 0.873885] w4 0.202201

d5 [0.292817, 0.313084] υ5 [0.784976, 0.823906] w5 0.187873

d6 [0.292817, 0.313084] υ6 [0.457340, 0.507912] w6 0.112582
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Table 8 Computational results for determining the DMs’ weights for
the first illustrative example

ξ∗
k ξ−

k �k

k = 1 0.059581 0.118151 0.266057

k = 2 0.091493 0.116004 0.223751

k = 3 0.066614 0.119305 0.256826

k = 4 0.063577 0.109687 0.253367

paring the ranking results with two recent fuzzy decision
methods in the literature.

4.2 Illustrative example 2: industrial site selection

Another illustrative example from Wang (2014) is provided
for industrial site selection problem to further investigate the

proposed IVHF-MCGA approach. In this case, four DMs are
employed (k=1,2,…,4) and also three candidate alternatives
(A1, A2, A3) are considered to select the most suitable site
for building a new factory under the following six criteria:

• Climate condition (C1);
• Regional demand (C2);
• Expansion possibility (C3);
• Transportation availability (C4);
• Labor force (C5); and
• Investment cost (C6).

The DMs have expressed their preferences values about
the candidate sites versus the selected criteria by linguistic
variables and indicated in Table 13. In addition, the DMs’

Table 9 Pi values regarding each DM for the first illustrative example

k1 k2 k3 k4

P1 [0.425061, 0.480156] [0.321282, 0.396428] [0.426575, 0.481432] [0.413758, 0.469734]

P2 [0.449459, 0.502547] [0.450458, 0.503638] [0.444634, 0.498038] [0.413266, 0.469111]

P3 [0.461521, 0.513690] [0.412473, 0.468361] [0.497767, 0.547176] [0.491995, 0.541779]

Table 10 Ri values regarding each DM for the first illustrative example

k1 k2 k3 k4

R1 [0.022516, 0.033775] [0.022516, 0.033775] [0.022516, 0.033775] [0.033775, 0.045033]

R2 [0.033775, 0.045033] [0.033774, 0.045033] [0.045033, 0.056291] [0.045033, 0.056291]

R3 [0.045033, 0.056291] [0.045032, 0.056291] [0.067549, 0.084437] [0.056291, 0.067549]

Rmin [0.022516, 0.033775] [0.022516, 0.033775] [0.022516, 0.033775] [0.033775, 0.045033]

Table 11 Final Qi values
regarding each DM for the first
illustrative example

Q1 Q2 Q3

k1 [0.426396, 0.482580] [0.450730, 0.504867] [0.462770, 0.515957]

k2 [0.322858, 0.399242] [0.451733, 0.505952] [0.4138373, 0.47084]

k3 [0.428364, 0.484584] [0.446367, 0.501089] [0.499334, 0.549928]

k4 [0.416492, 0.473871] [0.416002, 0.473254] [0.494364, 0.545354]

Final Qi [0.398759, 0.460898] [0.440785, 0.495943] [0.468009, 0.521112]

N1 N2 N3

Ni [85.20340, 88.44524] [94.18298, 95.17026] [100, 100]

Table 12 Final rankings based on the Qi values by considering two types of ordering and the comparative analysis for the first illustrative example

Component-wise ordering Total ordering Ranked by the pro-
posed soft computing
approach

Ranked by Vahdani
et al. (2014) method

Ranked by Liu et al.
(2014) method

N1 Nl
2 ≥ Nl

1, Nu
2 ≥ Nu

1 86.824326 3 3 3

N2 Nl
3 ≥ Nl

2, Nu
3 ≥ Nu

2 94.676623 2 2 2

N3 Nl
3 ≥ Nl

2 ≥ Nl
1, Nu

3 ≥ Nu
2 ≥ Nu

1 100 1 1 1
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Table 13 Linguistic evaluations by DMs for the second illustrative
example

Criteria Alternatives Decision makers

DM1 DM2 DM3 DM4

C1 A1 MG MG G VG

A2 VG G G G

A3 F MG F MG

C2 A1 G VG VG MG

A2 F MG F F

A3 VG VG VG G

C3 A1 F MG MG MG

A2 VG G VG VG

A3 MG MG G MG

C4 A1 VG VG G G

A2 G G G MG

A3 G G VG F

C5 A1 MG G G VG

A2 MG MG VG G

A3 VG G G G

C6 A1 VVG VG VVG EG

A2 F B B MG

A3 VVG VVG VG VVG

Table 14 Decision makers’ judgments about criteria weights for the
second illustrative example

Criteria Decision makers

DM1 DM2 DM3 DM4

C1 H VH M H

C2 M H M H

C3 H M H VH

C4 H L M M

C5 M H H M

C6 M M H H

judgments about the weight of each criterion are shown based
on the linguistic terms in Table 14.

The weight of each criterion is obtained based on the
IVHF-entropy method. In this case, the aggregated IVHF-
decision matrix and then the Ti j matrix are established. Also,
the IVHF-unreliability/degree of deviation is calculated and
then the DMs’ opinions about the weights of criteria are
aggregated. Therefore, the final weights are obtained based
on the aforementioned results. The results are reported in
Tables 15 and 16. In addition, the weight of each DM is
obtained based on the proposed IVHF-CS method and rep-
resented in Table 17.

The Pi and Ri values regarding preferences of DMs’
judgments are computed and indicated in Tables 18 and 19,
respectively. Then, the interval-valued hesitant fuzzy relative

importance of each candidate site for each DM is determined
based on the sum of positive criteria values/negative criteria
values. Hence, IVHF-utility degree for each candidate site
is calculated based on the aggregated IVHF-relative impor-
tance of each candidate site. The mentioned results are shown
in Table 20. Consequently, two types of ordering are applied
to rank the candidate sites by decreasing the value of the
IVHF-utility degrees. However, as represented in Table 21,
the most suitable site for building a new factory is the second
candidate site and the worst candidate site is A3. Also, to
validate the proposed IVHF-MCGA approach, the ranking
results are compared to the method used by Wang (2014),
which shows the same results.

In the previous, solving two industrial applications and
comparing the ranking results with some recent decision
methods from the literature are presented; then, the proposed
IVHF-MCGA approach is validated for industrial selection
problems. Hence, it can be concluded that the proposed
IVHF-MCGA can be more accurate and reliable regarding
the above analysis and indicating the review of the litera-
ture as shown in Table 1. Finally, this study has the following
advantages versus recent decision methods in the literature:
(1) some IVHF-operators are introduced for establishing
the soft computing approach; (2) an IVHF-entropy method
is proposed to determine the criteria weights; (3) a novel
method based on the compromise solution is presented to
specify the weight of each DM; (4) the COPRAS method is
developed with IVHFSs for evaluation and selection process;
and (5) the preferences of DMs’ judgments are aggregated
in the last step to prevent the loss of data.

4.3 Illustrative example 3: rapid prototyping process
selection

The third illustrative example about the rapid prototyping
process (RPP) selection is provided by Byun and Lee (2005)
and Rao (2013) as a well-known decision-making issue in
the manufacturing problems to show the further applicability
of the proposed IVHF-MCGA approach. In this case, six
alternatives (RPP1, RPP2, . . . , RPP6) as rapid prototyping
processes (i.e., SLA3500, SLS2500, FDM8000, LOM1015,
Quadra, Z402) are judged by four DMs (k = 1, 2, . . ., 4)
under six objective and subjective criteria. The following are
the aforementioned criteria:

• Accuracy (C1);
• Part cost (C2);
• Roughness (C3);
• Build time (C4);
• Strength (C5); and
• Elongation (C6).
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Table 15 Aggregated
IVHF-decision matrix and Ti j
matrix for the second illustrative
example

Aggregated IVHF-decision matrix

A1 A2 A3

C1 [0.670074, 0.770694] [0.723762, 0.823907] [0.547723, 0.648074]

C2 [0.720041, 0.820669] [0.523318, 0.623574] [0.773735, 0.873885]

C3 [0.573266, 0.673537] [0.773735, 0.873885] [0.623574, 0.723762]

C4 [0.748331, 0.848528] [0.673537, 0.773735] [0.665371, 0.766732]

C5 [0.696401, 0.796857] [0.670074, 0.770694] [0.723762, 0.823907]

C6 [0.894958, 0.921702] [0.370041, 0.509146] [0.873885, 0.900000]

Constructed Ti j matrix

A1 A2 A3

C1 [0.698881, 0.781804] [0.754878, 0.835784] [0.571270, 0.657416]

C2 [0.742460, 0.827716] [0.539611, 0.628928] [0.797825, 0.881389]

C3 [0.594887, 0.681285] [0.802917, 0.883938] [0.647093, 0.732089]

C4 [0.769487, 0.855367] [0.692578, 0.779970] [0.684182, 0.772911]

C5 [0.716218, 0.803447] [0.689142, 0.777068] [0.744358, 0.830721]

C6 [0.902489, 0.925258] [0.373155, 0.511110] [0.881239, 0.903472]

Table 16 Interval-valued
hesitant fuzzy unreliability (d j ),
aggregated DMs’ opinions (υ j )

and final weights of criteria
(w j ) for the second illustrative
example

d j υ j w j

d1 [0.306382, 0.351669] υ1 [0.709306, 0.750233] w1 0.172878

d2 [0.322405, 0.380545] υ2 [0.612372, 0.663325] w2 0.161193

d3 [0.312127, 0.362346] υ3 [0.709306, 0.750233] w3 0.177114

d4 [0.318997, 0.380986] υ4 [0.506136, 0.557788] w4 0.133795

d5 [0.318168, 0.379653] υ5 [0.612372, 0.663325] w5 0.159960

d6 [0.414095, 0.433177] υ6 [0.612372, 0.663325] w6 0.195061

Table 17 Computational results
for determining the DMs’
weights for the second
illustrative example

ξ∗
k ξ−

k �k

k = 1 0.040063 0.074690 0.261652

k = 2 0.044050 0.075665 0.254081

k = 3 0.045824 0.076055 0.250856

k = 4 0.061433 0.085054 0.233411

Table 18 Pi values regarding each DM for the second illustrative example

k1 k2 k3 k4

P1 [0.414956, 0.465517] [0.446715, 0.495065] [0.449256, 0.497467] [0.450199, 0.498353]

P2 [0.442843, 0.491575] [0.430107, 0.479688] [0.451777, 0.499858] [0.433479, 0.482878]

P3 [0.437903, 0.486891] [0.438425, 0.487385] [0.447218, 0.495545] [0.411145, 0.462069]

Table 19 Ri values regarding each DM for the second illustrative example

k1 k2 k3 k4

A1 [0.019506, 0.019506] [0.019506, 0.039012] [0.019506, 0.019506] [0.001951, 0.001951]

A2 [0.078024, 0.097530] [0.117036, 0.146295] [0.117036, 0.146295] [0.058518, 0.078024]

A3 [0.019506, 0.019506] [0.019506, 0.019506] [0.019506, 0.039012] [0.019506, 0.019506]

Rmin [0.019506, 0.019506] [0.019506, 0.019506] [0.019506, 0.019506] [0.001951, 0.001951]
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Table 20 Final Qi values
regarding each DM for the
second illustrative example

Q1 Q2 Q3

k1 [0.416331, 0.466995] [0.444152, 0.492982] [0.439224, 0.488311]

k2 [0.448489, 0.497205] [0.432926, 0.481893] [0.440217, 0.489557]

k3 [0.451014, 0.499596] [0.453527, 0.501977] [0.448983, 0.497682]

k4 [0.450279, 0.498454] [0.433579, 0.482982] [0.411249, 0.462177]

Final Qi [0.440870, 0.489993] [0.441101, 0.490019] [0.435167, 0.484700]

N1 N2 N3

Ni [99.94, 99.99] [100.00, 100.00] [98.65, 98.91]

Table 21 Final ranking based on the Qi values by considering two types of ordering and the comparative analysis for the second illustrative
example

Component-wise ordering Total ordering (%) Ranked by the proposed
soft computing approach

Ranked by Wang
(2014) method

N1 Nl
2 ≥ Nl

1, Nu
2 ≥ Nu

1 99.97 2 2

N2 Nl
2 ≥ Nl

1 ≥ Nl
3, Nu

2 ≥ Nu
1 ≥ Nu

3 100 1 1

N3 Nl
1 ≥ Nl

3, Nu
1 ≥ Nu

3 98.78 3 3

Table 22 Performance rating of
the alternatives versus objective
and subjective criteria

Rapid prototyping process Objective criteria

C1 C2 C3 C4

RPP1 [0.05, 0.10] [0.17, 0.22] [0.00, 0.05] [0.56, 0.61]

RPP2 [0.11, 0.16] [0.51, 0.56] [0.42, 0.47] [0.17, 0.22]

RPP3 [0.06, 0.11] [1.00, 1.00] [0.58, 0.63] [0.00, 0.05]

RPP4 [0.18, 0.23] [0.94, 0.99] [0.67, 0.72] [0.00, 0.05]

RPP5 [0.00, 0.05] [0.00, 0.05] [0.58, 0.63] [0.44, 0.49]

RPP6 [1.00, 1.00] [0.69, 0.74] [1.00, 1.00] [1.00, 1.00]

Subjective criteria Decision makers

DM1 DM2 DM3 DM4

C5

RPP1 G G G MG

RPP2 G MG G G

RPP3 MG MG F MG

RPP4 F F MP F

RPP5 G G G MG

RPP6 VG G VG VG

C6

RPP1 MG MG F MG

RPP2 F MG MG MG

RPP3 G MG G G

RPP4 F F MP F

RPP5 MP F F F

RPP6 MP MP MP P

The performance rating of RPP candidates under the
objective and subjective criteria is indicated in Table 22. In
addition, the weight of each criterion based on the prefer-
ences of the DMs is presented in Table 23.

In Table 24, the aggregated DMs’ opinions about the
criteria weights and the final weights of criteria based on
the proposed IVHF-entropy method are demonstrated. Also,
the computational results of proposed IVHF-CS method are
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Table 23 Decision makers’ judgments about criteria weights for the
third illustrative example

Criteria Decision makers

DM1 DM2 DM3 DM4

C1 MH M MH M

C2 M MH M MH

C3 L ML L ML

C4 ML L ML L

C5 VH VH H VH

C6 VH VH VH H

provided for determining the DMs’ weights. Finally, the
interval-valued hesitant fuzzy utility degree for each candi-
date is calculated based on the interval-valued hesitant fuzzy
relative importance. Then, the RPP alternatives are ranked by
decreasing sorting. Computational results are given in Tables
25 and 26. The ranking results by comparing with Byun and
Lee (2005) study indicate somewhat similar outcomes.

5 Comparative analysis

In this section, the comparative analysis is presented for the
IVHF-MCGA approach and fuzzy group TOPSIS method.
The reason of selecting the fuzzy group TOPSIS is that all
studies, considered in illustrative examples for comparing
the ranking results, are based on the concept of the TOPSIS
method (i.e., closer to positive ideal solution and farther from
negative ideal solution). In this case, some comparison para-
meters are regarded to show the profitability of the proposed

approach. In fact, the comparison parameters are selected
based on the Junior et al. (2014) study and the characteris-
tics of fuzzy decision-making methods presented in Table 1.
Junior et al. (2014) have compared the fuzzy AHP and fuzzy
TOPSIS methods based on some appropriate comparison
parameters, including adequacy to changes of alternatives
and criteria, agility in decision process, time complexity, sup-
port to group decision making, number of alternatives and
criteria, and modeling of uncertainty.

In this paper, some comparison parameters, including
adequacy to changes of alternatives and criteria, agility in
decision process, influence of DMs’ weights, and impact
of first and last aggregations, that can show the efficiency
and suitability of the proposed IVHF-MCGA approach are
considered to compare with fuzzy group TOPSIS method in
the selection problem of the rapid prototyping process. The
following are the comparative analysis of comparison para-
meters in detail.

5.1 Adequacy to changes of alternatives or criteria

One of interesting comparison parameters is adequacy to
changes of alternatives or criteria in the decision-making
process that could lead to ranking reversal in the ordering
of potential alternatives or selected criteria. In this case, the
adding or excluding one alternative is evaluated by both
proposed IVHF-MCGA approach and fuzzy group TOP-
SIS method; the same ranking results are obtained. The
ranking order of the alternatives in the third illustrative
example by adding/excluding the candidates is achieved as
RPP6 > RPP5 > RPP1 > RPP4 > RPP2 > RPP3.
In addition, the aforementioned results are provided for

Table 24 Computational results
of aggregated DMs’ opinions
about criteria weights (υ j ), final
weights of criteria (w j ) and
DMs’ weights for the third
illustrative example

Criteria υ j w j Decision makers ξ∗
k ξ−

k �k

C1 [0.5477, 0.6205] 0.23907 k = 1 0.03873 0.03673 0.23865

C2 [0.5477, 0.6205] 0.20195 k = 2 0.03959 0.03947 0.24476

C3 [0.3742, 0.4472] 0.10833 k = 3 0.04351 0.03847 0.23004

C4 [0.3742, 0.4472] 0.14012 k = 4 0.10264 0.14439 0.28655

C5 [0.8599, 0.8739] 0.16612

C6 [0.8599, 0.8739] 0.14441

Table 25 Final Qi values regarding each DM for the third illustrative example

k1 k2 k3 k4 Final Qi Ni

Q1 [0.2265, 0.2944] [0.2237, 0.2999] [0.2321, 0.2887] [0.2110, 0.3869] [0.2225, 0.3184] [62.93, 74.64]

Q2 [0.2178, 0.2863] [0.2149, 0.2919] [0.2234, 0.2806] [0.2021, 0.3799] [0.2137, 0.3105] [60.44, 72.79]

Q3 [0.2142, 0.2830] [0.2113, 0.2886] [0.2199, 0.2772] [0.1985, 0.3770] [0.2101, 0.3073] [59.43, 72.03]

Q4 [0.2218, 0.2900] [0.2189, 0.2955] [0.2274, 0.2842] [0.2062, 0.3831] [0.2178, 0.3141] [61.58, 73.62]

Q5 [0.2631, 0.3280] [0.2604, 0.3332] [0.2685, 0.3226] [0.2484, 0.4161] [0.2594, 0.3511] [73.35, 82.32]

Q6 [0.3569, 0.4056] [0.3545, 0.4102] [0.3615, 0.4008] [0.3440, 0.4835] [0.3536, 0.4266] [100, 100]
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Table 26 Final ranking based on the Qi values by considering two
types of ordering and the comparative analysis for the third illustrative
example

Total ordering (%) Ranked by the pro-
posed soft computing
approach

Ranked by
Byun and
Lee (2005)
method

N1 68.78 3 4

N2 66.61 5 5

N3 65.73 6 6

N4 67.60 4 2

N5 77.83 2 3

N6 100 1 1

adding/excluding the criteria; it means that the importance
order (i.e., C1 > C2 > C5 > C6 > C4 > C3) has no
changes.

5.2 Agility in decision process

This factor assesses the amount of required preference judg-
ments that are assigned by the DMs or experts in both
proposed IVHF-MCGA approach and fuzzy TOPSIS method
under group decision procedures. Let m the number of alter-
natives, n the number of criteria and k the number of the
DMs. As presented in Eq. (59), the fuzzy group TOPSIS
method requires mnk judgments to establish the group deci-
sion matrix and also nk judgments for specifying the criteria
weights.

AgTOPSIS
n,m,k = mnk + nk = nk(m + 1) (59)

In the case of the proposed approach, the IVHF-entropy
method is presented to determine the criteria weights.
Although the experts’ judgments about the relative impor-
tance of each criterion can be considered in the procedure
of proposed IVHF-entropy to provide an accurate solution,
it is optional in the proposed decision-making process. In
fact, the IVHF-entropy method can compute the weight of
each criterion without the experts’ opinions about the criteria
weights. Thus, this can be illustrated in Eq. (60).

AgIVHF−MCGA
n,m,k = mnk (60)

Therefore, as indicated in Eqs. (59) and (60), the number of
judgments for the proposed IVHF-MCGA method is nk val-
ues less than the fuzzy group TOPSIS method. For example,
in the third illustrative example, the fuzzy group TOPSIS has
required 168 judgments while the proposed IVHF-MCGA
has required 144 judgments.

5.3 Influence of decision makers’ weights

DMs’ expertise might be different in the industry based
on different backgrounds; thus, considering the weight of
each DM by regarding their judgments could help us to
achieve a precise solution. In this respect, the effect of
applying the DMs’ weights is explained based on the third
illustrative example. In the application case, the weight of
each DM is considered equal; then the ranking order results
are:RPP6 > RPP5 > RPP4 > RPP1 > RPP2 > RPP3,
which is slightly different from the ranking order results of
fuzzy group decision method (i.e., RPP6 > RPP4 > RPP5 >

RPP1 > RPP2 > RPP3). The comparative analysis based on
this comparison parameter shows that the final ranking order
of six candidates is affected from the DMs’ weights. It is
obvious that considering the weight of each DM could lead
to an accurate result of the selection problem.

5.4 Impact of first and last aggregations

In the group decision-making process, two approaches as first
aggregation and last aggregation are considered to integrate
the judgments of the DMs or experts: in the first aggrega-
tion approach, the preference judgments of the DMs for the
rating of candidates versus selected criteria are aggregated
at the first and then the desired decision-making technique
is implemented. In the last aggregation approach, ratings
of alternatives are provided by the DMs and considered in
desired decision-making technique directly. In other words,
the opinions of the DMs are aggregated in the last step of
desired group decision-making technique and it is capa-
ble of preventing the loss of data. In the third illustrative
example, the ranking order results based on the proposed
IVHF-MCGA approach are: RPP6 > RPP5 > RPP1 >

RPP4 > RPP2 > RPP3 and also based on the fuzzy group
TOPSIS method are: RPP6 > RPP4 > RPP5 > RPP1 >

RPP2 > RPP3. Then, this study attempts to understand the
main cause in the ranking order of RPP1, RPP4, and RPP5.
In this respect, in the first step of the proposed IVHF-MCGA,
all judgments of the DMs are aggregated and the aggregated
group decision-making matrix is considered for input para-
meters of the proposed approach. Then, it indicates that the
ranking order results are: RPP6 > RPP4 > RPP1 > RPP5 >

RPP2 > RPP3, and it can be concluded that the ranking order
from the first aggregation of the proposed IVHF-MCGA is
partially different from the ranking order of the fuzzy group
TOPSIS.

The comparative analysis of the proposed soft comput-
ing approach and the fuzzy group TOPSIS method based on
four comparison parameters indicates some interesting out-
comes that show the efficiency and suitability of the proposed
approach. The obtained results based on these comparison
parameters are investigated for the RPP selection problem as
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Table 27 Summarized comparative analysis of the proposed soft com-
puting approach and fuzzy group decision method

Comparison
parameters

Results

Adequacy to changes
of alternatives or
criteria

The ranking order of both group decision
methods by adding or excluding the
alternatives or criteria is not changed

Agility in decision
process

Proposed soft computing approach
performs better than fuzzy group
decision TOPSIS method and requires
less judgments in the group
decision-making process

Influence of decision
makers’ weights

Considering the DMs’ weights in the
procedure of the proposed approach
could lead to a precise solution

Impact of first and
last aggregations

Considering the last aggregation approach
could prevent the loss of data and lead to
an accurate solution

the third illustrative example, and they might be different for
other contexts in the manufacturing industry. In summary,
the outcomes and findings are reported in Table 27.

6 Conclusions and suggestions

For many manufacturing companies, the complex decision
problems like the industrial selections are serious issues to
increase the productivity. The multi-criteria group decision-
making (MCGDM) approach could be considered in an
interval-valued hesitant fuzzy (IVHF) environment to solve
the industrial selection problems. This study proposed a
novel group decision-making method based on the interval-
valued hesitant fuzzy complex proportional assessment,
called IVHF-MCGA, for the selection of the most suitable
industrial candidates. The preferences of potential alterna-
tives and the criteria weights that are judged by decision
makers (DMs) are expressed by linguistic variables and then
are transformed into IVHFEs. In addition, the weight of each
criterion is computed by developing a new IVHF-entropy
method according to the DMs’ judgments. Also, the relative
importance of each DM is calculated by introducing a new
IVHF-compromise solution method. Moreover, for the pre-
vention of the data loss, the DMs’ opinions are aggregated
at the end of the proposed soft computing approach along
with some IVHF-operators introduced in this study. The pro-
posed approach under uncertainty is efficient and easy to
understand with the IVHF-setting. This approach improved
the group decision-making process and developed the con-
cept and theory of compromise solution and utility degree,
based on interval-valued hesitant fuzzy positive and nega-
tive ideal solutions and, therefore, it could be considered
as new soft computing approach for solving the evaluation

and selection problems to handle uncertainty. In addition,
the validity and applicability of the proposed IVHF-MCGA
approach are tested based on solving three different indus-
trial selection problems. In this respect, the obtained ranking
order results are compared with some fuzzy decision methods
from the literature, which are developed from the concept of
TOPSIS method. Computational results show the same rank-
ing of industrial alternatives. Also, the fuzzy group TOPSIS
method has been considered to establish a comparative analy-
sis based on four selected comparison parameters to indicate
the efficiency and suitability of the proposed soft computing
approach. Although the presented approach has been applied
to industrial selection problems, it could be used in other
fields of management and engineering for making a suitable
decision, especially for manufacturing decision problems.
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