
Soft Comput (2017) 21:3081–3100
DOI 10.1007/s00500-015-1993-x

METHODOLOGIES AND APPLICATION

Conceptual and numerical comparisons of swarm
intelligence optimization algorithms

Haiping Ma1,2 · Sengang Ye1 · Dan Simon3 · Minrui Fei2

Published online: 26 December 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Swarm intelligence (SI) optimization algorithms
are fast and robust global optimization methods, and have
attracted significant attention due to their ability to solve
complex optimization problems. The underlying idea behind
all SI algorithms is similar, and various SI algorithms differ
only in their details. In this paper we discuss the algorith-
mic equivalence of particle swarm optimization (PSO) and
various other newer SI algorithms, including the shuffled
frog leaping algorithm (SFLA), the group search optimizer
(GSO), the firefly algorithm (FA), artificial bee colony algo-
rithm (ABC) and the gravitational search algorithm (GSA).
We find that the original versions of SFLA, GSO, FA, ABC,
and GSA, are all algorithmically identical to PSO under
certain conditions. We discuss their diverse biological moti-
vations and algorithmic details as typically implemented,
and show how their differences enhance the diversity of
SI research and application. Then we numerically compare
SFLA, GSO, FA, ABC, and GSA, with basic and advanced
versions on some continuous benchmark functions and com-
binatorial knapsack problems. Empirical results show that an
advanced version of ABC performs best on the continuous
benchmark functions, and advanced versions of SFLA and
GSA perform best on the combinatorial knapsack problems.
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We conclude that although these SI algorithms are conceptu-
ally equivalent, their implementation details result in notably
different performance levels.
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1 Introduction

Population-based optimization methods, such as evolution-
ary algorithms (EAs) and swarm intelligence (SI) algorithms,
are widely used to solve optimization problems and have
attracted continually increasing attention in recent years. EAs
such as genetic algorithms (GAs) (Reeves and Rowe 2003),
evolutionary programming (EP) (Yao et al. 1999), evolution
strategies (ES) (Schwefel 1995), and genetic programming
(GP) (Koza 1992), are inspired by natural selection. Swarm
intelligence (SI) algorithms, such as particle swarmoptimiza-
tion (PSO) (Kennedy and Eberhart 1995) and ant colony
optimization (ACO) (Dorigo and Gambardella 1997), are
inspired by the collective behavior observed in biological
systems. SI algorithms are a class of search methods that are
based on the learning process of a collection of individuals,
called candidate solutions. Each individual in an SI algo-
rithm performs a set of operations that may include random
search, positive or negative feedback, and interactions with
other individuals. These operations are typically very simple,
but their combination can produce surprising results.

In recent years, many new SI algorithms, including the
shuffled frog leaping algorithm (SFLA) (Eusuff and Lansey
2003), the group search optimizer (GSO) (He et al. 2006),
the firefly algorithm (FA) (Yang 2009), artificial bee colony
algorithm (ABC) (Karaboga and Basturk 2007), the gravi-
tational search algorithm (GSA) (Rashedi et al. 2009), and
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others, have been proposed to solve complex optimization
problems. Each SI algorithm is motivated by a different bio-
logical process. SFLA is motivated by the leaping behavior
of frogs, GSO is motivated by the food foraging behavior of
animals, FA is motivated by the mutual attraction of fireflies,
ABC is motivated by the foraging behavior of bees, and GSA
is motivated by the law of gravity.

But all of these SI algorithms have certain features in
common, including the sharing of information between indi-
viduals to improvefitness. This behaviormakesSI algorithms
applicable to many different types of optimization problems.
SI algorithms have been applied to many optimization prob-
lems and have been shown to be effective for unimodal,
multimodal, and deceptive optimization, dynamic optimiza-
tion, constrained optimization, multi-objective optimization,
and noisy optimization (Simon 2013). So SI algorithms are
becoming increasingly popular optimization tools.

The goal of this paper is to show the similarities and differ-
ences between PSO and various newSI algorithms, including
SFLA, GSO, FA, ABC, and GSA, in both a notional and
experimental way. Because PSO and newer SI algorithms
have similarities due to their biological motivation, it is not
too surprising that the algorithms are equivalent under special
conditions. In this paper, we provide general descriptions of
these algorithms and provide conceptual and numerical com-
parisons.

There have been many papers that compare various SI
algorithms, including comparisons ofPSOandSFLA(Elbelt-
agi et al. 2005); PSOandGSA(Davarynejad et al. 2014); PSO
and FA (Yang 2011; Parpinelli and Lopes 2011); PSO, BFO,
and ABC (Parpinelli et al. 2012); cuckoo search, PSO, DE,
and ABC (Civicioglu and Besdok 2013); and others (Zang
et al. 2010). Those papers focus on performance differences
on benchmarks or applications. In this paper we provide a
more extensive comparison by studying similarities and dif-
ferences between the algorithms, by studying more recently
SI algorithms, and including a larger and more recent set of
benchmarks. The benchmarks in this paper are the continu-
ous functions from the 2013 IEEE Congress on Evolutionary
Computation (Liao and Stuetzle 2013), and a set of classi-
cal combinatorial knapsack problems (Abulkalamazad et al.
2014; Bhattacharjee and Sarmah 2014; Freville 2004).

There are many other SI algorithms that we could study,
including bat algorithm (BA) (Hasançebi and Carbas 2014),
Cuckoo search (CS) (Cobos et al. 2014), fireworks algorithm
(FWA) (Tan and Zhu 2010), and teaching-learning-based
optimization (TLBO) (Rao et al. 2011). Because of space
constraints we restrict our comparison to PSO, SFLA, GSO,
FA, ABC, and GSA, and we defer the comparison of other SI
algorithms for future work. The SI algorithms in this paper
comprise a representative set, not a complete set.

The rest of this paper is organized as follows. Section
2 gives an overview of PSO and the five newer SI algo-

rithms, analyzes their similarities, differences, and unique
characteristics. Section 3 presents performance comparisons
of the basic and advanced versions of PSO with basic and
advanced versions of SFLA, GSO, FA, ABC, and GSA on
continuous benchmark functions and combinatorial knap-
sack problems. Section 4 gives conclusions and directions
for future research.

2 Comparisons between swarm intelligence
algorithms

This section introduces the basic PSO algorithm and five
newer SI algorithms, including SFLA, GSO, FA, ABC,
and GSA, and then conceptually analyzes their similarities
(Sect. 2.1). This section also compares their biological moti-
vations and algorithmic details (Sect. 2.2).

2.1 Similarities between swarm intelligence algorithms

2.1.1 Particle swarm optimization

PSO, introduced byKennedy and Eberhart (1995), wasmoti-
vated by the swarming behavior of birds. PSO consists
of a swarm of particles moving through an n-dimensional
search space of an optimization problem. Every particle has
a position vector xk that encodes a candidate solution to the
optimization problem, and a velocity vector vk that character-
izes its velocity in the search space. Each particle remembers
its own previously found best position Pbest , and the global
best position Gbest of the entire swarm in the current iter-
ation. Information from good solutions spreads throughout
the swarm, which encourages the particles to move to bet-
ter areas of the search space. Each iteration, the particles’
velocities are updated based on their current velocities, their
previous best positions, and the global best position of the
current iteration:

vk(s) ← wvk(s) +U (0, φ1)(Pbest (s) − xk(s))

+U (0, φ2)(Gbest (s) − xk(s)), (1)

where vk(s) is the sth dimension of the velocity of the kth
particle, w is the inertia weight which determines the contri-
bution of the current velocity to the new velocity,U (a, b) is
a uniformly distributed random number between a and b, and
cognitive constant φ1 and social constant φ2 determine the
importance of Pbest (s) and Gbest (s), respectively, for updat-
ing velocity. The position of the particle is updated as follows:

xk(s) ← xk(s) + vk(s). (2)

An outline of the basic PSO algorithm is given in
Algorithm I.
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Algorithm I − Outline of the basic PSO algorithm, where Equations (1) and (2) are combined
Initialize a random population { }kx for [ ]1,k N∈ , and N is the population size
While not (termination criterion)

For each solution (particle’s position) kx
Find the current global best solution bestG
Find the particle’s previous best solution bestP
For each dimension [ ]1,s n∈

Update: ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )210, 0,k k k best k best kx s x s w v s U P s x s U G s x sφφ← + ⋅ + − + −

Next dimension
Next solution

Next generation

Algorithm II − Outline of SFLA, where each frog encodes a candidate solution
Initialize a random population { }ix  for [ ]1,i N∈ , and N is the population size
While not (termination criterion)

Randomly divide the population into m sub-populations 
For each sub-population k = 1 to m

Find the global best solution gx in the entire population
For i = 1 to maxi , and maxi is an iteration limit

Find the best and worst solutions in sub-population k : bx and wx
For each dimension [ ]1,s n∈

Update: ( ) ( ) ( ) ( )( )w w b wx s x s r x s x s← + ⋅ −
If the update did not improve ( )wx s then

Update: ( ) ( ) ( ) ( )( )w w g wx s x s r x s x s← + ⋅ −
If the update did not improve ( )wx s then

( )wx s ←  randomly-generated variable
End if

End if
Next dimension

Next iteration
Next sub-population

Next generation

2.1.2 Shuffled frog leaping algorithm

SFLA was introduced by Eusuff and Lansey (2003), and
some variations and applications of SFLA are discussed in
Wang and Fang (2011), Rahimi-Vahed and Mirzaei (2008),
and Sarkheyli et al. (2015). SFLA is inspired by the foraging
behavior of frogs, and consists of a swarm of frogs leaping
in the n-dimensional search space of an optimization prob-
lem. In SFLA, every frog encodes a candidate solution, and
the N frogs are divided into m sub-populations, also called
memeplexes. Each sub-population is considered a separate
culture, and each sub-population performs a local search
algorithm. At the beginning of each generation, the popu-
lation is shuffled so that each frog is randomly assigned to a
new sub-population.

During local search, only the worst frog xw in each sub-
population is updated:

xw(s) ← xw(s) + r · (xb(s) − xw(s)), (3)

where s is the index of the problem dimension, xb is the best
frog in the sub-population, and r ∈ [0, 1] is a uniformly
distributed random number. If (3) does not improve xw, it is
updated again as follows:

xw(s) ← xw(s) + r · (xg(s) − xw(s)) (4)

for s ∈ [1, n], where xg is the global best frog from all m
sub-populations, and r ∈ [0, 1] is a random number that
is calculated separate for each s. If (4) does not improve
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Algorithm III –Outline of the modified PSO algorithm
Initialize a random population { }kx

for [ ]1,k N∈ , and N is the population size
While not (termination criterion)

Find the current global worst solution wx

Find the current global best solution bestG

Find the previous best solution bestP

For each dimension [ ]1,s n∈  of wx

Update: 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

1

2

0,

0,
w w k best w

best w

x s x s v s U P s x s

U G s x s

φ

φ

← + + −

+ −

Next dimension
Next generation

Algorithm IV – Outline of the modified SFLA
Initialize a random population { }kx

for [ ]1,k N∈ , and N is the population size
While not (termination criterion) 

Find the current global worst solution wx

Find the current global best solution gx

Find the previous best solution bx

For each dimension [ ]1,s n∈

Update: 

( ) ( ) ( ) ( ) ( )( )

( ) ( )( )

1

2

w w r b w

g w

x s x s x s r x s x s

r x s x s

← + + ⋅ −

+ ⋅ −

Next dimension
Next generation

xw, then xw is replaced by a randomly generated frog. A
description of SFLA is given in Algorithm II.

Suppose that the PSO logic of Algorithm I only updates
the global worst solution xw instead of each solution xk . Fur-
ther suppose that the velocity vk is randomly generated, and
the inertia weight is w = 1. Algorithm I then becomes the
modified PSO of Algorithm III.

Now suppose that in the SFLA logic of Algorithm II, the
population is not divided into sub-populations; that is,m = 1.
Further suppose the best sub-population solution xb is set to
the previous best solution of the individual, and the worst
sub-population solution xw is set to the current worst solu-
tion of the entire population. Finally, suppose that imax = 1.
Then the SFLA logic of Algorithm II becomes the modi-
fied SFLA logic of Algorithm IV, which is equivalent to the
modified PSO of Algorithm III. So SFLAwith special tuning
parameters can be viewed as a type of PSO algorithm, and it
follows that these two algorithms perform identically under
these conditions.

2.1.3 Group search optimization

GSO was introduced by He et al. (2006), and some varia-
tions and applications of GSO are discussed in Shen et al.
(2009), Chen et al. (2012), Wang et al. (2012) and Zare et al.

(2012). GSO is inspired by the food foraging behavior of land
animals, and consists of a swarmof animals foraging in the n-
dimensional search space of an optimization problem. Some
animals, called producers, focus their efforts on searching for
food. Other animals, called joiners or scroungers, focus their
efforts on following other animals and exploiting their food-
finding success. The third type of animals, called rangers,
performs a random walk in their search for resources. In
GSO, all animals encode candidate solutions, and the pro-
ducers are typically the best. Each generation, the producer
scans three points in his immediate surroundings for a better
function cost value than his current location in search space.
This corresponds to local search. The producer is denoted as
xp, and the three scanned points xz , xr , and xl are given by:

xz(s) = xp(s) + r1 · lmax · D(φp(s))

xr (s) = xp(s) + r1 · lmax · D(φp(s) + r2θmax/2) (5)

xl(s) = xp(s) + r1 · lmax · D(φp(s) − r2θmax/2)

for s ∈ [1, n], where r1 is a zero-mean, unity-variance, nor-
mally distributed random number; r2 ∈ [0, 1] is a uniformly
distributed random number; φp is the heading angle of xp;
lmax is a tuning parameter that defines how far the producer
can see; θmax is a tuning parameter that defines how far the
producer can turn his head; and D(·) is a polar-to-Cartesian
coordinate transformation function (He et al. 2006).

Scroungers generally move toward the producer. But they
do not move directly toward the producer; instead they move
in a sort of zig-zag pattern, which allows them to search for
lower cost function values while they move. The movement
of a scrounger xi is modeled as

xi (s) ← xi (s) + r · (xp(s) − xi (s)), (6)

where r ∈ [0, 1] is a uniformly distributed random number.
Rangers randomly travel through the search space looking

for areas with low cost functions. The movement of a ranger
xi is modeled as

φi (s) ← φi (s) + ρ · αmax

xi (s) ← xi (s) + αmax · lmax · r1 · D(φi (s)), (7)

whereαmax is a tuning parameter that defines how far a ranger
can turn his head; ρ ∈ [−1, 1] is a uniformly distributed ran-
dom number; and lmax is a tuning parameter that is related to
the maximum distance that a ranger can travel in one gener-
ation, and is the same as lmax in (5).

A description of GSO is given in Algorithm V. Note that
algorithm V specifies that one solution is a producer, about
80 % of the solutions are scroungers, and about 20 % of the
solutions are rangers.

Suppose that in the PSO logic of Algorithm I, the current
global best solution Gbest is first updated by the sum of the
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Algorithm V − Outline of GSO for a minimizaton problem f (x)
Initialize a random population { }kx for [ ]1,k N∈ , and N is the population size
While not (termination criterion)

Find the producer px which is the current global best solution
For each dimension [ ]1,s n∈ of px

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

1 max

1 max

1 max

2 max

2 max

2

2

z p p

r p p

l p p

x s x s r l D s

x s x s r l D s r

x s x s r l D s r

φ

φ θ

φ θ

= + ⋅ ⋅

= + ⋅ ⋅ +

= + ⋅ ⋅ −

Next dimension

If ( ) ( ) ( ){ } ( )min , ,z r l pf x f x f x f x< then

( ) ( ) ( ){ }arg min , ,p z r lx f x f x f x←

Else

maxp pφ φ ρα← +

End if
For each solution k px x≠

For each dimension [ ]1,s n∈
If 3 0.8r <

Let ( )kx s scrounge: ( ) ( ) ( ) ( )( )k k p kx s x s r x s x s← + ⋅ −
Else

Let ( )kx s range:

( ) ( )

( ) ( ) ( )( )
max

max max 1

i i

i i i

s s

x s x s l r D s

φ φ ρα

α φ

← +

← +

End if
Next dimension

Next solution
Next generation

previous solution and the new velocity r1 · vbest , where vbest
is the velocity of Gbest . Then the other solutions are divided
into two sub-populations. One is about 80% of the solutions,
for which the constant φ1 that determines the significance of
Pbest (s) is set to 0, and which are updated independently of
their previous velocities; that is, the inertia weight w = 0.
The other sub-population is about 20 % of the solutions, and
the constant φ1 which determines the significance of Pbest (s)
and the constant φ2 which determines the significance of
Gbest (s) are both set to 0. In this case, Algorithm I becomes
the modified PSO logic of Algorithm VI.

Now suppose that in the GSO logic of Algorithm V, the
three children solutions xz , xr , and xl perform the same search
strategy as that of xz , directly use theheading angleφp instead
of the coordinate transformation function D(·), and use the
tuning parameter lmax = 1 and the parameter ρ = 0. The
GSO logic of Algorithm V becomes the modified GSO logic
of Algorithm VII, which is equivalent to the modified PSO

logic of Algorithm VI, where the heading angle φ is treated
as the velocity v and the qualityαmaxr1 is treated as the inertia
weightw. So GSO can be viewed as a variation of PSO under
special conditions, and it follows that these two algorithms
perform identically under these conditions.

2.1.4 Firefly algorithm

FA was introduced by Yang (2009), and some variations and
applications of FA are discussed in Fister et al. (2013). FA is
inspired by the mutual attraction of fireflies, which is based
on perceived brightness, which decreases exponentially with
distance. A firefly is attracted only to those fireflies that are
brighter than itself. In FA, every firefly encodes a candidate
solution, and the population consists of N fireflies. Each fire-
fly xi compares its brightness with every other firefly x j ,
one at a time. If x j is brighter than xi , then xi will move
through the search space in a direction that includes both a
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Algorithm VI − Outline of a modified PSO
Initialize a random population { }kx  for [ ]1,k N∈ , 
and N is the population size
While not (termination criterion)

Find the current global best solution bestG

For each dimension [ ]1,s n∈  of bestG

( ) ( ) ( )1best best bestG s G s r v s′ ← + ⋅

Next dimension

If ( ) ( )best bestf G f G′ < then

best bestG G′←

End if
For other solutions k bestx G≠

For each dimension [ ]1,s n∈

If 3 0.8r <

Update: 

( ) ( ) ( ) ( ) ( )( )20,k k best kx s x s U G s x sφ← + −

else
Update:

( ) ( ) ( )k k kx s x s w v s← + ⋅

Next dimension
Next solution

Next generation

Algorithm VII − Outline of a modified GSO
Initialize a random population { }kx  for [ ]1,k N∈ , 
and N is the population size
While not (termination criterion)

Find the producer px which is the current 
global best solution

For each dimension [ ]1,s n∈  of px

( ) ( ) ( )1z p px s x s r sφ= + ⋅

Next dimension

If ( ) ( )z pf x f x< then

p zx x←

End if
For each k px x≠

For each dimension [ ]1,s n∈

If 2 0.8r <

Let ( )kx s scrounge:

( ) ( ) ( ) ( )( )k k p kx s x s r x s x s← + ⋅ −

Else
Let ( )kx s range:

( ) ( ) ( )max 1k k kx s x s r sα φ← +

End if

Next dimension
Next solution

Next generation

component that is random, and a component that is directed
toward x j . The random component is denoted by the quan-
tity αvk , which is usually relatively small due to the small
value of α. The directed component is denoted by the quan-

Algorithm VIII − Outline of FA for the minimization of f (x)

Initialize a random population { }kx  for [ ]1,k N∈ , 
and N is the population size
While not (termination criterion)

For each solution kx

For each solution j kx x≠

If ( ) ( )j kf x f x<

For each dimension [ ]1,s n∈

If the uniformly distributed random 
number 1 2ρ <

( ) ( ) ( )( )kkv s r u s x s← ⋅ −

Else

( ) ( ) ( )( )k kv s r x s l s← ⋅ −

End if
Next dimension 

kjr ← distance between kx and jx

Update: ( )
2

0
k kjr

k k j k kx x e x x vγβ α−← + − +

End if
Next solution

Next solution
Next generation

tity β0e
−γi r2i j (x j − xi ), and its magnitude is an exponential

function of the distance ri j between x j and xi . Typical tuning
parameters of FA are as follows:

γi = γ0

max j
∥
∥xi − x j

∥
∥
2

, where γ0 = 0.8

α = 0.01 (8)

β0 = 1

A description of FA is given in Algorithm VIII, where l and
u are the lower and upper bounds of the search space, respec-
tively. One thing that we notice from Algorithm VIII is that
the best candidate solution in the population is never updated.
We might be able to improve the algorithm’s performance if
we periodically update the best candidate solution.

Suppose that in the PSO logic of Algorithm I, the best
candidate solution in the population is never updated, and
each particle’s velocity is independent of its previous veloc-
ity; that is, the inertia weight w = 0. Further suppose that
half of the solutions are determined solely by the current
global best solution Gbest , and the other half of the solutions
are determined solely by their previous best solution Pbest . In
this case, the PSO logic of Algorithm I becomes themodified
PSO logic of Algorithm IX.

Now suppose that in the FA of Algorithm VIII, the lower
bound l and the upper bound u of the search space are
replaced with the current global best solution Gbest and the
previous individual best solution Pbest . Further suppose the
parameter γ → ∞, which denotes that fireflies are not
attracted to each other, and which corresponds to random
flight and random search. In this case, the FA of Algorithm
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Algorithm IX − Outline of a modified PSO

Initialize a random population { }kx  for [ ]1,k N∈ , and 
N is the population size
While not (termination criterion)

For each solution (particle’s position) kx

For each solution j kx x≠

If ( ) ( )j kf x f x<

Find the current global best solution bestG

Find the previous best solution bestP

For each dimension [ ]1,s n∈

If the uniformly distributed random 
number 1 2ρ <

( ) ( ) ( ) ( )( )10,k best kv s U P s x sφ← −

Else

( ) ( ) ( ) ( )( )20,k best kv s U G s x sφ← −

End if
Update: k k kx x v← +

Next dimension
End if

Next solution
Next solution

Next generation

VIII is equivalent to the modified PSO of Algorithm IX.
So FA can be viewed as a variation of PSO under special
conditions, and it follows that these two algorithms perform
identically under these special conditions.

2.1.5 Gravitational search algorithm

GSA was introduced by Rashedi et al. (2009), and some
variations and applications of GSA are discussed in Dowlat-
shahi et al. (2014), Jiang et al. (2014) and Rashedi et al.
(2011). GSA is inspired by the law of gravity; each particle
attracts every other particle due to gravity. The gravitational
force between particles is proportional to the product of
their masses, and inversely proportional to the square of
the distance between them. In GSA, each particle has four
characteristics: position, inertial mass, active gravitational
mass, and passive gravitational mass. The position of each
particle encodes a candidate solution of the optimization
problem, and its gravitational and inertial masses are deter-
mined by the fitness function. All particles attract each other
due to gravity, which causes a global movement toward the
particles with heavier masses (better fitness values). Par-
ticles thus cooperate with each other using a direct form
of communication through gravity. Heavy particles (that is,
more fit particles) move more slowly than lighter ones. In
other words, the algorithm is tuned by adjusting the gravi-
tational and inertial masses. A description of GSA is given
in Algorithm X, where g is the gravitational constant, M is
the normalized fitness, R and F are the distance and force
between particles, respectively, a and v are the acceleration
and velocity, respectively, r and ri are uniformly distributed
random numbers, t and tmax are the generation number and

the generation limit, respectively, and ε is a small positive
constant.

In the GSA of Algorithm X, the gradual reduction of the
gravitational constant g reduces the exploration component
of the algorithm as time progresses. The fitness values are
normalized so that the worst particle has gravitational mass
mi = 0 and the best particle has gravitational mass mi = 1.
Thesemasses are normalized to {Mi }values that sum to 1. For
each pair of particles, the attractive force is calculated with a
magnitude that is proportional to their masses and inversely
proportional to the distances between them. A random com-
bination of the forces results in the acceleration vector of
each particle. The acceleration is used to update the velocity
and position of each particle. Amore compact representation
of Algorithm X, in which distance, force, acceleration, and
position are combined, is shown in Algorithm XI.

Suppose that in the PSO logic of Algorithm I the fitness
values of all solutions are normalized, and the constant φ1

which determines the significance of Pbest is set to 0. Further
suppose that the update term of the current global best posi-
tion includes the coefficientMbest/(‖Gbest (s)−xk(s)‖2+ε),
where Mbest is the normalized fitness of Gbest , and ε is a
small positive constant to prevent division by zero. In this
case, the PSO logic of Algorithm I becomes the modified
PSO logic of Algorithm XII.

Now suppose that the GSA of Algorithm XI calculates
acceleration based only on the current global best solution
Gbest , instead of using all of the solutions in the entire popu-
lation. The GSA of Algorithm XI then becomes the modified
GSA of Algorithm XIII. We find that if in Algorithm XII the
inertia weight w is set to a random number, and if in Algo-
rithm XIII the gravitational constant g is set to 1, then the
modified GSA is equivalent to the modified PSO. So GSA
can be viewed as a variation of PSO under special conditions,
and it follows that these two algorithms perform identically
under these special conditions.

2.1.6 Artificial bee colony algorithm

ABC was introduced by Karaboga (2005) and some varia-
tions and applications of ABC are discussed in Dervis et al.
(2014) and Dervis and Bahriye (2007). ABC is inspired by
the behavior of bees as they search for an optimal food source.
The location of a food source is analogous to a location in the
search space of an optimization problem. The amount of nec-
tar at a location is analogous to the fitness of a candidate solu-
tion. In ABC, there are three different types of bees: forager
bees, onlooker bees, and scout bees. First, forager bees travel
back and forth between a food source and their hive. Each
forager is associated with a specific location, and remembers
that location as it travels back and forth between the hive.
When a forager takes its nectar to the hive, it returns to its food
source, but it also engages in local exploration as it searches
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Algorithm X − Outline of GSA for the optimization of f (x)

Initialize a random population { }kx  for [ ]1,k N∈ , and N is the population size
While not (termination criterion)

Gravitational constant ( )0 maxexpg g t tα← −

Fitness: 
( ) ( )( )

( )( ) ( )( )
[ ]
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0,1

best worst
k i i

k
i i i i

f x f x
m

f x f x
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−

 for k  ∈ [1, N ] 

Normalized fitness: 
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k
k N

ii

m
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m
=

←
∑

 for k  ∈ [1, N ] 

For each solution kx , [ ]1,k N∈

For each dimension [ ]1,s n∈

Distance: ( ) ( ) ( )
2ki i kR s x s x s← −  for [ ]1,i N∈

Force: ( )
( )

( ) ( )( )k i
ki i k

ki

gM M
F s x s x s

R s ε
← −

+
 for [ ]1,i N∈

Acceleration: ( ) ( )1,

1 N
k i kii i k

k

a s r F s
M = ≠

← ∑

Velocity: ( ) ( ) ( )k k kv s rv s a s← +

Position: ( ) ( ) ( )k k kx s x s v s← +

Next dimension
Next solution
Increment generation number: 1t t← +

Next generation

in the nearby vicinity for a better source. Second, onlooker
bees are not associated with any particular food source, but
they observe the amount of nectar that is returned by the for-
agers (that is, the fitness of each forager’s location in search
space), and use that information to decide where to search for
nectar. The onlookers’ search location is decided probabilis-
tically based on their observations of the foragers. Third,
scout bees are explorers, and are also not associated with
any particular food source. If a scout sees that a forager has
stagnated and is not progressively increasing the amount of
nectar that it returns to the hive, the scout randomly searches
for a new nectar source in the search space. Stagnation is
indicated when the explorer fails to increase the amount of
nectar it brings to the hive after a certain number of trips.

A description of ABC is given in Algorithm XIV, where
Pf is the forager population size and P0 is the onlooker popu-
lation size.Note that the total population size is N = P0+Pf .
L is a positive integer, which denotes the stagnation limit,
r ∈ [−1, 1] is a uniformly distributed random number, T (·)

is a forager trial counter that keeps track of the number of
consecutive unsuccessful modifications of each forager.

Suppose that in the PSO logic of Algorithm I, the
solutions are divided into two sub-populations. For one sub-
population, the constant φ1 that determines the significance
of Pbest (s) is set to 0, andwhich are updated independently of
their previous velocities; that is, the inertia weight is w = 0.
For another sub-population, the constant φ2 which deter-
mines the significance of Gbest (s) are set to 0, the inertia
weight is w = 0, and the current solution xk is replaced by
the current global best solution Gbest . In addition, randomly
selected one dimension in candidate solution is updated
instead of all dimensions in each iteration. In this case, Algo-
rithm I becomes the modified PSO logic of Algorithm XV.

Now suppose that in the ABC method of Algorithm XIV
we do not set the forager trial counters; that is, the perfor-
mance of scout bees is not considered. The ABC method of
Algorithm XIV then becomes the modified ABC method of
Algorithm XVI. We find that if in the first sub-population in
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Algorithm XI − Outline of compact version of GSA for the optimization of f (x)
Initialize a random population { }kx for [ ]1,k N∈ , and N is the population size
While not (termination criterion)

Gravitational constant ( )0 maxexpg g t tα← −

Fitness: 
( ) ( )( )
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Algorithm XII − Outline of a modified PSO algorithm
Initialize a random population { }kx  for [ ]1,k N∈ , 
and N is the population size
While not (termination criterion)

Fitness: ( ) ( )( )
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Algorithm XV the current global best solution Gbest is set to
a random number, and in the second sub-population the cur-
rent global best solutionGbest is chosen using roulette-wheel
selection, and the particle’s previous best solution Pbest is
set to a random number, then the modified ABC method is
equivalent to the modified PSO algorithm. So ABC can be
viewed as a variation of PSO under special conditions, and it
follows that these two algorithms perform identically under
these special conditions.

Algorithm XIII − Outline of a modified GSO
Initialize a random population { }kx  for [ ]1,k N∈ , 
and N is the population size
While not (termination criterion)

Gravitational constant ( )0 maxexpg g t tα← −

Fitness: ( ) ( )( )
( )( ) ( )( )
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its fitness bestM

For each dimension [ ]1,s n∈

Update: 
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2.1.7 Summary of swarm intelligence algorithm
comparisons

It has seen in the above sections that several new SI algo-
rithms, including SFLA, GSO, FA, ABC and GSA, are
conceptually similar to PSO. Under special conditions, these
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Algorithm XIV − Outline of ABC for the optimization of f (x), where each forager and onlooker encodes a 
candidate solution

Initialize a random population of foragers { }kx  for 1, fk P⎡ ⎤∈ ⎣ ⎦ , and onlooker { }iv  for [ ]01,i P∈
While not (termination criterion)

For each forager kx
i ← random integer [ ]1, N∈ such that i k≠ ; s ← random integer [ ]1, n∈

( ) ( ) ( ) ( )( )k k k iv s x s r x s x s← + ⋅ −
If ( )kf v is better than ( )kf x then

k kx v← ; ( ) 0kT x ←
Else

( ) ( ) 1k kT x T x← +
End if

Next forager

For each onlooker iv
Select a forager kx , where ( ) ( )Pr fitnessk kx x∝  for 1, fk P⎡ ⎤∈ ⎣ ⎦
j ← random integer 1, fP⎡ ⎤∈ ⎣ ⎦ such that j k≠ ; s ← random integer [ ]1, n∈

( ) ( ) ( ) ( )( )i k k jv s x s r x s x s← + ⋅ −
If ( )if v is better than ( )kf x then

k ix v← ; ( ) 0kT x ←
Else

( ) ( ) 1k kT x T x← +
End if

Next onlooker

For each forager kx , 1, fk P⎡ ⎤∈ ⎣ ⎦
If ( )kT x L> then

kx ←  randomly-generated individual

( ) 0kT x ←

End if
Next forager

Next generation

algorithms are equivalent toPSOvariations.All of these algo-
rithms have certain features in common and can be viewed
as variations on the same themes, including inertia, influ-
ence by society, and influence by neighbors. Since they have
so many similarities, it is easy to see why they have simi-
lar performance in many real-world optimization problems.
We note that there are many other new SI algorithms, includ-
ing glowworm swarm optimization (GSO) (Krishnanand and
Ghose 2009), grey wolf optimizer (GWO) (Mirjalili and
Lewis 2014), and others, but the study of their similarities
and differences is deferred for future research.

2.2 Conceptual differences between swarm intelligence
algorithms

The identical functionality of different SI algorithms dis-
cussed above occurs only under special conditions. Each
SI algorithm still has its own particular features and oper-
ations that can give it flexibility that other SI algorithms may

not have. In this subsection, we point out some differences
between various SI algorithms.

2.2.1 Biological motivation and its effect on future research

Differences between SI algorithms result from their unique
biologicalmotivations. PSO is based on the swarming behav-
ior of birds, SFLA is based on the leaping behavior of frogs,
GSO is based on the food foraging behavior of land-based
animals, FA is based on the attraction of fireflies to one
another, ABC is based on the foraging behavior of bees, and
GSA is based on the law of gravity. It is therefore useful to
retain the distinction between these SI algorithms because
they are based on different phenomena, and those distinct
phenomena can be used to introduce helpful algorithmic vari-
ations for improved performance.

Retaining the swarm foundation of PSO stimulates
research toward the incorporation of social behavior from
animals,which can enrich and extend the study of PSO. Some
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Algorithm XV − Outline of a modified PSO algorithm
Initialize a random sub-population { }kx for 

1, fk P⎡ ⎤∈ ⎣ ⎦ , and another sub-population { }iv for 

[ ]01,i P∈

While not (termination criterion)

For each solution (particle’s position) kx

Find the current global best solution bestG

s ← random integer [ ]1, n∈

Update:

( ) ( ) ( ) ( ) ( )( )20,k k best kv s x s U G s x sφ← + −

If ( )kf v is better than ( )kf x then

k kx v←

End if
Next solution

For each solution (particle’s position) iv

Find the current global best solution bestG

Find the particle’s previous best solution bestP

s ← random integer [ ]1, n∈

Update:

( ) ( ) ( ) ( ) ( )( )10,i best best bestv s G s U P s G sφ← + −

If ( )if v is better than ( )bestf G then

best iG v←

End if
Next solution

Next generation

Algorithm XVI − Outline of a modified ABC algorithm
Initialize a random population of foragers { }kx for 

1, fk P⎡ ⎤∈ ⎣ ⎦ , and onlooker { }iv  for [ ]01,i P∈
While not (termination criterion)

For each forager kx
i ← random integer [ ]1, N∈ such that i k≠
s ← random integer [ ]1, n∈

( ) ( ) ( ) ( )( )k k k iv s x s r x s x s← + ⋅ −
If ( )kf v is better than ( )kf x then

k kx v←
End if

Next forager

For each onlooker iv
Select a forager kx ,  
where ( ) ( )Pr fitnessk kx x∝  for 1, fk P⎡ ⎤∈ ⎣ ⎦
j ← random integer 1, fP⎡ ⎤∈ ⎣ ⎦ such that j k≠
s ← random integer [ ]1, n∈

( ) ( ) ( ) ( )( )i k k jv s x s r x s x s← + ⋅ −
If ( )if v is better than ( )kf x then

k ix v←
End if

Next onlooker

Next generation

of these behaviors include avoiding predators, seeking food,
and seeking to travel more quickly. Retaining SFLA as a sep-
arate algorithm stimulates research toward the incorporation

of frog behavior, including complex shuffling behavior and
new leaping rules. Retaining GSO as a separate algorithm
stimulates research toward the incorporation of foraging
behavior from land-based animals, including additional food
scanning mechanisms, scrounging strategies, and random
search strategies. Retaining FAas a separate algorithm stimu-
lates the research toward the incorporation of firefly behavior,
including the dispersion of individuals, consideration of light
intensity, and other atmospheric considerations. Retaining
ABC as a separate algorithm stimulates research toward
the incorporation of bee behavior, including the profitability
of a food source, the distance and direction from the nest,
and other foraging models. Retaining GSA as a separate
algorithm stimulates research toward the incorporation of
additional characteristics related to gravity, including active
gravitational force, passive gravitational force, and inertia.

2.2.2 Algorithmic differences

Differences in the performance levels of various SI algo-
rithms arise because of differences in the details of these
algorithms. Although we have shown that SI algorithms are
equivalent under certain conditions, they can operate quite
differently as typically implemented. For example, the basic
PSO algorithm creates children by updating all solutions
based on the current global best solution and the previous
best solution. SFLA creates children by updating the worst
sub-population solutions based on the current global best
solution and the best sub-population solution. GSO creates
children by updating each solution based on different search
strategies. ABC creates children by updating each solution
based on randomly weighted differences of the current solu-
tion. GSA creates children by updating each solution based
on the same search strategy. FA creates children by updating
all solutions except the best one, which is never updated.

Unifying various SI algorithms, as done in this paper,
is instructive, but recognizing their individual characteris-
tics and distinctions enables interesting mathematical and
theoretical studies, and can provide valuable tools for prac-
tical problems. The no-free-lunch theorem (Wolpert and
Macready 1997) says that if an algorithm achieves superior
results on certain problems, it must pay for that performance
with inferior results on other problems. So the existence
of various SI algorithms provides an attractive choice of
alternate optimization methods. The differences between the
algorithms provide the possibility of application to a vari-
ety of problems, and for a variety of contributions to the SI
literature.

Table 1 summarizes some characteristics of the six algo-
rithms that we consider. The row labeled “Search Domain
of Original Formulation” indicates whether the algorithm
was originally developed for discrete or continuous search
domains. This characteristic is not always obvious. For exam-
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Table 1 Summary of the differences among the six SI algorithms that we study

PSO SFLA GSO FA ABC GSA

Year introduced 1995 2003 2006 2009 2005 2009

Search domain of
original
formulation

Continuous Discrete Continuous Continuous Continuous Continuous

Convergence Slow Fast Slow Fast Slow Slow

Best application
of original
formulation

Most optimization
problems

Combinatorial
optimization
problems

Multimodal
optimization
problems

Multimodal
optimization
problems

Most optimization
problems

Most optimization
problems

ple, SFLA was originally applied to discrete search spaces,
but the algorithm is more naturally suited for continuous
search spaces, and it is usually applied that way. It should not
be assumed that the various SI algorithms suit only the type
of search domain in the table. In fact, they have all beenmodi-
fied to apply to both discrete and continuous search domains,
and may even perform better a search domain type that is dif-
ferent than the original search domain type.

The “Convergence” row in Table 1 indicates whether the
algorithms have fast or slow convergence, in general. This
characteristic is relatively clear-cut; the original versions
of SFLA and FA have fast convergence, and the original
versions of PSO, GSA, ABC and GSO have slow conver-
gence. However, many variants of PSO, GSA, ABC, and
GSO exhibit greatly improved convergence abilities. Note
that convergence ability is quantified by empirical evidence,
but there is little theoretical evidence to support the conver-
gence characterizations in Table 1.

The “Best Application of Original Formulation” row in
Table 1 indicates the type of problem for which the algo-
rithm was initially developed. SFLA was initially applied
to combinatorial optimization problems and obtained good
performance, but modified versions of SFLA have applied to
all types of search domains. The original versions of GSO
and FA show good performance for multimodal optimization
problems, and the original versions of PSO, ABC and GSA
show good performance for the most types of optimization
problems.

3 Experimental results

This section investigates the performance of the six SI algo-
rithms considered in this paper, including SFLA, GSO, FA,
ABC, GSA, and PSO, along with advanced versions. The
advanced versions include modified SFLA (MSFLA) (Emad
et al. 2007), self-adaptive group search optimizer with elitist
strategy (SEGSO) (Zheng et al. 2014), variable step size
firefly algorithm (VSSFA) (Yu et al. 2015), modified arti-
ficial bee colony (MABC) (Bahriye and Dervis 2012), GSA

with chaotic local search approach (CGSA2) (Gao et al.
2014), PSO with linearly varying inertia weight (LPSO)
(Shi and Eberhart 1998), and PSO with constriction factor
(CPSO) (Clerc andKennedy 2002).We select these advanced
versions because the literature shows that they generally pro-
vide better performance than the basic algorithms. Section
3.1 compares performance on the continuous benchmark
functions from the 2013 IEEE Congress on Evolutionary
Computation, and Sect. 3.2 compares performance on a set
of combinatorial knapsack problems.

3.1 Continuous functions

This subsection compares the performance of SFLA, GSO,
FA, ABC, GSA, PSO, and their advanced versions on a
set of continuous benchmark functions from the 2013 IEEE
Congress on Evolutionary Computation (Liao and Stuetzle
2013). These functions are briefly summarized inTable 2, and
the parameters used in this subsection and the corresponding
references are shown in Table 3. Note that we did not opti-
mize the parameter values of the algorithms, but instead we
used the parameter values that are given in the references in
Table 3. Each algorithm has a population size of 200, and
each function is evaluated in 50 dimensions with a function
evaluation limit of 500,000.All algorithms terminate after the
maximum number of function evaluations, or if the objective
function value falls below 10−8. All results in this section
are computed from 25 independent simulations. Results are
shown in Tables 4 and 5.

According to Tables 4 and 5, MABC performs best on
10 functions (F2, F6, F7, F9, F10, F12, F14, F18, F25, and
F28), VSSFA performs best on 5 functions (F3, F16, F20,
F21, and F27), CGSA2 performs best on 4 functions (F1,
F4, F11, and F19), FA performs best 4 functions (F13, F15,
F17, and F22), ABC performs best on 2 functions (F5 and
F23), MSFLA performs best on 2 functions (F8 and F24),
and GSA performs best on function F26. These results indi-
cate that MABC is the most effective, VSSFA is the second
most effective, and CGSA2 and FA are the third most effec-
tive for the continuous benchmark functions that we studied.
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Table 2 2013 CEC benchmark
functions, where the search
domain of all functions is
−100 ≤ xi ≤ 100

Function name Function
minimum

Unimodal functions F1 Sphere function −1400

F2 Rotated high conditioned elliptic function −1300

F3 Rotated Bent Cigar function −1200

F4 Rotated discus function −1100

F5 Different powers function −1000

Basic multimodal
functions

F6 Rotated Rosenbrock function −900

F7 Rotated Schaffer F7 function −800

F8 Rotated Ackley function −700

F9 Rotated Weierstrass function −600

F10 Rotated Griewank function −500

F11 Rastrigin function −400

F12 Rotated Rastrigin function −300

F13 Discontinuous rotated Rastrigin function −200

F14 Schwefel function −100

F15 Rotated Schwefel function 100

F16 Rotated Katsuura function 200

F17 Lunacek Bi_Rastrigin function 300

F18 Rotated Lunacek Bi_Rastrigin function 400

F19 Expanded Griewank plus Rosenbrock function 500

F20 Expanded Schaffer F6 function 600

Composition
multimodal functions

F21 Composition function 1 (n = 5, rotated) 700

F22 Composition function 2 (n = 3, unrotated) 800

F23 Composition function 3 (n = 3, rotated) 900

F24 Composition function 4 (n = 3, rotated) 1000

F25 Composition function 5 (n = 3, rotated) 1100

F26 Composition function 6 (n = 5, rotated) 1200

F27 Composition function 7 (n = 5, rotated) 1300

F28 Composition function 8 (n = 5, rotated) 1400

More details about these functions can be found in Liao and Stuetzle (2013)

Furthermore, we find that for most benchmark functions, the
performances of the advanced versions of SI algorithms are
better than their corresponding basic versions, which indi-
cates that the modifications of the algorithms can improve
the optimization performance.

Next we briefly consider the types of functions for which
the various algorithms are best-suited. Tables 4 and 5 show
that for the unimodal functions (F1–F5), ABC and its
advanced version perform best on two functions, and GSA
and its advanced version perform best on two functions,
and so they are the most effective algorithms. For the basic
multimodal functions (F6–F20) and compositionmultimodal
functions (F21–F28), ABC and its advanced version perform
best on ten functions and are the most effective algorithms,
and FA and its advanced version perform best on 8 func-
tions and are thus the second most effective algorithms. This
is consistent with the observation in Table 1 about the best
application of the original formulation of the SI algorithms.

The average computing times of the algorithms are shown
in the last row of Tables 4 and 5. Here MATLAB® is used
as the programming language, and the computer is a 2.40
GHz Intel Pentium® 4 CPU with 4 GB of memory. We find
that all algorithms can be ranked from fastest to slowest as
follows: FA, VSSFA, SFLA, MSFLA, ABC, MABC, PSO,
GSA, LPSO, CPSO, CGSA2, GSO, and SEGSO.

In order to further compare the performance of SI algo-
rithms, we perform a Holm multiple comparison test while
consideringPSOas the controlmethod,which acts as the base
algorithm for comparison. The Holm multiple comparison
test is a nonparametric statistical test that obtains a probabil-
ity (p value) that determines the degree of difference between
a control algorithm and a set of alternative algorithms,
assuming that the algorithms have statistically significant dif-
ferences as a whole (Derrac et al. 2011). To quantify whether
a set of algorithms shows a statistically significant difference
as a whole, we first apply Friedman’s test with a significance
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Table 3 Parameter settings of SFLA, GSO, FA, ABC, GSA, PSO, and their advanced versions

Parameters Values Parameters Values

SFLA, MSFLA
(Eusuff and Lansey
2003; Emad et al.
2007)

Number of
memeplexes

m = 20 GSO, SEGSO (He
et al. 2006; Zheng
et al. 2014)

Initial heading angle
of each solution

φi = π/4

Number of candidate
solution in each
memeplex

n0 = 10 Maximum pursuit
angle

θmax =
π/(round

√
N + 1)2

Iteration limit imax = 10 Maximum turning
angle

αmax = θmax/2

Acceleration factor
(only for MSFLA)

C = 1.6 Turning parameter lmax = ‖u − l‖2

ABC, MABC
(Karaboga 2005;
Bahriye and Dervis
2012)

Forager population
size

Pf = N/2 GSA, CGSA2
(Rashedi et al.
2009; Gao et al.
2014)

Gravitational
constant

g0 = 100

Onlooker population
size

P0 = N/2 Decay rate α = 20

Stagnation limit L = Nn/2 Chaotic logistic map
coefficient (only
for CGSA2)

μ = 4

Modification rate
(only for MABC)

MR = 0.4 Shrinking parameter
(only for CGSA2)

ρ = 0.978

Scaling factor (only
for MABC)

SF = 1

FA, VSSFA (Yang
2009; Yu et al.
2015)

Tuning parameter γ0 = 0.8 PSO (Kennedy and
Eberhart 1995)

Inertia weight w = 0.8

Tuning parameter α = 0.01 Cognitive constant φ1 = 1.0

Tuning parameter β0 = 1 Social constant φ2 = 1.0

LPSO (Shi and
Eberhart 1998)

Fixed initial inertia
weight

wini t = 0.2 CPSO (Clerc and
Kennedy 2002)

Constriction
coefficient

K = 2/
∣
∣
∣2 − ϕ −

√

ϕ2 − 4ϕ
∣
∣
∣ϕ = 4.1

Inertia weight slope m = −2.5 × 10−4 The other parameters of LPSO and CPSO
are the same as those of PSO

Nonlinear
modulation index

n = 1

levelα = 0.05 to themean error rankings. If the test rejects the
null hypothesis that all of the algorithms perform similarly,
we compare the control method with the remaining algo-
rithms according to their rankings. Additional details about
the Holm multiple comparison test can be found in Derrac
et al. (2011).

Table 6 shows the Friedman ranks of all the SI algo-
rithms for the 2013 CEC benchmark functions. We obtain
a Friedman statistic of 130.45 and a corresponding p value
of 0.00012. Because the p value is smaller than 0.05, the
results strongly indicate statistically significant performance
differences among the algorithms.

Table 7 shows the results of a Holm multiple comparison
test. It seems from Table 7 that for the 2013 CEC continu-
ous benchmark functions, MABC is the best with an average

rank of 3.62, VSSFA is the second best with an average rank
of 4.14, and CGSA2 is the third best with an average rank
of 4.57. These results are consistent with those shown in
Tables 4 and 5. Furthermore, Table 7 shows statistically sig-
nificant differences between PSO and all other algorithms
except SFLA and GSO, as indicated by p values smaller
than 0.05. The larger p values for SFLA and GSO, which
are 0.08121 and 0.08902, respectively, indicate that although
SFLA and GSO obtain better performance than PSO, the dif-
ferences are not statistically significant.

We do not want to use the above results to draw broad
conclusions. First, for SI algorithms, different tuning values
might result in significant performance changes. In general,
it can be difficult to determine optimum tuning parameters. A
small change in a tuning value could change the performance
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Table 6 Friedman ranks of all SI algorithms for the 2013 CEC benchmark functions

Function SFLA MSFLA GSO SEGSO FA VSSFA ABC MABC GSA CGSA2 PSO LPSO CPSO

F1 11 9 13 12 4 3 7 6 2 1 5 10 8

F2 8 5 13 12 7 2 6 1 4 3 10 9 11

F3 7 10 8 12 2 1 3 4 11 13 5 6 9

F4 13 11 12 10 4 3 7 2 6 1 9 8 5

F5 11 13 12 10 6 2 1 3 4 7 9 8 5

F6 12 13 9 10 4 3 2 1 8 7 11 6 5

F7 12 8 11 7 5 4 3 1 6 2 9 10 13

F8 7 1 8 3 12 2 10 6 4 5 11 13 9

F9 11 10 9 4 6 2 3 1 7 8 13 12 5

F10 11 8 12 10 6 2.5 2.5 1 5 4 13 9 7

F11 12 9 11 10 5 2 8 4 7 1 13 3 6

F12 12 13 11 5 10 7 2 1 4 3 8 9 6

F13 6 11 5 13 1 4 3 12 7 8 9 10 2

F14 12 11 8 9 3 2 5 1 7 4 13 10 6

F15 11 8 9 12 1 3 6 2 5 4 10 7 13

F16 12 10 13 5 7.5 1 2 3 7.5 4 9 11 6

F17 8 4 6 3 1 10 12 13 5 7 2 9 11

F18 2 10 11 8 6 12 4 1 5 3 13 9 7

F19 5 2 9.5 7 11 4 9.5 6 3 1 13 12 8

F20 10 7 8 13 3 1 2 4 6 5 12 9 11

F21 6 2 4 10 3 1 9 5 11 7 13 12 8

F22 13 9 6 12 1 2 4 10 8 7 11 5 3

F23 6 8 9 4 10 2 1 5 13 7 12 3 11

F24 7 1 10 8 4 6 3 13 5 2 9 11 12

F25 12 5 13 9 6 10 3 1 4 2 7 8 11

F26 4 8 7 9 6 11 2 3 1 5 10 12 13

F27 11 13 12 5 4 1 3 6 8 2 7 10 9

F28 11 6 13 10 3 2 7 1 9 5 12 4 8

Statistic 130.45 p value 0.00012

“Statistic” and “p value” in the last row indicate Friedman statistic and corresponding p value, respectively

Table 7 Holm multiple comparison test results of PSO and other SI
algorithms, which show the average rank and the p values

Algorithm Rank p value Algorithm Rank p value

SFLA 9.67 0.08121 ABC 4.86 0.00009

MSFLA 7.89 0.00517 MABC 3.62 0.00002

GSO 9.75 0.08902 GSA 6.12 0.00094

SEGSO 8.62 0.02341 CGSA2 4.57 0.00008

FA 5.01 0.00017 LPSO 8.75 0.04536

VSSFA 4.14 0.00005 CPSO 8.18 0.00914

PSO is the control algorithm, and its average rank is 9.93 based on the
Friedman test (not shown in the table)

of the algorithm, and this effect is problem-dependent. Sec-
ond, if we use more other advanced versions of SFLA, GSO,
FA, ABC, and GSA, we might obtain different results. The
purpose of the comparisons here is not to tune the parameters

of the algorithms to obtain the best performance, but rather
to quantify performance differences between typically imple-
mented algorithm versions, and to show that the algorithmic
differences between SI algorithms can result in significantly
different performance.

3.2 Combinatorial knapsack problems

In this section the SI algorithms are applied to the knapsack
problems, which is an important and representative real-
world combinatorial problem (Abulkalamazad et al. 2014;
Bhattacharjee and Sarmah 2014; Freville 2004). Many com-
binatorial problems can be reduced to a knapsack problem.

The 0/1 knapsack problem can be simply described as
follows. Consider a set of n items, where the i th item has
weight wi and profit pi . The problem is to select a subset
of the n items to maximize overall profit without exceeding
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the weight constraint b. The problem can be mathematically
modeled as follows:

Maximize
n

∑

i=1

wi xi

Subject to
n

∑

i=1

pi xi ≤ b,

where xi ∈ {0, 1} ∀ i ∈ {1, 2, . . . , n} (9)

xi takes the value of 1 or 0, which represents the selection or
rejection of the i th item. Ten benchmark knapsack problems
are studied here, as summarized in Table 8. The parameters
used in the SI algorithms in this section are the same as those
in Sect. 3.1.

Table 9 shows comparisons of the best performance of
each SI algorithm and their advanced versions after 1000
generations, averaged over 25 simulations. The results show
that all SI algorithms and their advanced versions perform
the same for f3, f4, and f9; SFLA and its advanced ver-
sion obtain the best performance for five of the problems;
GSA and its advanced version obtain the best performance
for four and five of the problems, respectively; and FA,
ABC and their advanced versions obtain the best perfor-
mance for two of the problems. This indicates that SFLA
and GSA are significantly better than the other SI algorithms
for the combinatorial problems that we study. These results
are also consistent with the observation in Table 1, which
indicates that SFLA is the most appropriate for combinato-

Table 8 The dimension and parameters of the ten benchmark knapsack problems

Dim. Parameters (w, p, b)

f1 10 w = {95, 4, 60, 32, 23, 72, 80, 62, 65, 46}; p = {55, 10, 47, 5, 4, 50, 8, 61, 85, 87}; b = 269

f2 20 w = {92, 4, 43, 83, 84, 68, 92, 82, 6, 44, 32, 18, 56, 83, 25, 96, 70, 48, 14, 58};

p = {44, 46, 90, 72, 91, 40, 75, 35, 8, 54, 78, 40, 77, 15, 61, 17, 75, 29, 75, 63}; b = 878

f3 4 w = {9, 11, 13, 15}; p = {6, 5, 9, 7}; b = 20

f4 4 w = {6, 10, 12, 13}; p = {2, 4, 6, 7}; b = 11

f5 15 w = {56.358531, 80.87405, 47.987304, 89.59624, 74.660482, 85.894345, 51.353496, 1.498459, 36.445204, 16.589862,
44.569231, 0.466933, 37.788018, 57.118442, 60.716575};

p = {0.125126, 19.330424, 58.500931, 35.029145, 82.284005, 17.41081, 71.050142, 30.399487, 9.140294, 14.731258,
98.852504, 11.908322, 0.89114, 53.166295, 60.176397};b = 375

f6 10 w = {30, 25, 20, 18, 17, 11, 5, 2, 1, 1}; p = {20, 18, 17, 15, 15, 10, 3, 1, 1}; b = 60

f7 7 w = {70, 20, 39, 37, 7, 5, 10}; p = {31, 10, 20, 19, 4, 3, 6}; b = 50

f8 23 w = {983, 982, 981, 980, 979, 978, 488, 976, 972, 486, 486, 972, 972, 485, 485, 969, 966, 483, 964, 963, 961, 958, 959};

p = {81, 980, 979, 978, 977, 976, 487, 974, 970, 485, 485, 970, 970, 484, 484, 976, 974, 482, 962, 961, 959, 958, 857};
b = 10000

f9 5 w = {33, 24, 36, 37, 12}; p = {15, 20, 17, 8, 31}; b = 80

f10 20 w = {84, 83, 43, 4, 44, 6, 82, 92, 25, 83, 56, 18, 58, 14, 48, 70, 96, 32, 68, 92};

p = {91, 72, 90, 46, 55, 8, 35, 75, 61, 15, 77, 40, 63, 75, 29, 75, 17, 78, 40, 44}; b = 879

Table 9 Performance comparison for six SI algorithms and their advanced versions on benchmark knapsack problems

SFLA MSFLA GSO SEGSO FA VSSFA ABC MABC GSA CGSA2 PSO LPSO CPSO

f1 295 295 265 276 295 295 295 295 295 295 268 288 280

f2 950 950 865 904 932 942 937 940 954 950 836 910 894

f3 35 35 35 35 35 35 35 35 35 35 35 35 35

f4 23 23 23 23 23 23 23 23 23 23 23 23 23

f5 466 472 395 400 444 450 435 445 481 481 384 423 405

f6 52 52 49 50 52 52 52 52 52 52 49 51 50

f7 107 108 105 107 106 106 106 107 107 107 105 105 105

f8 9760 9760 9724 9750 9748 9750 9750 9755 9759 9759 9730 9752 9738

f9 130 130 130 130 130 130 130 130 130 130 130 130 130

f10 1010 1010 870 890 982 990 1002 1008 1010 1010 896 975 937

The numbers show the best performance, averaged over 25 simulations. The best performance in each row is shown in bold font
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rial optimization problems, and that GSA can obtain good
performance for most types of optimization problems.

4 Conclusions

The similarities and differences of several popular new
swarm intelligence algorithms, including SFLA, GSO, FA,
ABC, andGSA, have been discussed in detail. Our discussion
and comparison has been based on algorithmic motivations
and implementation details. These algorithms have many
similarities with PSO due to their similar biological moti-
vations. We found that SFLA, GSO, FA, ABC and GSA
are equivalent to PSO under certain conditions. In addi-
tion, we compared SFLA, GSO, FA, ABC, and GSA, with
the basic PSO and with their improved variations, on a
set of continuous benchmark functions and combinatorial
knapsack problems. Simulation results show that although
the algorithms are identical under certain conditions, their
performance levels are quite different under the tested con-
ditions, because each algorithm retains its own distinctions
when implemented in its standard form. Given the overlap
between algorithms, it is often difficult to know when one
SI algorithm ends and another begins, when a new SI algo-
rithm deserves to belong to its own class, or when it should
be classified as a variation of an existing SI algorithm. We
conclude that it can be helpful to maintain the distinctions
between various SI algorithms, because the plethora of algo-
rithms provides a diverse choice of optimization methods,
research opportunities, and application opportunities.

SI researchers and practitioners typically want to know
which algorithm performs best. However, the no-free-lunch
theorem and the simulation results in this paper show that this
is a poorly framed question. Relative performance depends
on the particular problem, and is greatly affected by algorith-
mic variations and tuning parameters. One of the challenges
for the SI research community is to find a balance between
encouraging new research directions while still maintaining
high standards for the introduction and development of pur-
portedly newSI algorithms.However, the empirical results in
this paper show that the advanced version of ABC performs
best on continuous benchmark functions, and the advanced
versions of SFLA and GSA perform best on the combinator-
ial knapsack problems. These results contrast with previous
publications. For instance, (Elbeltagi et al. 2005) indicates
that PSO performs better than GA, MA, ACO, and SFL;
(Davarynejad et al. 2014) indicates that GSA performs better
thanPSO; (Parpinelli et al. 2012) indicates that PSOperforms
better thanBFOandABC; and (Civicioglu andBesdok 2013)
indicates that cuckoo search performs better than PSO and
ABC. These divergent results simply confirm our hypothesis
that performance depends strongly on algorithmic variations
and problem selection.

For future work there are several important directions.
Many other SI algorithms exist, such as GWO, BA, FWA,
and variations, which could provide better performance for
certain types of problems than the algorithms studied in this
paper. It would be interesting to analyze their similarities and
differences also. The second suggested direction for future
research is to study theoretical similarities and differences
between algorithms based on mathematical models such as
Markov chains (Nix and Vose 1992; Suzuki 1995), dynamic
systems (Simon 2011), and statistical mechanics (Ma et al.
(2015)). This effort would provide more definite mathemati-
cal conclusions than simulation results. The third suggested
direction for future work is to develop improved versions of
SI algorithms by using natural principles.
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