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Abstract In differential evolution (DE) research, many suc-
cessful empirical guidelines in selecting appropriate trial
vector generation strategies and control parameter values for
various problems have been investigated. The comprehen-
sive exploration of the experience can be an effective way to
develop an advanced DE variant. In this paper, an improved
DE approach with time-frame strategy adaptation called the
time-frame adaptive differential evolution (TFADE) is pro-
posed. It employs diverse trial vector generation strategies
with various control parameter values that can be adaptively
determined to generate promising solutions and dynamically
adjusted to deal with premature convergence during evolu-
tion, according to successful experience over a period of
preceding generations called the time frame. In the experi-
mental study, TFADE is compared with 4 commonly used
conventional DEs, 3 outstanding state-of-the-art adaptive
DEs, and 2 novel non-DE approaches, evaluated by a test
suite of 25 benchmark functions. The experimental results
show that the performance of TFADE is significantly supe-
rior to these competitors.
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1 Introduction

Among contemporary heuristic techniques, evolutionary
algorithms (EAs), inspired bybiological evolution, have been
increasingly important in recent decades. They have been
the kernel of the field known as evolutionary computation
(EC) in artificial intelligence and succeeded in solving var-
ious problems. Nowadays, using EAs to solve optimization
problems has become a common practice due to their effi-
cient and effective performance in solving complex problems
that cannot be easily solved by conventional techniques.

The differential evolution (DE) algorithm, proposed by
Storn and Price (1995), is a popular evolutionary approach
and a promising global optimizer in the continuous search
domain. It is a population-based stochastic search technique
employing mutation, crossover, and selection operations to
move a population towards promising solutions. DE is a
simple yet powerful search technique revealing remarkable
performance in a wide variety of problems. It has been suc-
cessfully utilized in diverse fields such as scheduling and
planning problems (Cheng et al. 2014; Damak et al. 2009;
Wang and Yeh 2014), data clustering (Dong et al. 2014;
Xiang et al. 2015), pattern recognition (Das and Konar 2009;
Du et al. 2007; Maulik and Saha 2009), and power dispatch
(Chiou 2009; Varadarajan and Swarup 2008).

The performance of DE highly depends on two parts. One
is the trial vector generation strategy, i.e., the mutation and
crossover operations; the other is the control parameter set-
ting, i.e., the scaling factor (F), the crossover rate (CR), and
the population size (NP). In DE research, many encouraging
trial vector generation strategies have been reported, different
strategies can be suitable for solving different kinds of prob-
lems (Qin et al. 2009). However, the performance of a given
trial vector generation strategy is still significantly influenced
by its control parameter setting. Although there are many
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important guidelines for the choice of an appropriate con-
trol parameter setting (Gämperle et al. 2002;Mezura-Montes
et al. 2006; Price et al. 2005), the interaction between control
parameter settings and DE performance is still complicated
and not completely understood.

Therefore, in order to successfully solve a practical prob-
lem by DE, as the characteristics of the given problem are
usually unknown, it is commonly required to perform a trial-
and-error procedure to choose an appropriate strategy and
fine-tune its corresponding parameter setting. However, such
trial-and-error search process is really a time-consuming and
error-prone task requiring high computational costs. Besides,
the population of target vectors may move through different
kinds of regions during evolution. Using diverse trial vector
generation strategies coupled with various control parameter
settings at different stages of evolution can be more effective
than just single one (Mallipeddi et al. 2011; Qin et al. 2009;
Yong et al. 2011). Therefore, for DE it is preferable to adap-
tively determine an appropriate strategy and its parameter
setting during evolution. There also has been an increasing
interest in designing new DE variants with adaptive ability
in the recent decade.

In this paper, we propose a novel adaptive DE vari-
ant called the time-frame adaptive differential evolution
(TFADE) algorithm to avoid the time-consuming trial-and-
error search process for seeking a suitable strategy and its
parameter values. Both of which can be adaptively deter-
mined to generate promising solutions and dynamically
adjusted to deal with the difficulty while premature con-
vergence or stagnation occurs during evolution, according
to successful experience over a period of preceding gen-
erations called the time frame. The rest of this paper is
organized as follows. Section 2 reviews related work on
conventional DE and state-of-the-art adaptive DE variants.
Section 3 introduces the details of the proposed time-frame
adaptive differential evolution algorithm. Some numerical
experiments, results and discussions are reported in Sect. 4.
Section 5 concludes this paper.

2 Related work

2.1 The differential evolution (DE) algorithm

An initialized population of NP D-dimensional parameter
vectors, xi,G = (x1i,G, x2i,G, ..., xDi,G) where i = 1, 2, . . .,
NP andG be a generation, called target vectors encodes some
candidate solutions towards the global optimum. The tar-
get vectors in the population are randomly generated from
a uniform distribution with minimum bounds of xmin =
{x1min, x2min, . . . , xDmin} and maximum bounds of xmax =
{x1max, x2max, . . . , xDmax} within a search space. After ini-
tialization the population performs a series of evolutionary

operations, which are iterations of mutation, crossover, and
selection. The mutation and crossover operations are utilized
to generate new vectors called trial vectors. Both operations
are so-called the trial vector generation strategy. After that,
the selection operation then determines whether each of the
new trial vectors will survive into next generation. The com-
mon evolutionary process of DE is described as follows.
1. Mutation operation
For each target vector xi,G , DE employs the following

mutation operation to produce its corresponding mutant vec-
tor vi,G (for the case of DE/rand/1):

vi,G = xr1,G + F(xr2,G − xr3,G), (1)

where the indices r1, r2 and r3 are mutually exclusive inte-
gers randomly selected from the set of {1, 2, . . . , N P}\{i}.
F is a mutation factor called the scaling factor for scaling the
difference vector (xr2,G −xr3,G). It is a positive real number
where F ∈ (0, 1+) that controls the rate at which the pop-
ulation evolves. It is generally the mutation operation that
separates one DE variant from another. The mutation oper-
ation given in (1), which uses a randomly selected vector
xr1,G and one weighted difference vector F(xr2,G − xr3,G),
is denoted as DE/rand/1. This is the idea how the different
DE variants are named. The other commonly used conven-
tional DE variants (Das et al. 2009; Price et al. 2005; Price
1999) are listed as follows:

DE/rand/2 : vi,G = xr1,G + F(xr2,G − xr3,G)

+F(xr4,G − xr5,G) (2)

DE/best/1 : vi,G = xbest,G + F(xr1,G − xr2,G) (3)

DE/best/2 : vi,G = xbest,G + F(xr1,G − xr2,G)

+F(xr3,G − xr4,G) (4)

DE/rand − to − best/1 : vi,G = xi,G + F(xbest,G − xi,G)

+F(xr1,G − xr2,G) (5)

DE/rand − to − best/2 : vi,G = xi,G + F(xbest,G − xi,G)

+F(xr1,G − xr2,G) + F(xr3,G − xr4,G) (6)

DE/current − to − rand/1 : vi,G = xi,G
+K (xr1,G − xi,G) + F(xr2,G − xr3,G) (7)

2. Crossover operation
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Once the mutation operation is finished, the crossover
operation is then employed to each pair of the target vector
xi,G with its corresponding mutant vector vi,G , to generate
a new vector ui,G = (ui1,G, ui2,G, ..., uiD,G) called the trial
vector. The binomial crossover operation is the basic version
defined as follows:

ui,G = ui j,G =
{

vi j,G , if (rand j ≤ CR) or ( j = jrand)
xi j,G , otherwise

(8)

where j = 1, 2, . . ., D, rand j is a uniform random num-
ber generated within the range of [0, 1]. CR ∈ [0, 1] is the
crossover probability called the crossover rate, which is a
user-defined value controls the fraction of parameter values
that are copied from mutant vectors. jrand ∈ {1, 2, . . . , D}
is a randomly chosen index ensures that the trial vector ui,G
does not duplicate the target vector xi,G .
3. Selection operation
After the mutation and crossover operations, the selection

operation selects a better one between the target vector xi,G
and the trial vector ui,G into next generation according to the
following fitness measurement of a greedy selection scheme:

xi,G+1 =
{
ui,G , if fitness(ui,G) is better than fitness (xi,G)

xi,G , otherwise

(9)

2.2 DE with adaptive scheme

The performance of DE is significantly influenced by its
control parameter settings, but the interaction between both
is still complicated and not completely understood. Many
adaptive DE variants then have been proposed to dynami-
cally adjust control parameter values without involving the
knowledge of the relationship among strategies, control para-
meters, and the characteristics of given problems.

Abbass (2002) adapted the crossover rate CR by encod-
ing it into each individual to simultaneously evolve with
other parameter for multi-objective optimization problems.
The scaling factor F is generated for each variable from a
Gaussian distribution N (0, 1). Teo (2006) then proposed a
DE variant with a dynamic population sizing strategy called
DESAPbasedonAbbass’ self-adaptiveParetoDE.He imple-
mented two versions of DESAP using absolute and relative
encoding methodologies for dynamically self-adapting the
population size parameter. Das et al. (2005) linearly reduced
the scaling factor F with increasing generation count from a
maximum to a minimum value. They also employed a uni-
form distribution between 0.5 and 1.5 with a mean value
of 1 to obtain a new hybrid DE variant. Brest et al. (2006)
encoded control parameters F and CR into the individuals
and adjusted by introducing two new parameters τ1 and τ2. In

their algorithm (called jDE), a set of F values are assigned to
individuals in the population. Then, a random number rand
is uniformly generated in the range of [0, 1]. If rand < τ1,
the F is re-initialized to a new random value in the range of
[0, 1], otherwise it is kept unchanged. The CR is adapted in
the same manner but with a different re-initialized range of
[0, 1].

Later, adapting not only parameter values but also trial
vector generation strategies may bring great performance for
DE, some outstanding contemporary adaptive DE schemes
focused on both adaptations have been proposed. Qin et al.
(2009) proposed a self-adaptive DE algorithm named SaDE,
inwhich both trial vector generation strategies and their asso-
ciated control parameter values are gradually self-adapted
by learning from their previous experience in generating
promising solutions. As a result, more suitable strategies
with its control parameter settings can be determined adap-
tively to match different phases of search process. The
performance of SaDE is extensively evaluated by 26 bound-
constrained numerical optimization problems and compared
with several conventional DEs and state-of-the-art adap-
tive DE variants. Zhang and Sanderson (2009) proposed an
adaptive differential evolution called JADE to improve the
performance of DE by implementing an efficient mutation
scheme of “DE/current-to-pbest” with the optional exter-
nal archive. The “DE/current-to-pbest” is a generalization
of the conventional “DE/current-to-best” and the optional
archive operation saves historical information which has the
potential to provide promising direction of search for evo-
lution progress. The simulation results show that JADE can
not only diversify the population, but also improve conver-
gence performance. Liu and Lampinen (2005) introduced
a fuzzy adaptive differential evolution (FADE) using fuzzy
logic controllers into DE, the inputs of which incorporate
relative function values and individuals of successive gen-
erations to adapt the parameters of mutation and crossover
operations. The experimental results show that the FADE
algorithm outperforms several conventional DEs on higher
dimensional problems. Mallipeddi et al. (2011) proposed an
ensemble of trial vector generation strategies and control
parameters called EPSDE. It contains a pool of distinct trial
vector generation strategies and a pool of control parame-
ter values competing to produce offspring during evolution
process. Yong et al. (2011) combined several effective trial
vector generation strategies with some control parameter set-
tings, proposed a method called composite DE (CoDE). It
uses three trial vector generation strategies and three con-
trol parameter settings randomly combining them to generate
promising solutions.

In recent years, an increasing number of researchers have
contributed their effort to enhance the efficiency and effec-
tiveness ofDE. Zou et al. (2013) introduced amodified differ-
ential evolution algorithm (MDE), in which two distributions
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of Gauss and Uniform are employed to adjust the scaling fac-
tor F and crossover rate CR, and two mutation strategies are
adopted to produce better solutions. To guarantee the qual-
ity of the population, MDE uses an external archive, and
some solutions of high quality in the external archive can be
selected for candidate solutions. Lu et al. (2014) proposed a
framework called DEwith surrogate-assisted self-adaptation
(DESSA) to deal with computationally expensive problems.
DESSA generates multiple trial vectors using different trial
vector generation strategies and parameter settings, and then
employs a surrogate model to identify the potentially best
trial vector to undergo real fitness evolution. The surrogate
model acts like a strategy and parameter setting selector
which aims to identify themost suitable strategy and parame-
ter setting for each target vector. Yeh et al. (2014) proposed a
novel grey adaptive DE algorithm (GADE) by updating the
control parameters in adaptive manner with the help of grey
relational analysis. In the algorithm, each target vector using
strategies has its own values of scaling factor F and crossover
rate CR depending on corresponding grey relational grade.
Since the relational grade of an individual is varied over the
generations, those two control parameters can be adaptive
time-varying. Based on the works coupled with grey evolu-
tionary analysis (GEA), they also proposed a GEA-based DE
algorithm (GEA-DE) which enables the control parameters
F and CR to adapt in the evolution process by introduc-
ing a GEA-based parameter automation approach (Yeh et al.
2015). The simulation results show that GEA-DE with the
best mutation strategy (GEA/best) outperforms DE/rand/1,
DE/best/1, jDE, and SaDE on most of the test functions in
terms of solution accuracy and convergence speed.

3 The time-frame adaptive differential evolution
(TFADE) algorithm

To solve a given problem by DE, using diverse trial vector
generation strategies coupled with various control parameter
settings at different stages of evolution can be more effec-
tive than just single one (Mallipeddi et al. 2011; Qin et al.
2009; Yong et al. 2011). Moreover, the performance of DE
highly depends on the selection of the trial vector gener-
ation strategy and its control parameter setting. To choose
a suitable trial vector generation strategy coupled with an
appropriate control parameter setting for a given problem
depends on the characteristics of the problem. It is common
to perform a trial-and-error search for choosing a trial vector
generation strategy and fine-tune its control parameter val-
ues,whichwould be really a time-consuming and error-prone
task. In the last decade, DE researchers have investigated
many empirical guidelines in selecting suitable trial vector
generation strategies and control parameter settings for var-
ious problems. However, when solving a practical problem,

the characteristics of the problem are usually ambiguous,
resulting in easily choosing the bad ones. An inappropri-
ate choice of the strategy and control parameter setting
may lead to premature convergence or stagnation during
evolution, which has been extensively surveyed (Gämperle
et al. 2002; Lampinen and Zelinka 2000; Price et al. 2005;
Zaharie 2003). In order to reduce the risk of occurring
premature convergence during evolution, a stagnation break-
ing scheme embedded in DE would be able to improve its
performance.

Towards this direction, aDE variant with time-frame strat-
egy adaptation called the time-frame adaptive differential
evolution (TFADE) algorithm is proposed. In TFADE, sev-
eral specific trial vector generation strategies and their control
parameter values diverse and restricted are embedded. It
can be gradually adapted to select suitable strategies to pro-
duce promising solutions according to successful experience
over a period of preceding generations. Besides, a stagnation
breaking schemepossessing extreme features of control para-
meter settings is also introduced to deal with the situation of
premature convergence or stagnation during evolution. The
idea of TFADE is described as follows.

3.1 The time-frame strategy candidate pool

A time-frame strategy candidate pool containing several
diverse and effective strategies is maintained. Many differ-
ent characteristics of trial vector generation strategies have
been vastly investigated (Mallipeddi et al. 2011; Qin et al.
2009; Yong et al. 2011). Putting more strategies into the pool
might cause unfavorable and ineffective influence, which can
reduce the chance of generating promising offspring. A good
candidate pool should be restricted, but exhibits effective and
diverse characteristics. In TFADE, several trial vector gen-
eration strategies with effective and diverse characteristics
are selected into the time-frame strategy candidate pool, as
follows.

“DE/rand/1/bin” is the most commonly used trial vector
generation strategy in DE literature. It is robust and has no
bias to any search direction that can demonstrate various
searches in a randommanner. Its extension, “DE/rand/2/bin”,
can lead to a better perturbation improving diversity and gen-
erate a wide variety of trial vectors because two difference
vectors are added to the base vector (Gämperle et al. 2002;
Storn and Price 1997). They are robust, diverse and can pro-
vide broad exploration capability to any problem. Especially
it is suitable for solving multimodal problems (Qin et al.
2009). For these reasons, both strategies are selected into the
time-frame strategy candidate pool.

“DE/current-to-rand/1” is a rotation-invariant strategy,
which is kind of special than others and more effective for
rotated problems. It commonly uses the rotation-invariant
arithmetic crossover rather than the binomial to generate trial
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vectors (Das et al. 2009; Price 1999). As its effectiveness and
robustness, especially to the rotated problems, it is selected
into the pool.

The strategies of “DE/best/1/bin”, “DE/best/2/bin”,
“DE/rand-to-best/1/bin”, and “DE/rand-to-best/2/bin”
employ the information of the best individual found so far.
They are suitable for solving unimodal problems but less
effective to highly multimodal problems, especially they are
easier to get stuck at local optimum. For these reasons, we
do not consider these strategies putting into the pool.

All strategies selected into the time-frame strategy can-
didate pool are shown in Table 1. Due to the popularity
in DE research, the binomial-type crossover operation is
employed to the strategies in the pool except the strategy
of “DE/current-to-rand/1”.

3.2 The parameter candidate pool

Two kinds of parameter candidate pools are maintained
in TFADE. One is called the time-frame parameter candi-
date pool; the other the extreme parameter candidate pool.
Some empirical guidelines in choosing suitable parameter
values for various problems also have been investigated.
A detailed examination of important guidelines will lead

us to select a good combination of parameters into the
pool.

Storn and Price (1997) suggested that a reasonable value
for the population size NP should be between 5Dand 10D.

A good initial choice of F is 0.5 and the effective range
of F values is suggested between 0.4 and 1. If the popula-
tion converges prematurely, either F or NP can be increased.
First reasonable attempt of choosing CR value can be 0.1.
However, because the larger CR value can speed up the con-
vergence, the value of 0.9 for CR may be a good initial
choice if the problem is near unimodal or fast convergence
is desired. Gämperle et al. (2002) examined different para-
meter settings for DE on Sphere, Rosenbrock, and Rastrigin
functions. Their experimental results showed that the search-
ing capability and convergence speed are very sensitive to
the choice of NP, F and CR. They recommended that the
population size NP should be between 3D and 8D, the
scaling factor F equals to 0.6, and the crossover rate CR
should be between 0.3 and 0.9. Ronkkonen et al. (2005)
suggested that the population size NP should be between
2D and 4D. Using F values between 0.4 and 0.95, and
F = 0.9 as an initial choice is a good way for DE. CR
values should lie in [0, 0.2] for separable functions and
in [0.9, 1] for multimodal and non-separable functions.
Runarsson and Xin (2000) showed that although it has been

Table 1 Three trial vector
generation strategies in the
time-frame strategy candidate
pool

“DE/rand/1/bin”:

ui,G = ui j,G =
{
xr1 j,G + F(xr2 j,G − xr3 j,G), if (rand j ≤ CR) or ( j = jrand)
xi j,G , otherwise

“DE/rand/2/bin”:

ui,G = ui j,G =
{
xr1 j,G + F(xr2 j,G − xr3 j,G) + F(xr4 j,G − xr5 j,G), if (rand j ≤ CR) or ( j = jrand)
xi j,G , otherwise

“DE/current-to-rand/1”:

ui,G = xi,G + K (xr1,G − xi,G) + F(xr2,G − xr3,G)

Table 2 Guidelines for
choosing control parameter
values

Researches NP F CR

Storn and Price (1997) [5D, 10D] Init.: 0.5 Init:0.1 or 0.9

[0.4, 1]

Gämperle et al. (2002) [3D, 8D] 0.6 [0.3, 0.9]

Ronkkonen et al. (2005) [2D, 4D] Init.: 0.9 Unimodal: [0, 0.2]

[0.4, 0.95] Multimodal: [0.9, 1]

Mezura-Montes et al. (2003) – [0.3, 1] –

Montgomery and Chen (2010) – – Low and high values
are effective;
around 0.5 are not

Coello Coello (2002) – – 0.9

Yong et al. (2011) – 0.8, 1.0 0.1, 0.2, 0.9

Mallipeddi et al. (2011) – – Unimodal: low values

Multimodal: high values
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Fig. 1 The process of TFADE
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Table 3 Algorithmic
description of TFADE

1
2
3
4

5

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Input
randomly initialize a population of NP target vectors ;
the max. number of function evaluations (FES) = MAX_FES ;
the time-frame strategy candidate pool : S={"DE/rand/1/bin", 

"DE/rand/2/bin", "DE/current-to-rand/1"} ;
the time-frame parameter candidate pool : Pt={(F, CR)|a number of F and

CR within [0.3, 1] and [0.1, 0.9] in an equal step respectively } ;
the extreme parameter candidate pool : Pe={(F, CR)}={(1, 0.1), (1, 0.9)} ;
the time-frame MONITOR sets OFF for TF generations ;
generation=0 ; FES=0 ;
do {

generation++ ;
if MONITOR = ON

select a promising strategy from S ;
randomly select F and CR from Pt ;
generate trial vectors ;
evaluate fitness ;
record data ;
if stagnated for TF generations

clear all recording data ;
MONITOR sets OFF for TF generations ;

end
else

randomly select a strategy from S ;
randomly select F and CR from Pe ;
generate trial vectors ;
evaluate fitness ;

end
FES=FES+NP ;

} while (FES < MAX_FES)

found that F∈ [0.3,1] can be effective (Mezura-Montes
and Coello Coello 2003), the use of a large population in
conjunction with large F will cause the algorithm to con-
verge too slowly to produce a good result by the end of its
run.

Montgomery and Chen (2010) pointed out an analysis of
DEwhy low and high values of CR are effective while values
around 0.5 are not. At its extremes, CR leads to vastly dif-
ferent search behaviors. Low values of CR result in a search
that is not just aligned with a small number of search space
axes, but is gradual, slow and robust. High values of CR
result in a search where fewer solutions generated may be
improving, but the improvements canbe larger.CoelloCoello
(2002) showed that a key parameter that affects DE’s perfor-
mance is the crossover rate CR. The crossover rate CR = 0.9
has been found to work well across a large range of prob-
lem domains. It is often used as a default value in many
DE implementations. Yong et al. (2011) showed that three
trial vector generation strategies, “rand/1/bin”, “rand/2/bin”,
and “current-to-rand/1”, and three control parameter settings,

[F = 1.0, CR = 0.1], [F = 1.0, CR = 0.9], and [F = 0.8, CR
= 0.2] are frequently used inmanyDEvariants, the properties
ofwhich have beenwell studied.Mallipeddi et al. (2011) sug-
gested that separable unimodal problems require lower CR
values while parameter-linked multimodal problems require
higher CR values. These guidelines are summarized in
Table 2.

Based on these investigated guidelines, as the parame-
ter values should be restricted to enhance the speed and
effectiveness, andwith diverse characteristics for solving var-
ious problems; therefore, choosing m of F and CR values
within the range of [0.3, 1] and [0.1, 0.9] in an equal step,
respectively, nearly covered above-mentioned guidelines, is
considered putting into the time-frame parameter candidate
pool.

However, once premature convergence or stagnation
occurred during evolution, some extraordinary parameter
values need to be employed instead to ruffle the situation.
From these guidelines, it is shown that F is closely related
to convergence speed. The higher F value can avoid pre-
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Table 4 Experimental results of
TFADE with conventional DEs
on D10 functions

Fcn. TFADE (D10) Rand/1/bin (F = 0.9CR = 0.1)

Mean Std Mean Std

f 1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 =
f 2 0.0000E+00 0.0000E+00 7.1386E−01 2.9891E−01 −
f 3 9.9954E−11 5.3051E−10 9.0394E+05 4.3160E+05 −
f 4 0.0000E+00 0.0000E+00 1.2506E+01 7.7841E+00 −
f 5 0.0000E+00 0.0000E+00 3.2065E−01 5.6331E−01 −
f 6 0.0000E+00 0.0000E+00 1.2447E+00 9.6495E−01 −
f 7 3.2424E−02 2.2547E−02 3.4254E−01 6.9934E−02 −
f 8 2.0251E+01 1.4636E−01 2.0374E+01 6.0727E−02 −
f 9 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 =
f 10 5.4059E+00 2.2580E+00 1.3940E+01 3.0646E+00 −
f 11 5.4774E−01 8.3834E−01 5.6154E+00 7.2540E−01 −
f 12 3.3343E+00 4.7961E+00 2.7603E+02 1.5677E+02 −
f 13 6.1659E−01 8.8993E−02 3.5026E−01 9.6068E−02 +
f 14 3.0512E+00 3.4065E−01 3.3561E+00 1.7929E−01 −
f 15 9.9110E+01 1.6003E+02 6.1218E+00 1.0980E+01 +
f 16 1.0308E+02 6.2399E+00 1.3553E+02 1.1132E+01 −
f 17 1.1308E+02 1.2019E+01 1.5750E+02 1.3716E+01 −
f 18 5.1667E+02 2.5200E+02 7.0196E+02 1.4335E+02 −
f 19 4.3333E+02 2.2489E+02 7.0298E+02 1.3141E+02 −
f 20 4.8333E+02 2.4507E+02 7.0734E+02 1.1620E+02 −
f 21 5.0000E+02 9.0972E+01 4.9029E+02 8.4839E+01 −
f 22 6.9718E+02 1.5874E+02 7.3799E+02 1.3649E+02 −
f 23 6.0013E+02 9.2879E+01 5.6275E+02 4.9645E+01 +
f 24 2.0000E+02 0.0000E+00 2.0000E+02 1.2496E−05 −
f 25 3.7823E+02 3.2321E+00 3.8931E+02 3.3775E+00 −

+ 3

= 2

− 20

%adv 87 %

Fcn. Rand/1/bin (F = 0.9 CR = 0.9) Rand-to-best/1/bin (F = 0.9,CR = 0.1)

Mean Std Mean Std

f 1 8.8063E−14 1.1328E−13 − 0.0000E+00 0.0000E+00 =
f 2 1.9801E−06 1.6602E−06 − 2.5507E−02 1.6573E−02 −
f 3 8.0037E+00 8.9668E+00 − 6.6890E+05 2.9375E+05 −
f 4 3.1539E−05 2.4257E−05 − 1.5316E+00 9.6998E−01 −
f 5 1.7675E−10 1.4893E−10 − 5.4501E−05 1.4513E−04 −
f 6 5.8404E−04 4.1872E−04 − 2.2762E+00 2.7233E+00 −
f 7 2.8356E−01 2.2547E−01 − 1.9864E−01 5.5191E−02 −
f 8 2.0361E+01 8.0029E−02 − 2.0331E+01 7.0380E−02 −
f 9 7.2278E+00 4.9349E+00 − 0.0000E+00 0.0000E+00 =
f 10 1.4461E+01 9.9643E+00 − 1.2218E+01 3.0397E+00 −
f 11 4.3800E+00 3.0166E+00 − 5.6032E+00 6.7710E−01 −
f 12 8.5177E+00 3.8677E+01 − 1.8367E+02 1.0542E+02 −
f 13 1.4638E+00 9.9716E−01 − 3.0161E−01 9.4975E−02 +
f 14 3.3894E+00 5.3696E−01 − 3.2168E+00 2.3044E−01 −
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Table 4 continued
Fcn. Rand/1/bin (F = 0.9 CR = 0.9) Rand-to-best/1/bin (F = 0.9,CR = 0.1)

Mean Std Mean Std

f 15 2.8252E+02 1.7376E+02 − 2.0063E+00 1.0900E+01 +
f 16 1.2166E+02 2.7222E+01 − 1.1896E+02 8.9088E+00 −
f 17 1.5748E+02 3.2811E+01 − 1.4478E+02 1.3430E+01 −
f 18 4.0000E+02 2.0342E+02 + 6.0956E+02 2.2613E+02 −
f 19 3.5000E+02 1.5256E+02 + 5.5740E+02 2.2734E+02 −
f 20 3.6667E+02 1.7287E+02 + 6.4282E+02 2.1353E+02 −
f 21 5.0000E+02 2.7465E−13 = 5.0775E+02 1.2594E+02 −
f 22 7.5792E+02 8.6805E+01 − 6.8179E+02 1.8873E+02 =
f 23 5.5947E+02 1.5457E−12 + 5.8653E+02 6.1928E+01 =
f 24 2.0000E+02 0.0000E+00 = 2.0214E+02 1.1702E+01 −
f 25 3.8360E+02 2.6908E+00 − 3.8716E+02 3.2921E+00 −

4 4

2 2

19 19

83 % 83 %

Fcn. Current-to-rand/1 (F = 0.9,CR = 0.1) Rand/2/bin (F = 0.9 CR = 0.1)

Mean Std Mean Std

f 1 0.0000E+00 0.0000E+00 = 0.0000E+00 0.0000E+00 =
f 2 0.0000E+00 0.0000E+00 = 1.9069E+00 8.7628E−01 −
f 3 2.2042E−25 5.0775E+02 + 1.0356E+06 4.1549E+05 −
f 4 0.0000E+00 0.0000E+00 = 2.0916E+01 9.4511E+00 −
f 5 3.9836E−11 5.5378E−11 − 3.1246E+00 2.7061E+00 −
f 6 1.3289E−01 7.2785E−01 − 2.0484E+00 1.2726E+00 −
f 7 3.0179E−02 2.9212E−02 = 3.9397E−01 9.5693E−02 −
f 8 2.0355E+01 7.2572E−02 − 2.0364E+01 6.2087E−02 −
f 9 4.8441E+00 2.1977E+00 − 0.0000E+00 0.0000E+00 =
f 10 4.5436E+00 2.2580E+00 = 1.4713E+01 2.8859E+00 −
f 11 2.0885E−01 5.7409E−01 + 5.6189E+00 7.1365E−01 −
f 12 5.5198E+01 2.8394E+02 − 2.7380E+02 1.2454E+02 −
f 13 1.2271E+00 4.8736E−01 − 4.1024E−01 6.9666E−02 +
f 14 3.1866E+00 2.2304E−01 − 3.3007E+00 1.7795E−01 −
f 15 2.3939E+02 1.3448E+02 − 2.3931E+01 1.8123E+01 +
f 16 9.8863E+01 6.0044E+00 + 1.4243E+02 9.1794E+00 −
f 17 1.0030E+02 5.6604E+00 = 1.6416E+02 1.5041E+01 −
f 18 5.3333E+02 2.5371E+02 − 6.7054E+02 1.4087E+02 −
f 19 4.3333E+02 2.2489E+02 = 6.3538E+02 1.3683E+02 −
f 20 4.1667E+02 2.1509E+02 = 6.4797E+02 1.4006E+02 −
f 21 4.9333E+02 3.6515E+01 = 4.5213E+02 8.7733E+01 +
f 22 7.2051E+02 1.4266E+02 = 7.3670E+02 1.3915E+02 −
f 23 5.6486E+02 2.9532E+01 = 5.4692E+02 3.8484E+01 +
f 24 2.0000E+02 0.0000E+00 = 2.0002E+02 3.4156E−02 −
f 25 3.7419E+02 2.7879E+00 + 3.9224E+02 4.7261E+00 −

3 4

12 2

10 19

77 % 83 %
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Table 5 Experimental results of
TFADE with conventional DEs
on D30 functions

Fcn. TFADE (D30) Rand/1/bin (F = 0.9CR = 0.1)

Mean Std Mean Std

f 1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 =
f 2 1.1986E−13 2.2297E−13 3.2067E+03 5.8949E+02 −
f 3 9.6157E+04 6.0922E+04 2.6029E+07 5.5824E+06 −
f 4 4.4048E−03 7.2269E−03 1.1882E+04 2.1995E+03 −
f 5 9.9731E+02 5.9929E+02 4.6671E+03 4.8732E+02 −
f 6 1.3655E+00 1.7700E+00 3.9356E+01 1.8469E+01 −
f 7 1.6656E−02 9.7616E−03 2.9366E−01 5.1647E−02 −
f 8 2.0780E+01 2.8213E−01 2.0953E+01 4.4810E−02 −
f 9 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 =
f 10 3.4689E+01 9.6632E+00 1.5406E+02 1.1681E+01 −
f 11 9.6896E+00 2.6178E+00 3.0179E+01 1.4498E+00 −
f 12 4.4116E+03 6.0927E+03 4.8701E+04 9.0748E+03 −
f 13 4.5088E+00 5.1959E−01 3.8104E+00 2.6284E−01 +
f 14 1.2581E+01 3.3822E−01 1.3010E+01 1.7126E−01 −
f 15 4.3013E+02 7.0357E+01 1.0697E+02 5.9078E+01 +
f 16 6.1639E+01 1.9447E+01 2.3032E+02 1.6195E+01 −
f 17 7.1491E+01 1.8618E+01 2.7011E+02 2.0706E+01 −
f 18 9.0541E+02 1.2457E+00 9.0990E+02 1.0930E+00 −
f 19 8.9798E+02 2.6662E+01 9.0968E+02 1.0138E+00 −
f 20 9.0533E+02 1.5492E+00 9.0989E+02 9.2508E−01 −
f 21 5.0000E+02 2.3126E−13 5.0000E+02 2.8363E−13 −
f 22 8.9168E+02 1.7764E+01 9.5867E+02 8.4360E+00 −
f 23 5.3425E+02 4.7011E−01 5.3416E+02 1.3528E−04 =
f 24 2.0000E+02 9.4982E−13 2.0000E+02 5.7188E−13 =
f 25 2.1043E+02 7.1642E−01 2.2607E+02 2.2325E+00 −

+ 2

= 4

− 19

%adv 90 %

Fcn. Rand/1/bin (F = 0.9 CR = 0.9) Rand-to-best/1/bin (F = 0.9, CR = 0.1)

Mean Std Mean Std

f 1 4.1850E−03 4.7372E−03 − 0.0000E+00 0.0000E+00 =
f 2 3.8241E+02 2.1228E+02 − 1.4359E+03 2.9626E+02 −
f 3 5.9732E+06 2.7505E+06 − 2.4456E+07 6.0641E+06 −
f 4 2.3886E+03 1.6100E+03 − 7.1697E+03 1.5615E+03 −
f 5 1.1064E+03 3.9899E+02 − 3.9247E+03 5.8725E+02 −
f 6 6.2485E+01 5.8268E+01 − 2.8513E+01 1.4595E+01 −
f 7 1.0071E+00 9.5931E−02 − 1.4229E−01 4.5337E−02 −
f 8 2.0933E+01 5.0823E−02 − 2.0948E+01 4.8053E−02 −
f 9 3.6629E+01 1.5555E+01 − 0.0000E+00 0.0000E+00 =
f 10 2.3510E+02 1.4550E+01 − 1.3612E+02 1.6125E+01 −
f 11 3.9054E+01 1.2541E+00 − 2.9369E+01 1.4169E+00 −
f 12 7.7481E+03 5.5238E+03 − 3.7040E+04 9.3873E+03 −
f 13 1.0984E+01 3.7301E+00 − 3.6831E+00 3.7603E−01 +
f 14 1.3461E+01 1.3854E−01 − 1.2993E+01 2.0201E−01 −
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Table 5 continued
Fcn. Rand/1/bin (F = 0.9 CR = 0.9) Rand-to-best/1/bin (F = 0.9, CR = 0.1)

Mean Std Mean Std

f 15 3.6766E+02 8.6483E+01 + 8.1528E+01 7.5353E+01 +
f 16 2.5098E+02 1.3036E+01 − 1.6746E+02 2.5790E+01 −
f 17 2.8699E+02 2.1748E+01 − 2.3560E+02 2.7995E+01 −
f 18 9.0608E+02 7.9527E−01 − 9.0811E+02 7.3733E−01 −
f 19 9.0634E+02 6.8217E−01 − 9.0833E+02 8.8879E−01 −
f 20 9.0618E+02 6.6252E−01 − 9.0829E+02 8.8833E−01 −
f 21 5.0000E+02 8.2477E−04 = 5.0000E+02 2.3054E−13 =
f 22 9.1211E+02 1.2002E+01 − 9.4221E+02 1.3540E+01 −
f 23 5.3416E+02 4.6787E−04 = 5.3416E+02 2.0700E−04 =
f 24 2.0000E+02 1.1555E−03 = 2.0000E+02 1.0782E−12 =
f 25 2.1285E+02 1.5246E+00 − 2.2176E+02 2.1537E+00 −

1 2

3 5

21 18

95 % 90 %

Fcn. Current-to-rand/1 (F = 0.9, CR = 0.1) Rand/2/bin (F = 0.9 CR = 0.1)

Mean Std Mean Std

f 1 1.2878E+04 5.5219E+03 − 0.0000E+00 0.0000E+00 =
f 2 1.3956E+04 4.7027E+03 − 4.1963E+03 6.7195E+02 −
f 3 7.5583E+06 4.4230E+06 − 2.8660E+07 6.6460E+06 −
f 4 1.5370E+04 5.0916E+03 − 1.3450E+04 2.5224E+03 −
f 5 8.2942E+03 1.7565E+03 − 4.8911E+03 4.4267E+02 −
f 6 1.0322E+09 9.6315E+08 − 4.2348E+01 1.6990E+01 −
f 7 3.4087E+03 1.1053E+03 − 4.9474E−01 9.0619E−02 −
f 8 2.0928E+01 6.0418E−02 − 2.0944E+01 6.2024E−02 −
f 9 1.2661E+02 1.7753E+01 − 0.0000E+00 0.0000E+00 =
f 10 1.6128E+02 2.6821E+01 − 1.5946E+02 1.4810E+01 −
f 11 2.3837E+01 3.0731E+00 − 2.9770E+01 1.3873E+00 −
f 12 1.2836E+05 4.0425E+04 − 5.2851E+04 9.2869E+03 −
f 13 7.6610E+00 1.7127E+00 − 4.1885E+00 2.8813E-01 +
f 14 1.2692E+01 3.0330E−01 = 1.3077E+01 1.8181E−01 −
f 15 5.4802E+02 4.2621E+01 − 1.4040E+02 2.9469E+01 +
f 16 1.6277E+02 3.5246E+01 − 2.3387E+02 2.5746E+01 −
f 17 1.6225E+02 3.2720E+01 − 2.8621E+02 2.1928E+01 −
f 18 9.4668E+02 2.7105E+01 − 9.1034E+02 9.4438E−01 −
f 19 9.4427E+02 1.9698E+01 − 9.1042E+02 9.6452E−01 −
f 20 9.4567E+02 2.1965E+01 − 9.1041E+02 1.1092E+00 −
f 21 1.0197E+03 1.3982E+02 − 5.0000E+02 1.4240E−13 =
f 22 9.3441E+02 2.7572E+01 − 9.6000E+02 1.1262E+01 −
f 23 9.9244E+02 1.6612E+02 − 5.3416E+02 4.2828E−04 =
f 24 7.6608E+02 1.4658E+02 − 2.0000E+02 4.0539E−14 =
f 25 8.2111E+02 4.1262E+02 − 2.2911E+02 1.9157E+00 −

0 2

1 5

24 18

100 % 90 %
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Fig. 3 The median convergence characteristics of TFADE with conventional DEs on D10 test functions of a the unimodal function of f1 b the
basic multimodal function of f6 c the expanded multimodal function of f13 d the hybrid composition function of f15

mature convergence or stagnation, while the lower F may
increase convergence speed. CR is usually more sensitive
to specific problems. Separable unimodal problems need
lower CR value while multimodal ones require higher CR.
Therefore, an extreme parameter candidate pool is devel-
oped that only extreme values of F = {1} and CR={0.1, 0.9}
are selected to increase the chance for escaping the stagna-
tion. Thus, in the stagnation breaking scheme of TFADE,
once the premature convergence occurred during evolu-
tion, the extreme parameter candidate pool will be enabled
instead of the time-frame parameter candidate pool to deal
with the difficulty. As for the parameter NP, it does not
need to be fine-tuned because just a few typical values
can be tried according to the complexity of a given prob-
lem (Qin et al. 2009). Therefore, it is left as a user-defined
parameter.

3.3 The TFADE algorithm

The process of TFADE is shown in Fig. 1. The first important
scheme is called the time-frame container, which maintains
crucial information to bemonitored during evolution, such as
strategy/parameter candidate pools, the selection probability
of strategies, and the best fitness of individuals (discussed
later), over a given period of preceding generations called
the time frame. Concerning each target vector in the current
population, one trial vector generation strategy is selected
from the time-frame strategy candidate pool in the container,
according to the selection probability of the strategy which is
calculated by generating promising solutions within the time
frame. The selection probability of a strategy is defined as a
normalized success rate that a trial vector generated by the
strategy which can successfully enter next generation within
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Fig. 4 The median convergence characteristics of TFADE with conventional DEs on D30 test functions of a the unimodal function of f1 b the
basic multimodal function of f6 c the expanded multimodal function of f13 d the hybrid composition function of f15

the time frame. During evolution, the time frame moves
forward along time horizon of generations, the selection
probability of each strategy and the best fitness of individu-
als can be gradually updated and stored in the container by
experiencing different generations. A time-frame container
of size TF from generation G evolving to G+t is illustrated
in Fig. 2.

More specifically, to the selection probability of a strat-
egy, assume that we discuss a time frame of size TF and S
strategies maintained in the time-frame strategy candidate
pool. The selection probability with respect to each strategy
for a target vector xi , where i = 1, 2, . . ., NP, in the ini-
tialized population is 1/S., i.e., all strategies have the same
probability to be selected at the beginning.

During evolution at current generation G after TF gener-
ations, the success rate of a strategy s that a trial vector ui
generated by the strategy which can enter next generation
can be calculated by

SucRatei,s,G =
∑G

g=G−TF Successi,s,g∑G
g=G−TF Selectioni,s,g

+ ε, (10)

where Selectioni,s,g = {0, 1}means whether the strategy s is
selected to generateui at the generation g, and Successi,s,g =
{0, 1} stands for whether it is successful to enter next gener-
ation at generation g. g = (G − TF), (G − TF + 1), . . .,G
be the generations within the time frame. Note that a small
value ε is placed to ensure nonzero success rate and that all
strategies in the time-frame strategy candidate pool always
have a chance to be selected.

Therefore, the selection probability of the strategy s at
generation G for a target vector xi can be denoted as the
normalized success rate of the strategy s as

SelProbi,s,G = SucRatei,s,G∑S
s=1 SucRatei,s,G

, (11)
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Fig. 5 The median convergence characteristics of TFADE with state-of-the-art adaptive DEs on D10 test functions of a the unimodal function of
f1 b the basic multimodal function of f6 c the expanded multimodal function of f13 d the hybrid composition function of f15

where strategy s = 1, 2, . . .S. At this stage, the roulette
wheel selection method is then employed to select a promis-
ing trial vector generation strategy for target vector xi .

After a trial vector generation strategy is selected, the val-
ues of its control parameters, F and CR, are then randomly
chosen from the time-frame parameter candidate pool. Both
the selected strategy and control parameter values are subse-
quently employed to corresponding target vector to generate
a trial vector.

All these dynamic data are maintained in the time-frame
container and gradually adapted during evolution. Once the
records overflow over TF generations, the earliest record will
be removed, keeping the most up-to-date records of TF gen-
erations in the container to be monitored.

The above procedure works as the typical evolution
process of TFADE. However, during evolution once prema-

ture convergence or stagnation occurred throughout the time
frame of size TF, it means that the typical evolution process
in pursuit of promising solutions might be dysfunctional at
this evolution stage. In order to escape this situation, the
mechanism of the stagnation breaking scheme will imme-
diately take control over the strategy/parameter selection.
This mechanism destroys the current promising selection
records in the container at once, stop monitoring and record-
ing for TF generations, and randomly selecting strategies
and parameters from the time-frame strategy candidate pool
and the extreme parameter candidate pool, respectively for
TF generations to ruffle the difficulty. After TF generations,
the typical evolution process will then automatically switch
on to adapt a better solution again in the current popula-
tion. The algorithmic description of TFADE is illustrated in
Table 3.
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Fig. 6 The median convergence characteristics of TFADE with state-of-the-art adaptive DEs on D30 test functions of a the unimodal function of
f1 b the basic multimodal function of f6 c the expanded multimodal function of f13 d the hybrid composition function of f15

4 The experimental study

Three kinds of experiments were conducted in the experi-
mental study. First, TFADEwas compared with 4 commonly
used conventional DEs coupled with widely suggested para-
meter settings. Next, with 3 outstanding state-of-the-art
adaptive DEs proposed recently, i.e., SaDE (Qin et al. 2009),
EPSDE (Mallipeddi et al. 2011), and CoDE (Yong et al.
2011). Last, 2 novel non-DE algorithms, i.e., CLPSO (Liang
et al. 2006) and CMA-ES (Hansen and Ostermeier 2001),
were also compared. To evaluate the performance of TFADE
with these approaches, a test suite of benchmark functions
(Suganthan et al. 2005) reported in 2005 IEEE Congress
on Evolutionary Computation (CEC2005) was conducted.
The test suite comprises 25 benchmark functions that can be
divided into 4 groups:

1. 5 unimodal functions: f1 − f5,

2. 7 basic multimodal functions: f6 − f12,
3. 2 expanded multimodal functions: f13 − f14,
4. 11 hybrid composition functions: f15 − f25.

Both 10-dimensional (D10) and 30-dimensional (D30) of
the benchmark functions were considered. 30 independent
runs were conducted for each algorithm to each function.
The population size NP was set to 50. The maximum num-
ber of function evaluations was set to multiplying function
dimensions by 10,000 as the termination criteria, which are
100,000 for D10 functions and 300,000 for D30, respec-
tively. The mean and standard deviation of the function error
f (xbest) − f (x∗) were calculated for measuring the perfor-
mance of each algorithm to a function f , where xbest stands
for the best solution of the function found by an algorithm in
an independent run and x∗ the global optimum of the func-
tion. The number of preceding generations for the time frame
in TFADE was set to 10, and m = 5 was chosen for the
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Table 8 Experimental results of TFADE with non-DE approaches on D10 functions

Fcn. TFADE (D10) CLPSO CMA-ES

Mean Std Mean Std Mean Std

f 1 0.0000E+00 0.0000E+00 7.3678E−25 7.2245E−25 − 8.2473E−28 1.9406E−28 −
f 2 0.0000E+00 0.0000E+00 1.9571E−01 1.9433E−01 − 5.3996E−27 2.2468E−27 −
f 3 9.9954E−11 5.3051E−10 3.2308E+05 1.4269E+05 − 3.7344E−23 1.5679E−23 +

f 4 0.0000E+00 0.0000E+00 4.8630E+00 6.4251E+00 − 3.9035E+04 8.2610E+04 −
f 5 0.0000E+00 0.0000E+00 5.8506E+00 5.3746E+00 − 4.9113E−11 6.8728E−12 −
f 6 0.0000E+00 0.0000E+00 1.4583E+00 1.0769E+00 − 9.3020E−01 1.7150E+00 −
f 7 3.2424E−02 2.2547E−02 1.2670E+03 3.8000E−13 − 1.2067E−02 9.8299E−03 +

f 8 2.0251E+01 1.4636E−01 2.0362E+01 6.2865E−02 − 2.0003E+01 1.5515E−02 +

f 9 0.0000E+00 0.0000E+00 8.8818E−16 4.5408E−15 − 1.1780E+02 4.4885E+01 −
f 10 5.4059E+00 2.2580E+00 9.7514E+00 2.4955E+00 − 4.8487E+01 7.6068E+01 −
f 11 5.4774E−01 8.3834E−01 4.8648E+00 7.5520E−01 − 2.3323E+00 1.7622E+00 −
f 12 3.3343E+00 4.7961E+00 1.1731E+02 6.1480E+01 − 6.4601E+03 1.1014E+04 −
f 13 6.1659E−01 8.8993E−02 5.2624E−01 6.3763E−02 + 1.0885E+00 4.0723E−01 −
f 14 3.0512E+00 3.4065E−01 3.2388E+00 1.7283E−01 − 4.8339E+00 2.2808E−01 −
f 15 9.9110E+01 1.6003E+02 7.5398E+00 1.5844E+01 + 6.4309E+02 3.6453E+02 −
f 16 1.0308E+02 6.2399E+00 1.1653E+02 7.3206E+00 − 2.1094E+02 2.2024E+02 −
f 17 1.1308E+02 1.2019E+01 1.3505E+02 8.5211E+00 − 4.7987E+02 3.9998E+02 −
f 18 5.1667E+02 2.5200E+02 6.5008E+02 1.5316E+02 − 8.0270E+02 3.5166E+02 −
f 19 4.3333E+02 2.2489E+02 6.3734E+02 1.4854E+02 − 7.5181E+02 3.6851E+02 −
f 20 4.8333E+02 2.4507E+02 6.9029E+02 1.3510E+02 − 7.1652E+02 3.9735E+02 −
f 21 5.0000E+02 9.0972E+01 4.4291E+02 7.3646E+01 + 8.8728E+02 2.6814E+02 −
f 22 6.9718E+02 1.5874E+02 7.3579E+02 1.0162E+02 − 7.7471E+02 2.7702E+01 −
f 23 6.0013E+02 9.2879E+01 5.3894E+02 4.5506E+01 + 1.0873E+03 1.3708E+02 −
f 24 2.0000E+02 0.0000E+00 2.0000E+02 2.2742E−04 − 3.4667E+02 1.6965E+02 −
f 25 3.7823E+02 3.2321E+00 1.7487E+03 4.7715E+00 − 4.6196E+02 2.0570E+02 −

+ 4 3

= 0 0

− 21 22

%adv 84 % 88 %

number of F and CR putting into the time-frame parameter
candidate pool.

To present statistically significant difference between two
algorithms, the statistical t test with a significance level of
α = 0.05was performed on each pair of experimental results
betweenTFADEand a compared algorithmon each function.
The indicators of “+”, “=”, and “−” define that the out-

come of the corresponding algorithm is statistically better
than, similar to, and worse than that of TFADE on a func-
tion, respectively. In order to show the overall excellence
degree of TFADE against a competitor on the test suite of
all 25 functions, we define a quality measurement called the
advantage percentage of TFADE, denoted by %adv, as the
equation (12).

%adv = num. of worse performance func.(′′−′′) − num. of better performance func.(′′+′′)
total func.(25) − num. of similar performance func.(′′=′′)

(12)
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Table 9 Experimental results of TFADE with non-DE approaches on D30 functions

Fcn. TFADE (D30) CLPSO CMA-ES

Mean Std Mean Std Mean Std

f 1 0.0000E+00 0.0000E+00 5.8455E−24 3.3523E−24 − 1.7678E−25 3.1240E−26 −
f 2 1.1986E−13 2.2297E−13 1.0182E+03 2.0127E+02 − 6.5127E−25 2.0394E−25 +

f 3 9.6157E+04 6.0922E+04 1.5216E+07 4.2249E+06 − 5.1462E−21 1.5288E−21 +

f 4 4.4048E−03 7.2269E−03 7.0268E+03 1.3502E+03 − 5.7489E+04 1.3241E+05 −
f 5 9.9731E+02 5.9929E+02 3.9057E+03 4.0797E+02 − 3.2770E−10 7.1499E−11 +

f 6 1.3655E+00 1.7700E+00 7.6528E+00 5.7193E+00 − 1.1960E+00 1.8581E+00 =

f 7 1.6656E−02 9.7616E−03 4.6964E+03 1.6972E−02 − 1.4780E−03 4.1207E−03 +

f 8 2.0780E+01 2.8213E−01 2.0939E+01 6.5672E−02 − 2.0194E+01 4.6028E−01 +

f 9 0.0000E+00 0.0000E+00 1.7408E−14 3.1761E−14 − 4.4818E+02 8.7924E+01 −
f 10 3.4689E+01 9.6632E+00 1.0404E+02 1.3044E+01 − 4.8123E+01 1.4132E+01 −
f 11 9.6896E+00 2.6178E+00 2.5309E+01 1.3404E+00 − 6.4331E+00 2.3835E+00 +

f 12 4.4116E+03 6.0927E+03 1.3404E+00 5.0041E+03 + 1.4658E+04 1.3738E+04 −
f 13 4.5088E+00 5.1959E−01 2.5910E+00 3.3296E−01 + 3.2799E+00 7.2171E−01 +

f 14 1.2581E+01 3.3822E−01 1.2665E+01 2.8821E−01 − 1.4736E+01 2.6255E−01 −
f 15 4.3013E+02 7.0357E+01 5.5254E+01 3.5407E+01 + 4.1337E+02 2.1633E+02 =

f 16 6.1639E+01 1.9447E+01 1.7222E+02 2.3516E+01 − 3.2533E+02 2.9275E+02 −
f 17 7.1491E+01 1.8618E+01 2.3387E+02 3.4092E+01 − 4.8539E+02 3.3290E+02 −
f 18 9.0541E+02 1.2457E+00 9.0158E+02 3.1314E+01 + 9.1650E+02 6.8482E+01 −
f 19 8.9798E+02 2.6662E+01 9.0430E+02 2.9665E+01 − 9.0394E+02 2.7591E−01 −
f 20 9.0533E+02 1.5492E+00 9.1206E+02 9.4690E+00 − 9.0399E+02 2.9426E−01 +

f 21 5.0000E+02 2.3126E−13 5.0000E+02 2.6932E−13 − 5.0000E+02 2.6665E−12 =

f 22 8.9168E+02 1.7764E+01 9.6457E+02 1.4170E+01 − 8.2366E+02 1.7569E+01 −
f 23 5.3425E+02 4.7011E−01 5.3416E+02 1.4753E−04 = 5.5012E+02 7.0156E+01 −
f 24 2.0000E+02 9.4982E−13 2.0000E+02 1.8902E−12 − 2.0000E+02 7.1005E−14 =

f 25 2.1043E+02 7.1642E−01 1.6620E+03 5.3338E+00 − 2.0804E+02 5.3688E+00 +

+ 4 9

= 1 4

− 20 12

%adv 83 % 57 %

All these performance records were listed in the last 4 rows
of experimental result tables for comparison.

4.1 Comparison with conventional DEs

Five test instances of four conventional DEs with fixed con-
trol parameter settings, “Rand/1/bin (F = 0.9, CR = 0.1)”,
“Rand/1/bin (F = 0.9, CR = 0.9)”, “Rand-to-best/1/bin
(F = 0.9, CR = 0.1)”, “Current-to-rand/1 (F = 0.9, CR
= 0.1)” and “Rand/2/bin (F = 0.9, CR = 0.1)”, were com-
pared with TFADE. The experimental results on D10 and
D30 functions are illustrated in Tables 4 and 5, respectively.
Figures 3 and 4 present the convergence characteristics of
each test instance for 4 functions in terms of the median of
the best fitness in 30 independent runs on D10 and D30 func-
tions, respectively. The 4 functions, one is chosen from each

group, are (a) the unimodal function of f1, (b) the basic mul-
timodal function of f6, (c) the expandedmultimodal function
of f13, and (d) the hybrid composition function of f15.

In the experimental results, obviously,TFADE is outstand-
ing among these test instances on most functions of D10 and
D30, especially on the groups of unimodal functions ( f1− f5)
and basic multimodal functions ( f6 − f12), because no one
can be significantly better than TFADE on test functions of
D10 and D30 except “Current-to-rand/1 (F = 0.9, CR =
0.1)” on 2 functions of D10 in the two groups. The advan-
tage percentages of TFADE on the test suite to each are 87,
83, 83, 77, and 83 % for D10 functions and 90, 95, 90, 100,
and 90 % for D30, respectively. Overall, the performance
of TFADE is significantly better than that of these competi-
tors; especially it outstandingly outperforms the competitors
on both groups of the unimodal functions and basic multi-
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Table 10 The advantage percentages of TFADE

Rand/1/bin
F = 0.9

Rand/1/bin F =
0.9

Rand-to-best/
1/bin F = 0.9

Current-to-rand/1
F = 0.9

Rand/2/bin
F = 0.9

Average

CR = 0.1 CR = 0.9 CR = 0.1 CR = 0.1 CR = 0.1

(1) %adv to conventional DEs

D10 87 % 83 % 83 % 77 % 83 % 82 %

D30 90 % 95 % 90 % 100 % 90 % 93 %

SaDE EPSDE (LP50) CoDE Average

(2) %adv to state-of-the-art DEs

D10 78 % 95 % 80 % 84 %

D30 79 % 65 % 71 % 72 %

CLPSO CMA-ES Average

(3) %adv to non-DE approaches

D10 84 % 88 % 86 %

D30 83 % 57 % 70 %

modal functions, and on the functions with high dimensions
(30-dimensional functions).

4.2 Comparison with state-of-the-art DEs

TFADE was also compared with three state-of-the-art adap-
tive DE variants proposed recently, i.e., SaDE, EPSDE, and
CoDE. In these approaches, the control parameter settings
were employed as in their original papers. The experimental
results on D10 and D30 functions are presented in Tables 6
and 7, respectively. Figures 5 and 6 also illustrate the con-
vergence characteristics of each approach for the 4 functions
aforementioned in terms of the median of the best fitness in
30 independent runs on D10 andD30 functions, respectively.

Clearly, in the experimental results, TFADE also out-
performs the state-of-the-art adaptive DE variants on all
functions ofD10 andD30 in the groups of the unimodal func-
tions ( f1− f5) and basicmultimodal functions ( f6− f12). No
one is significantly better than TFADE on the test functions
of D10 and D30 except EPSDE on 2 functions of D30 and
CoDE on 2 functions of D30. The advantage percentages of
TFADEon the test suite to each approach are 78, 95, and 80%
for D10 functions and 79, 65, and 71% for D30, respectively.
In summary, the performance of TFADE is greater than that
of SaDE, EPSDE, and CoDE, especially on the groups of the
unimodal functions and basic multimodal functions.

4.3 Comparison with non-DE approaches

Two novel non-DE algorithms, CLPSO and CMA-ES, were
compared with TFADE in this experiment. CLPSO proposed
by Liang et al. (2006) is an outstanding PSO variant, and
CMA-ES proposed by Hansen and Ostermeier (2001) is a

very efficient and famous evolution strategy. Both algorithms
with control parameter settings used in their original papers
were conducted for comparison. The experimental results
on D10 and D30 functions are shown in Tables 8 and 9,
respectively.

In the experimental results, TFADE performs better than
CLPSO and CMA-ES on 21 and 22 out of 25 functions of
D10, and on 20 and 12 out of 25 functions of D30, respec-
tively. The advantage percentages of TFADE to both are 84
and 88% for D10 functions and 83 and 57% for D30, respec-
tively. In summary, TFADE has an absolute advantage than
CLPSO and CMA-ES except that it has a slight advantage
than CMA-ES on the functions with high dimensions (30-
dimensional functions).

5 Conclusion

The performance of DE is extremely determined by the trial
vector generation strategy and control parameter setting. The
effectiveness of a strategy is also significantly influenced by
its control parameter values. In recent years, DE researchers
have reported many empirical guidelines in selecting suit-
able trial vector generation strategies with control parameter
settings for solving various features of problems. The com-
prehensive exploration of the experience can be a good way
to develop an advanced DE variant.

Towards this direction, in this paper, an improvedDE vari-
antwith time-frame strategy adaptation called the time-frame
adaptive differential evolution (TFADE) algorithm is pro-
posed. It employs diverse trial vector generation strategies
with various control parameter values that exhibit distinct
characteristics from each other. Both strategies and control
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parameter values can be adaptively determined to gener-
ate promising solutions and dynamically adjusted to deal
with the difficultywhile premature convergence or stagnation
occurs during evolution, according to successful experi-
ence over a period of preceding generations called the time
frame.

Although TFADE is simple and easy to be implemented,
its performance is significantly outstanding. In the exper-
imental study, the performance of TFADE was compared
with that of 5 test instances of 4 commonly used conventional
DEs, i.e., “Rand/1/bin (F = 0.9, CR = 0.1)”, “Rand/1/bin
(F=0.9, CR = 0.9)”, “Rand-to-best/1/bin (F = 0.9, CR
= 0.1)”, “Current-to-rand/1 (F = 0.9, CR = 0.1)” and
“Rand/2/bin (F = 0.9, CR = 0.1)”, 3 outstanding state-
of-the-art adaptive DEs, i.e., SaDE, EPSDE, and CoDE,
and 2 novel non-DE approaches, i.e., CLPSO and CMA-
ES, evaluated by a test suite of 25 benchmark functions
reported in CEC2005. The experimental results show that
its comprehensive performance is significantly superior to
these competitors. The overall excellence degree of TFADE
against these competitors, i.e., the advantage percentage
(% adv), also shows that TFADE has an excellent advan-
tage than these competitors. The advantage percentages
of TFADE on the experimental results are summarized in
Table 10.

Related work is considered for further research. From the
literature review, we conclude that putting more strategies
and parameter values into the strategy/parameter candidate
pool will lead to an unfavorable and ineffective influence,
which could reduce the performance of DE. Therefore, the
strategies and parameter settings involved in the time-frame
container should be restricted and preserve diversity. It is
desirable to studywhether the performance of TFADE can be
significantly improved if the number of strategies and para-
meter values putting into the container can be dynamically
adapted during evolution.What and howmany strategies and
parameter values should be combined can be more effec-
tive?Moreover, the discussion on the practical application of
TFADE is also an important issue. In recent years, many dis-
tinguishing topics have been reported, such as the industrial
applications on wireless sensor networks and RFID (Zhang
et al. 2014a, b, 2015b), the web-based mobile application
(Zhang 2012; Zhang and Liang 2013; Zhang et al. 2015a;
Zhang and Zhang 2011), the image de-noising (Zhang et al.
2012b), and Internet of Things (Zhang et al. 2012a). The
practical application of TFADE on these subjects is really
worth investigating in the future.
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