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Abstract In this study, we focus on the design and refine-
ments of granular pattern classifiers, namely classifiers,
which deal with a collection of information granules formed
in a certain feature space. The development of this category
of classifiers is realized as a two-phase design process. First,
information granules occupying some regions of the feature
space are formed through invokingmechanisms of clustering
or fuzzy clustering. As a result, regions in the feature space
are built, which are densely occupied by the patterns pre-
dominantly belonging to the same class. We offer a detailed
way of assessing the character and quality of information
granules and their information (classification-oriented) con-
tent. The resulting description is utilized in the realization of
the classification mechanism being considered at the second
phase of the design of the granular classifier. The mapping
from the collection of information granules to class assign-
ment (classification) involves matching of a pattern to be
classified to individual information granules and aggregating
them by considering the information content of the corre-
sponding granules. In the study, a number of descriptors
capturing information content and aggregation functions are
analyzed. To improve the performance of the granular clas-
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sifier, a refinement of information granules is carried out,
in which highly heterogeneous information granules (viz.
those containing patterns belonging to various classes) are
refined (split, specialized), and their refined versions are
afterwards used in the buildup of the classifier. A series of
experiments involving both synthetic data as well as those
publicly available is reported and analyzed, illustrating the
main advantages of granular classifiers and their design pro-
cedure.
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1 Introduction

Information granularity is a fundamental concept associated
with an abstract view of phenomena and, as such, per-
meating a human way of perceiving the world, acquiring
and organizing knowledge, realizing reasoning processes,
and communicating findings. Information granules are the
operational constructs involved there. Granular computing
(Apolloni et al. 2008; Pedrycz 2013) has emerged as a
discipline concerned with acquisition, processing, and inter-
pretation of information granules. In pattern recognition and
classification problems in particular, information granular-
ity is evidently visible. On a basis of experimental data, we
construct classifiers, viz. form mappings that discriminate
between patterns belonging to different classes. Granular
classifiers form a category of classifiers whose design and
function revolve around information granules built in the fea-
ture space. The design process comprises two phases. First,
information granules are formed with the anticipation that
they help establish some homogeneous regions in the fea-
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ture space, viz. composed of patterns belonging to a single
class. While there are different ways to build the information
granules (Al-Hmouz et al. 2015, 2014), the focus here is to
apply the expansion idea as it was presented in Balamash
et al. (2015), to reduce the diversity within these informa-
tion granules to improve the classification performance. The
second design phase is about forming a sound mechanism of
aggregating levels of matching incoming patterns with the
information granules in the feature space and aggregating
partial results by taking into account the content of individ-
ual information granules.

The main idea is to first construct a collection of infor-
mation granules at a high level of abstraction and then, as
needed, try to refine theses information granules to formmore
detailed ones. There are two fundamental concepts that are
behind the formation of the granular classifiers, namely (1)
the classification content of information granules and (2) the
refinement of information granules. The refinement is carried
out by expanding some of the initial information granules
and considering criteria that can maximize the regression or
classification performance.

The selection of the cluster (information granule) to refine
(specialize) is a key design question. In the case of regression,
the diversity of the output associated with the information
granule entities was used and was found to be a good choice
(Balamash et al. 2015). For the classification problem, a given
information granule represents each classification class with
a certain degree, and accordingly, the total misrepresentation
the information granule has, with respect to all its entities, is
a sound choice for deciding about the candidate information
granule to refine.

In essence, thewayof designing the granular classifier pre-
sented in the study follows the idea of the refined regression
model presented in Balamash et al. (2015), where we demon-
strated the applicability of information granules in building
regression models.

This paper is structured as follows. In Sect. 2, we outline a
general idea about the applicability of information granules
and their refinements in building a granular classifier. Sec-
tion 3 describes the classifier algorithm and its variations. In
Sect. 4, we present experimental results using synthetic data
sets and real data sets (Bache and Lichman 2013). We con-
clude the study in Sect. 5 offering some conclusions.

In the entire study, we consider N patterns (data) X =
{x1, x2, . . . , xN } positioned in an n-dimensional space of
real numbers Rn . In the classification problem, we assume
that the patterns belong to d classes, ω1, ω2, . . . , ωd .

2 A general idea

As already highlighted in the previous section, the main idea
of using information granules is to abstract a set of data into

a collection of sets, such that the diversity (homogeneity)
of each set is sufficiently low. On the other hand, we need
to keep the number of information granules reasonably low.
These are two contradictory goals that can be achieved by
starting with a predefined set of a few information granules.
In the sequel, the goal is to refine these information granules
as needed to produce more information granules with lower
diversity. This refinement process is carried out by splitting
the more diverse information granule into a number of less
diverse, specialized information granules. In this way, a new
data item can be classified to one of these information gran-
ules based on how close this item (in term of its attributes)
to these information granules is.

This idea is similar to the one behind decision trees
(Kohavi and Quinlan 2002; Quinlan 1986) where the tree
starts with a single node where every data point is a member
of this node, and then the tree is refined into several nodes at
the lower levels of the tree. The objective is to form succes-
sive nodes so that the nodes at the lower level tend to become
more homogeneous and capture (contain) data points that can
be regressed using simple models (regression trees) or they
belong only to a single class of data points (decision trees)
(Breiman et al. 1984; Loh and Vanichsetakul 1988; Loh and
Shih 1997; Kim and Loh 2003; Loh 2002, 2009, 2011; Kim
andLoh 2001; Therneau andAtkinson 2011; Chaudhuri et al.
1994; Ciampi 1991; Wang et al. 2015). This is done using
some conditions imposed by the data attributes that guide
the development of the tree (refer to Fig. 1). It is noticeable
that the classification boundaries are piecewise linear. Fur-
thermore, the only type of boundaries being produced by the
tree result through so-called guillotine cuts (being parallel
to the coordinates). Furthermore, each boundary is built on
the basis of a single variable, so when traversing the tree, the
boundaries are formed by selecting a suitable feature in the
input space.

In contrast to decision trees, the granular classifier
(Pedrycz et al. 2008) builds on a basis of information gran-
ules. Its schematic view, along with the character of the
decision boundaries, is illustrated in Fig. 2.

Moreover, the boundaries among information granules
(and subsequently classification boundaries) are non-linear
and being formed in the entire feature space (viz. involving
all input variables).

In a certain way, one may point at some similarities
between the architectures of granular classifiers and radial
basis function (RBF) neural networks (Broomhead and
Lowe 1988). There are, however, evident conceptual and
development differences. First, the RBF neural networks
typically exploit Gaussian receptive fields with adjustable
spreads (whose values are tuned experimentally or selected
in advance). Second, there is no effect of the refinement of
RBFs so that the network could grow by enhancing its accu-
racy.
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Fig. 1 The decision tree and its
refinement along with the
resulting decision boundaries: 8
is the threshold of the variable Y
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The underlying idea of the algorithm is as follows.Assum-
ing that we start at the highest level of abstraction with c
information granules, denoted by A1, A2, . . . , Ac, a succes-
sive refinement is realized by selecting the most suitable
information granule based upon the diversity of its content. In
thisway, a refined information granule A j is expanded to pro-
duce cmore detailed (refined) information granules, denoted
by A j1, A j2, . . . , A jc. Once the first expansion has been
completed, there are in total 2c-1 information granules (that is
A1, A2, . . . A j−1, A j1, A j2, . . . , A jc, A j+1 . . . Ac), and any
one of these can be a candidate for further refinements. This
expansion process leads to the information granules that sat-
isfy the condition

∑ j−1
i=1 uik+∑c

l=1 u jlk+∑c
i= j+1 uik = 1,

where uik is the membership of the data point (pattern) xk
in the information granule i , and u jlk is the membership of
the data point xk in the information granule jl. The over-
all idea portrayed in Fig. 3a–f illustrates the process. In
Fig. 3a, we visualize a two-dimensional data set with three
classes, denoted here by o, �, and x. In Fig. 3b, there is
the highest level of abstraction where two clusters were pro-
duced using the fuzzy C-means (FCM) algorithm. If we just
look at the fractions of patterns belonging to the individ-
ual classes, we find that cluster 1 exhibits a certain level of
heterogeneity expressed by the mixture of patterns belong-
ing to the individual classes [0.4 0.5 0.1], whereas cluster 2
comes with the values [0.25 0.125 0.625]. It is clear that
cluster 2 is dominated by the “x” class and is thus less
diverse (more homogeneous), which indicates that cluster 1
is the candidate information granule for refinement (split-
ting). Figure 3c shows the first refinement step, which is
done for cluster 1 of Fig. 3b. Now, looking again for the
fractions of patterns belonging to the classes, we find that
the three clusters are characterized by information content
expressed as [0.57 0.29 0.14], [0 1 0], and [0.25 0.125
0.625], respectively. It is clear that the diversity of cluster
2 is 0 (It is homogenous by being composed of patterns
belonging to a single class, �). Again, cluster 1 is the most
diverse cluster and as such it is a candidate for further refine-
ment. This refinement is shown in Fig. 3d. Proceeding with
the process, Fig. 3e, f shown are two further refinement
steps.

Fig. 2 The architecture of the granular classifier and its refinements
completed on a basis of specialization of selected information granules

3 Algorithmic aspects of the classifier

In this section, we elaborate on the essential functional
modules of the granular classifier and discuss their
realization.

3.1 Construction of Information Granules and Their
Information Content

The formation of information granules is realized through
clustering the data into c clusters. Out of a plethora of clus-
tering techniques, we consider here FCM (Bezdek 1981;
Dunn 1973). There are several compelling reasons behind
this selection. The method is broadly documented in the lit-
erature and comes with a wealth of applications. The method
produces information granules that provide a comprehen-
sive insight into the data by admitting membership grades
assuming values in the [0,1] interval rather than a 0-1 quan-
tification produced, for instance, by k-means. Not repeating
the well-known material, which is well documented in the
existing literature, we only briefly highlight the essence of
the method and a form of the results produced by it. FCM
is aimed at the minimization of a certain objective function,
and its minimum is determined by running a certain iterative
optimization scheme.The result of clusteringof X into c clus-
ters is provided in the form of the prototypes v1, v2, . . . , vc
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Fig. 3 Illustration of the functioning of the algorithm

and a partition matrix U = [uik], i = 1, 2, . . . , c; k =
1, 2, . . . , N describing degrees of membership of data to the
individual clusters. Individual rows of the partition matrix
U contain membership grades of the constructed fuzzy
sets. Each information granule produced in this way, say
A1, A2, . . . , Ac is described analytically in the following
manner:

Ai (x) = 1
∑c

j=1

( ||x−vi ||||x−v j ||
)2/(m−1)

, (1)

where ||.|| is the Euclidean distance and m, m >1 is a fuzzi-
fication coefficient (Bezdek 1981). Obviously if x = vi ,
Ai (vi ) = 1; Alluding to the partition matrix, we have the
relationship uik = Ai (xk).

Having the revealed structure of the data X described
by A1, A2, …Ac, we can also associate with these infor-

yi*

information 
granules

data X

A1 Ai
Ac

y1*
information content

yc*

Fig. 4 A collection of information granules Ai and their information
content yi* produced through data clustering (FCM)

mation granules the corresponding information content; see
Fig. 4.

The information content implies the usefulness of the cor-
responding information granules in the ensuing classification
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activities. In what follows, we outline several ways of quan-
tifying this content.

We start by defining a collection of data belonging to the
i-th cluster and denote this collection by X i ,

Xi = {
xk |uik = max j=1,2,...,cu jk

}
(2)

In other words, X i is composed of the data points that belong
to the i-th cluster to the highest extent (higher than to other
clusters).

In general, X i is a mixture of data belonging to different
classes and contributing to X i itself with varying mem-
bership degrees uik . Note that we require that c ≥ d to
achieve potentially a situation where X i becomes homoge-
neous; viz., it comprises only patterns belonging to a single
class.

The membership degrees of the data to the cluster and the
information about class membership are the two characteris-
tics, using which we describe information content.

Several viable alternatives are discussed below; we also
include some motivation behind each of the options.
A1.We determine accumulated values of membership of the
data belonging to X i and class ωl by computing the sum

Zil =
∑

k:xk∈Xi ,xk∈ωl
uik (3)

This could be seen as a certain class-driven version of a σ -
count as discussed in fuzzy sets. In the sequel, we form a
d-dimensional vector yi* coming in the form

y∗
i =

[
zi1

∑d
r=1 Zir

zi2
∑d

r=1 Zir
. . .

zid
∑d

r=1 Zir
,

]

(4)

where yi* is a descriptor of the information content of the
i-th cluster. If only one coordinate of this vector is close to 1
with others being close to 0, we say that the cluster is homo-
geneous. The most heterogeneous situation is encountered
when all entries of yi* are equal to each other and close to
1/d.
A2. This descriptor of information content is built on a basis
of Al by considering the entries of the above vector (equation
4) to be set to 0 or 1. One assigns 1 to the highest entry of y∗

i
while all remaining are set up to 0. Thus we obtain a Boolean
vector y∗

i

y∗
i = [00 . . . 010 . . . 0] (5)

with the j0-th nonzero entry j0= arg max j zi j . In light of the
formation of this information content, we can consider this
description to be a less detailed (binary) version of (4), not
including detailed membership grades.
A3.Here, we form yi* by considering counts of data belong-
ing to cluster X i and the corresponding classes. Ni j denotes

a count (number) of patterns belonging to X i and class ω j .
We take the ratios (which, in essence, are probabilities of
classes of the patterns present in the i-th cluster).

y∗
i =

[
Ni1

∑d
r=1 Nir

Ni2
∑d

r=1 Nir
. . .

Nid
∑d

r=1 Nir

]

(6)

In Sect. 4, we explore all of these options through experi-
ments of synthetic and real traces.

3.2 Splitting criterion

Once a given information granule i has been associated with
the information content y∗

i , the diversity of the information
granule can be quantified. We call this diversity value, the
class membership content. There are several viable options
to determine the value of class membership content.
B1. In this option, we consider the Euclidean distance
between the information content of the information granule
and the target output (class belongingness) of the data points
belonging to this information granule

Vi =
∑

d

Ni∑

k=1

(Y ∗
i − Yk)

2, (7)

where Ni represents the total data points belonging to infor-
mation granule i . The information granule with the highest
class membership content is the candidate for further refine-
ments (splitting).
B2. Another way to model the class membership content
of an information granule is to compute the entropy of the
information granule information content

Vi = −
∑

d

y∗
i log y

∗
i (8)

3.3 Refinement process

The splitting criterion outlined above is used to select which
of the c (A1, A2, . . . , Ac) information granules to consider as
a candidate for refinement because of its too-high diversity.
Assuming that because of the detected diversity, information
granule A j is the next one to refine, then in the refine-
ment scheme, we split A j into c information granules, say
(A j1, A j2, . . . , A jc) such that for any data point xk , the fol-
lowing condition becomes satisfied:

j−1∑

i=1

uik +
c∑

l=1

u jlk +
c∑

i= j+1

uik = 1 (9)

The membership degrees of belongingness to the jl-th sub-
cluster u jlk is computed using u jk and the new set of
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prototypes generated by applying the FCM on the candidate
information granule as follows:

u jlk = u jk

∑c
t=1

( ||xk−v jl ||
||xk−v j t ||

)2/(m−1)
, (10)

where v j t is the prototype of sub-cluster t generated from
splitting the cluster j into c sub-clusters.

To clarify this process, in the following we show a numer-
ical example from a simulation experiment. Let us consider
two data-points xq and xl that belong to the information
granule j (before any refinements), and xq belongs to classifi-
cation class 1, while xl belongs to classification class 2. The
membership values of both data-points to the information
granule j were found to be:u jq = 0.5105, andu jl = 0.8522.
When splitting the information granule j data-points to three
new information granules, the membership values of xq and
xl to these new information granules were computed using
(10), but without multiplying by u jk(k = q or l). These
membership values were found to be

Uq =
⎡

⎣
0.0024
0.0084
0.9892

⎤

⎦ , and Ul =
⎡

⎣
0.0013
0.9760
0.0227

⎤

⎦

It is clear that both of them add up to 1. Now when replac-
ing information granule j by these three new information
granules, the memberships of xq and xl must add up to u jq

and u jl , respectively. To fix this, we multiply these member-
ship values by u jk in (10). Doing so, we get the following
memberships for both xq and xl :

Uq =
⎡

⎣
0.0012
0.0043
0.5050

⎤

⎦ , and Ul =
⎡

⎣
0.0011
0.8317
0.0194

⎤

⎦

Note that this refinement process separated the two data
points into two different information granules (based on the
maximum value of their membership matrix), and since they
belong to different classes, this reduces the diversity of the
new generated information granules compared to the origi-
nal information granule j . We need to make it clear here that
this can happen to most of the data points of different classes
assuming that they exhibit different characteristics based on
their feature values.

3.4 Classification of a new pattern

Once the clusters (information granules) have been endowed
with their information content, the overall architecture is
used to determine class membership of a new pattern x. This
process is realized in two steps:

1. Determination of activation level (membership values) of
x to A1, A2, . . . , Ac using (1).

1 2 3

Xk

2 31

u k

y y

y

y

y

Fig. 5 Refinement of information granule present at the lower level of
the tree

2. Computing the vector of class membership of the pattern
x, y = [y1 y2 . . . yd ], where the j-th coordinate of y
comes as the following weighted sum of the information
contents of the clusters; the weights are the membership
values computed above. We have

y j =
c∑

i=1

Ai (x)y
∗
i j (11)

j = 1, 2, . . . , d; y = [y1 y2 . . . yd ]. At the end, we select
the class j0 for which y attains its maximal value, while the
vector y∗

i is computed using one of the alternatives A1–A3
as described above.

Amore general aggregationmechanism is built as follows:

y j =
c∑

i=1

Ai (x)ϕ(y∗
i j ), (12)

where φ: [0,1]→[0,1] is a certain non-decreasing function.
Another extension could endowφ with some adjustable para-
meters.

As an illustrative example, consider the tree of informa-
tion’s granules shown in Fig. 5. The degree to which the
data point xk is associated with the two classes denoted by
ω1 (1) and ω2 (2) is computed as follows: y = 0.1*[0.1
0.9] + 0.1*[0.5 0.5] + 0.05*[0.7 0.3] + 0.15*[0.2 0.8] +
0.6*[0.3 0.7] = [0.3050 0.6950]. Therefore, xk is classified
as belonging to class 2, with a 0.695 membership degree
while also exhibiting a lower level of membership (0.305) to
class 1.

4 Experimental results

In this section, we present the performance of the granular
classifier using synthetic data and several publicly available
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data. The quality of the classifier is selected to be a classifi-
cation error rate and is computed as follows:

Error =
∑N

k=1〈Ỹk �= Yk〉
N

, (13)

where Ỹk and Yk are the predicted class and the actual class
for a data point xk , respectively.

4.1 Synthetic data

Here we consider a two-dimensional data set of two classifi-
cation classes. The two classes are separated by a continuous
circular boundary, as shown in Fig. 6. The data points lying
inside or on the circular boundary are considered to belong
to the first class of patterns (denoted by “o”), and the data
points outside the circular boundary form the second class
(denoted by “x”). The data points are randomly selected in

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

X

Y

Fig. 6 2D synthetic data with two classes x and o

the 2D spacewhere each variable is defined in [−15, 15], and
the circular boundary is centered at the origin with a radius of
10. There are 340 data points of class “o”, and 660 data points
of class “x”. We use a tenfold cross-validation scheme. The
data points are randomly divided into ten groups, where in
each run one of these groups is considered as the test group,
and the remaining patterns are considered to be the training
data.

For the purpose of illustration, we fix the values of c and
m to 3 and 1.1, respectively. We first present the result of
a sample run to show the performance progress as a func-
tion of the refinement process. In this sample run, we only
consider options A1 and B1 to compute the values y∗

i (4)
and Vi , (7), respectively. Figure 7 shows the training data
and the testing data for this sample run, where the test-
ing data represent 10 % of the overall data (tenfold cross
validation).

To visualize the performance of the classifier, we dis-
play the values of the classification error as a function of
the number of refinement steps (splits) for all the options of
y∗
i and Vi . See Fig. 8. In this experiment, we fix the values
of c and m to 3 and 1.1, respectively. This is done to illus-
trate the effect of the refinement process, and in the coming
experiments, in the sequel, we study the effect of these two
parameters (c and m) on the performance of the classifier.
Figure 8 shows that although all the options produce good
performance, the A1, along with the B2, leads to the best
result.

To test the effect of the other parameters (c and m) on the
performance, Fig. 9 shows the misclassification error (test
data) for different values of m and c and a fixed number
of the number of generated prototypes p that is defined as
p = c + (c − 1)Ns , where Ns is the number of splits. We
use the number of prototypes rather than the number of splits
to have a fair comparison since, for a higher value of c, we

(b)(a)
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10

15
Training Data

-15 -10 -5 0 5 10 15
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0

5
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15
Test Data

Fig. 7 Synthetic data: a training data, and b testing data
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Fig. 8 Classification error rate for the synthetic data for selected combinations of values of m and c

get more prototypes at the same number of splits. We use
different values for c (3, 5, 7, and 9) and different values
for m (1.1, 1.3, 1.5, 1.7, and 2). We do the refinement to
generate up to 49 prototypes. This value is selected so that the
corresponding number of splits, Ns,has no fractions for the
values of c. Accordingly, the number of splits for the different

values of c is 23, 11, 7, and 5, respectively. In general, a
value of m less than 2.0 (between 1.5 and 1.7) gives better
performance than using higher values of the fuzzification
coefficient. Moreover, using a low value for c (between 3
and 5) gives better performance than using high values. This
is logical, since we have a limited number of refinements and
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Fig. 9 Classification error rate as a function of m and c for the synthetic data set (test data)

decreasing the c value gives a chance for more information
granules to be less diverse. The case A2/B2 is different from
the other cases since this case is like a random case where the
cluster to refine is randomly selected. This is because of the
entropy computation for all values of y* is the same, since
the content of the vector y* are only zeroes and ones, and, in
this case, all information granules are seen as if they had the
same diversity.

4.2 Machine learning data

In this section, we demonstrate the applicability of the
scheme in classification using the machine learning data
Bache andLichman (2013).Weuse eight data sets as reported
in Table 1. These data sets represent diverse data sets in terms
of the number of data, the number of attributes (features), and
the number of classes. In the first experiment, we show the
effect of m and c on the performance of the classifier in the

Table 1 Selected machine learning data sets

Data set # Examples # Classes # Attributes

Ionosphere 351 2 34

Liver disorder 345 2 7

Pima diabetes 768 2 8

Segment 2310 7 19

Tic-Tac-To 958 2 9

Vehicle 846 4 18

Vowel 990 11 10

same way as we did for the synthetic data. In Fig. 10a–g, we
show the classification error (for the testing data) for different
values of m and c when fixing the number of the prototypes
(information granules) as we did before. The refinement is
continued up to the point where 49 prototypes have been
generated. From these plots, several conclusions are drawn.
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Fig. 10 a Classification error rate as a function of m and c for the
Ionosphere data set (testing data).bClassification error rate as a function
of m and c for the liver disorder data set (testing data). c Classification
error rate as a function ofm and c for the pima diabetes data set (testing
data). d Classification error rate as a function of m and c for the seg-

ment data set (testing data). e Classification error rate as a function of
m and c for the tic-tac-to data set (testing data). f Classification error
rate as a function of m and c for the vehicle data set (testing data). g
Classification error rate as a function of m and c for the vowel data set
(testing data)
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Fig. 10 continued
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Fig. 10 continued
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Fig. 10 continued

We can see that, in most cases, a value of m less than 2
gives better performance than when using the fuzzification
index assuming higher values. Moreover, using a low value
of c (ranging between 3 and 5) gives better performance
than using high values of c. This is not true for the Tic-Tac-
To/Vehicle traces (Figs. 10e/10f, 11e/11f), where the best
performance is achieved for c assuming values in the range
from 7 to 9. Moreover, the A1 option (Eq. 4) seems to be the
best criteria for computing the y* value, and the B2 option
(Eq. 8) seems to be better than the B1 option (Eq. 7) for
computing the value of Vi . In the series of plots, Fig. 11a–
g, we display classification error rate regarded as a function
of the number of splits for all the combinations of the val-
ues m and c that give the best performance (according to
Fig. 10a–g).

5 Conclusions

The proposed granular classifiers exploit a fundamental
concept of information granules, which are crucial to build-

ing classification mappings that are both nonlinear (and as
such become capable of coping with classification prob-
lems that are not linearly separable) and interpretable
(owing to the fact that information granules associated
with some underlying semantics). The stepwise refine-
ment of information granules with regard to a successive
improvement of their information content becomes cru-
cial to the enhancement of the quality of the resulting
classifier and helps establish a sound tradeoff between accu-
racy and the conciseness (compactness) of the resulting
construct.

There are several interesting and promising directions for
further studies. First, information granules can be formalized
in many different ways (as studied in granular computing
(Pedrycz 2005; Bargiela and Pedrycz 2003; Pedrycz 2001;
Lin 2003)) using sets, fuzzy sets, rough sets, and the like
in comparison to fuzzy sets used in this study. Second,
more alternatives to aggregate information granules could
be sought while making the detailed mappings adjustable by
endowing them with parameters whose values can be tuned
during the learning process.
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Fig. 11 a Classification error rate as a function of the number of splits
for the best configuration for Ionosphere data set (testing data). b Clas-
sification error rate as a function of the number of splits for the best
configuration for Liver data set (testing data). c Classification error rate
as a function of the number of splits for the best configuration for Pima
diabetes data set (testing data). d Classification error rate as a function
of the number of splits for the best configuration for Segment data set

(testing data). e Classification error rate as a function of the number of
splits for the best configuration for Tic-Tac-to data set (testing data). f
Classification error rate as a function of the number of splits for the best
configuration for Vehicle data set (testing data). g Classification error
rate as a function of the number of splits for the best configuration for
Vowel data set (testing data)
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