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Abstract The purpose of this paper is to develop a new
compatibility for the additive trapezoidal fuzzy preference
relations and utilize it to determine the optimal weights of
experts in the group decision making. First, a least deviation
model to obtain the priority vector of the additive trapezoidal
fuzzy preference relation is provided. Then compatibility
index of two additive trapezoidal fuzzy preference relations
is proposed and some desirable properties are investigated.
The characteristic of the new compatibility is that it uses
the deviation measure between an additive trapezoidal fuzzy
preference relation and its characteristic preference relation
based on consistency of the preference relation, which devel-
ops a theoretic basis for the applicationof additive trapezoidal
fuzzy preference relations in group decision making. Then,
in order to determine the weights of experts in the group
decision making, we propose an optimal model based on the
criterion of minimizing the compatibility index. Finally, an
example shows the feasibility and effectiveness of the pro-
posed method.
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1 Introduction

Group decision making plays an important role in modern
politics, economy, science and military and so on. It is a
process during which experts express their preference and
ranking or preferred decision alternatives. In the process
of decision making, decision makers often need to com-
pare alternatives with each other and construct the judgment
matrices, which are also called preference relations, have
been developed, including fuzzy preference relation (Chen
et al. 2014; Yan and Ma 2015; Zhu and Xu 2014), multi-
plicative preference relation (Chiclana et al. 2001), interval
preference relation (Chen et al. 2015;Wu andChiclana 2014)
linguistic preference relation (Alonso et al. 2009; Dong and
Herrera-Viedma 2015; Dong et al. 2009), interval linguis-
tic preference relation (García et al. 2012), and intuitionistic
fuzzy preference relation (Zeng et al. 2013), etc.

There are two crucial problems worthy of investigating in
group decision making, which are consistency and compati-
bility of preference relations. The consistency of preference
relations is an important issue in group decision making. The
lack of consistency can result in inconsistent conclusions.
Saaty (1980) first introduced the definition of consistency
of multiplicative preference relation by using the consis-
tency ratio. Table 1 summarises the literatures dealing with
consistency, consistency improving methods, consistency
index decisionmakingmethods and consistency based GDM
methods.

Based on consistency of preference relations, priority
weights are used to rank the alternatives. There are a lot of
techniques to derive priority weights in group decision mak-
ing with different preference relations. They are shown in
Table 2.

However, there is little investigation that derives priority
weights of trapezoidal fuzzy preference relations.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-015-1975-z&domain=pdf


2710 Y. Zhou et al.

Table 1 Summary for consistency of different preference relations
(PRs)

Characteristics PR and references

Definition of
consistency

Multiplicative PR (Chiclana et al. 2009; Saaty
1980)

Fuzzy PR (Herrera-Viedma et al. 2004; Xia
et al. 2013; Xu et al. 2013a)

Interval fuzzy PR (Wu and Chiclana 2014; Xu
2011)

Linguistic PR (Alonso et al. 2009; Dong et al.
2008b)

Triangular fuzzy PR (Liu et al. 2014)

Trapezoidal fuzzy PR (Gong et al. 2013)

Hesitant fuzzy PR (Wang and Xu 2015; Zhang
and Wu 2014)

Consistency
improving
method

Multiplicative PR (Wu and Xu 2012; Xu and
Wei 1999)

Fuzzy PR (Liu et al. 2012b; Xia et al. 2013)

Linguistic PR (Dong et al. 2015, 2008b)

Consistency
index method

Fuzzy PR (Dong et al. 2008a; Meng and Chen
2015)

Linguistic PR (Dong et al. 2008b)

Consistency
based GDM

Multiplicative PR (Wu and Xu 2012; Xu et al.
2013b)

Fuzzy PR (Meng and Chen 2015; Pérez et al.
2013; Xu et al. 2013b; Zhang et al. 2012)

Interval PR (Wu and Chiclana 2014)

Linguistic PR (Wu et al. 2015)

Interval linguistic PR (García et al. 2012)

Table 2 Approaches to deriving priority weights of different PRs

PRs Approaches

Multiplicative
PRs

Eigenvalue method (Saaty 1980), Chi-square
method (Wang et al. 2007)

Fuzzy PRs Least-square method (Gong 2008), chi-square
method (Wang et al. 2007)

Interval
multiplicative
PRs

Multi-objective optimization model (Conde and
Pérez 2010), iterative algorithm (Lan et al.
2012), goal programming method (Wang and
Elhag 2007), two-stage logarithmic goal
programming method (Wang et al. 2005)

Interval fuzzy
PRs

Straightforward approach (Genc et al. 2010),
iterative algorithm (Liu et al. 2012a),
logarithmic least square method (Wang and
Chen 2014), goal programming method
(Wang and Li 2012), linear programming
method (Xu and Chen 2008)

Triangular
fuzzy PRs

Logarithmic least square method (Wang 2015)

Compatibility is used to measure the consensus of rank-
ings between the group and each individual. The lack of
acceptable compatibility can bring the lack of decision
making with preference relations because there is a signif-

Table 3 Compatibilities for different PRs under fuzzy environment

Types of PRs References

Interval multiplicative PRs Wang et al. (2013) and Zhou
et al. (2014b)

Interval fuzzy PRs Xu (2004)

Interval multiplicative
linguistic PRs

Zhou et al. (2014a)

Interval additive linguistic PRs Chen et al. (2011)

icant difference among the preference relations proposed
by experts in group decision making. Saaty (1994) was the
first to propose compatibility of preference relations. For
fuzzy decision making environment, some literatures about
compatibility measures of difference preference relations are
demonstrated in Table 3. From the Table 3, we can see that
little attempt has been devoted to the issue on the compati-
bility of two additive trapezoidal fuzzy preference relations
in the literatures.

The aim of this paper is to develop a new compatibility
for additive trapezoidal fuzzy preference relations and use it
to determine the optimal weights for experts in group deci-
sion making. In order to do that, we define the compatibility
degree and compatibility index of two additive trapezoidal
fuzzy preference relations. Some properties of compatibility
degree and compatibility index of two additive trapezoidal
fuzzy preference relations are studied. We also construct a
model to determine the weighting vector of weights in group
decision making. Finally, some examples are given to illus-
trate the new approach.

The rest of this paper is organized as follows. In Sect. 2, we
mainly introduce the definition and operational laws of trape-
zoidal fuzzy numbers. Two kinds of preference relations,
additive andmultiplicative trapezoidal fuzzy preference rela-
tions are defined. In Sect. 3, we investigate the relationship
of additive and multiplicative trapezoidal fuzzy preference
relations, and then an optimal model is presented to obtain
the priority vector of additive trapezoidal fuzzy preference
relation. In Sect. 4, the new compatibility degree and com-
patibility index of two additive trapezoidal fuzzy preference
relations are developed and their properties are studied. We
also propose an optimal model to determine the weights of
experts in group decision making based on the compatibility
of additive trapezoidal fuzzy preference relation. Section 5
provides an illustrative example to show the effectiveness of
the proposed method and conclusions are made in Sect. 6.

2 Preliminaries

In this section, we introduce the trapezoidal fuzzy numbers
and their operational laws, ranking of the trapezoidal fuzzy

123



A group decision making approach 2711

numbers, and additive and multiplicative trapezoidal fuzzy
preference relations.

2.1 Trapezoidal fuzzy numbers and their operation laws

Definition 1 (Liou and Wang 1992) A fuzzy number Ã on
R is referred to be as a trapezoidal fuzzy number, if its mem-
bership function f Ã : R → [0, 1] satisfies

f Ã(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x − a1
a2 − a1

, a1 ≤ x ≤ a2,

1, a2 ≤ x ≤ a3,

x − a4
a3 − a4

, a3 ≤ x ≤ a4,

0, otherwise,

where

f L
Ã

(x) = x − a1
a2 − a1

, a1 ≤ x ≤ a2,

is called the left membership function, and

f R
Ã

(x) = x − a4
a3 − a4

, a3 ≤ x ≤ a4,

is called the right membership function.

Obviously, f L
Ã

(x) is a continuously increasing function,

and f R
Ã

(x) is a continuously decreasing function. The inverse

functions gL
Ã
(x) and gR

Ã
(x) of f L

Ã
(x) and f R

Ã
(x), respec-

tively, are shown as follows:

gL
Ã
(x) = a1 + (a2 − a1)y, y ∈ [0, 1],

gR
Ã
(x) = a4 + (a3 − a4)y, y ∈ [0, 1].

A trapezoidal fuzzy number can be denoted by using an
ordered array (a1, a2, a3, a4). Specially, ã = (a, a, a, a) is
a crisp number. In this paper, for convenience, we assume
that (a1, a2, a3, a4) satisfies 0 < a1 ≤ a2 ≤ a3 ≤ a4. Con-
sider two trapezoidal fuzzy numbers Ã1 = (a1, b1, c1, d1)
and Ã2 = (a2, b2, c2, d2). The operational laws are as fol-
lows (Chen and Chen 2007):

(1) Ã1 ⊕ Ã2 = (a1 + a2, b1 + b2, c1 + c2, d1 + d2);
(2) Ã1 � Ã2 = (a1 − d2, b1 − c2, c1 − b2, d1 − a2);
(3) Ã1 ⊗ Ã2 = (a1 × a2, b1 × b2, c1 × c2, d1 × d2);
(4) λ ⊗ Ã1 = (λa1, λb1, λc1, λd1), λ > 0;
(5) Ã1 � Ã2 = (a1/d2, b1/c2, c1/b2, d1/a2), especially,

1 � Ã2 = (1/d2, 1/c2, 1/b2, 1/a2);

(6) logλ Ã1 =
{

(logλ a1, logλ b1, logλ c1, logλ d1), λ > 1,

(logλ d1, logλ c1, logλ b1, logλ a1), 0 < λ < 1.

For convenience, we also denote Ã1 � Ã2 as
Ã1

Ã2
.

2.2 Ranking of the trapezoidal fuzzy numbers

In order to rank the trapezoidal fuzzy numbers, Cheng (1999)
designed an algorithm by using the intuition rankingmethod.
Chu (2002) presented a centroid index to rank trapezoidal
fuzzy numbers. Chen and Chen (2007) proposed a method
considering the centroid points and the standard deviations
of trapezoidal fuzzy number. Furthermore, Cheng (1998)
proposed a distance method by using centroids points of
trapezoidal fuzzy numbers:

R( Ã) =
√
x̄2
Ã

+ ȳ2
Ã
, (1)

where

x̄ Ã =
∫ a2
a1

(
x f L

Ã

)
dx + ∫ a3

a2
xdx + ∫ a4

a3

(
x f R

Ã

)
dx

∫ a2
a1

(
f L
Ã

)
dx + ∫ a3

a2
dx + ∫ a4

a3

(
f R
Ã

)
dx

, (2)

ȳÃ =
∫ 1
0

(
ygL

Ã

)
dy + ∫ 1

0

(
ygR

Ã

)
dy

∫ 1
0

(
gL
Ã

)
dx + ∫ 1

0

(
gR
Ã

)
dx

, (3)

are the centroid points for trapezoidal fuzzy number Ã =
(a1, a2, a3, a4), respectively. The larger the value R( Ã), the
better the ranking of Ã.

In this paper, we use Cheng’s distance method to rank
trapezoidal fuzzy numbers because the distance index ismore
suitable than others to use in multiple criteria decision mak-
ing with trapezoidal fuzzy numbers.

2.3 Trapezoidal fuzzy preference relation

Trapezoidal fuzzy preference relation is an extension of tra-
ditional preference relation. The multiplicative trapezoidal
fuzzy preference relation and additive trapezoidal fuzzy pref-
erence relation can be defined as follows.

Definition 2 (Gong et al. 2013) Let R̃ = (r̃i j )n×n be a
preference matrix, where r̃i j = (ri j1, ri j2, ri j3, ri j4) is a
trapezoidal fuzzy number, and 1

9 ≤ ri j1 ≤ ri j2 ≤ ri j3 ≤
ri j4 ≤ 9,∀i, j = 1, 2, . . . , n, then R̃ is called a multiplica-
tive trapezoidal fuzzy preference relation, if

(i) rii1 = rii2 = rii3 = rii4 = 1, i = 1, 2, . . . , n,
(ii) ri j1r ji4 = ri j2r ji3 = ri j3r ji2 = ri j4r ji1 = 1, i, j =

1, 2, . . . , n.
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Definition 3 (Gong et al. 2013) Let Ã = (ãi j )n×n be a
preference matrix, where ãi j = (ai j1, ai j2, ai j3, ai j4) is a
trapezoidal fuzzy number, and 0 ≤ ai j1 ≤ ai j2 ≤ ai j3 ≤
ai j4 ≤ 1,∀i, j = 1, 2, . . . , n, then Ã is called an additive
trapezoidal fuzzy preference relation, if

(i) aii1 = aii2 = aii3 = aii4 = 0.5, i = 1, 2, . . . , n,
(ii) ai j1 + a ji4 = ai j2 + a ji3 = ai j3 + a ji2 = ai j4 + a ji1 =

1, i, j = 1, 2, . . . , n.

Consistency is to measure whether the preference relation
can be used in decision making or not.

Definition 4 (Gong et al. 2013) Amultiplicative trapezoidal
fuzzy preference relation R̃ = (r̃i j )n×n is said to be com-
pletely consistent, if the following equation holds true:

r̃im ⊗ r̃m j ⊗ r̃ j i = r̃i j ⊗ r̃ jm ⊗ r̃mi ,

∀i, j,m = 1, 2, . . . , n, i 
= j 
= m.

The consistent multiplicative trapezoidal fuzzy preference
relation R̃ also can be given by Gong et al. (2013):

r̃i j =

⎧
⎪⎨

⎪⎩

w̃i

w̃ j
, i 
= j,

1, i = j,

(4)

where w̃i = (w̃1, w̃2, . . . , w̃n)
T is the fuzzy priority vec-

tor of R̃, w̃i = (wi1, wi2, wi3, wi4) is the trapezoidal fuzzy
number, i = 1, 2, . . . , n.

Definition 5 (Gong et al. 2013) An additive trapezoidal
fuzzy preference relation Ã = (ãi j )n×n is said to be of com-
pletely additive consistency, if

ãi j ⊕ ã jm = ãim ⊕ ã j j , ∀i, j,m = 1, 2, . . . , n.

It can been fromDefinitions 4 and 5, consistency of trape-
zoidal fuzzy preference relations means transitivity, which
is the basis of constructing the priority vectors of preference
relations.

3 A least deviation model to obtain fuzzy priority
vector of additive trapezoidal fuzzy preference
relation

In order to obtain fuzzy priority vector of additive trapezoidal
fuzzy preference relation, in this section, we develop a least
deviation model by using the consistency of additive trape-
zoidal fuzzy preference relation.

Theorem 1 Let R̃ = (r̃i j )n×n be a multiplicative trape-
zoidal fuzzy preference relation, where r̃i j = (ri j1, ri j2,
ri j3, ri j4). If

ãi j = 0̃.5 ⊕ log81 r̃i j , i, j = 1, 2, . . . , n, (5)

then Ã = (ãi j )n×n is an additive trapezoidal fuzzy preference
relation.

Proof By Eq. (5), we get

ai jk = 0.5 + log81 ri jk, a jik = 0.5 + log81 r jik,

i, j = 1, 2, . . . , n; k = 1, 2, 3, 4,

then for all i, j = 1, 2, . . . , n,

ai j1 + a ji4 = 0.5 + log81 ri j1 + 0.5 + log81 r ji4

= 1 + log81(ri j1r ji4) = 1,

ai j2 + a ji3 = 0.5 + log81 ri j2 + 0.5 + log81 r ji3

= 1 + log81(ri j2r ji3) = 1.

Similarly, we can obtain

ai j3 + a ji2 = ai j4 + a ji1 = 1, i, j = 1, 2, . . . , n.

In addition, it is obvious that

aiik = 0.5 + log81 riik = 0.5,

i = 1, 2, . . . , n; k = 1, 2, 3, 4.

Therefore, Ã = (ãi j )n×n is the additive trapezoidal fuzzy
preference relation.

Theorem 1 indicates that multiplicative trapezoidal fuzzy
preference relation canbe transformed into the additive trape-
zoidal fuzzy preference relation by using Eq. (5).

Theorem 2 Let w̃i = (w̃1, w̃2, . . . , w̃n)
T be the fuzzy pri-

ority vector of additive trapezoidal fuzzy preference relation
Ã = (ãi j )n×n , w̃i = (wi1, wi2, wi3, wi4), i = 1, 2, . . . , n.
If

ãi j =
⎧
⎨

⎩

0̃.5 ⊕ log81
w̃i
w̃ j

, i 
= j,

0̃.5, i = j,
(6)

then Ã is completely consistent.

Proof By Eq. (6), we obtain

ai jk = 0.5 + log81
w̃ik

w̃ j (5−k)
,

i, j = 1, 2, . . . , n; k = 1, 2, 3, 4.
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Then

ai jk + a jmk = 0.5 + log81
wik

w j (5−k)
+ 0.5 + log81

w jk

wm(5−k)

= 1 + log81
wikw jk

w j (5−k)wm(5−k)
,

and

aimk + a j jk = 0.5 + log81
wik

wm(5−k)
+ 0.5 + log81

w jk

w j (5−k)

= 1 + log81
wikw jk

w j (5−k)wm(5−k)
.

Thus, we have

ai jk + a jmk = aimk + a j jk, i, j = 1, 2, . . . , n;
k = 1, 2, 3, 4.

Therefore, based on Definition 5, Ã is a completely con-
sistent additive trapezoidal fuzzy preference relation, which
complete the proof of Theorem 2.

As we can see from Theorem 2, if additive trapezoidal
fuzzy preference relation Ã is not completely consistent, then
Eq. (6) dose not hold, i.e.,

ai jk = 0.5 + log81
wik

w j (5−k)
,

i, j = 1, 2, . . . , n; k = 1, 2, 3, 4, (7)

does not hold. Equation (7) is equivalent to Eq. (8):

ai jk = 0.5 + log81 wik − log81 w j (5−k),

i, j = 1, 2, . . . , n; k = 1, 2, 3, 4. (8)

In order to obtain the fuzzy priority vector of Ã , we can
construct a least deviation model as follows.

(M-1)

min
n∑

i=1

n∑

j=1

4∑

k=1

(
ai jk − 0.5 − log81 wik + log81 w j (5−k)

)2

(9)

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 ≤ ∑n
i=1 wi1 ≤ 1,

∑n
i=1 wi4 ≥ 1,

0 ≤ wi1 ≤ wi2 ≤ wi3 ≤ wi4 ≤ 1,

i = 1, 2, . . . , n.

Note that the first and second constraints in model (M-1)
come from Sugihara et al. (2004). By solving model (M-1),
we can get the fuzzy priority weights of Ã.

Example 1 Let Ã = (ãi j )4×4 be an additive trapezoidal
fuzzy preference relation, where

Ã =

⎡

⎢
⎢
⎢
⎣

(0, 5, 0.5, 0.5, 0.5) (0.5, 0.6, 0.7, 0.8)

(0.2, 0.3, 0.4, 0.5) (0, 5, 0.5, 0.5, 0.5)

(0.1, 0.2, 0.3, 0.4) (0.6, 0.8, 0.8, 0.9)

(0.3, 0.4, 0.4, 0.5) (0.5, 0.6, 0.7, 0.8)

(0.6, 0.7, 0.8, 0.9) (0.5, 0.6, 0.6, 0.7)

(0.1, 0.2, 0.2, 0.4) (0.2, 0.3, 0.4, 0.5)

(0, 5, 0.5, 0.5, 0.5) (0.7, 0.8, 0.8, 0.9)

(0.1, 0.2, 0.2, 0.3) (0, 5, 0.5, 0.5, 0.5)

⎤

⎥
⎥
⎥
⎦

.

By using model (M-1), we get the fuzzy priority vector w̃ =
(w̃1, w̃2, w̃3, w̃4) of Ã, where

w̃1 = (0.3899, 0.5274, 0.6050, 0.6050),

w̃2 = (0.1164, 0.1575, 0.1807, 0.2017),

w̃3 = (0.3130, 0.4725, 0.4857, 0.4857),

w̃4 = (0.1807, 0.2444, 0.2512, 0.2512).

4 Compatibility measure of additive trapezoidal
fuzzy preference relations

In this section, compatibility measure of additive trapezoidal
fuzzy preference relations is introduced, and an optimal
model is to developed to determine weights of experts in
group decision making based on criterion of minimizing the
deviationmeasure between the synthetic additive trapezoidal
fuzzy preference relation and the synthetic characteristic
fuzzy preference relation. Then a new approach of group
decision making on the basis of compatibility measure of
additive trapezoidal fuzzy preference relations is proposed.

4.1 Compatibility measure of additive trapezoidal fuzzy
preference relations

In order to measure compatibility of additive trapezoidal
fuzzy preference relations, we define the Hamming distance
of trapezoidal fuzzy numbers as follows.

Definition 6 Let Ã1 = (a1, b1, c1, d1) and Ã2 = (a2, b2,
c2, d2) be two trapezoidal fuzzy numbers, the Hamming dis-
tance between Ã1 and Ã2 is given by

d( Ã1, Ã2) = 1

4
(|a1 − a2|) + (|b1 − b2|)

+ (|c1 − c2|) + (|d1 − d2|). (10)

Theorem 3 Let Ã1, Ã2, Ã3 be trapezoidal fuzzy numbers,
then
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(1) d( Ã1, Ã1) = 0;
(2) d( Ã1, Ã2) ≥ 0;
(3) d( Ã1, Ã2) = d( Ã2, Ã1);
(4) If d( Ã1, Ã2) = 0, d( Ã1, Ã3) = 0, then d( Ã1, Ã3) = 0;
(5) d( Ã1, Ã3) ≤ d( Ã1, Ã2) + d( Ã2, Ã3).

Theorem 3 indicates that the Hamming distance measure
of trapezoidal fuzzy numbers satisfies reflexivity, nonnegativ-
ity, commutativity, transitivity and triangle inequality.

Definition 7 Let Ã = (ãi j )n×n, B̃ = (b̃i j )n×n be two addi-
tive trapezoidal fuzzy preference relations, then

C( Ã, B̃) =
n∑

i=1

n∑

j=1

d(ãi j , b̃i j ),

is called the compatibility degree of Ã and B̃.
It can be seen that the compatibility degree of additive

trapezoidal fuzzy preference relations Ã and B̃ is the sum of
Hamming distance of all the corresponding elements from Ã
and B̃, which reflects the total difference between Ã and B̃.

If ãi j = (ai j1, ai j2, ai j3, ai j4) and b̃i j = (bi j1, bi j2,
bi j3, bi j4), then the compatibility degree of Ã and B̃ can
be written as

C( Ã, B̃) = 1

4

n∑

i=1

n∑

j=1

4∑

k=1

|ai jk − bi jk |. (11)

Theorem 4 Let Ã = (ãi j )n×n, B̃ = (b̃i j )n×n and F̃ =
( f̃i j )n×n be additive trapezoidal fuzzy preference relations,
then

(1) C( Ã, B̃) ≥ 0;
(2) C( Ã, Ã) = 0;
(3) C( Ã, B̃) = C(B̃, Ã);
(4) If C( Ã, B̃) = 0 and C(B̃, F̃) = 0, then C( Ã, F̃) = 0;
(5) C( Ã, F̃) ≤ C( Ã, B̃) + C(B̃, F̃).

Theorem 4 indicates that the compatibility degree of additive
trapezoidal fuzzy preference relations is nonnegative, reflex-
ive, commutative, transitive and satisfies triangle inequality.

Definition 8 Let Ã = (ãi j )n×n , and B̃ = (b̃i j )n×n be addi-
tive trapezoidal fuzzy preference relations, If C( Ã, B̃) = 0,
then Ã and B̃ are perfectly compatible.

Theorem 5 Let Ã = (ãi j )n×n and B̃ = (b̃i j )n×n be addi-
tive trapezoidal fuzzy preference relations, then Ã and B̃
are perfectly compatible if and only if ãi j = b̃i j for all
i, j = 1, 2, . . . , n.

Definition 9 Let Ã = (ãi j )n×n, B̃ = (b̃i j )n×n be additive
trapezoidal fuzzy preference relations, then

CI( Ã, B̃) = 1

n2
C( Ã, B̃) (12)

is called the compatibility index of Ã and B̃.
As we can see from Definition 9, the compatibility index

CI( Ã, B̃) represents the average difference between Ã and B̃.
By Definition 9 and Theorems 4 and 5, we get the following
conclusions.

Theorem 6 Let Ã = (ãi j )n×n, B̃ = (b̃i j )n×n and F̃ =
( f̃i j )n×n be additive trapezoidal fuzzy preference relations,
then

(1) CI( Ã, B̃) ≥ 0;
(2) CI( Ã, Ã) = 0;
(3) CI( Ã, B̃) = CI(B̃, Ã);
(4) CI( Ã, F̃) ≤ CI( Ã, B̃) + CI(B̃, F̃).

(5) CI( Ã, B̃) = 0 if and only if Ã and B̃ are perfectly com-
patible.

Definition 10 Let Ã = (ãi j )n×n, B̃ = (b̃i j )n×n be additive
trapezoidal fuzzy preference relations. If

CI( Ã, B̃) ≤ α, (13)

then Ã and B̃ are of acceptable compatibility, where α is the
threshold of acceptable compatibility.

As illustrated in Chen et al. (2011), we can take α = 0.1
as the threshold of acceptable compatibility.

By Theorem 2, the consistency of additive trapezoidal
fuzzy preference relation can bemeasured by its priority vec-
tor. Thenwe use characteristic preference relation tomeasure
consistency of additive trapezoidal fuzzy preference relation
by using the fuzzy priority vector.

Definition 11 Let (w̃1, w̃2, . . . , w̃n)
T be the fuzzy priority

vector of the additive trapezoidal fuzzy preference relation
Ã = (ãi j )n×n , then W̃ = (w̃i j )n×n is called the characteris-
tic preference relation of Ã, where

w̃i j = (wi j1, wi j2, wi j3, wi j4),

wi jk =
⎧
⎨

⎩

0.5 + log81
wik

w j (5−k)
, i 
= j,

0.5, i = j,
(14)

k = 1, 2, 3, 4, and w̃i = (wi1, wi2, wi3, wi4), i =
1, 2, . . . , n, are fuzzy priority weights of Ã.

Theorem 7 If Ã = (ãi j )n×n is an additive trapezoidal fuzzy
preference relation, then its characteristic preference W̃ =
(w̃i j )n×n is a consistent additive trapezoidal fuzzy preference
relation.

Proof Let w̃ = (w̃1, w̃2, . . . , w̃n)
T be a fuzzy priority vector

of Ã, and W̃ = (w̃i j )n×n be the characteristic preference
relation of Ã, then by Eq. (14), for i 
= j ,
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wi jk = 0.5 + log81
wik

w j (5−k)
, k = 1, 2, 3, 4.

Then

wi jk + w j i(5−k) = 0.5 + log81
wik

w j (5−k)
+ 0.5

+ log81
w j (5−k)

wik
= 1, k = 1, 2, 3, 4. (15)

By Definition 3, W̃ = (w̃i j )n×n is an additive trapezoidal
fuzzy preference relation. Therefore, by Theorem 2, W̃ =
(w̃i j )n×n is completely consistent.

Theorem 7 guarantees that the consistency of additive
trapezoidal fuzzy preference relation can be measured by its
characteristic preference relation, which is determined by the
fuzzy priority vector of additive trapezoidal fuzzy preference
relation.

Let E = {e1, e2, . . . , em} be a set of experts in group deci-
sion making. Assume that Ã(k) = (ã(k)

i j )n×n is an additive
trapezoidal fuzzy preference relation provided by expert ek ,
and W̃ (k) = (w̃

(k)
i j )n×n is the characteristic preference rela-

tion of Ã(k). Assume that the weighting vector of experts
is L = (l1, l2, . . . , lm)T, which satisfies lk ≥ 0, k =
1, 2, . . . ,m and

∑m
k=1 lk = 1.

Definition 12 Let Ã(k) = (ã(k)
i j )n×n be an additive trape-

zoidal fuzzy preference relation provided by expert ek in
group decision making, k = 1, 2, . . . ,m, if

¯̃ai j =
m⊕

k=1

lk ã
(k)
i j , i, j = 1, 2, . . . , n, (16)

then ¯̃A = ( ¯̃ai j )n×n is called the synthetic preference relation
of Ã(k), where L = (l1, l2, . . . , lm)T, which satisfies lk ≥
0, k = 1, 2, . . . ,m and

∑m
k=1 lk = 1.

Theorem 8 Let ¯̃A = ( ¯̃ai j )n×n be the synthetic preference
relation of additive trapezoidal fuzzy preference relation
Ã(k) = (ã(k)

i j )n×n determined by Eq. (15), k = 1, 2, . . . ,m.

Then ¯̃A is an additive trapezoidal fuzzy preference relation.

Proof Since Ã(k) = (ã(k)
i j )n×n is an additive trapezoidal

fuzzy preference relation, by Definition 3, we get

a(k)
i j1 + a(k)

j i4 = a(k)
i j2 + a(k)

j i3 = a(k)
i j3 + a(k)

j i2

= a(k)
i j4 + a(k)

j i1 = 1, i, j = 1, 2, . . . , n.

Let ¯̃ai j = (āi j1, āi j2, āi j3, āi j4). If i = j , then

āi i t =
m∑

k=1

lka
(k)
i i t = 0.5, i = 1, 2, . . . , n; t = 1, 2, 3, 4.

If i 
= j , then

āi j1 + ā j i4 =
m∑

k=1

lka
(k)
i j1 +

m∑

k=1

lka
(k)
j i4

=
m∑

k=1

lk
(
a(k)
i j1 + a(k)

j i4

)
= 1,

āi j2 + ā j i3 =
m∑

k=1

lka
(k)
i j2 +

m∑

k=1

lka
(k)
j i3

=
m∑

k=1

lk
(
a(k)
i j2 + a(k)

j i3

)
= 1.

Similarly, we can obtain that

āi j3 + ā j i2 = āi j4 + ā j i1 = 1.

Thus, ¯̃A = ( ¯̃ai j )n×n is an additive trapezoidal fuzzy prefer-
ence relation.

Theorem 9 Let Ã(k) = (ã(k)
i j )n×n be an additive trapezoidal

fuzzy preference relation provided by expert ek in group deci-

sion making, k = 1, 2, . . . ,m, and ¯̃A = ( ¯̃ai j )n×n be the
synthetic preference relation of Ã(k), L = (l1, l2, . . . , lm)T

is the weighting vector of Ã(k), which satisfies lk ≥ 0, k =
1, 2, . . . ,m and

∑m
k=1 lk = 1. If Ã(k) all are consistent, then

¯̃A is also consistent.

Proof Based on Definition 5, we have

ã(k)
i j ⊕ ã(k)

j p = ã(k)
i p ⊕ ã(k)

j j , i, j, p = 1, 2, . . . , n;
k = 1, 2, . . . ,m.

Then by Eq. (15), it follows that

¯̃ai j ⊕ ¯̃a jp =
(

m⊕

k=1

lk ã
(k)
i j

)
⊕

(
m⊕

k=1

lk ã
(k)
j p

)

=
m⊕

k=1

lk
(
ã(k)
i j

⊕
ã(k)
j p

)
=

m⊕

k=1

lk
(
ã(k)
i p

⊕
ã(k)
j j

)

=
(

m⊕

k=1

lk ã
(k)
i p

)
⊕

(
m⊕

k=1

lk ã
(k)
j j

)

= ¯̃aip ⊕ ¯̃a j j ,

which means that ¯̃A = ( ¯̃ai j )n×n is consistent.
Theorem 9 guarantees that the synthetic preference rela-

tion satisfies consistency based on the consistency of all
individual additive trapezoidal fuzzy preference relations.

Definition 13 Let W̃ (k) = (w̃
(k)
i j )n×n be the characteristic

preference relation of additive trapezoidal fuzzy preference
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relation Ã(k) = (ã(k)
i j )n×n, k = 1, 2, . . . ,m. If for i, j =

1, 2, . . . , n,

¯̃wi j =
m⊕

k=1

(
lkw̃

(k)
i j

)

=
(

m∑

k=1

lkw
(k)
i j1,

m∑

k=1

lkw
(k)
i j2,

m∑

k=1

lkw
(k)
i j3,

m∑

k=1

lkw
(k)
i j4

)

(17)

then ¯̃W = ( ¯̃wi j )n×n is called the synthetic characteristic pref-
erence relationof W̃ (k),where ¯̃wi j = (w̄i j1, w̄i j2, w̄i j3, w̄i j4),

L = (l1, l2, . . . , lm)T is the weighting vector of Ã(k), satis-
fying lk ≥ 0,

∑m
k=1 lk = 1.

Theorem 10 Let Ã(k) = (ã(k)
i j )n×n be an additive trape-

zoidal fuzzy preference relation provided by expert ek in

group decision making, k = 1, 2, . . . ,m, and ¯̃W = ( ¯̃wi j )n×n

be the synthetic characteristic preference relation of W̃ (k).

Then ¯̃W is a consistent additive trapezoidal fuzzy preference
relation.

Proof The Theorem 10 can be proved by Theorems 7–9,
immediately.

Theorem10 indicates that the synthetic characteristic pref-
erence relation guarantees the continuity of consistency on
the basis of that all the individual additive trapezoidal fuzzy
preference relations are consistent.

Theorem 11 Let Ã(k) = (ã(k)
i j )n×n be an additive trape-

zoidal fuzzy preference relation provided by expert ek in
group decision making, k = 1, 2, . . . ,m, and W̃ (k) =
(w̃

(k)
i j )n×n be the characteristic preference relation of Ã(k).

Assume that ¯̃A = ( ¯̃ai j )n×n is the synthetic preference relation

of Ã(k), and ¯̃W = ( ¯̃wi j )n×n is the synthetic character-
istic preference relation of W̃ (k), L = (l1, l2, . . . , lm)T is
the weighting vector of Ã(k), which satisfies lk ≥ 0, k =
1, 2, . . . ,m,and

∑m
k=1 lk = 1. If Ã(k) and W̃ (k) are of accept-

able compatibility for k = 1, 2, . . . ,m, then ¯̃A and ¯̃W are of
acceptable compatibility.

Proof Assume that

CI( Ã(k), W̃ (k)) ≤ α, k = 1, 2, . . . ,m,

where α is the threshold of acceptable consistency. Then we
get

CI( ¯̃A,
¯̃W ) = 1

4n2

n∑

i=1

n∑

j=1

4∑

t=1

∣
∣āi j t − w̄i j t

∣
∣

= 1

4n2

n∑

i=1

n∑

j=1

4∑

t=1

∣
∣
∣
∣
∣

m∑

k=1

lka
(k)
i j t −

m∑

k=1

lkw
(k)
i j t

∣
∣
∣
∣
∣

= 1

4n2

n∑

i=1

n∑

j=1

4∑

t=1

∣
∣
∣
∣
∣

m∑

k=1

lk
(
a(k)
i j t − w

(k)
i j t

)
∣
∣
∣
∣
∣

≤ 1

4n2

n∑

i=1

n∑

j=1

4∑

t=1

m∑

k=1

lk
∣
∣
∣a

(k)
i j t − w

(k)
i j t

∣
∣
∣

=
m∑

k=1

lk

⎛

⎝
1

4n2

n∑

i=1

n∑

j=1

4∑

t=1

∣
∣
∣a

(k)
i j t − w

(k)
i j t

∣
∣
∣

⎞

⎠

=
m∑

k=1

lkCI
(
Ã(k), W̃ (k)

)

≤
m∑

k=1

lkα = α

m∑

k=1

lk = α,

which means that ¯̃A and ¯̃W are of acceptable compatibility.

4.2 To determine the weighting vector of experts in
group decision making

It can be seen that the less compatibility index of the synthetic
preference relation and synthetic characteristic preference
relation, the higher reliability of decision information pro-
vided by the experts. In order to determine the weights of
experts, we can minimize the compatibility index of the
synthetic preference relation and the synthetic characteris-
tic preference relation.

For the convenience of computation, we use the deviation
square instead of absolute deviation in compatibility index

CI( ¯̃A,
¯̃W ). Based on the proof of Theorem 11, compatibility

index of ¯̃A and ¯̃W can be rewritten as follows.

SCI( ¯̃A,
¯̃W )

= 1

4n2

n∑

i=1

n∑

j=1

4∑

t=1

(āi j t − w̄i j t )
2

= 1

4n2

n∑

i=1

n∑

j=1

4∑

t=1

(
m∑

k=1

lka
(k)
i j t −

m∑

k=1

lkw
(k)
i j t

)2

= 1

4n2

n∑

i=1

n∑

j=1

4∑

t=1

(
m∑

k=1

lk
(
a(k)
i j t − w

(k)
i j t

)
)2

= 1

4n2

n∑

i=1

n∑

j=1

4∑

t=1

⎛

⎝
m∑

k1=1

lk1
(
a(k1)
i j t − w

(k1)
i j t

)
⎞

⎠

×
⎛

⎝
m∑

k2=1

lk2
(
a(k2)
i j t − w

(k2)
i j t

)
⎞

⎠

= 1

4n2

n∑

i=1

n∑

j=1

4∑

t=1

m∑

k1=1

m∑

k2=1

lk1lk2
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×
(
a(k1)
i j t − w

(k1)
i j t

) (
a(k2)
i j t − w

(k2)
i j t

)

=
m∑

k1=1

m∑

k2=1

lk1lk2

⎛

⎝
1

4n2

n∑

i=1

n∑

j=1

4∑

t=1

(
a(k1)
i j t − w

(k1)
i j t

)

×
(
a(k2)
i j t − w

(k2)
i j t

))
. (18)

Let G = (gk1k2)n×n , where

gk1k2 = 1

4n2

n∑

i=1

n∑

j=1

4∑

t=1

(
a(k1)
i j t − w

(k1)
i j t

)

×
(
a(k2)
i j t − w

(k2)
i j t

)
, k1, k2 = 1, 2, . . . ,m. (19)

And let L = (l1, l2, . . . , lm)T be the experts’ weighting vec-

tor. Then the compatibility index SCI( ¯̃A,
¯̃W ) can be regarded

as the function of L .
Denoting z(L) = SCI( ¯̃A,

¯̃W ), then we obtain

z(L) = LTGL. (20)

Therefore, the optimal model to determine experts’
weights by minimizing the compatibility index of additive
trapezoidal fuzzy preference relations is as follows.

(M-2)

min SCI( ¯̃A,
¯̃W ) = LTGL

s.t.

{∑m
k=1 lk = 1,

lk ≥ 0, k = 1, 2, . . . ,m.
(21)

Let RT = (1, 1, . . . , 1)1×m , then (M-2) can be written as

min SCI( ¯̃A,
¯̃W ) = LTGL

s.t.

{
RTL = 1,

L ≥ 0.
(22)

If we don’t take the constraint L ≥ 0 into account, then
Eq. (21) can be expressed as follows.

(M-3)

min SCI( ¯̃A,
¯̃W ) = LTGL

s.t. RTL = 1. (23)

Obviously, if the global optimal solution to model (M-3)
L∗ ≥ 0, then L∗ is also the global optimal solution to model
(M-2).

Theorem 12 If ¯̃A and ¯̃W are not perfectly compatible, then
optimal solution to model (M-3) is

L∗ = G−1R

RTG−1R
. (24)

Proof If ¯̃A and ¯̃W are not perfectly compatible, there exists
i0, j0ε{1, 2, . . . , n}, t0ε{1, 2, 3, 4}, which satisfy

(
āi0 j0t0 − w̄i0 j0t0

)2
> 0.

Thus,

z(L) = LTGL = 1

4n2

n∑

i=1

n∑

j=1

4∑

t=1

(āi j t − w̄i j t )
2 > 0.

By Eq. (19), we get gk1k2 = gk2k1 , k1, k2 = 1, 2, . . . ,m.
Therefore, G = (gk1k2)n×n is a nonsingular matrix. By con-
structing the Lagrange function corresponding to the model
of Eq. (23):

J (L , λ) = LTGL + λ(RTL − 1), (25)

where L is the Lagrange multiplier.
Taking the partial derivatives of Eq. (25) with respect to

L and λ, and setting them to be equal to 0, we obtain that

⎧
⎪⎪⎨

⎪⎪⎩

∂ J (L , λ)

∂L
= 0,

∂ J (L , λ)

∂λ
= 0.

(26)

By solving Eq. (26), we get

L∗ = G−1R

RTG−1R
.

With the fact that ∂2 J (L ,λ)

∂L2 = 2G, which means that z(L) is
a strictly convex function, L∗ is the unique optimal solution
to model (M-3), which completes the proof of the theorem.

4.3 Group decision making with compatibility of
additive trapezoidal fuzzy preference relations

Consider a group decision making problem. Let X =
{x1, x2, . . . , xn} be a set of finite alternatives and E =
{e1, e2, . . . , en} be a finite set of experts. ek provides his/her
own additive trapezoidal fuzzy preference relations Ã(k) =
(ã(k)

i j )n×n, k = 1, 2, . . . ,m. The process of new approach
can be summarized as follows.

Step 1 To determine the fuzzy priority vectors of Ã(k) by
using model (M-1):

w̃(k) =
(
w̃

(k)
1 , w̃

(k)
2 , . . . , w̃(k)

n

)T
, k = 1, 2, . . . ,m.
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Step 2 To calculate the characteristic preference relation
W̃ (k) on the basis of Eq. (14).

Step 3 To determine the weights of experts by using model
(M-2):

L∗ = (
l∗1 , l∗2 , . . . , l∗m

)T
.

Step 4 To calculate the synthetic preference relation ¯̃A based
on Eq. (15).

Step 5 To determine the fuzzy priority vector of ¯̃A by using
model (M-1).

Step 6 To rank all the alternatives xi by using centroids
points and select the best one(s) in accordance with the cen-
troids points.

Step 7 End.

5 Illustrative example

In this section, we develop an approach for investment selec-
tion. Let X = {x1, x2, x3, x4} be a set of four projects for
investment, and let E = {e1, e2, e3} be a set of experts.
Each expert compares four alternatives with respect to the
main criterion of profit of investment and provides additive
trapezoidal fuzzy preference relation Ã(k). They are listed as
follows:

Ã(1) =

⎡

⎢
⎢
⎢
⎣

(0, 5, 0.5, 0.5, 0.5) (0.4, 0.5, 0.6, 0.6)

(0.4, 0.4, 0.5, 0.6) (0, 5, 0.5, 0.5, 0.5)

(0.3, 0.3, 0.4, 0.5) (0.6, 0.7, 0.8, 0.9)

(0.4, 0.6, 0.6, 0.7) (0.3, 0.5, 0.6, 0.7)

(0.5, 0.6, 0.7, 0.7) (0.3, 0.4, 0.4, 0.6)

(0.1, 0.2, 0.3, 0.4) (0.3, 0.4, 0.5, 0.7)

(0, 5, 0.5, 0.5, 0.5) (0.3, 0.4, 0.4, 0.6)

(0.4, 0.6, 0.6, 0.7) (0, 5, 0.5, 0.5, 0.5)

⎤

⎥
⎥
⎥
⎦

,

Ã(2) =

⎡

⎢
⎢
⎢
⎣

(0, 5, 0.5, 0.5, 0.5) (0.5, 0.6, 0.6, 0.8)

(0.2, 0.4, 0.4, 0.5) (0, 5, 0.5, 0.5, 0.5)

(0.3, 0.3, 0.4, 0.9) (0.6, 0.6, 0.7, 0.9)

(0.4, 0.4, 0.5, 0.6) (0.2, 0.4, 0.5, 0.7)

(0.1, 0.6, 0.7, 0.7) (0.4, 0.5, 0.6, 0.6)

(0.1, 0.3, 0.4, 0.4) (0.3, 0.5, 0.6, 0.8)

(0, 5, 0.5, 0.5, 0.5) (0.4, 0.6, 0.6, 0.7)

(0.3, 0.4, 0.4, 0.6) (0, 5, 0.5, 0.5, 0.5)

⎤

⎥
⎥
⎥
⎦

,

Ã(3) =

⎡

⎢
⎢
⎢
⎣

(0, 5, 0.5, 0.5, 0.5) (0.4, 0.5, 0.6, 0.7)

(0.3, 0.4, 0.5, 0.6) (0, 5, 0.5, 0.5, 0.5)

(0.3, 0.4, 0.5, 0.6) (0.6, 0.7, 0.8, 0.9)

(0.4, 0.5, 0.6, 0.7) (0.3, 0.4, 0.5, 0.7)

(0.4, 0.5, 0.6, 0.7) (0.3, 0.4, 0.5, 0.6)

(0.1, 0.2, 0.3, 0.4) (0.3, 0.5, 0.6, 0.7)

(0, 5, 0.5, 0.5, 0.5) (0.3, 0.5, 0.6, 0.6)

(0.4, 0.4, 0.5, 0.7) (0, 5, 0.5, 0.5, 0.5)

⎤

⎥
⎥
⎥
⎦

,

With this information, we use the proposed approach to get
the ranking of the alternatives, and the following steps are
involved:

Step 1 To determine the fuzzy priority vectors of Ã(k) by
using model (M-1):

w̃(k) =
(
w̃

(k)
1 , w̃

(k)
2 , . . . , w̃(k)

n

)T
, k = 1, 2, 3,

where

w̃
(1)
1 = (0.2824577, 0.3423338, 0.3820866, 0.3820866);

w̃
(1)
2 = (0.1820141, 0.1976465, 0.2462143, 0.3067168);

w̃
(1)
3 = (0.2824577, 0.3067168, 0.3423338, 0.4264577);

w̃
(1)
4 = (0.2530704, 0.4264577, 0.4264577, 0.4758771);

w̃
(2)
1 = (0.2547505, 0.4276058, 0.4716760, 0.4716760);

w̃
(2)
2 = (0.1641597, 0.2468783, 0.2766299, 0.2992121);

w̃
(2)
3 = (0.3486867, 0.3486867, 0.3846232, 0.7205701);

w̃
(2)
4 = (0.2282459, 0.2468783, 0.2766299, 0.3727378);

w̃
(3)
1 = (0.2659209, 0.3222913, 0.3800290, 0.4241593);

w̃
(3)
2 = (0.1713578, 0.2317993, 0.2733256, 0.3050651);

w̃
(3)
3 = (0.2968004, 0.4014882, 0.4734139, 0.4734139);

w̃
(3)
4 = (0.2659209, 0.2887596, 0.3404902, 0.4734140).

Step 2 To calculate the characteristic preference relation
W̃ (k) on the basis of Eq. (14), we get

W̃ (1)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(0, 5000, 0.5000, 0.5000, 0.5000) (0.4812, 0.5750, 0.6500, 0.6687)

(0.3313, 0.3500, 0.4250, 0.5188) (0, 5000, 0.5000, 0.5000, 0.5000)

(0.4313, 0.4500, 0.5000, 0.5938) (0.4813, 0.5500, 0.6250, 0.6937)

(0.4063, 0.5250, 0.5500, 0.6188) (0.4563, 0.6250, 0.6750, 0.7187)

(0.4062, 0.5000, 0.5500, 0.5687) (0.3812, 0.4500, 0.4750, 0.5937)

(0.3063, 0.3750, 0.4500, 0.5187) (0.2813, 0.3250, 0.3750, 0.5437)

(0, 5000, 0.5000, 0.5000, 0.5000) (0.3813, 0.4250, 0.4500, 0.6187)

(0.3813, 0.5500, 0.5750, 0.6187) (0, 5000, 0.5000, 0.5000, 0.5000)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

W̃ (2)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(0, 5000, 0.5000, 0.5000, 0.5000) (0.4634, 0.5991, 0.6473, 0.7402)

(0.2598, 0.3527, 0.4009, 0.5366) (0, 5000, 0.5000, 0.5000, 0.5000)

(0.4312, 0.4312, 0.4759, 0.7366) (0.5438, 0.5527, 0.6009, 0.8366)

(0.3348, 0.3527, 0.4009, 0.5866) (0.4384, 0.4741, 0.5259, 0.6866)

123



A group decision making approach 2719

(0.2634, 0.5241, 0.5688, 0.5688) (0.4134, 0.5991, 0.6473, 0.6652)

(0.1634, 0.3991, 0.4473, 0.4652) (0.3134, 0.4741, 0.5259, 0.5616)

(0, 5000, 0.5000, 0.5000, 0.5000) (0.4848, 0.5527, 0.6009, 0.7616)

(0.2384, 0.3991, 0.4473, 0.5152) (0, 5000, 0.5000, 0.5000, 0.5000)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

W̃ (3)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(0, 5000, 0.5000, 0.5000, 0.5000) (0.4688, 0.5375, 0.6125, 0.7063)

(0.2937, 0.3875, 0.4625, 0.5312) (0, 5000, 0.5000, 0.5000, 0.5000)

(0.4187, 0.5125, 0.5875, 0.6312) (0.4937, 0.5875, 0.6625, 0.7317)

(0.3938, 0.4375, 0.5125, 0.6312) (0.4688, 0.5125, 0.5875, 0.7313)

(0.3688, 0.4125, 0.4875, 0.5813) (0.3688, 0.4875, 0.5625, 0.6062)

(0.2687, 0.3375, 0.4125, 0.5063) (0.2687, 0.4125, 0.4875, 0.5312)

(0, 5000, 0.5000, 0.5000, 0.5000) (0.3937, 0.5375, 0.6125, 0.6312)

(0.3688, 0.3875, 0.4625, 0.6063) (0, 5000, 0.5000, 0.5000, 0.5000)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Step 3 To determine the weights of experts by using model
(M-2), and we obtain

L∗ = (0.1069, 0.6686, 0.2245).

Step 4 To calculate the synthetic preference relation ¯̃A based
on Eq. (15), and we get

¯̃A

=

⎡

⎢
⎢
⎢
⎢
⎣

(0, 5000, 0.5000, 0.5000, 0.5000) (0.4669, 0.5669, 0.6000, 0.7562)

(0.2438, 0.4000, 0.4331, 0.5331) (0, 5000, 0.5000, 0.5000, 0.5000)

(0.4337, 0.5230, 0.5562, 0.6562) (0.6000, 0.6331, 0.7331, 0.9000)

(0.4000, 0.4438, 0.5331, 0.6331) (0.3000, 0.4107, 0.5107, 0.7000)

(0.3438, 0.4438, 0.4770, 0.5663) (0.3669, 0.4669, 0.5562, 0.6000)

(0.1000, 0.2669, 0.3669, 0.4000) (0.3000, 0.4893, 0.5893, 0.7000)

(0, 5000, 0.5000, 0.5000, 0.5000) (0.3669, 0.5562, 0.5786, 0.6669)

(0.3331, 0.4214, 0.4438, 0.6331) (0, 5000, 0.5000, 0.5000, 0.5000)

⎤

⎥
⎥
⎥
⎥
⎦

Step 5 To determine the fuzzy priority vector of ¯̃A by using
model (M-1), and we have

w̃1 = (0.2712, 0.3391, 0.3641, 0.3807);
w̃2 = (0.1509, 0.2382, 0.2770, 0.2770);
w̃3 = (0.3465, 0.4388, 0.4687, 0.5297);
w̃4 = (0.2314, 0.2702, 0.3086, 0.3994).

Step 6 Based on Eq. (1), the centroids points of w̃i (i =
1, 2, 3, 4) are as follows:

R(w̃1) = 0.6077, R(w̃2) = 0.5652, R(w̃3) = 0.6709,

R(w̃4) = 0.5796.

Then we have

R(w̃1) > R(w̃2) > R(w̃3) > R(w̃4),

which means that x3 
 x1 
 x4 
 x2. Therefore, the best
alternative is x3.

6 Conclusions

Consistency and compatibility measure play the important
roles in GDM using additive trapezoidal fuzzy preference
relations in the literature. In this paper, a new compatibility
measure of additive trapezoidal fuzzy preference relations is
highlighted and discussed. The main work presented in this
paper is summarized as follows.

First, consistency of additive trapezoidal fuzzy preference
relations is investigated, and a deviation optimal model to
determine priority vector of additive trapezoidal fuzzy pref-
erence relations is developed.

Second, new compatibility measure for additive trape-
zoidal fuzzy preference relations is proposed in which the
deviation measure between the additive trapezoidal fuzzy
preference relation and its characteristic preference relation
are taken into account. Some properties are also investigated
to ensure the effectiveness of the new compatibility measure.

Third, an optimal model is developed to determine the
weights of experts in group decision making with additive
trapezoidal fuzzy preference relations, and the optimal solu-
tion to the model is investigated. However, the existence of
solution to the model is not achieved, which is used to guar-
antees the efficiency of the proposed model.

Future research may be done on extending the compat-
ibility measure to other types of preference relations in a
similar way as Chiclana et al. (2013). Additional research
should focus on development of management procedures of
different preference relations andmanaging preference infor-
mation in Web 2.0 contexts (Ureña et al. 2015).
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