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Abstract Patch alignment (PA) framework provides us a
useful way to obtain the explicit mapping for dimensionality
reduction. Under the PA framework, we propose the mar-
ginal patch alignment (MPA) for dimensionality reduction.
MPA performs the optimization from the part to the whole.
In the phase of the patch optimization, themarginal between-
class and within-class local neighborhoods of each training
sample are selected to build the local marginal patches. By
performing the patch optimization, on the one hand, the
contributions of each sample for optimal subspace selection
are distinguished. On the other hand, the marginal structure
information is exploited to extract discriminative features
such that the marginal distance between the two different
categories is enlarged in the low transformed subspace. In
the phase of the whole alignment, a trick is performed to
unify all of the local patches into a globally linear system and
make MPA obtain the whole optimization. The experimental
results on the Yale face database, the UCI Wine dataset, the
Yale-B face database, and the AR face database, show the
effectiveness and efficiency of MPA.
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1 Introduction

Dimensionality reduction (DR) is an effective method of
avoiding the “curse of dimensionality”. It has achieved
remarkable success in the fields of computer vision and
pattern recognition. Linear discriminant analysis (LDA; Bel-
humeur et al. 1997) is one of themost famousDR techniques.
It is also called the parametric discriminant analysis (PDA)
in (Fukunaga 1990) since it uses the parametric form of the
scatter matrix. LDA aims to preserve information between
the data of different classes. To achieve this goal, LDA max-
imizes the between-class scatter meanwhile minimizing the
within-class scatter. However, the excellent performance of
LDA is based on the assumption that the samples in each
class satisfy the Gaussian distribution. In real world, this
assumption is hard to realize. Thus, they suffer performance
degradation in cases of non-Gaussian distribution. Besides
this, the available features of LDA are limited because the
rank of the between-class matrix is at most c − 1, where
c is the number of classes. It is often insufficient to sep-
arate the classes well with only c − 1 features, especially
in high-dimensional spaces. In addition, LDA only uses
the centers of classes to compute the between-class scatter
matrix, and thus fails to capture the marginal structure of
classes effectively, which has been proven to be essential in
classification.

Even with the above limitations, LDA still performs well
and is one of representative linear dimensionality reduction
methods. However, LDA, as a global method, exploits the
linear global Euclidean structure and fails to use the nonlinear
local information. Liu et al. (2004) and Mtiller et al. (2001)
applied the kernel trick to handle the nonlinearities of data
structure. These kernel methods map data points from the
original feature space into another higher dimensional one
such that the data structure becomes linear.
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The well-known nonlinear dimensionality reduction
(NLDR) methods, e.g., locally linear embedding (LLE;
Roweis and Saul 2000), Isomap (Tenenbaum et al. 2000),
and Laplacian eigenmap (Belkin and Niyogi 2003), are
proposed based on the hypothesis that data in a complex high-
dimensional data space may reside more specifically on or
nearly on a low-dimensional manifold embedded within the
high-dimensional space (Yang et al. 2011). All these NLDR
methods are implemented restrictedly on training data and
cannot provide us with explicit maps on new test data. Ben-
gio et al. (2003) presented a kernel solution to solve this
problem, in which LE, Isomap, and Laplacian Eigenmaps
are integrated into the sameeigen-decomposition framework,
and then they were considered as learning eigenfunctions of
a kernel. Their methods achieve the satisfactory results. After
that, He et al. proposed locality preserving projections (LPP;
He et al. 2005; He and Niyogi 2003) and neighborhood pre-
serving embedding (NEP; He et al. 2005) to obtain the linear
projections and achieved good classification performance.

Recently, Zhang et al. (2009) proposed the locality-based
patch alignment (PA) framework. Many dimensionality
reduction methods can be unified into the PA framework,
even that they are based on different embedding criteria, such
as PCA, LDA, LLE, NPE, ISOMAP, LE, LPP, and local tan-
gent space alignment (LTSA; Zhang and Zha 2004). The PA
framework helps us to better understand the common prop-
erties and intrinsic difference in different algorithms. The
PA framework consists of two stages: part optimization and
whole alignment. In the phase of part optimization, the local
patches are built by each sample and the related ones and aim
to capture the local geometry (locality) of data. In the sec-
ond phase, all part optimizations are integrated to form the
final global coordinate for all independent patches based on
the alignment trick (Zhang et al. 2009). Different algorithms
were shown to construct whole alignment matrices in an
almost identicalway, but varywith patch optimization.Under
the PA framework, Zhang et al. (2009) proposed discrimina-
tive locality alignment (DLA) to overcome the mentioned
limitations of LDA. In DLA, a local nearest patch is built by
one sample associated with its related nearest samples. In the
phase of patch optimization, the within-class compactness is
represented as the sum of distances between each point and
its K1-nearest neighbors of the same class; while the sep-
arability of different classes is characterized as the sum of
distances between each sample and its K2-nearest neighbors
of the different classes. By performing the patch optimiza-
tion, the samples with the same class-label should cluster
better than before, but it does not guarantee that the marginal
distance can be enlarged larger than before.

The marginal structure information has been proved to be
essential in classification and has attracted more and more
attention.Manymarginmaximization-based algorithms have
been developed, e.g., (MMC; Li et al. 2006), (MFA; Yan

et al. 2007), and (MMDA; Yang et al. 2009). These meth-
ods all exploit the marginal samples, which contain much
discriminative information than other samples, to extract
the discriminative features such that the extracted features
are more suitable for classification. This also motivates
us to exploit the local marginal discriminative informa-
tion to develop a novel nonparametric DR technique, called
marginal patch alignment (MPA). In MPA, we select the
between-class and within-class local marginal samples of
each training sample to build the marginal patches. It is obvi-
ous that themarginal patches can containmost discriminative
information than other patches. Based on these local mar-
ginal patches, the within-class compactness is represented
as the sum of distances between each sample and its K1
within-class marginal samples associated with the nearest
between-class samples; while the separability of different
classes is characterized as the sum of distances between the
two local marginal means. By performing marginal patch
optimization, the marginal structure can be found and the
discriminative information is exploited. As a result, the mar-
ginal distances between the two different categories can be
enlarged in a direct way.

Unlike DLA, MPA focuses on marginal samples rather
than the nearest samples. MPA selects the marginal samples
to build patches, and then performs the patch optimization
to push them away, such that the marginal distances become
larger than before. The way taken by MPA is more direct
than that of DLA in enlarging the marginal distance. More
concretely, MPA first finds the K2 nearest between-class
neighbors in each other’s class, and then turns back to find
the K1 within-class marginal samples. By such a way, the
selected within-class samples near the margin of different
classes are maybe not the nearest samples of the given sam-
ple. While this does not affect us to make the samples with
the same class-labels clustered better than before.

The remainder of this paper is organized as follows:
Section 2 outlines the PA framework. Section 3 describes
the proposed MPA algorithm. Section 4 presents the advan-
tages of MPA. Section 5 verifies the effectiveness of MPA
through experiments on theWine dataset from UCI, the Yale
face database, the Yale-B face database, and the AR face
database. Finally, our conclusions are drawn in Sect. 6.

2 Patch alignment (PA) framework

In the PA framework (Zhang et al. 2009), if considering a
dataset with N measurements, we can build N patches for
each training sample. Each patch consists of a training sample
and its associated ones, which depend on both characteristics
of the dataset and the objective of an algorithm. With these
built patches, optimization can be imposed on them based on
an objective function, and then the alignment trick (Zhang
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et al. 2009) can be utilized to unify all the patches into a global
coordinate. The specific procedure of the PA framework is
listed as follows:

2.1 Part optimization

Considering an arbitrary training sample �xi and its K associ-
ated samples (e.g., nearest neighbors) �xi1, . . . �xiK , we build
the patch �Xi = [�xi , �xi1, . . . , �xiK ]. For �Xi , we have a part
mapping fi : �Xi �→ �Yi , by which we can obtain �Yi =
[�yi , �yi1 , . . . , �yiK ], the low-dimensional representation of �Xi .
Let us perform the part optimization on �Yi as follows:

argmin
�Yi

tr
( �Yi �Li �Y T

i

)
, (1)

where tr(·) is the trace operator; �Li ∈ R(K+1)×(K+1) is the
patch optimization matrix and varies with the different algo-
rithms.

2.2 Whole alignment

For each patch �Xi , its low-dimensional representation �Yican
be put into a global coordinate as follows:

�Yi = �Y �Si , (2)

where �Y = [�y1, . . . , �yN ] is the global coordinate, �yi can
be obtained by fi :�xi �→ �yi for i = 1, . . . , N , and �Si is a
selection matrix. The entry of �Si is defined as below:

(�Si )pq =
{
1 if p = Fi {q}
0 otherwise

(3)

where Fi = {i, i1, . . . , iK } denotes the index set of the i th

patch, which is built by the training sample �xi and its K
associated ones. Then, Eq. (1) can be rewritten as follows:

argmin
�Y

tr
( �Y �Si �Li �STi �Y T

)
. (4)

Now, we can perform the whole alignment. Let i =
1, . . . , N and sum over all the part optimizations described
as Eq. (4) as follows:

argmin
�Y

N∑
i=1

tr
( �Y �Si �Li �STi �Y T

)
. (5)

Impose UTU = Id in Eq. (5). The optimal projection
matrixU is obtained by solving the following objective func-
tion:

argmin
U

N∑
i=1

tr
(
UT �X �Si �Li �STi �XTU

)

s.t. UTU = Id

(6)

3 Marginal patch alignment (MPA)

3.1 Motivations

Let us first consider a two-class problem. X =
[x1, x2, . . . , xN ] is the training sample set, where N is the
total training number. Assumed that xi is the sample from
Class 1. Now, we find its K2-nearest samples in Class 2.
Collect these K2-nearest neighbors in X2

i = [xi1 , . . . , xik2]
and calculate their local mean vector m2

i . Now, we turn
back to find the K1-nearest neighbors of m2

i in Class 1
and collect them in Xi

1 = [x1i , . . . , xi K 1]. The mean of
these K1 samples is denoted by m1

i . Collect the two parts
of neighbors of xi together and build the i th marginal patch
as Xi = [xi , xi1, . . . , xiK1, xi1, . . . , xiK2].

Now, we define the between-class marginal distance of xi
as follows:

db(xi ) =
∥∥∥mi

2 − mi
1
∥∥∥
2
. (7)

The within-class marginal distance of xi is defined as fol-
lows:

dw(xi ) =
K1∑
j=1

∥∥xi − xi j
∥∥2 (wi ) j (8)

where (wi ) j = exp(− ∥∥xi − xi j
∥∥2 /∂), ∂ is a parameter.

Usually, we can choose the parameter ∂ as the square of
the average Euclidean distance between xi and all its within-
class marginal data points. More details above the selection
of the parameter can refer (Belkin and Niyogi 2001).

Our goal is to find a linear transform matrix P , such that
the transformed marginal distance between the two differ-
ence classes can be enlarged, i.e., the transformed samples
with different class-labels are push away. Meanwhile, the
within-class samples are pulled closer. Figure 1 shows the
optimized result.

3.2 Marginal patch optimization

In the transformed space, the within-class marginal dis-
tances dw(yi ) generally characterizes the compactness of the
marginal patch Yi = [yi , yi1 , . . . , yi K1 , yi1 , . . . , yiK2 ]. By
performing algebraic operation, dw(yi ) can be deduced as
follows:

dw(yi ) =
K1∑
j=1

∥∥yi − yi j
∥∥(wi ) j

= tr

⎧
⎪⎨
⎪⎩

⎛
⎜⎝

yi − yi1
.
.
.

yi − yi K1

⎞
⎟⎠ diag

(
wt
i

) [
yi − yi1 , . . . , yi − yi K1

]
⎫
⎪⎬
⎪⎭

= tr
(
Yi Lw(i)Y

T
i

)
(9)
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Fig. 1 Illumination of the
optimized result
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where Lw(i) =
(

IK1+1
0

)(
−eTK1
Ik1

)
diag(wi )[−eK1, IK1]

Lw(i) =
(

IK1+1
0

)T

, eK1 = [1, . . . , 1]T ∈ RK1×1, and

IK1 = diag(1, . . . , 1) ∈ RK1×K1

Similarly, the between-class marginal distance db(yi ) in
the transformed space characterizes the separability of the
marginal samples with different class-labels. db(yi ) can be
deduced as follows:

db(yi ) =
∥∥∥m̂1

i − m̂2
i

∥∥∥
2

=
∥∥∥∥∥∥

1

K1

K1∑
j=1

yi j − 1

K2

K2∑
s=1

yis

∥∥∥∥∥∥

2

= tr
(
Yi�i�

T
i Y

T
i

)

= tr
(
Yi Lb(i)Y

T
i

)
(10)

where L(b)i = �i�
T
i and �i =

[
0 0
0 IK1+K2

]

[0, 1

K1
, . . . ,

1

K1︸ ︷︷ ︸
K1

,− 1

K2
, . . . ,− 1

K2︸ ︷︷ ︸
K2

]T .

3.3 Whole alignment

For better classification, the marginal distance between the
two categories in the low-dimensional transformed space
should be as large as possible. To achieve this goal, for each
marginal patch, the distance from each sample to its cor-
responding within-class marginal points should be as small
as possible, i.e., maximizing dw(yi ) . At the same time, the
distance between the two means of marginal patches with
different class-labels should be as large as possible, i.e, max-
imizing db(yi ). Unifying both two distance functions, we
have

argmax
yi

(db(yi ) − βdw(yi ))

= argmax
yi

⎛
⎜⎝
∥∥∥∥∥∥

1

K1

K1∑
j=1

yi j − 1

K2

K2∑
s=1

yis

∥∥∥∥∥∥

2

−β

K1∑
j=1

∥∥yi − yi j
∥∥2(wi ) j

⎞
⎠

= argmax
yi

tr
(
Yi Lb(i)Y

T
i

)
− βtr

(
Yi Lw(i)Y

T
i

)
(11)

where the parameter β is a scale factor to adjust the tradeoff
between the two measurements of the within-class distance
and the between-class distance (i.e., the compactness and
separability) (Zhang et al. 2009). The main factor that can
cause the imbalance is the unequal numbers K1 and K2, of
the same-class and different-class marginal neighbors. In our
paper, we simply set β = 1 to place the same weight on two
distances. In addition, we can set βin the range of [0, 1]. If
β = 0, obviously, the within-class marginal distances will be
neglected and the between-class marginal distances become
very crucial. The marginal discriminative information can
only be captured by exploring the between-class marginal
structure. In such a case, an appropriate K2 becomes very
important.When K2 = T , where T is the number of training
sample per class, the between-class local marginal mean is
the class-mean. The class-mean contains less class marginal
information. So K2 should not be set too large. On the con-
trary, if we set K2 too small, such as 1, that means only a very
small amount of training samples are utilized in the learning
the discriminative structure information, which may lead to
suboptimal performance. Zhang et al. (2008) provides us a
more simple way to choose parameters K1 and K2. We can
follow it to find the optimal parameters K1 and K2. Based on
the optimal parameters K1 and K2, the sensitivity of objec-
tive function caused by β can be reduced to some extent.

Having finished the marginal patch optimization, we now
perform the whole alignment. The low-dimensional repre-
sentation of the i th patch Y i = [yi , yi1, . . . , yiK1, yi1, . . .
yiK2] can be integrated into a global coordinateY =
[y,

1y2, . . . , y
]
N by a selection matrix Si , i.e,

Yi = Y Si , (12)

where Y = PT X and

(Si )pq =
{
1 if p ∈ �i {q}
0 otherwise (13)
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and �i = {i, i1, . . . , i K1, i1, . . . , iK2}.
Let i = 1, . . . , N and we have N sub-optimizations of

Eq. (11). Sum up all of them and then perform the whole
alignment as follows:

argmax
Y

N∑
i=1

(
tr
(
Y Si Lb(i)S

T
i Y T

)
− βtr

(
Y Si Lw(i)S

T
i Y T

))

= argmax
Y

tr
(
Y

N∑
i=1

(
Si Lb(i)S

T
i − βSi Lw(i)S

T
i

)
Y T

)

= argmax
Y

tr(Y LY T )

(14)

where L is the alignment matrix and

L =
N∑
i=1

(
Si Lb(i)S

T
i − βSi Lw(i)S

T
i

)
. (15)

The optimal transformed matrix PMPA = [p1, . . . , pd ] is
constructed by the eigenvectors of

XLXT P = λP (16)

associating with d maximal eigenvalues λ.

3.4 Algorithm of MPA

In summary of the description above, the marginal patch
alignment (MPA) algorithm is given below:

Step 1: Project all the training samples into a PCA-
transformed subspacewith the projectivematrix of PPCA.
Step 2: For each sample xi , find its K2 between-class
marginal samples X2

i = [xi1 , . . . , xik2 ] and K1 within-
classmarginal neighbors X1

i = [xi1 , . . . , xi K1 ]. And then
build the i th marginal patch Xi = [xi , xi1 , . . . , xi K1 , xi1 ,
. . . , xiK2].
Step 3: Calculate the alignment matrix L by Eq. (15).
Step 4: Solve the standard eigenequation of XLXT P =
λP and obtain the transformed matrix PMPA.

Step 5: Output the final linear transformed matrix P∗ =
PPCAPMPA.

Once P∗ is obtained, we can project all the samples into
the optimal transformed space with the projective matrix of
P∗, and then select the minimum distance classifier (MDC;
Gonzalez and Woods 1997) for classification.

3.5 Extension to multi-class case

Let us consider themulti-class cases in the observation space.
Suppose there are c pattern classes. Let X = {Xli

i } be the

training sample set, where i = 1, . . . , N , and li ∈ {1, . . . , c}
is the class-label of xi . Now, we need to adjust some steps of
theMPAalgorithm in two-class case.More concretely, in step
2, we turn to find the K2 between-class marginal neighbors
in Class s (where s = 1, . . . , c and s �= li ), and collect them
in (χb)

s
i . Calculate the mean of these between-class marginal

neighbors (mb)
s
i and find K1 nearest neighbors of (mb)

s
i in

Class li . The K1 nearest neighbors is called the within-class
marginal samples of xi with respect to Class s. Collect them
in (χw)si = {xs

i j
} for j = 1, . . . , K1.

Now, we calculate the within-class marginal distance and
between-class marginal distance of yi in the transformed
space, respectively, as follows:

Dw(yi ) =
c∑

l=1,l �=li

K1∑
j=1

∥∥∥yi − yli j
∥∥∥
(
wl
i

)
j,

(17)

Db(yi ) =
c∑

l=1,l �=li

∥∥∥∥∥∥
1

K1

K1∑
j=1

yli j − 1

K2

K2∑
t=1

yli t

∥∥∥∥∥∥

2

. (18)

Perform the marginal patch optimization as follows:

argmax
yi

(Db(yi ) − β Dw(yi )). (19)

The remaining steps are the same as the ones in two-class
case.

4 Advantages of MPA

The proposed MPA has the following advantages:

• The contributions of each sample for optimal subspace
selection are distinguished in the phase of marginal patch
optimization.

• The number of the available features is more than c−1,
where c is the number of classes. In the high-dimensional
space, it usually needs more features to separate the
classes well.

• The marginal samples contain more discriminative infor-
mation than those in other patches. MPA takes the
marginal samples into account, and thus can well pre-
serve marginal discriminability of classes.

• Without prior information on data distributions, “mar-
ginal patch optimization” can characterize the separabil-
ity of different classes well and the “whole alignment”
can help us to obtain the global optimization.

• Like the nonlinear dimensionality reduction method,
MPA can find the nonlinear boundary structural informa-
tion for different classes hidden in the high-dimensional
data, even the data with non-Gaussian distribution. This
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Fig. 2 MPA’s between-class scatter and LDA’s between-class scatter.
v1: difference vector of the centers of two classes; {v2, . . . , v8}: differ-
ence vectors from the local means located in the classification boundary

can be explained by examining the vectors. As illus-
trated in Fig. 2, MPA has the advantage of utilizing
the boundary information. More concretely, the MPA’s
between-class scatter matrix spans a space involving
the subspace spanned by the vectors {v2, . . . , v8} where
boundary structure is embedded. Therefore, the bound-
ary information can be fully utilized. We compare MPA
with LDA, and find LDA computes the between-class
scatter matrix only using the vector v1, which is merely
the difference between the centers of the two classes. It
is obvious that v1 fails to capture the boundary.

5 Experiments

In this section, the proposed MPA method is evaluated using
the Yale face database, the UCI Wine dataset, the Yale-B
face database, and the AR face database and compared with
PCA, FLDA, LPP, maximum margin criterion (MMC; Li
et al. 2006), and DLA. For LPP, we select the Gaussian ker-
nel t = ∞. Note that, in our experiment, LPP and MPA use
the K -nearest neighbor algorithm to select the neighbors. The
neighbor parameters are set by the global searching strategy.
For distinction, the neighbor parameter is denoted by K in
LPP, the within-class and the between-class neighbor para-
meters inMPAare denoted as K1 and K2, respectively. After
extracting features, MDC is employed for classification. The
experiments are executed on a computer system of Intel(R)
Core(TM) i5-4440 CPU @ 3.10GHz 3.10GHz and 8.00 GB
with Matlab R2010a.

5.1 Experiments on the Yale face database

The Yale face database is constructed at the Yale Cen-
ter for Computational Vision and Control. It contains 165
grayscale images of 15 individuals. The images demonstrate
the variations in lighting condition, facial expression, and

with/without glasses. The size of each cropped image is 100
× 80. Figure 3 shows some sample images of one individ-
ual. These images vary as follows: center-light, with glasses,
happy, left-light, without glasses, normal, right-light, sad,
sleep, surprised, and winking.

In the following section,we continue our experimentswith
random training samples. T (=3, 4, 5, and 6) images are ran-
domly selected from the image gallery of each individual to
form the training sample set. The remaining 11-T images
are used for test. The selection of neighbor parameters of
LPP and MPA is similar to that in UCI Wine database. For
FLDA, LPP, MMC, and MPA, we first project the data set
into a 44-dimensional PCA subspace. We independently run
the system 20 times. Table 1 shows the average recognition
rates and their corresponding 95% intervals of each method.
Themaximal average recognition rates of sixmethods versus
the variation of the size of training set are illustrated in Fig.
4. From Table 1 and Fig. 4, we can see that:

1. MPAsignificantly outperformsPCA, FLDA,LPP,MMC,
andDLA, nomatter with the variation of the size of train-
ing samples in each class.

2. By comparing with the column of Table 2 with respect
to FLDA, we find its recognition rate has degraded a
lot when the number of training sample increases to 4.
The possible reason is that FLDA is sensitive to outliers.
Compared with the “center-light” image, the “left-light”
and the “right-light” images of each class can be treated
as outliers. The outlier images may affect the class-
mean and cause error in estimate of scatters. This will
finally lead to the projection of FLDA inaccurate (Xu
et al. 2014). In contrast, MPA builds the adjacency rela-
tionship of data points using K2 between-class nearest
marginal neighbors and the K1 within-class marginal
neighbors.Most outlier images of different persons lie on
the margin of class manifold. MPA focuses on the classi-
fication margin. Thus, most outliers may be treated as the
marginal points and used to calculate the between-class
scatter (i.e., the between-class marginal distance). At the
same time, the outliers may be treated as the within-class
marginal samples. By minimizing the within-class mar-
ginal distance, the same-class samples cluster better than
before, and the marginal distance between the different
classes also become larger. From this point of view,MPA
seems to be more robust to outliers than FLDA.

5.2 Experiments on the Wine dataset from UCI

Wine dataset is a real-life dataset from the UCI machine
learning repository (http://archive.ics.uci.edu/ml). Wine has
13 features, 3 classes and 178 instances. 48 instances of each
class are selected and used in the experiments.
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Fig. 3 Samples of a person from the Yale database

Table 1 The maximal average recognition rates (%) and t and the corresponding 95% intervals of six methods on the Yale face database

PCA FLDA LPP MMC DLA MPA

3 90.00 [0.87, 0.93] 89.42 [0.80, 0.95] 85.17 [0.83, 0.93] 88.67 [0.87, 0.96] 90.25 [0.86, 0.95] 91.21 [0.85, 0.96]

4 90.57 [0.87, 0.93] 71.24 [0.53, 0.79] 88.24 [0.87, 0.95] 88.81 [0.86, 0.95] 87.24 [0.76, 0.93] 93.10 [0.86, 0.97]

5 91.67 [0.84, 1.00] 87.67 [0.73, 0.99] 90.11 [0.83, 1.00] 89.94 [0.83, 1.00] 87.67 [0.71, 0.98] 94.06 [0.83, 1.00]

6 92.60 [0.85, 0.99] 92.00 [0.84, 1.00] 91.93 [0.83, 1.00] 91.87 [0.86, 1.00] 89.67 [0.77, 0.99] 96.00 [0.88, 1.00]
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Fig. 4 The maximal average recognition rates of six methods versus
the variation of the size of training set in the Yale face database

In our experiments,T (=10, 15, 20, 25, and30) samples per
class are randomly selected for training and the remainders
for testing. The experiment is repeated for 30 times. PCA,
FLDA, LPP, MMC, DLA, and the proposed MPA algorithm
are, respectively, used for feature extraction based on the
original 13-dimensional features. We set the range of neigh-
bor parameter K of LPP from2 to3T−1with an interval of 1.
Similarly, the range of between-class parameter K2 of MPA
is set from 1 to T with an interval of 1, and the within-class
parameter K1 of MPA is set from 1 to T −1 with an interval
of 1. And then, we choose the neighbor parameter associated

with the top recognition rate as the optimal one. Table 2 lists
the maximal average recognition rates and the 95% interval
of each method on the UCI Wine database across 30 runs.
The maximal average recognition rates of six comparative
methods versus the variation of the size of training set are
illustrated in Fig. 5 . Observing Table 2 and Fig. 5, we find
MPA is the best one among six feature extraction methods,
irrespective of the variation in the size of training samples in
each class.

5.3 Experiments on the extended Yale-B face database

The extended Yale B face database (Lee et al. 2005) contains
38 human subjects under 9 poses and 64 illumination con-
ditions. The 64 images of a subject in a particular pose are
acquired at camera frame rate of 30 frames/ second, so there
is only small change in head pose and facial expression for
those 64 images. All frontal-face images marked with P00
are used, and each image is resized to 42×48 pixels in our
experiment. Some sample images of one person are shown
in Fig. 6.

In our experiments,T (=10, 15, 20, and 25) images are
randomly selected from the image gallery of each individ-
ual to form the training sample set. The remaining images
are used for testing. PCA, FLDA, LPP, MMC, DLA, and
MPA are, respectively, used for feature extraction. Note
that, FLDA, LPP, MMC, DLA, and MPA are performed on
the 150-dimensional PCA subspace. Similarly, the neighbor
parameters of MPA are set as that used in the UCI Wine
dataset. In addition, considering the case of large training
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Table 2 The maximal average recognition rates (%) and the corresponding 95% intervals of six methods on the UCI Wine database

PCA FLDA LPP MMC DLA MPA

10 62.16 [0.59, 0.68] 91.73 [0.84, 0.96] 85.20 [0.77, 0.94] 62.78 [0.59, 0.71] 68.33 [0.54, 0.78] 93.95 [0.88, 0.97]

15 61.08 [0.59, 0.64] 94.58 [0.90, 0.98] 85.89 [0.78, 0.93] 61.14 [0.58, 0.64] 67.91 [0.56, 0.77] 96.33 [0.94, 0.98]

20 61.51 [0.56, 0.64] 95.12 [0.92, 0.98] 88.06 [0.81, 0.93] 61.98 [0.57, 0.66] 68.41 [0.61, 0.77] 97.78 [0.95, 0.99]

25 61.87 [0.55, 0.69] 96.23 [0.93, 0.99] 86.86 [0.78, 0.93] 61.84 [0.55, 0.69] 64.64 [0.54, 0.74] 98.60 [0.97, 1.00]

30 60.80 [0.57, 0.65] 96.54 [0.92, 1.00] 87.72 [0.77, 0.94] 61.85 [0.57, 0.67] 64.81 [0.51, 0.80] 98.58 [0.96, 1.00]
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Fig. 5 The maximal average recognition rates of PCA, FLDA, LPP,
MMC, DLA, and MPA versus the variation of the size of training set in
UCI Wine dataset

Fig. 6 Samples of a person under pose 00 and different illuminations,
which are cropped images in the extended Yale-B face database

samples, we take the strategy of searching from global to
local. Let neighbor parameter of LPP vary from 2 to 38T −1
with an interval of 5, and select the parameter associatedwith
the best recognition rate. After that, we reset the range to a
smaller one which surrounds the parameter associated with
the best recognition rate. The optimal neighbor parameter is
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Fig. 7 The maximal average recognition rates of PCA, FLDA, LPP,
MMC, DLA, and MPA versus the variation of the size of training set in
the Yale-B face database

the one associated the top recognition rate. For each T , we
run the system 20 times and record the top average recogni-
tion rate and the corresponding 95% interval of each method
in Table 3. Figure 7 shows us the histogram of experimental
results. By comparing the experimental results in Table 3 and
Fig. 7, we find that the top recognition rate of MPA is also
higher than other methods. It is well known that the illumi-
nation variation problem is one of the well-known problems
in face recognition in uncontrolled environment. The exper-
imental results in Yale-B face database verify the validity of
the proposed method in dealing the changing illumination on
images.

Table 3 The maximal average recognition rates (%) and the corresponding 95% intervals of six methods on the Yale-B face database

PCA FLDA LPP MMC DLA MPA

10 54.58 [0.44, 0.68] 95.23 [0.90, 0.98] 94.17 [0.87, 0.98] 92.59 [0.86, 0.97] 94.25 [0.87, 0.97] 96.57 [0.94, 0.99]

15 55.83 [0.46, 0.63] 96.84 [0.92, 0.99] 96.41 [0.90, 0.98] 94.65 [0.87, 0.98] 94.78 [0.86, 0.98] 97.55 [0.95, 0.99]

20 57.22 [0.48, 0.65] 97.59 [0.96, 0.99] 97.21 [0.95, 0.99] 95.65 [0.92, 0.98] 94.67 [0.86, 0.98] 98.05 [0.97, 0.99]

25 59.12 [0.51, 0.65] 97.78 [0.97, 0.99] 97.67 [0.97, 0.99] 96.05 [0.92, 0.98] 92.77 [0.88, 0.98] 98.12 [0.97, 1.00]
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Fig. 8 Sample images of one person in the AR face database

Table 4 The maximal average recognition rates (%) and the corresponding 95% intervals of six methods on the AR database across 10 runs

PCA FLDA LPP MMC DLA MPA

2 70.51 [0.66, 0.77] 74.94 [0.63, 0.84] 82.84 [0.75, 0.90] 72.87 [0.66, 0.81] 78.92 [0.74, 0.88] 84.34 [0.77, 0.89]

4 73.52 [0.66, 0.84] 83.93 [0.75, 0.93] 88.54 [0.84, 0.95] 78.30 [0.67, 0.92] 77.85 [0.63, 0.88] 88.73 [0.83, 0.95]

6 75.71 [0.65, 0.87] 92.75 [0.77, 0.99] 92.92 [0.84, 0.98] 84.18 [0.69, 0.94] 81.69 [0.55, 0.93] 92.93 [0.87, 0.98]

5.4 Experiments on the AR face database

The AR face database (Martinez and Benavente 1998, 2006)
contains over 4000 color face images of 126 people, includ-
ing frontal views of faces with different facial expressions,
lighting conditions and occlusions. The images of 120 per-
sons including 65males and 55 females are selected and used
in our experiments. The pictures of each person are taken in
two sessions (separated by two weeks) and each section con-
tains seven color imageswithout occlusions. The face portion
of each image is manually cropped and then normalized to
5014 × T 40 pixels. The sample images of one person are
shown in Fig. 8.

We randomly choose T (= 2, 4, and 6) images from the
images gallery of each individual to form the training sam-
ple set. The remaining 14 − T images are used for testing.
The proposed algorithm is compared with PCA, FLDA, LPP,
DLA, and MMC. For fair comparisons, 220 principal com-
ponents are kept for FLDA, LPP, MMC, DLA, and MPA
methods in the PCA step. For each given T , we average the
results over 10 random splits and report the means in Table 4.
Themaximal average recognition rates of sixmethods versus
the variation of the size of training set are illustrated in Fig.9.
Observing Table 4 and Fig. 9, we find that MPA can achieve
higher recognition rates than PCA, FLDA, MMC, and DLA
no matter with the variation of the size of training samples
in each class. But MPA and LPP achieve the comparative
results.
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Fig. 9 The maximal average recognition rates of PCA, FLDA, LPP,
MMC, DLA, and MPA versus the variation of the size of training set in
the AR face database

6 Conclusions

Under the PA framework, we developed a dimensionality
reduction technique, termed MPA. In MPA, the marginal
points associated with each training sample are selected to
build the local patches. By performing patch optimization,
we distinguish the contributions of each sample for opti-
mal subspace selection by exploiting the marginal structure
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information of each sample to extract the useful discrimina-
tive features. As a result, the marginal distances between the
two different categories are accordingly enlarged in the low-
dimensional transformed subspace. The following whole
alignment unifies all of local patches into a globally linear
system and makes the algorithm obtain the whole optimiza-
tion. The proposed MPA method is evaluated using the Yale
face database, the UCI Wine dataset, the Yale-B face data-
base, and the AR face database. The experimental results
demonstrate that MPA outperforms other comparative meth-
ods.
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